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Introduction

Since its first appearance in the 1970s [1, 2] following the development of conformal field theory (CFT),
the conformal bootstrap program has lived several reincarnations. The modern idea of the bootstrap
is to rely on the operator content of the theory and on numerical parameters called CFT data, which
encode the dynamical information, in order to constrain CFTs in a non-perturbative fashion. CFTs are
used for describing the behavior of quantum field theories and statistical systems near criticality, and in
particular any quantum field theory can be seen as the perturbation of a UV conformal field theory. This
suggests that some information about the Renormalization Group (RG) flow of quantum field theories
is contained in the corresponding CFT. The conformal bootstrap has been very successful in 2d theories
[3], where the minimal models could be solved exactly. This is due to the presence of an extraordinary
infinite-dimensional algebra called the Virasoro algebra, but an extension to theories in d ≥ 3 appeared
to be significantly more complicated. Until recently, it was not known how to approach the problem
and little progress was made. But strong constraints on the CFT data of a theory can be obtained by
assuming associativity of the operator algebra. This is most commonly referred to as crossing symmetry,
and the renaissance of the conformal bootstrap came with the idea brought in [4] and based on [5] to
derive bounds on the relevant physical quantities, instead of trying to solve the crossing equations for
all the CFT data at once. Spectacular results were obtained since then, and in particular the conformal
bootstrap has been used for setting bounds on the landscape of unitary CFTs [6, 7]. This has led to
the discovery of new models, which for some of them do not have a known Lagrangian description yet
[7]. Accessorily, the new techniques arising from this approach were used for deriving the most precise
estimation of the critical exponents of the 3d Ising model to this day [8]. The conformal bootstrap can
also be used in association to perturbation theory, where the computations have become increasingly
tedious as higher-loop orders are being faced.

Maximally supersymmetric N = 4 Super Yang-Mills (SYM) theory in 4d is a natural candidate for the
conformal bootstrap program, since it is expected to be most effective for theories which are defined by
a few properties only, such as its global symmetries [9]. N = 4 SYM has attracted a lot of attention
since the emergence of the AdS/CFT correspondence, where it is believed to be dual to a type IIB string
theory on AdS5×S5 space, at least in the large N limit [10]. This is particularly interesting, since
gravity is inherent to string theory, while there is no trace of a spin-2 particle in the gauge theory.
Another conjecture that makes N = 4 SYM all the more intriguing is the idea that it may be integrable
[11], i.e. that it is possible to write down a system of equations encoding the quantities of interest in
an exact fashion. Composite operators of special interest are scalar operators consisting of products of
scalar fields, which are called single-trace operators, since taking the trace over the gauge-group indices
is required in order to preserve gauge invariance. These operators are 1/2-BPS, i.e. they preserve
half of the supercharges. The two- and three-point functions of such operators are protected against
radiative corrections [12, 13], which means that their conformal dimensions do not receive anomalous
contributions.

As we have already discussed above, conformal symmetry imposes powerful constraints on the dynamics
of a conformal field theory. However, this high degree of symmetry also leads to a loss of richness in
structure. A certain class of extended operators called conformal defects presents the particularity of
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Figure 1: Flowchart illustrating the concept behind this work schematically. The superconformal boot-
strap associated to unitarity can be used for obtaining the functional shape of the two-point function in
terms of superblocks. On the other hand, the two-point function can also be computed using perturbation
theory, and comparing the result to the structure in superblocks yields the CFT data. Crossing symmetry
relates the CFT data of the so-called bulk and defect channel expansions, and hence a large number of
correlators can be obtained. The reader is invited to look at this chart once again after having read the
full thesis.

breaking only mildly the conformal symmetry [14]. To be more precise, they preserve a large subgroup
of the conformal symmetry of the vacuum, and hence the constraints of the defect-free theory are only
partially relaxed. The correlators are constrained to a SO(p+1,1)×SO(q) symmetry, where q is called
the codimension of the defect and where p+ q = d, and the bootstrap program can be extended to the
study of such defect CFTs (see e.g. [15, 16]). A defect of particular interest in N = 4 SYM at large N
is the Maldacena-Wilson loop, which differs from the traditional Wilson loop in that scalar fields also
couple to the loop [17]. This non-local operator has important applications in AdS/CFT, where it is
believed to be dual to the area of minimal surface in AdS5 [18]. It turns out that the Maldacena-Wilson
loop with an infinite-line geometry is also a 1/2-BPS operator, and that its expectation value is just 1 at
all orders in perturbation theory for the line geometry [19].

In presence of a defect, less constraints are present on the correlators and new crossing equations
arise, which involve two-point functions. The two-point function of scalar operators was studied in the
context of the defect conformal bootstrap in [14], while the superconformal case was done in [20] for
defects of codimension one and three. 1/2-BPS line defects have been studied in e.g. [21, 22]. In this
thesis, we repeat the analysis of [14, 20] specialized to the two-point function of single-trace operators
in presence of the Maldacena-Wilson-line defect. This results in an expansion in superblocks, which
fixes the functional form of the correlator non-perturbatively. Our goal is then to compute the two-
point function perturbatively, and to extract the (perturbative) CFT data by comparing the result to
the superblock expansion. Because of crossing symmetry, it is not only the CFT data for the two-point
functions that we obtain, but also the products of the CFT data for one-point and three-point functions.
The flowchart in fig. 1 summarizes the concepts behind this work.

Outline

This thesis is structured in four chapters. In the first one, we present the theoretical background
necessary for understanding the content of the next chapters, including reviews of conformal field theory
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and of supersymmetry. We also introduce conformal defects with a focus on the Maldacena-Wilson line.

The second chapter consists of the derivation of the superblocks for both the bulk and the defect chan-
nels, as well as a discussion of the crossing symmetry that relates the two CFT data sets. It also includes
some considerations about the structure of the correlator, and we analyze its behavior in some limiting
cases.

Chapter three contains the necessary ingredients of perturbation theory needed in order to compute the
correlator with Feynman diagrams. It starts with a review of N = 4 SYM from the point of view of the
action, then we present the relevant Feynman rules. Finally, we derive the scalar self-energy as well as
the insertion rules related to the Wilson line and to the suitable vertices.

The last chapter is then dedicated to the computation of the correlator in perturbation theory up to
next-to-leading order, and to the extraction of the CFT data for the defect channel. We conclude with
the direct check of one coefficient.

After the conclusion, this thesis also contains three appendices, which respectively cover different as-
pects of group theory, the lists of the superblock coefficients and the analytical and numerical computa-
tions of the integrals encountered throughout this work.

Conventions

All the computations are performed in 4d Euclidean space, the only exception being the dimensional
reduction performed from 10d Euclidean space in chapter 3.

In 4 dimensions, vectors are defined in the following way:

xµ = (x, y, z,τ) ,

with τ the Euclidean time.

We will occasionally need the Fourier transform of propagators from momentum to position space in 4
dimensions, which is given by: ∫

d4 p
(2π)4

eip·x

p2 = 1
(2π)2x2 . (0.1)

See e.g. the appendix of [19] for an expression in arbitrary dimensions. This equation defines the
convention that we will use throughout this work. Bosonic propagators are of the form 1/x2 and are
therefore Green’s functions of the operator �. In other words, they satisfy the following relation:

�
1
x2 =−(2π)2δ(4)(x). (0.2)

Note that we will often omit the superscript (4) of the δ-function when the context leaves no ambiguity.





CHAPTER 1

Foundations

The content of this thesis strongly relies on the concepts presented in this chapter. Conformal field
theory in 4 dimensions is first reviewed, including a short introduction to the conformal bootstrap.
Supersymmetry is then covered, with an emphasis on maximally extended supersymmetry and the
related superconformal algebra. Finally, we present conformal defects and define the extended operator
called the Maldacena-Wilson line, which will be a central object of this work. Most of the material
presented in this chapter is standard and can be found in greater detail in e.g. [14, 23, 24, 25].

1.1 Conformal Field Theory in 4d
This section is devoted to reviewing 4-dimensional conformal field theory (CFT), and is mostly based on
[23] and [24]. We will work in Euclidean space, and thus the metric is defined as:

gµν(x)= δµν,

with µ,ν= 1,2,3,4.

Poincaré Symmetry
An important subgroup of conformal symmetry is the Poincaré group. This is standard material in
quantum field theory and will not be covered in depth here. The reader is invited to consult e.g. [26] for
a more thorough analysis.

The Poincaré group consists of translations and Lorentz transformations, which are respectively defined
by the following generators acting on functions:

Pµ ≡−i∂µ, (1.1a)(
Jρσ

)
µ
ν ≡ i

(
δρνδ

µσ−δσνδµρ
)
. (1.1b)

The infinitesimal form of the Lorentz transformations is given by:

Λµ
ν = δµν+

i
2
ωρσ(Jρσ)µν,

where ωµν has to be antisymmetric with respect to µ↔ ν. The Poincaré Lie algebra is then defined by
the following commutation relations between the generators:

[Jµν,Pρ]= i
(
δµρPν−δνρPµ

)
, (1.2a)

[Jµν, Jρσ]= i
(
δµρJνσ+δνσJµρ−δνρJµσ−δµσJνρ

)
, (1.2b)

5



6 1.1. Conformal Field Theory in 4d

while all other possible commutators vanish. The commutator given in (1.2b) corresponds to so(3,1)1,
which is referred to as the Lorentz algebra. Under an infinitesimal Lorentz transformation, the spin
part of a field φ with components φa (a = 1, ...,n) transforms as:

δφa = i
2
ωµν(J µν)a

bφ
b,

where Jµν has to satisfy (1.2b).

We wish now to review the finite-dimensional irreducible representations of the Lorentz algebra so(3,1).
The simplest representation is the scalar representation φ, which has an associated one-dimensional
vector space and corresponds to Jµν = 0. Another important representation is the vector representation,
for which the dimension is simply the number of spacetime dimensions d. In that case, the matrix Jµν

is a d×d-matrix, and is given by:

(J ρσ)µν = i
(
δρνδ

µσ−δσνδµρ
)
.

Higher-rank tensor representations can be constructed by considering tensor products of the vector
representation. Such representations are in general reducible and can be decomposed into symmetric
and antisymmetric tensors.

The Lorentz group admits another class of irreducible representations, which are called the spinor
representations. Those can be constructed by use of the Clifford algebra, which is defined by:

{γµ,γν}= 2δµν1.

Here the γµ are called Dirac γ-matrices, and the simplest spinor representation can be obtained with:

J µν = i
4

[γµ,γν].

This representation is called the Dirac spinor representation, and is reducible under the Lorentz alge-
bra. Indeed the Dirac spinor ψ can be projected onto two-component Weyl spinors ψL ≡ (ψL,0) (left-
handed) and ψR ≡ (0,ψR) (right-handed). In chapter 3, we will encounter projections of Dirac spinors in
10-dimensional space satisfying the following reality condition:

ψ∗ != BCψ, (1.3)

where B is a similarity transformation, i.e.:

BγµB−1 = γ†
µ,

and where C is the charge conjugation matrix, defined by the following relation:

CγµC−1 =−γT
µ .

In this case, the associated particle, called Majorana fermion, is neutral under u(1) transformations and
is its own antiparticle.

