Speaker: Tim Meier
Title: Noncommutative deformations of gauge theories via Drinfel’d twists of the scale symmetry
Abstract: Integrability within the AdS/CFT correspondence provides a powerful framework for studying quantum field theories and their AdS duals at finite coupling, offering an ideal playground for testing the duality and exploring nonperturbative aspects of QFT. In recent years, considerable attention has been focused on integrable deformations of the AdS5 string, particularly the class of homogeneous Yang–Baxter deformations, whose CFT duals are conjectured to be twisted versions of N=4 SYM. When these deformations act on the AdS sector of the background, they generically give rise to noncommutative field theories. However, a key challenge has been the lack of a systematic construction of gauge-invariant noncommutative Yang–Mills theories for the relevant twists.
In this talk, I will present a new approach that resolves this issue by providing a gauge-invariant formulation of noncommutative Yang–Mills theory for twists generated by scale and Poincaré transformations. This framework opens the door to investigating the CFT duals of a broad class of Yang–Baxter–deformed AdS backgrounds and paves the way for deeper tests of integrability-based deformations within AdS/CFT.