1In Euclidean space this is just so(4) of course, but in this work we use the notation usually reserved to Minkowski space
for another purpose: the 1 in so(3,1) actually refers to the dimension parallel to the line defect, which as we will see extends
in the τ-direction. It is useful to keep this notation in defect theory, for example to distinguish the terms in the product
so(2,1)×so(3) (see section 1.3).
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The scalar, spinor and vector representations that we mentioned obey the following finite transforma-
tion laws:

φ(x)→φ(Λ−1x),

ψα(x)→ S(Λ)αβψ
β(Λ−1x),

Aµ(x)→Λµ
νAν(Λ−1x).

To conclude, we note that the Poincaré group is not compact and hence there exists no unitary finite-
dimensional representation. This means that the representations have to be labeled by a continuous
parameter, namely pµ.

Conformal Symmetry
Let us now extend the Poincaré group to the full conformal group. The material presented here and
in the next subsection is mostly based on [23]. The conformal group is defined as the group of angle-
preserving transformations, i.e. the metric must transform in the following way:

g′µν(x′)= κ(x) gµν(x). (1.5)

Note that, as mentioned in the previous subsection, the Poincaré group is a subgroup and corresponds
to κ= 1.

Conformal symmetry consists of 15 generators in 4 dimensions, which are the 10 generators of the
Poincaré group complemented by the scalings D and the special conformal transformations (SCT) Kµ .
These new generators are defined on functions as follows:

D ≡−ixµ∂
µ, (1.6a)

Kµ ≡ i
(
x2∂µ−2xµxν∂ν

)
. (1.6b)

The conformal algebra is defined by the following commutation relations:

[D,Kµ]=−iKµ, (1.7a)
[D,Pµ]= iPµ, (1.7b)

[Kµ,Pν]= 2i
(
δµνD− Jµν

)
, (1.7c)

[Kµ, Jνρ]= i
(
δµνKρ−δµρKν

)
, (1.7d)

to which we should also add the commutators of the Poincaré algebra. All other possible commutators
vanish.

Scalar fields obey the following transformation laws:

Dφ(x)= i
(
xµ∂

µ+∆)
φ(x),

Kµφ(x)= i
(
x2∂µ−2xµxν∂

ν−2xµ∆
)
φ(x),

where∆ is called the conformal or scaling dimension. It is defined by the action of a scale transformation
on the field:

φ(λx)=λ−∆φ(x). (1.9)
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The conformal group is obviously not compact, since the Poincaré group is not compact.

There exists a more concise notation for the conformal algebra if we allow for a (d+2)-embedding space.
We start by defining a 6-dimensional (flat) metric δAB (A,B =−1,0,1, ...,4) and JAB such that:

J−1,0 ≡ D,

J−1µ + J0µ ≡ Pµ ,
J−1µ − J0µ ≡ Kµ .

It is straightforward to check that JAB satisfies the following commutation relation:

[JAB, JCD]= i
(
δAC JBD +δBD JAC −δBC JAD −δAD JBC

)
, (1.11)

which corresponds to a so(5,1) algebra, i.e. a Lorentz algebra in six spacetime dimensions. This formu-
lation of the conformal algebra is called the embedding formalism.

We will now discuss the representations of the conformal algebra. To that effect, we note that in unitary
CFTs there exists a lower bound for ∆. This is commonly referred to as the unitarity bound. Moreover,
the generators Pµ increase ∆, while Kµ decrease ∆. Hence it is convenient to define fields which satisfy:

[Kµ,φ(0)]= 0, (1.12)

i.e. the fields φ have the lowest dimension ∆. Such fields are called conformal primaries. A conformal
multiplet consists of a conformal primary and all its descendants, which are the fields with higher
dimension ∆ which can be constructed by applying Pµ an arbitrary number of times to the primary.

We conclude this discussion by noting that scalar conformal primaries have the following behavior
under conformal transformations:

φ(x)→
∣∣∣∣∂x′

∂x

∣∣∣∣−∆/d

φ(x), (1.13)

with d the number of spacetime dimensions as usual.

Correlation Functions of Scalar Primaries
We wish now to investigate the consequences of conformal symmetry on the correlation functions of
CFTs. In particular, we will focus on correlators of scalar primaries. The resulting constraints are very
restrictive, and we find that the position dependence of two- and three-point functions is completely
fixed up to a multiplicative constant.

We start by looking at two-point functions of scalar primaries O1(x1) and O2(x2). Because of Poincaré
invariance, we know that the correlator can only be a function of the distance between x1 and x2:

〈O1(x1)O2(x2)〉 = f
(
x2

12
)
, (1.14)

with x12 ≡ x1 − x2. Moreover, scale invariance implies:

〈O1(x1)O2(x2)〉 !=λ∆1+∆2〈O1(λx1)O2(λx2)〉 =λ∆1+∆2 f
(
λ2x2

12
)
,

and hence the correlator is now restricted to:

f (x2
12)= b12(

x2
12

)(∆1+∆2)/2 ,
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where b12 = constant. We can also consider SCT invariance, which translates into:

〈O1(x1)O2(x2)〉 6= 0 only for ∆1 =∆2,

and thus the two-point function takes the following form:

〈O1(x1)O2(x2)〉 =


b12

(x2
12)

∆/2 , if ∆1 =∆2 ≡∆,

0, otherwise.
(1.15)

In a theory without defect, it is standard to absorb the constant b12 in the fields such that the two-point
function is completely fixed.

In very much the same way, conformal symmetry forces the three-point function to be:

〈O1(x1)O2(x2)O3(x3)〉 = c123(
x2

12
)∆123 (

x2
13

)∆132 (
x2

23
)∆231

, (1.16)

with ∆i jk ≡∆i+∆ j−∆k. The three-point function is then also completely determined up to the constant
c123. This is a demonstration of the remarkable power of conformal symmetry.

Unfortunately, the shape of the four-point function is not fixed anymore by conformal symmetry, and
the only thing that we can say about it is that it should have the following form:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = 1(
x2

12
)(∆1+∆2)/2 (

x2
34

)(∆3+∆4)/2 F(u,v), (1.17)

where u and v are called conformal or anharmonic ratios, and are defined as:

u ≡ x2
12x2

34

x2
13x2

24
, v ≡ x2

14x2
23

x2
13x2

24
. (1.18)

We make a few remarks to conclude this subsection. It is possible for the correlators to acquire an
anomalous dimension at loop level, i.e.:

∆→∆(0) + g∆(1) + g2∆(2) + ...

We will encounter anomalous dimensions when computing the two-point function in chapter 4. We also
note that one-point functions, which vanish in CFTs, will crucially not always be zero anymore once we
add the defect. Two-point functions will also not be as constrained as in the case of a defect-free CFT.

The Conformal Bootstrap
In this subsection, we present the most basic principles of the conformal bootstrap in absence of de-
fects. We will build upon this knowledge in the next chapter when we introduce the defect conformal
bootstrap. The conformal bootstrap is reviewed in e.g. [27].

We start by introducing the operator product expansion (OPE) [23], which consists of expanding a prod-
uct of two local operators in terms of all the possible local operators of the theory. In principle, this
expansion is not restricted to CFT, but conformal symmetry insures that the radius of convergence is
greater than zero, which makes it a particularly interesting tool in this context.

In its most general form, the OPE of two local operators O1(x1) and O2(x2) reads:

O1(x1)O2(x2)∼∑
k

f12k(x12)Ok(x2), (1.19)
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O1(x1)

O2(x2)

O3(x3)

=∑
k

c12kC12k (x12,∂2) Ok(x2)

O3(x3)

Figure 1.1: A representation of the OPE given in eq. (1.20). In the correlators of a conformal field
theory, a product of operators can be expanded into a sum of conformal primaries Ok with an operator
C12k acting on them.

where the sum runs over all possible local operators, as mentioned above. Here f12k is a function
depending on x2

12, and it is implied that the expansion holds within correlation functions only. Since all
local operators can be constructed from conformal primaries, as we discussed previously, the OPE can
be rewritten as follows:

O1(x1)O2(x2) ∼ ∑
k prim.

c12kC12k(x12,∂2)Ok(x2), (1.20)

where the operator C12k(x12,∂2) encodes the construction of descendants, and where c12k is a numerical
factor. This operator can in principle be constructed with the help of two- and three-point functions,
and most importantly it does depend only on ∆k and d, but not on c12k.

We will now introduce the concept of conformal blocks. We first consider the canonical example of the
four-point function, but later on we will focus on two-point functions in presence of a defect. The four-
point function can be expanded with the fusions O1O2 and O3O4 by using the OPE given in (1.20). This
results in:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =∑
k

c12kc34kC12k(x12,∂2)C34k(x34,∂4)〈Ok(x2)Ok(x4)〉

!= 1(
x2

12
)(∆1+∆2)/2 (

x2
34

)(∆3+∆4)/2 F(u,v), (1.21)

where the second line corresponds to the most general form that the four-point function can take in
CFTs, and which was already given in eq. (1.17) together with (1.18). Note that from now on, k will
always mean that the sum runs over conformal primaries. This means that the function F(u,v) takes
the following form:

F(u,v)=∑
k

c12kc34k f 12,34
k (u,v), (1.22)

where the functions f 12,34
k (u,v) are called conformal blocks and are group-theoretical functions, i.e. they

satisfy a Casimir equation corresponding to the symmetry group. In the present case, the conformal
blocks are eigenfunctions of the Casimir operator of the so(5,1) symmetry, which is the full conformal
group in 4 dimensions expressed in the embedding formalism. Casimir equations and their solutions
will be treated in more detail in the next chapter, for the case of a defect CFT.

The OPE is then completely determined if we know the quantum numbers {∆k, s, ci jk}, with s the spin of
the conformal primaries. This set is commonly referred to as CFT data. Moreover, we saw that n-point
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correlators can be expanded in OPEs, and hence the knowledge of the spectrum of conformal primaries
and of the CFT data suffices to completely determine the theory! Inversely, this means that a conformal
field theory can be characterized in that way, and this set of rules is standardly called the axioms of
conformal field theory (see e.g [28]).

However a serious impeachment to solving theories exactly is the fact that the number of unknowns is
actually infinite. Fortunately, we have not used yet all the consistency conditions that we can extract
from a CFT. Indeed, we have expanded the four-point function in only one way to fuse the operators
together, but it is also possible to do the OPE with the fusions O1O3 and O2O4, and we expect the
result to be the same. This is known as crossing symmetry, and leads to the following equality:

∑
k

c12kc34k f 12,34
k (u,v)=∑

k
c13kc24k f 13,24

k (u,v), (1.23)

which implies that the OPE coefficients are not independent of each other. This condition happened to be
sufficient to solve the minimal models in 2 dimensions [29], but the problem appears to be considerably
more difficult for d ≥ 3. In the recent years, it was realized that these constraints greatly restrict the
space of unitary CFTs [27], and this realization led to a string of new results, such as the most precise
estimation of the critical exponent of the 3d Ising model so far [8].

1.2 Supersymmetry

Another class of symmetries playing an important role in modern quantum field theory is supersym-
metry (SUSY). This section presents a short review of supersymmetry, focused towards massless real-
izations of the symmetry in the maximally extended theory. The superconformal algebra is also briefly
discussed, as it is an essential element of the N = 4 Super Yang-Mills theory. Most of the content of this
section is based on [24, 25].

Let us start by introducing some notation. In the SUSY formalism, a Dirac spinor is commonly defined
as:

QA ≡
(

QA
α

Q̄Aα̇

)
, (1.24)

where α = 1,2, α̇ = 1̇, 2̇ are spinor indices and A = 1, ...,N , with N referring to the number of super-
charges. QA

α is a left-handed Weyl spinor, while Q̄Aα̇ is a right-handed one.

The Dirac γ-matrices are then defined as:

γµ ≡
(

0 (σµ)αβ̇
(σ̄µ)

α̇β
0

)
,

with σµ ≡ (1,σi) and σ̄µ ≡ (1,−σi), where σi refers to the usual 3-dimensional Pauli matrices.

Supersymmetry was originally introduced to bypass the famous Coleman-Mandula no-go theorem [30],
which states that spacetime and internal symmetries can only be combined in a trivial way under a list
of reasonable assumptions. One of these assumptions stipulates that the generators should be bosonic,
and SUSY escapes the realm of validity of the theorem by allowing fermionic generators, as we will
soon see in more detail.
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N = 1 SUSY
The simplest example of a supersymmetry is the case of one single supercharge, i.e. N = 1. The algebra
of supersymmetry is a graded Lie algebra (also called superalgebra), which consists of the usual bosonic
generators of the Lie algebra and of new fermionic generators. The generators are thus graded, i.e.
bosonic generators have grade 0 while fermionic ones have grade 1. The product of two generators
O1,O2 has grade (g1 + g2) mod 2. As an example, the product of two fermionic generators results in a
bosonic generator.

The grading implies that the algebra now contains both commutators and anticommutators. They are
given by:

[O1,O2]± =O1O2 − (−1)g1 g2O2O1, (1.25)

where − refers to a commutator and + to an anticommutator. Clearly, this relation involves anticom-
mutators only when both generators are fermionic, i.e. g1 = g2 =+1.

We note that, in spite of the name, a graded Lie algebra is not a Lie algebra, since the antisymmetry
property is broken by the fermionic generators.

For N = 1, we drop the index A and denote the only supercharge by Q. The structure of the superalgebra
is very restricted, since we demand that it should be compatible with the Poincaré algebra. In the most
general case, we have the following relations:

[Qα, Jµν]= (σµν) β
α Qβ, (1.26a)

[Q̄α̇, Jµν]= εα̇β̇(σ̄µν)β̇γ̇Q̄γ̇, (1.26b)
{Qα,Q̄α̇}= 2

(
σµ

)
αα̇Pµ , (1.26c)

while all other (anti)commutation relations vanish. Of course these have to be supplemented with the
usual Poincaré algebra. Note that the spinor indices are raised/lowered with the tensors εαβ,εα̇β̇.

There is an additional global symmetry known as R-symmetry, which is a u(1) automorphism and for
which the transformation law for the supercharge reads:

Qα→ eipQα, Q̄α̇→ e−ipQ̄α̇,

where p is a global parameter. The corresponding generator is denoted by R and satisfies:

[Qα,R]=Qα, [Q̄α̇,R]=−Q̄α̇. (1.27)

Extended SUSY
We now consider extended supersymmetry, i.e. superalgebras with more than one supercharge. To that
effect, we reinstate the index A that we dropped in the previous subsection and denote the Dirac spinor
as in eq. (1.24).

In that case, the superalgebra is given by:

[QA
α , Jµν]= (σµν) β

α QA
β , [Q̄A

α̇ , Jµν]= εα̇β̇(σ̄µν)β̇γ̇Q̄Aγ̇, (1.28a)

{QA
α ,Q̄Bβ̇}= 2(σµ)αβ̇Pµδ

A
B, (1.28b)

{QA
α ,QB

β }= εαβZAB, {Q̄Aα̇,Q̄Bβ̇}= εα̇β̇Z̄AB , (1.28c)
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while all other (anti)commutators vanish, except for the ones corresponding to the Poincaré algebra.
We note that the two first lines are the same as eq. (1.26a), (1.26b) with indices A,B attached where
needed. But the third line is now different and involves the central charges ZAB, Z̄AB of the SUSY
algebra, i.e. charges which commute with all the other generators. Note that the central charges must
be antisymmetric with respect to A ↔ B.

As in the N = 1 case, there is also a R-symmetry present, which now takes the following form:

QA
α → RA

BQB
α , Q̄Aα̇→ Q̄Bα̇(R†)B

A,

where R is a N ×N -matrix rotating the supersymmetries. For the case N > 1, the R-symmetry is a
global non-Abelian symmetry. QA

α transforms in the fundamental representation of u(N ), while Q̄Aα̇
transforms in the corresponding complex conjugate representation.

The R-symmetry can be expressed via generators T i (i = 1, ...,N ) such that they fulfill:

[T i,T j]= i f i j
k Tk, (1.29a)

[QA
α ,T j]= (B j)A

BQB
α , (1.29b)

[Q̄Aα̇,T j]=−(B j) B
A Q̄Bα̇, (1.29c)

with the matrix B satisfying:

(B j†)A
B = (B j) B

A .

Massless Representations of SUSY Algebra
We now turn our attention to massless realizations of the SUSY algebra, since we will not consider
massive SUSY in this work. It is useful to first determine the Casimir operators of the theory. In
Poincaré algebra, they are given by P2 and W2, with Pµ the momentum and Wµ ≡ 1

2εµνρσJνρPσ the
Pauli-Lubanski vector. While P2 remains a Casimir operator of the superalgebra, it is not the case
anymore for W2. Instead, we can define a modified Pauli-Lubanski vector of the following form:

W̃µ ≡Wµ − 1
4

Q̄Aα̇(σ̄µ)α̇αQA
α ,

and the new Casimir operator is given by:

W̃2 ≡ C̃µνC̃µν, (1.30)

with the C̃µν defined as:

C̃µν ≡ W̃µ Pν −W̃ν Pµ .

Since P2 is Casimir operator of the SUSY algebra, we can already conclude that all the fields belonging
to a same SUSY multiplet (or supermultiplet) must have the same mass, and in the case of interest we
have P2 = 0. We also note that, in a gauge theory, the generators of the gauge group commute with the
supercharges, and hence all the fields in a given supermultiplet must be in the same representation
of the gauge group. Finally, the number of bosonic degrees of freedom must be equal to the number of
fermionic degrees of freedom in any supermultiplet.

Massless states are labeled as usual by their momentum pµ and helicity λ. To construct the states
explicitly, we go to the lightlike frame where pµ = (0,0,E, iE). Recall that in our notation, the last
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λ

±1

±1/2

0
0 0 0 0

Figure 1.2: In N = 4 SUSY, successive applications of the operators aA and a†
A result in states of helicity

λ= 0,±1/2,±1. The top state corresponds to the gauge field of spin 1. Applying aA (A = 1,2,3,4) results
in 4 states of spin 1/2. The next level (λ= 0) contains only 6 states because of doublons and of vanishing
states.

component corresponds to Euclidean time, which is imaginary. Hence we have P2 = 0=W2. Computing
the anticommutator {QA

α ,Q̄Bβ̇} results in:

{QA
1 ,Q̄B1̇}= 4EδA

B, (1.31a)

{QA
2 ,Q̄B2̇}= 0, (1.31b)

which implies that QA
2 is realized trivially. Meanwhile, creation and annihilation operators can be

defined with the help of QA
1 ,QA1̇ as follows:

aA ≡ QA
1

2
p

E
, a†

A ≡ QA1̇

2
p

E
, with {aA ,a†

B}= δA
B. (1.32)

QA
1 lowers the helicity by 1/2, i.e. QA

1 |p,λ〉 has helicity −1/2, while QA1̇ raises the helicity by 1/2. To
construct a multiplet, we can therefore start with a vacuum state of lowest helicity |Ω〉, i.e. a state
which satisfies QA

1 |Ω〉 = 0, and create new states by acting with the creation/annihilation operators in
all 2N possible ways.

Maximally Extended SUSY
Now that we have reviewed extended supersymmetry and massless representations, we are ready to
construct the maximally extended SUSY, i.e. the realization of supersymmetry with the largest number
of supercharges with a multiplet representation of spin ≤ 1, that is without a graviton. This is clearly
realized by N = 4, as explicitly represented in fig. 1.2. Applying the creation/annihilation operators
in all possible ways, we find that the multiplet consists of 1 vector field, 4 Weyl fermions and 6 scalar
fields, and it is easy to see that this multiplet contains 8 bosonic and 8 fermionic degrees of freedom.
The R-symmetry group is su(4)R ∼ so(6)R.

In this thesis, we will focus our attention on N = 4 Super Yang-Mills (SYM) theory. In the frame of
the superconformal bootstrap, we do not need to write the action explicitly, but this will be required for
extracting perturbative CFT data later on. The action as well as the insertion rules will be derived in
detail in Chapter 3, and for now we only mention a few interesting aspects of the theory. As we already
mentioned, all the particles are massless, and conformal symmetry is preserved at the quantum level.
This has for immediate consequence that the β-function of the coupling vanishes. Moreover, N = 4 SYM
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is believed to be UV-finite in perturbation theory [31]. It is also invariant under the S-duality group
sl(2,Z), which implies a strong/weak coupling duality (also called Montonen-Olive duality) [32, 33].
These interesting properties have made the theory the subject of much attention in the recent years,
as it came to be considered the hydrogen atom of the 21st century. N = 4 SYM lies at the crossroad
between AdS/CFT, integrability and the superconformal bootstrap.

Superconformal Algebra
We have seen that N = 4 SYM exhibits both conformal symmetry and supersymmetry, which are pre-
served at the quantum level. We will now study the resulting algebra, known as the superconformal
algebra.

Naively, one might think that the algebra consists of the generators of the conformal group supple-
mented by the supercharges QA

α , Q̄Aα̇, but this is not quite correct. Indeed, in order to ensure closure
of the algebra we need to add fermionic supercharges SA

α , S̄Aα̇. The (anti)commutators of the corre-
sponding su(2,2|N ) algebra are listed in appendix A.3. We only give here the relations involving SA

α

and S̄Aα̇:

{SA
α , S̄β̇B}= 2(σµ)αβ̇Kµδ

A
B, (1.33a)

{QA
α ,SβB}= εαβ

(
δA

BD+RA
B
)+ 1

2
δA

B Jµν (σµν)αβ. (1.33b)

We consider now the representations of the superconformal algebra, and in particular we focus on local
and gauge-invariant operators O(x). The operators are characterized by their conformal dimension ∆
and their spin J µν:

[D,O(0)]=−i∆O(0),
[Jµν,O(0)]=−J µνO(0).

The most important class of such operators are called the superconformal primaries, which are defined
to be the operators with the lowest ∆ in a superconformal multiplet, i.e. they fulfill:

[SA
α ,O]± = 0, [S̄Aα̇,O]± = 0 ∀A,α, (1.35)

since the S’s lower the conformal dimension ∆ (see the discussion on the unitarity bound in section 1.1).
It is interesting to note that all superconformal primaries are conformal primaries, but the converse
is not true. Descendants can be constructed as usual by applying any product of generators of the
superconformal algebra to the primaries. We call superdescendants the descendants of superconformal
primaries that are defined by:

O′ ≡ [Q,O], (1.36)

which leads to:

∆O′ =∆O+ 1
2

.

These operators are important since they are also conformal primaries.

An essential subset of superconformal primaries is the one consisting of chiral primaries, which on top
of eq. (1.35) also fulfill the following condition:
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[QA
α ,O]± = 0, (1.37)

i.e. the operators are annihilated by at least one of the supercharges. This is called the BPS condition2

[34, 35]. As a consequence, the operators are protected, which means that their conformal dimensions
do not receive quantum corrections [12, 13].

We will focus in this work on single-trace operators of scalar primaries, which are defined as:

Ok(x)≡ ui1
...uik

Tr φi1 ...φik , (1.38)

where the indices i belong to the so(6) R-symmetry and where the trace acts on the gauge-group indices.
The vectors ui are defined to keep track of the so(6)-indices and are null-vectors, i.e. they satisfy u2 = 0.
These operators are 1/2-BPS operators, which means that they fullfill the BPS condition given in eq.
(1.37) for half of the supercharges. The correlators of single-trace operators are thus protected, and
hence the conformal dimension ∆ = k does not receive anomalous contributions. 1/2-BPS operators
saturate the unitarity bound, which implies that they belong to a short multiplet. In other words,
the representation has null-states (i.e. states with zero norm), which can be safely removed from the
multiplet.

Single-trace operators are the leading operators in the large N limit (see chapter 3 for an introduction
to the large N expansion), and are characterized by their quantum numbers ∆, s (spin) and R-symmetry
Dynkin labels [0,k,0] (see appendix A.1 for a review of Dynkin labels). The dimension of the represen-
tation is given by the following formula:

dim[0,k,0]= 1
12

(k+1)(k+2)2(k+3).

In this thesis we focus on the case k = 2, which has dimension 20.

It is also possible to construct multi-trace operators, i.e. products of single-trace operators. 1/4- and 1/8-
BPS are realized by such operators. 1/4-BPS operators have conformal dimension ∆= k+2l and Dynkin
labels [l,k, l] (l ≥ 1), while 1/8-BPS operators are characterized by ∆= k+2l+3m and [l,k, l+2m] (l ≥ 2).

We conclude this review of supersymmetry by mentioning that there exists another larger class of
operators which are not protected, i.e. for which the correlators do receive anomalous corrections.
These operators are called long operators; they bear this name because it is always possible to produce
new states with the Q’s. We will discuss longs in greater detail in the next chapter in the context of the
defect superconformal bootstrap.

1.3 Maldacena-Wilson-Line Defect

We introduce now the concept of conformal defect and discuss the consequences on a CFT when such
extended objects are present in the vacuum. See [14] for an introduction to defects in conformal field
theory. We focus on line defects, since we will exclusively deal with such objects in this thesis. We
conclude by presenting the Maldacena-Wilson line, which is a 1/2-BPS extended operator, and by inves-
tigating some of its most interesting properties.

2BPS = Bogomol’nyi-Prasad-Sommerfield
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Conformal Defects
Conformal defects are extended operators which preserve a large subgroup of the conformal symmetry.
In this work we focus on flat defects3, for which the preserved symmetry is manifestly so(p+1,1)×so(q),
with p+ q = d. The quantum number associated to the so(p+1,1) symmetry is commonly referred to
as the transverse spin s, while the one corresponding to so(q) is called the parallel spin. q is called the
codimension of the defect. Examples of flat defects include the boundary, which has codimension one,
and the line, which has codimension three, and on which we will focus from now on.

The analysis of the conformal bootstrap in section 1.1 can be extended to the case of defect CFT (dCFT),
and corresponding defect conformal blocks will play the same role. This will be investigated in the next
chapter. In the case of a flat defect, the fact that the preserved symmetry factorizes leads to having
defect conformal blocks satisfy two Casimir equations.

The line defect preserves the symmetry so(2,1)× so(3), where the first group corresponds to the 1d
conformal group on the line and the second one to the rotations orthogonal to the defect. When adding
supersymmetry, we must also consider the sp(4)R R-symmetry, and together they form the osp(4|4)
defect superalgebra. Representations of osp(4|4) are labeled by their conformal dimension ∆̂, transverse
spin s as well as by the sp(4)R Dynkin labels [a,b]. Following [20], we denote 1/2-BPS multiplets of
osp(4|4) by (B,±)k, with k labeling the [0,k] irreducible representation of the superconformal primary.
The notation is reviewed in more detail in section 2.2.

Maldacena-Wilson Line
The defect that we will consider in this work is defined by the so-called Maldacena-Wilson loop, which
is an extended operator defined by:

W(C)≡ 1
N

Tr P exp
∮

C
dτ

(
iẋµAµ+|ẋ|θiφ

i), (1.39)

with Aµ ≡ Ta Aa
µ, φi ≡ Taφi

a, where Ta is a generator of the gauge group of the SYM theory and i a so(6)R
index. We will show in chapter 3 how this operator can be constructed with dimensional reduction from
the Wilson loop in 10 dimensions.

The Maldacena-Wilson loop has been studied for a great variety of geometries for the path C, mostly
as a circular loop or as a line [19], but also with cusps (see e.g. [36, 37]). In this thesis we will always
consider C to be a straight infinite line.

The Maldacena-Wilson line preserves half of the supercharges, and is hence a 1/2-BPS operator as
well. As discussed in section 1.2, this implies that this is a protected operator which does not receive
anomalous contributions to its conformal dimension. In particular, it was shown perturbatively in [19]
that the expectation value of W(C) is simply:

〈W(C)〉 = 1. (1.40)

This concludes the first chapter, which has been devoted to introducing conformal field theory, super-
symmetry and defects separately. In chapter 2 we will bring these concepts together into a framework
called the defect superconformal bootstrap.

3Spherical defects are discussed in e.g. [14].





CHAPTER 2

The Superconformal Bootstrap with Line Defect

In this chapter we will use the building blocks presented in chapter 1 in order to bootstrap N = 4 SYM
in presence of the Maldacena-Wilson-line defect. To that effect, we consider the simplest system possi-
ble, i.e. a two-point function of single-trace operators in presence of the defect. We start by reviewing
the bootstrap for scalar operators without supersymmetry, from which we derive the spacetime confor-
mal blocks. Considering the supersymmetric theory leads us to derive R-symmetry blocks, and we fix
numerical coefficients between the components of the superblocks by using the superconformal Ward
identities. These are obtained by requiring analyticity of the correlator. This chapter is then concluded
by discussing a method for isolating the CFT data such that it can easily be compared to perturbative
computations. For the most part, the two first sections present the works of [14] and [20].

2.1 The Conformal Bootstrap with Line Defect

It is easier to start by considering the two-point function without involving supersymmetry. We begin
by describing the setup of the two-point function, and from there we describe how to obtain the confor-
mal blocks and the new crossing symmetry equation that arises because of the defect. The preserved
symmetry leads to Casimir equations, for which we present the solutions for both the defect and the
bulk channels.

Setup

The system we consider in this section consists of two scalar operators O1(x1) and O2(x2) in presence of
the line defect defined in eq. (1.39), with the path C being defined to be an infinite line. It is standard
in defect CFT to not write explicitly the defect in the two-point function, i.e.:

〈O1(x1)O2(x2)〉 ≡ 〈O1(x1)O2(x2)W(C)〉.
A notation with double brackets is occasionally used (see e.g. [38]), in which the correlator is divided
by the expectation value of the defect. We will not use this notation here, since 〈W(C)〉 = 1 as we have
seen at the end of chapter 1.

We define our coordinate system such that the Wilson line extends in the τ-direction only. Moreover,
we set the x-axis such that the operator O1 sits at x1 = (1,0,0,0). By conformal symmetry, the second
operator must lay in some xy-plane, and hence its coordinates are x2 = (x, y,0,0). This configuration is
depicted in fig. 2.1.

As mentioned in section 1.3, the symmetry preserved by the defect is so(2,1)×so(3). It is convenient to
define the following two conformal cross-ratios:

19
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x

y

O(x1)

O(x2)
φ

O(x1)

O(x2)

Figure 2.1: The left figure represents the setup, with the bold line being the Maldacena-Wilson-line
defect. The operators O(x1) and O(x2) lie in the xy-plane, and fixing x1 = (1,0,0,0) leaves as only degrees
of freedom the coordinates x2 = (x, y,0,0). The right figure shows the definition of the variable φ, which
is the angle formed by x1 and x2 in the xy-plane when taking the line defect as the origin.

ξ= x2
12

|x1||x2|
, cosφ= x1 · x2

|x1||x2|
, (2.1)

where x12 ≡ x1 − x2, and where φ is the angle formed by the vectors x1 and x2 in the plane orthogonal
to the defect, which in this case is simply the xy-plane (see fig. 2.1). Note that in the case of a defect
of codimension one, the variable φ is not defined since no such angle can be formed. But only one
cross-ratio would be needed, and φ can simply be abandoned there.

Since the system contains two degrees of freedom, it is also convenient to define complex coordinates of
the following form:

z ≡ x+ i y, z̄ ≡ x− i y. (2.2)

The conformal cross-ratios of eq. (2.1) become:

ξ= (1− z)(1− z̄)p
zz̄

, cosφ= 1
2

z+ z̄p
zz̄

. (2.3)

We have seen in chapter 1 that conformal symmetry fixes the form of the two-point function in a CFT
without defect. This is not the case anymore in presence of the Wilson line, and we express the corre-
sponding correlator as:

〈O1(x1)O2(x2)〉 = 1
|x⊥1 |∆1 |x⊥2 |∆2

F(z, z̄),

where x⊥i refers to the coordinates orthogonal to the defect. Since the operators O(x1) and O(x2) do not
extend in the τ-direction, we simply have x⊥i = xi for i = 1,2.

Defect Conformal Blocks and Crossing Symmetry
In section 1.1, the conformal bootstrap was built upon the concepts of OPE and crossing symmetry.
Both ideas are also present in the defect CFT, although their form has been considerably modified by
the presence of the defect.

A famous specificity of defect CFTs is that certain operators acquire a non-vanishing expectation value
in presence of the defect, i.e.:

〈O(x)〉 = aO|x⊥|−∆,
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with aO being the corresponding CFT data. Note that only operators with even spin can acquire an
expectation value [14].

The simplest crossing equation that can be built consists of two-point functions, which now involves a
new type of OPE called defect OPE, in addition to the bulk OPE that was already introduced at the end
of section 1.1. The bulk OPE gives the following expansion of the two-point function:

F(z, z̄)= ξ−
∆1+∆2

2
∑
O

c12OaO f∆,J(z, z̄), (2.4)

where we call the functions f∆,J(z, z̄) bulk conformal blocks. The sum runs over conformal primaries
as in eq. (1.20). In contrast to the four-point function of eq. (1.21), the CFT data consists now of the
products of the three-point function coefficient c12O and of the one-point function coefficient aO for a
given bulk primary O, for which ∆ and J are the quantum numbers. The bulk conformal blocks are
eigenfunctions of the quadratic Casimir operator of the full conformal algebra so(5,1). Crucially, the
CFT data {∆k, ci jk} is not sufficient anymore for fixing the correlator in presence of the defect.

The defect possesses local excitations called defect operators, which we label Ôi. Hats will always refer
to the defect channel. Defect operators have conformal weights ∆̂i, which clearly are not related by
symmetry to the ∆’s of the bulk operators. This leads us to yet another operator product expansion,
called the defect OPE:

O(x)=∑
Ô

bOÔ|x⊥|∆̂−∆Ô(x∥), (2.5)

where the bOÔ are coefficients of bulk-to-defect two-point functions, and where x∥ refers to the coordi-
nates parallel to the defect. Only defect scalars ( j = 0) are allowed to appear in the OPE [14], and it
results in the following expansion of the correlator for the defect channel:

F(z, z̄)=∑
Ô

b1Ôb2Ô f̂∆̂,0,s(z, z̄), (2.6)

where the f̂∆̂,0,s(z, z̄) are called defect conformal blocks. They are eigenfunctions of the quadratic Casimir
operator of the symmetry group preserved by the defect, i.e. so(2,1)×so(3) in the case of the line.

It is now easy to write the defect crossing-symmetry equation for the two-point function. It can be
represented pictorially as:

= ,

where the dotted lines indicate where the OPE is being performed, i.e. the left-hand side corresponds
to the bulk channel and the right-hand side to the defect channel. This translates explicitly into::

ξ−
∆1+∆2

2
∑
O

c12OaO f∆,J(z, z̄) !=∑
Ô

b1Ôb2Ô f̂∆̂,0,s(z, z̄). (2.7)

In this work we focus on the computation of the CFT data in the defect channel, with the idea of paving
the way for the computation of the CFT data in the bulk channel as well. The next step is therefore to
determine the (defect) conformal blocks f̂∆̂,0,s(z, z̄). For completeness, we also present the solutions of
the Casimir equations for the (bulk) conformal blocks f∆,J(z, z̄).
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Defect Casimir Equation

As mentioned above, the defect conformal blocks f̂∆̂,0,s(z, z̄) are eigenfunctions of the algebra so(2,1)×
so(3), and since it is a direct product the defect Casimir equation factorizes accordingly and separates
into two differential equations:

(
L2 + Ĉ∆̂,0

) 1
|x1|∆1 |x2|∆2

f̂∆̂,0,s(z, z̄)= 0, (2.8a)

(
S2 + Ĉ0,s

) 1
|x1|∆1 |x2|∆2

f̂∆̂,0,s(z, z̄)= 0, (2.8b)

where the eigenvalues of the Casimir operators are given by:

Ĉ∆̂,s ≡ ∆̂(∆̂− p)+ s(s+ q−2)= ∆̂(∆̂−1)+ s(s+1). (2.9)

Note that we have inserted p = 1 and q = 3 in the second equality, since we focus on the line defect in
this work. The Casimir operators are defined as:

L2 ≡ 1
2

(J ⊥
ab )2, S2 ≡ 1

2
(J ∥

αβ
)2,

with a,b =−1,0,4, α,β= 1,2,3 and:

JAB ≡ xA∂B − xB∂A.

J ⊥ corresponds to so(2,1) and J ∥ to so(3). Note that the operators act on only one of the points, e.g. x2.

In order to solve these equations, it is convenient to switch variables and to define:

χ≡ ξ+2cosφ.

The Casimir equations can now be reformulated in the following way:

{
4cosφ(1−cosφ) ∂2

cosφ+2(1−3cosφ) ∂cosφ+ s(s+1)
}

f̂∆̂,0,s(χ,φ)= 0, (2.10a){
(4−χ2) ∂2

χ−2χ ∂χ+ ∆̂(∆̂−1)
}

f̂∆̂,0,s(χ,φ)= 0. (2.10b)

This set of equations (and the solution) are presented in [14] for the general case of d dimensions and
with a defect of codimension q. The dependence on χ and φ factorizes, and the complete solution can be
obtained with a power series ansatz:

f̂∆̂,0,s(χ,φ)= A(χ)B(φ)=
∞∑

k=0
akχ

k
∞∑

l=0
bl coslφ. (2.11)

Using Frobenius’ method it is easy to find the following relation between the coefficients of the power
series expansion of A(χ):

ak

ak−2
= (∆̂+k−2)(∆̂−k+1)

4k(1−k)
.

This corresponds to a hypergeometric function:

A(χ)= χ−∆̂ 2F1

(
∆̂

2
,
∆̂

2
,∆̂+ 1

2
;

4
χ2

)
. (2.12)
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The part of the equation depending on the other variable can also be solved in the same way, and the
complete solution reads:

f̂∆̂,0,s(χ,φ)= C(∆̂, s)χ−∆̂ 2F1

(
s+1

2
,− s

2
,
1
2

;sin2φ

)
2F1

(
∆̂

2
,
∆̂

2
,∆̂+ 1

2
;

4
χ2

)
, (2.13)

with C(∆̂, s) a normalization constant. We can reintroduce z and z̄ by using the "superblock dictionary"
given in the appendix of [20], and we obtain:

f̂∆̂,0,s(z, z̄)= z
∆̂−s

2 z̄
∆̂+s

2 2F1

(
−s,

1
2

,
1
2
− s;

z
z̄

)
2F1

(
∆̂,

1
2

,
1
2
+ ∆̂; zz̄

)
. (2.14)

Bulk Casimir Equation
As mentioned before, in the rest of this work we focus solely on the defect channel expansion. Never-
theless, we give a short review of the bulk channel expansion for completeness.

The f∆,J(z, z̄) are eigenfunctions of the Casimir operator corresponding to the full conformal group, i.e.
so(5,1) in the embedding formalism. The bulk Casimir equation reads:

(
J 2 +C∆,J

) 1
|x1|∆1/2|x2|∆2/2 ξ−

∆1+∆2
2 f∆,J(z, z̄) != 0, (2.15)

with the Casimir operator being defined as:

J 2 ≡ 1
2

(
J (1)

AB +J (2)
AB

)2
,

with J AB defined as in the previous subsection and A,B = −1,0,1, ...,4. Note that the superscripts in
the right-hand side indicate on which point the operator is acting. The eigenvalues are given by:

C∆,J ≡∆(∆−4)+ J(J+2) (2.16)

for the case of the line in d = 4 (see [14] for the general case).

We will not be able to solve this differential equation analytically. However it is possible to check that
the following series expansion satisfies eq. (2.15):

f∆,J(z, z̄)=
∞∑

m=0

∞∑
n=0

4m−n

m!n!

(− J
2

)
m

( J
2

)
m

(2−J−∆
2

)
m

(−J)m
(3−J−∆

2

)
m

(
∆−1

2

)2
n

(
∆+J

2

)
n

(∆−1)n
(
∆+J+1

2

)
n

(
∆+J

2

)
n−m(

∆+J−1
2

)
n−m

× 4F3

(
−n,−m,

1
2

,
∆− J−2

2
,
2−∆+ J−2n

2
,
∆+ J−2m

2
,
∆− J−1

2
;1

)
× 2F1

(
∆+ J

2
−m+n,

∆+ J
2

−m+n,∆+ J−2(m−n);1− zz̄
)

× [(1− z)(1− z̄)]
∆−J

2 +m+n (1− zz̄)J−2m, (2.17)

where (·)k refers to Pochhammer symbols, defined as:

(x)k ≡
Γ(x+k)
Γ(x)

= x(x+1)...(x+k−1).

It is also interesting to note that the bulk Casimir equation can be used for obtaining the R-symmetry
blocks in the supersymmetric case and vice versa by analytic continuation. It is indeed shown in
[20] that the two-point function with 1/2-BPS defects of codimension-one (i.e. the boundary) and
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Figure 2.2: Comparison of the superspace setup for the configurations with codimension-one defect
(boundary, at the top) and codimension-three defect (line, at the bottom). The left side of the picture
shows the configuration in spacetime for the boundary and in R-symmetry space for the line, while the
right side depicts the boundary in R-symmetry space and the line in spacetime. The analytic continuation
is performed following the double arrows in one direction or the other by following the prescriptions given
in [20].

of codimension-three (the line) are intimately related, and that one can obtain the superblocks by
(schematically) inverting the roles of spacetime and R-symmetry space, as depicted in fig. 2.2. The
bulk Casimir equation is exactly solvable for the case q = 1 and the corresponding superblocks read:

f∆,0(z)= (4ξ)∆/2
2F1

(
∆+∆12

2
,
∆−∆12

2
;∆−1;−ξ

)
(2.18)

with ξ defined as before, but with z = z̄. We also defined ∆12 ≡∆1 −∆2. We will come back to this result
later on.

2.2 The Superconformal Two-Point Function

We specialize now the analysis of the previous section for the case of N = 4 SYM with the Maldacena-
Wilson-line defect. Moreover, we add that the scalar operators should be single-trace operators as
defined in eq. (1.38) with k = 2:

O(x)≡ uiu j Tr φi(x)φ j(x). (2.19)

The Maldacena-Wilson line is defined in eq. (1.39). We start this section by presenting superconformal
Ward identities, which impose strong constraints on the supersymmetric two-point function. We then
discuss the concept of superblocks, and in particular we show which operators are allowed to appear in
the defect and bulk channels respectively. Finally, we derive the superblocks for the defect channel.

Superconformal Ward Identities
It is convenient to use the complex coordinates defined in eq. (2.2) for discussing the superconformal
Ward identities. We therefore need differential operators acting on complex variables, and we wish that
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their behavior imitates the one of partial derivatives on real variables. This is fulfilled by the Wirtinger
derivatives, which are defined as follows:

∂z ≡ 1
2

(
∂x − i∂y

)
, (2.20a)

∂z̄ ≡ 1
2

(
∂x + i∂y

)
, (2.20b)

and which have the effect that z and z̄ can be considered to be independent variables, i.e. ∂z z̄ = 0 and
∂z̄z = 0. The Wirtinger derivatives behave just like ordinary partial derivatives in the case of a single
complex variable, i.e. they are linear operators and fulfill the celebrated product and chain rules.

Since we now find ourselves in a supersymmetric setup, it is also convenient to construct a R-symmetry
variable ω which, by analogy to the conformal ratio ξ (see eq. (2.3)), can be defined as:

4ω
(1−ω)2 ≡ (u1 ·θ)(u2 ·θ)

(u1 ·u2)
. (2.21)

We recall that the u’s and θ correspond respectively to the single-trace operators and to the line defect,
and that u2 = 0 and θ2 = 1.

Superconformal invariance implies:

〈O(x1)O(x2)〉 = (u1 ·θ)2(u2 ·θ)2

x2
1x2

2
F(z, z̄,ω). (2.22)

The correlator is singular at z = ω and z̄ = ω, and in order to keep it analytic we need to impose for
the residue to vanish at these poles. This is called analyticity condition, and it results in the following
superconformal Ward identities [20]:

(
∂z + 1

2
∂ω

)
F(z, z̄,ω)

∣∣∣∣
z=ω

= 0, (2.23a)(
∂z̄ + 1

2
∂ω

)
F(z, z̄,ω)

∣∣∣∣
z̄=ω

= 0. (2.23b)

It is useful to define the following invariant:

Ω≡ (1−ω)2

4ω

p
zz̄

(1− z)(1− z̄)
≡ΩR ΩST, (2.24)

where in the last equality ST stands for "spacetime" and R for "R-symmetry". Any power of Ω fulfills
the Ward identities, i.e.: (

∂z + 1
2
∂ω

)
Ωk

∣∣∣∣
z=ω

= 0. (2.25)

We will soon see that it is very convenient to express the correlator in terms of Ω, ΩR and ΩST.

Superblocks
Let us investigate how to go from the conformal spacetime blocks of the previous section to supercon-
formal blocks, also called superblocks. We introduce the R-symmetry blocks hk(ω) and ĥk(ω), and sum
over the blocks that can appear in the corresponding multiplets. Concretely, it means that the defect
superblocks take the following form:
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Ĝχ̂(z, z̄,ω)= ∑
∆̂,k,s

c∆̂,k(χ̂)ĥk(ω) f̂∆̂,0,s(z, z̄), (2.26)

where χ̂ refers to a representation of the symmetry group preserved by the defect, which is now osp(4|4).
The c∆̂,k are coefficients, which we will be able to determine once we know the relevant quantum num-
bers for each allowed representation.

In the exact same way, the bulk superblocks read:

Gχ(z, z̄,ω)= ∑
∆,k

c∆,k(χ)hk(ω) f∆,J(z, z̄). (2.27)

In this case, the χ’s are representations of the full superconformal algebra.

The R-symmetry blocks can be determined in the same way as we proceeded for the spacetime blocks
in the previous section, i.e. by solving the corresponding Casimir equation, with su(4)R being the actual
symmetry. As explained in section 2.1, it is possible to obtain the bulk R-symmetry blocks by analytic
continuation from a system with boundary defect, by applying the substitution prescribed in [20] (see
also fig. 2.2). This gives:

hk(ω)=
(

ω

(1−ω)2

)−k/2

2
F1

(
−k

2
,−k

2
,−k−1;− (1−ω)2

4ω

)
. (2.28)

The defect R-symmetry blocks are also solutions of the R-symmetry Casimir equation, and we obtain:

ĥk(ω)=
(
(1−ω)2

ω

)k

2
F1

(
−k−1,−k,−2(k+1);− 4ω

(1−ω)2

)
. (2.29)

We now have an explicit expression for all the spacetime and R-symmetry blocks, and we are left with
two tasks: (i) determine which operators are allowed to appear in the defect and bulk OPEs, and (ii)
determine the numerical coefficients c of eq. (2.26) and (2.27).

Let us start with the first task for the defect channel. According to (2.5), we must include all the op-
erators which can have a non-vanishing two-point function in presence of the defect. This analysis is
explained in [20] for the case of the boundary defect, and by analytic continuation it can be extended
to the line. The preserved symmetry is a 1d osp(4|4) algebra, which contains so(5)R and the 16 super-
charges. osp(4|4) has bosonic subalgebra sl(2,R)⊕su(2)⊕usp(4), where the first component corresponds
to 1d conformal algebra along the line and the two last ones to the R-symmetry. The representations
of osp(4|4) are uniquely characterized by the quantum numbers {∆̂,n, [a,b]}, where n labels the (n+1)-
dimensional representation of su(2), and where [a,b] are Dynkin labels for usp(4|4) (see appendix A.1
for a short review of Dynkin labels).

It turns out that the following operators are allowed in the defect OPE (in addition to the identity
operator 1):

• 1/2-BPS operators: (B,+)1, (B,+)2, with (B,+)b/2 ≡
{ b

2 ,0, [0,b]
}
;

• 1/4-BPS operators: (B,1)[0,s] , (B,1)[1,s], with (B,1)[b/2,n] ≡
{ b

2 ,n, [0,b]
}
, s ≥ 0;

• long operators: L∆̂[0,s], with L∆̂,n
[0,b] ≡

{
∆̂,n, [0,b]

}
, ∆̂≥ 1 and ∆̂−1≥ s ≥ 0.

We saw in section 1.2 that BPS operators are short multiplets, which means that the number of states
is finite once the null-states have been removed. Still the value of the spin s is not bounded for the 1/4-
BPS operators. We also have an infinite number of long operators which have to be included in the OPE.
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The notation (B,+) corresponds to chiral operators, while (B,−) would refer to antichiral operators, but
such operators are not compatible with osp(4|4) [20].

To summarize, this means that the defect channel expansion of the two-point function reads:

F(z, z̄,ω)= A+BĜ(B,+)1 +CĜ(B,+)2 +
∞∑

s=0
DsĜ(B,1)[0,s] +

∞∑
s=0

EsĜ(B,1)[1,s] +
∞∑
∆̂=1

∆̂−1∑
s=0

F∆̂,sĜL∆̂[0,s]
, (2.30)

where the coefficients have the following relation to the CFT data:

A ≡ bO1 = a2
O, B ≡ b2

OÔ(B,+)1
, ...

The CFT data is not fixed by the superconformal Ward identities, and the goal of this work is precisely
to compute these coefficients perturbatively up to next-to-leading order (NLO). But before we do so, we
still have to fix the coefficients of eq. (2.26) and (2.27), and this will be done in the next subsection.

We mentioned before that the defect OPE is really the focus of this work. However, for completeness
and in prevision of future work, we quickly review the bulk channel expansion as well. In that case,
the operators present in the OPE must have a non-vanishing one-point function in presence of the
defect (see eq. (2.4)). Note that the one-point function of a bulk operator is non-zero if and only if its
corresponding superconformal primary has a non-zero one-point function [20]. Moreover, only scalar
operators are allowed. We denote the representations of the R-symmetry su(4)R with the Dynkin labels
[q, p, r], with all q, p, r even.

The allowed operators are the following (in addition to the identity contribution 1):

• 1/2-BPS operators B[0,2k,0] with k = 1,2;

• semishort blocks C[0,p,0],(J,J) with p = 0,2, J ≥ 0;

• long blocks A∆
[0,0,0],(J,J) with ∆≥ 2(J+1), J ≥ 0,

with J the spin of the operator, and where we refer to [20] for a thorough derivation.

Superblock Coefficients
We now fix the coefficients of the defect channel given in eq. (2.26). The most efficient method is to
write an ansatz based on the content of the exchanged multiplet, then apply the superconformal Ward
identities and solve the resulting equations for the coefficients.

The complete list of coefficients is given in appendix B. We illustrate the method here only for the
simplest case, which is the block corresponding to (B,+)k. The multiplet content is:

{∆̂, s,k}= {{k,0,k}, {k+1,1,k−1}, {k+2,0,k−2}} ,

where ∆̂ is the conformal dimension, s the transverse spin and k the R-symmetry label. This translates
into the following superblock:

Ĝ(B,+)k (z, z̄,ω)= a0 f̂k,0ĥk +a1 f̂k+1,1ĥk−1 +a2 f̂k+2,0ĥk−2, (2.31)

where we suppressed the dependence on z, z̄ and ω on the RHS for compactness. The Ward identities
imply: (

∂z + 1
2
∂ω

)
Ĝ(B,+)k (z, z̄,ω)

∣∣∣∣
z=ω

= 0,
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and setting a0 ≡ 1 this can be exploited for deriving the following coefficients:

a1 =− 2k
1+2k

, (2.32a)

a2 = 16k(k−1)(k+1)2

(2k−1)(2k+3)(1+2k)2 . (2.32b)

The other coefficients are obtained in the very same way for the other multiplets. Note that the resulting
superblocks are all linear combinations of hypergeometric functions, since they are solutions of the
Casimir equations.

It is important to notice that the superblocks corresponding to the long operators L∆̂[0,s] become (B,1)[0,s]

superblocks (with a minus sign) at the unitarity bound, i.e. at ∆̂= s+1. This is called multiplet shorten-
ing, and it implies that the coefficients Ds and Fs+1,s cannot be disentangled in certain situations, as we
shall see later on. This has already been discussed in [20] for the case of the boundary defect. The long
multiplet is the only one to not be BPS, and hence it is not protected against the conformal dimension
receiving an anomalous correction. This spoils the multiplet shortening at higher order and can be used
for distinguishing the contributions of longs at the unitarity bound and of (B,1)[0,s] superblocks. In per-
turbation theory, this manifests itself by the appearance of log terms at higher orders in the coupling
constant g.

The computation of the coefficients of the bulk channel is reserved for future work, but in principle they
can be obtained in the very same way as demonstrated here for the defect channel.

2.3 CFT Data

In the previous section, we derived the superblocks explicitly for the defect and bulk channels, the last
missing piece of the puzzle being the unknown CFT data. Remarkably we were able to do that non-
perturbatively, and the aim of this section is to isolate the CFT data such that we are in a position
to extract it from the perturbative computations to be done in chapter 4. We start by showing that
the R-symmetry dependence is already completely fixed, and that we can conveniently reformulate
the superconformal Ward identities in terms of spacetime coordinates only. Then we present some
useful limiting cases of the setup, which can be expanded near the line defect such that the CFT data
stands out uniquely. Finally, we give the expansions explicitly and discuss how log terms appear as a
consequence of anomalous corrections at higher order.

R-Symmetry Channels
In this subsection we take a step back to generality and consider single-trace operators with k scalar
fields (and not just two), as it was originally defined in eq. (1.38). Although we only deal with the case
k = 2 in chapter 4, this analysis will be useful for discussing the general case in the conclusion, and it
does not bring unnecessary complications. In order to separate the R-symmetry dependence, we first
list the external objects which carry so(6)R indices (i = 1, ...,6):

• k×ui
1 and k×ui

2 (from the single-trace operators O);

• ∞×θi (from the Wilson line, with ∞ possible points on the line).

The possible R-symmetry channels, i.e. all the ways in which these objects can be contracted together,
can be represented diagrammatically as follows:
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... ... ...
...

...

,

where the lines connect R-symmetry indices, and do not represent per se propagators. These diagrams
are in the R-symmetry space and should not be confused with the diagrams that will be presented in
chapter 4, which are spacetime diagrams. We will call the channel on the far left 0-channel, since there
is zero line connecting the operators to the defect. The next channel will be called the 1-channel, since
each operator is connected by one line to the defect. The rest follows analogously, and the last channel
is thus the k-channel. There are in total (k+1)-channels contributing to the correlator.

The two-point function is then the sum of the contributions given by each c-channel, defined as:

〈Ok(x1)Ok(x2)〉c = (u1 ·u2)k−c(u1 ·θ)c(u2 ·θ)c fc(z, z̄)

!= (u1 ·θ)k(u2 ·θ)k

(zz̄)k/2 Fc(z, z̄,ω),

where the second equality is just (2.22) channelwise for an arbitrary number k of scalar fields. Using
the invariant Ω defined in eq. (2.24), we obtain the following relation between the F ’s and the f ’s:

Fc(z, z̄,ω)=Ωk−c
R (zz̄)k/2 fc(z, z̄)

=Ωk−c(1− z)k−c(1− z̄)k−c(zz̄)c/2 fc(z, z̄)

≡Ωk−c gc(z, z̄), (2.33)

where in the last line we have defined the convenient spacetime function gc(z, z̄), such that the full
correlator can be formulated in a compact way as:

F(z, z̄,ω)=
k∑

c=0
Ωk−c gc(z, z̄). (2.34)

All the ω dependence is now contained in Ω, and the only unknown functions left are the gc’s. The
superconformal Ward identities of section 2.2 can now be rewritten in terms of z and z̄ only, and those
will be referred to as reduced Ward identities:

k∑
c=0

(
1
4

1− z
1− z̄

p
zz̄
z

)k−c

∂z gc(z, z̄) != 0. (2.35)

The second Ward identity follows similarly. For the case k = 2, which we treat in this work, we thus
have three R-symmetry channels, and the correlator reads:

F(z, z̄,ω)=
2∑

c=0
Ω2−c gc(z, z̄). (2.36)

The reduced Ward identities take the following form:

∂z g0(z, z̄)+ 1
4

1− z
1− z̄

p
zz̄
z

∂z g1(z, z̄)+ 1
16

(1− z)2

(1− z̄)2
z̄
z
∂z g2(z, z̄) != 0, (2.37a)

∂z̄ g0(z, z̄)+ 1
4

1− z̄
1− z

p
zz̄
z̄

∂z̄ g1(z, z̄)+ 1
16

(1− z̄)2

(1− z)2
z
z̄
∂z̄ g2(z, z̄) != 0. (2.37b)

These powerful identities strongly constraint the spacetime dependence of the correlator, and they will
play an important role in our perturbative computation of the two-point function in chapter 4.
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Figure 2.3: Some limiting cases for the setup introduced at the beginning of section 2.1. The left figure
represents the setup for the collinear limit z = z̄, i.e. x2 ≡ (x,0,0,0). The middle figure corresponds to the
case in which z =−z̄ or x2 ≡ (0, x,0,0). The last picture corresponds to the case x2 ≡ (x,kx,0,0) for k = 1.

Limiting Cases

It is not always possible to compute the correlator for the most general case, and hence we would like
to discuss some interesting limiting cases of the setup which may simplify the integrals.

The first obvious choice would be to place the operator O(x2) on the x-axis, i.e. x2 ≡ (x,0,0,0) or z = z̄.
This is called the collinear limit and is depicted in the leftmost picture of fig. 2.3. The reduced Ward
identities presented in the previous subsection greatly simplify in this limit, since Ω|x=z=z̄=ω = sgn x.
For x > 0, we therefore have:

∂z

{
g0(z, z̄)+ 1

4
g1(z, z̄)+ 1

16
g2(z, z̄)

}∣∣∣∣
z̄=z

!= 0,

∂z̄

{
g0(z, z̄)+ 1

4
g1(z, z̄)+ 1

16
g2(z, z̄)

}∣∣∣∣
z̄=z

!= 0.

It follows by substituting (2.20b) and adding the two equations that:

∂x

{
g0(z, z̄)+ 1

4
g1(z, z̄)+ 1

16
g2(z, z̄)

}∣∣∣∣
z=x,z̄=x

!= 0,

which is equivalent to:

16g0(x, x)+4g1(x, x)+ g2(x, x)= c1, (2.39a)

where c1 is a constant. The same derivation can be performed for the case x < 0, and it results in:

16g0(x, x)−4g1(x, x)+ g2(x, x)= c2, (2.39b)

where c2 is a distinct constant, i.e. it does not have to be equal to c1. Eq. (2.39a) and (2.39b) provide a
useful way of checking our results numerically, since the functions involved depend only on one variable.

There are other limits which reduce the system to one variable, such as the line z =−z̄ or x2 ≡ (0, x,0,0).
This limit allows us to reach information that may be lost in the collinear limit. In general, every limit
x2 ≡ (x,kx,0,0) is useful and permits us to reach information which may be obscured in other limits. We
will make use of these limits in section 4.2, and they are represented in fig. 2.3.
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Expansion of Superblocks

It is advantageous to reduce the correlator to functions of one variable using the limiting cases pre-
sented above, since it is easy to expand them at x ∼ 0. We will show in this subsection what can be
learned from such expansions.

We have already noted that BPS operators are protected against corrections at any order in perturbation
theory, but that long operators acquire an anomalous dimension due to quantum effects, i.e.:

∆̂=
∞∑

k=0
g2k∆̂(2k),

where only even powers of g are allowed since propagators carry a g2 dependence as the Feynman rules
reveal (see next chapter). Each long operator characterized by {∆̂, s} gets a different correction, and
hence we must label the anomalous dimensions as ∆̂(2k)

∆̂,s
. The expansion of a superblock of the type L∆̂[0,s]

then yields:

ĜL∆̂[0,s]
(z, z̄)= Ĝ

L∆̂(0)
[0,s]

(z, z̄)+ g2∆̂(2)
∆̂,s
∂
∆̂
Ĝ

L∆̂(0)
[0,s]

(z, z̄)

+ g4
{

1
2

(
∆̂(2)
∆̂,s

)2
∂2
∆̂

Ĝ
L∆̂(0)

[0,s]
(z, z̄)+ ∆̂(4)

∆̂,s
∂
∆̂
Ĝ

L∆̂(0)
[0,s]

(z, z̄)
}
+ ...

Note that expanding until O(g4) is sufficient in this case for reaching next-to-leading order, which is
the goal of this work.

It is convenient to separate spacetime and R-symmetry dependence in the correlator in the following
manner:

F(z, z̄,ω)=Ω2
R(ω) F̃0(z, z̄)+ΩR(ω) F̃1(z, z̄)+ F̃2(z, z̄),

with the F̃ ’s being related to the g’s by:

F̃c(z, z̄)≡Ω2−c
ST (z, z̄)gc(z, z̄). (2.40)

ΩR and ΩST are defined by eq. (2.24). Each of the g’s can be expanded in superblocks channelwise. The
BPS superblocks are pure hypergeometric functions, hence they can be expanded in power series when
assuming one of the limits of the previous subsections:

gBPS
c (x)=

∞∑
k=0

akxk. (2.41)

The notation on the left-hand side is somewhat sloppy, but its meaning should be clear: the function g
now depends only on one variable, whose definition depends on the chosen limit.

Due to anomalous dimensions, the long superblocks do not have an expansion only in power series, as
they also contain log terms arising from expanding the prefactor (zz̄)−∆̂:

gL
c (x)=

∞∑
k=0

bkxk + log x
∞∑

k=1
ckxk. (2.42)

It is easy to work out the relations between the coefficients in (2.41), (2.42) and the CFT data of (2.30)
in a given limit using e.g. MATHEMATICA. We do not give these expressions explicitly here, since they



32 2.3. CFT Data

are extremely lengthy albeit elementary, but as an example the first few terms of each channel in the
limit z = z̄ read:

F̃0(x, x)= 16Cx2 +8g4F1,0∆̂
(2)
1,0 x3 log x+ ... (2.43a)

F̃1(x, x)= 4Bx−2
(
2g2F1,0∆̂

(2)
1,0 + g4F1,0

(
∆̂(2)

1,0
)2 +2g4F1,0∆̂

(4)
1,0

)
x2 log x+ ... (2.43b)

F̃2(x, x)= A+ (2B−D0 +F1,0)x+ (
g2F1,0∆̂

(2)
1,0 + g4F1,0∆̂

(4)
1,0

)
x log x+ ... (2.43c)

In perturbation theory, the correlator can also be expanded in the very same way and it is then possible
to match the two expansions and solve for the CFT data. This is precisely what we will do in section
4.3.



CHAPTER 3

Perturbation Theory

Until now we have been able to learn a lot about the defect N = 4 SYM theory non-perturbatively by
using the symmetries of the theory as well as the spectrum of operators; this illustrates the potential
of the defect superconformal bootstrap. We will now return to more traditional quantum field theory
techniques, and in particular we intend to compute the correlator up to next-to-leading order using
perturbation theory. Combined with the bootstrap and crossing symmetry, it allows us to obtain a lot
of perturbative results in one blow. In this chapter, we introduce the tools needed for the perturbative
computation of the two-point function in presence of the defect, which will be performed in chapter 4.
We first introduce the action, and in particular we show how 4d N = 4 SYM can be derived from 10d
N = 1 SYM with dimensional reduction. We then present the relevant Feynman rules, and discuss the
large N expansion, where N corresponds to the range of the color indices of the gauge algebra u(N).
Finally, we derive elementary insertion rules which will be useful in the next chapter for computing the
correlator.

3.1 N = 4 Super Yang-Mills

This section will be dedicated to introducing the perturbative foundations of N = 4 SYM, namely its
action and the related Feynman rules. We have been avoiding to write down the action until now in
the name of the conformal bootstrap, but for the perturbative computation of the correlator we find
ourselves forced to take this road. The action will be derived by performing dimensional reduction
of N = 1 SYM in 10 dimensions. This is presented in e.g. [24, 39]. We conclude this section with a
discussion of the limit N →∞, in which a large number of Feynman diagrams can be discarded.

From 10d N = 1 to 4d N = 4

We start by considering (classical) Yang-Mills theory in Euclidean 10-dimensional space, with N = 1
supersymmetry. The field content is one bosonic gauge field AM (M = 1, ...,10) and one Majorana spinor
ψ, which can be expressed as:

AM(x)≡ Ta Aa
M(x), (3.1a)

ψ(x)≡ Taψ
a(x). (3.1b)

The non-Abelian field strength reads:

FMN ≡ ∂M AN −∂N AM − i[AM , AN], (3.1c)

and we define as usual the covariant derivative to be:

DM · ≡ ∂M ·−i[AM , ·]. (3.1d)

33
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There is only one supersymmetry, for which the infinitesimal transformations are given by:

δε̄AM =−iε̄ΓMψ, (3.2a)

δεψ= i
2

FMNΓ
MNε, (3.2b)

with ε, ε̄ constant Majorana spinors, while the ΓM refer to the ten 16-dimensional Dirac Γ-matrices in
the Majorana representation. We also defined:

ΓMN ≡ i
2

[ΓM ,ΓN].

The Γ-matrices fulfill:

Tr ΓMΓN = 16δMN .

The spinor ψ is a 16-component Majorana spinor, i.e. it obeys the reality condition given in eq. (1.3).

The Yang-Mills action reads:

S = 1
g2

∫
d10x Tr

(
1
2

FMN FMN + iψ̄ΓMDMψ

)
. (3.3)

It is easy to read the mass dimension of the fields and of the coupling constant:

[g]= 3, [A]= 1, [ψ]= 3/2.

We now wish to reduce (3.3) to a theory in 4 spacetime dimensions and with 6 internal dimensions.
We decompose the index M = 1, ...,10 into µ = 1, ...,4 and i = 5, ...,10. The compactification of the extra
6-dimensional space is fulfilled by imposing the following conditions:

∂i AM(x) != 0, (3.4a)

∂iψ(x) != 0. (3.4b)

We define the extra degrees of freedom of the gauge field as 6 real scalar fields, i.e.:

A i(x)≡φi(x). (3.5)

As a consequence, the field strength tensor decomposes into:

FMN FMN = FµνFµν+2Fµi Fµi +Fi j F
i j

= FµνFµν+2DµφiD
µφi − [φi,φ j][φ

i,φ j].

The first term is a typical field strength tensor for 4-dimensional non-Abelian Yang-Mills theory, and
it contains the kinetic term for Aµ as well as cubic and quartic interactions involving the gauge fields
only. The second term contains the kinetic term for the scalar fields, and also cubic and quartic mixing
terms involving the Aµ and the φi. Finally, the product of commutators is a φ4-like interaction term.

We now turn our attention to the second term of (3.3). In the same way as above, the Γ-matrices
decompose into:

ΓM ≡ (γµ,Γi),
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and we have:

ψ̄ΓMDMψ= ψ̄γµDµψ− iψ̄Γi[φi,ψ].

The first term contains the kinetic term for the fermion as well as an interaction term QCD-like between
the fermions and the gauge field. The second term corresponds to a Yukawa vertex between scalar fields
and fermions.

We have now obtained a reduction of the 10d Super Yang-Mills to 4 dimensions, by introducing 6 scalar
fields. This has of course not affected the number of bosonic and fermionic degrees of freedom, which
remains the same as shown in section 1.2 (8 each).

We can also obtain the Maldacena-Wilson loop defined in eq. (1.39) from dimensional reduction, starting
with a regular 10-dimensional gauge-invariant Wilson loop:

W(C)≡ 1
N

Tr P exp i
∮

C
dxM AM(x), (3.6)

where C is a closed path of integration. Introducing a parameter τ such that dxM = dτ ẋM (with ẋ the
derivative of x with respect to τ) and splitting the dimensions into spatial and internal coordinates by
using (3.5), the Wilson-loop operator becomes:

W(C)= 1
N

Tr exp i
∮

C
dτ

(
ẋµAµ+ ẋiφi

)
.

To relate ẋµ and ẋi, we impose now that the path C is a null-curve (or lightlike), i.e.:

ẋM ẋM = ẋµ ẋµ+ ẋi ẋi
!= 0,

which implies that:

|ẋi| = ±i|ẋ|, (3.7)

where by a slight abuse of notation we defined:

|ẋ| ≡
√

ẋµ ẋµ.

Choosing the minus sign solution of eq. (3.7), we obtain:

W(C)= 1
N

Tr P exp
∮

C
dτ

(
iẋµAµ+|ẋ|θiφ

i), (3.8)

which is exactly the definition of the Maldacena-Wilson loop given in eq. (1.39).

We will now briefly look at the quantized theory and discuss some properties of N = 4 SYM.

The Action
The quantization of the action can be done using the conventional Faddeev-Popov method, which is
standard material and is reviewed in most QFT textbooks (see e.g. [26]). This introduces unphysical
ghost fields c, and at the end of the day we can rewrite the action as:

S = 1
g2

∫
d4x Tr

{
1
2

FµνFµν+DµφiD
µφi − 1

2
[φi,φ j][φ

i,φ j]

+iψ̄γµDµψ+ ψ̄Γi[φi,ψ]+∂µ c̄Dµc+ξ
(
∂µAµ

)2
}

, (3.9)
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where we have redefined the coupling constant g such that it absorbs the remaining volume integral on
the 6-dimensional internal space:

1
g2

∫
d6xi → 1

g2 .

This redefinition turns g into a dimensionless quantity. Note that we use the covariant gauge fixing
condition ∂µAµ = 0, and that we work in the Feynman gauge (i.e. ξ≡ 1). The action that we obtained is
the same as in e.g. [19, 40, 41], and it has N = 4 supersymmetry.

After reduction, the (physical) field content is now: one gauge field, one Majorana field (which can be
further decomposed into four Weyl spinors) and six scalar fields. All of these fields live in the adjoint
representation of u(N). Of course, the fields still have the same mass dimensions as before.

The SUSY transformations given in (3.2) still keep the action invariant, and they can be reduced to
4d as well. N = 4 is believed to be an integrable theory, and it seems that supersymmetry plays a
central role in this property [11]. As mentioned in chapter 1, N = 4 preserves conformal symmetry
at the quantum level, and hence its β-function vanishes. The corresponding superconformal algebra
has already been discussed in section 1.2, and the (anti)commutation relations are given explicitly in
appendix A.3. It is really conformal symmetry that gives N = 4 SYM its special place in the realm of
quantum field theories.

Feynman Rules
Let us now derive the Feynman rules (in position space) that are relevant to this work. Let us start
with some important definitions. The bosonic propagators are Green’s functions of the operator �, and
it is useful to define the following expression:

I12 ≡ 1
(2π)2x2

12
, (3.10a)

with xi j ≡ xi − x j as usual.

We will also encounter three-, four- and five-point massless Feynman integrals, which we define as
follows:

Y123 ≡
∫

d4x4 I14I24I34, (3.10b)

X1234 ≡
∫

d4x5 I15I25I35I45, (3.10c)

H13,24 ≡
∫

d4x56 I15I35I26I46I56. (3.10d)

In the last expression we have defined d4x56 ≡ d4x5 d4x6 for brevity. The letter assigned to each integral
makes sense when drawing the propagators. We will also encounter the following expression:

F13,24 ≡
(∂1 −∂3) · (∂2 −∂4)H13,24

I13I24
. (3.10e)

The notation presented above has already been used in e.g. [41, 42]. The Y- and X-integrals have been
solved analytically and can be found in appendix C.1. The H-integral seems to have no known closed
form so far, but (3.10e) can fortunately be reduced to a sum of Y- and X-integrals, as shown in appendix
C.1 (see eq. (C.6)).
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We will represent free propagators of scalar fields by solid lines, while solid lines bearing an arrow will
correspond to fermions. Wavy lines are gauge fields, and dotted lines are ghost fields. As mentioned
before, the bosonic (free) propagators are Green’s functions of the D’Alembert operator � ≡ ∂µ∂µ, and
hence their position dependence is simply given by (3.10a), with the relevant indices attached accord-
ingly. The propagator for the Majorana field can be obtained similarly (see e.g. [43]), and all in all the
propagators read:

i,a

1

j,b

2 = g2δi jδ
abI12, (3.11a)

µ,a

1

ν,b

2 = g2δµνδ
abI12, (3.11b)

a

1

b

2 = ig2δab /∂∆I12, (3.11c)

a

1

b

2 = g2δabI12, (3.11d)

where we have defined for brevity:

/∂∆ ≡ γ · ∂
∂∆

, ∆≡ x1 − x2,

with γµ the Dirac matrices.

The N = 4 SYM theory also contains the following 7 vertices:

,

which can be directly read from the action (3.9). Not all vertices will be relevant for this work, and the
important couplings will be listed as insertion rules in the next section.

Large N Expansion
We will now discuss the expansion in the large N limit, which was introduced by ’t Hooft in [44]. The
idea is to take the limit N →∞ (N being the number of color indices of the gauge group U(N)) and to
consider only the leading graphs in that regime, which we will call planar diagrams for reasons that
will soon become clear.

To see why it is possible and senseful to take this limit, let us define the so-called ’t Hooft coupling:

λ≡ g2N,

where g is the coupling constant of the Yang-Mills theory that we encountered in e.g. eq. (3.9). When λ

is kept fixed, taking N →∞ results in a divergent factor:

1
g2 = N

λ
→∞ for N →∞.

But the number of components N2 in the fields also diverges as N goes to ∞. In fact, what we obtain
is a subtle cancellation of these two infinities such that the action remains finite [44]. The radius
of convergence of a large N expansion is known to be non-zero [45], although this can be spoiled by
renormalization effects.
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In Feynman diagrams, the N dependence is carried through the color factors and we will now describe
how to count the factors of N. It is easy to see from the Feynman rules given previously that a prop-
agator carries a factor 1/N and that a vertex contributes N. The Wilson line contains a prefactor 1/N
(see eq. (1.39)). Finally, a color index contraction adds a factor N. This relates the large N expansion
to the topologies of the Feynman diagrams, which can be characterized by their corresponding Euler’s
characteristic:

χ≡V −E+F = 2−2G, (3.12)

where V is the number of vertices, E the number of edges (i.e. propagators), F the number of faces
(i.e. index contractions) and G the genus of the diagram. Planar diagrams are thus the diagrams which
have the lowest genus, i.e. the diagrams that can be drawn in 2 dimensions without crossing.

We now show with an example how to apply this rule to the present work. First, we cut the two loose
ends of the Wilson line and use the double-line system [45] in order to count the number of color index
contractions. F is then obtained by counting the number of independent contour lines. The following
diagram has V = 2, E = 3, F = 3, and hence it is planar:

The diagram above can be made non-planar by exchanging the middle points on the Wilson line. This
produces a diagram with F = 1, which is hence non-planar:

The non-planarity of the diagram is manifest since it cannot be drawn without having lines crossing.

3.2 Insertion Rules

In this section, we present and derive all the insertion rules that will be needed in chapter 4 for comput-
ing the two-point function with line defect. We first look at insertions on the Wilson line up to 4 points.
The self-energy correction to the scalar propagator is then computed at one loop, and we conclude this
chapter by giving the different 3- and 4-point insertion rules that are relevant for this work.

Wilson Line

The expression given in (1.39) for the Maldacena-Wilson line can be expanded in the following way:
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W(C)= 1
N

Tr
{
P exp

∮
C

dτ
(
iẋµAµ(x)+|ẋ|θiφ

i
)}

= 1+ 1
N

Tr
∮

C
dτ

(
iAµ(x)ẋµ+φi(x) |ẋ|θi

)
+ 1

2!N
Tr P

∮
C

dτ1 dτ2

(
iAµ(x1)ẋµ1 +φi(x1) |ẋ1|θi

)(
iAν(x2)ẋν2 +φ j(x2) |ẋ2|θ j

)
+ ...

in which each term refers to a certain number of points on the line. The first term corresponds to the
tree-level insertion (i.e. no coupling between the line and the rest of the system), which is simply:

= 1. (3.13)

At first order, the Wilson-line insertions are proportional to the trace of one generator:

, ∝ Tr Ta. (3.14)

This is zero for the gauge algebra su(N), as well as for u(N) when there is at least one vertex in the
diagram. Since we use u(N) as an approximation for su(N), we ignore artefacts arising from (3.14)1.

At second order, we obtain our first non-trivial contribution for two scalar points on the line. We can
use the cyclicity of the trace in order to remove the path-ordering as follows:

= 1
2!N

θiθ j Tr
∫

dτ1

∫
dτ2 |ẋ1||ẋ2|

〈
P

(
φi

1φ
j
2
)
...

〉
= 1

2!N
θiθ j

(
Tr TaTb

∫ ∞

−∞

∫ τ1

−∞
dτ2 +Tr TbTa

∫ ∞

−∞

∫ ∞

τ1

dτ2

)〈
φi

1,aφ
j
2,b...

〉
= 1

4N
θiθ jδ

ab
∫

dτ1

∫
dτ2

〈
φi

1,aφ
j
2,b...

〉
. (3.15)

It is important to understand that the diagram on the left-hand side refers to all possible path-orderings,
as explicitly written on the right-hand side. In the same way, we can obtain the rule for two gluon points
on the line:

=− 1
4N

δab
∫

dτ1

∫
dτ2 ẋµ1 ẋν2

〈
A1,µ,a A2,ν,b...

〉
. (3.16)

Note that, in our setup, ẋµi = (0,0,0,1) for i = 1,2. The insertion rule is not needed at NLO, but it

would most probably become relevant at next-to-next-to-leading order (NNLO).

At third order, there is only one relevant insertion rule:

1This makes no difference for the two-point function that we are considering, but could affect the computation for the
two-point function of operators not having the same number of scalar fields in the trace, e.g. k1 = 2 and k2 = 3 in eq. (1.38).
In this case it is easy to imagine one diagram with one point on the Wilson line and no vertex. Such a graph would vanish
with su(N) as a gauge group, but not with u(N).
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= i
2!1!N

θiθ j Tr
∫

dτ1

∫
dτ2

∫
dτ3 |ẋ1|ẋµ2 |ẋ3|

〈
P

(
φi

1A2,µφ
j
3
)
...

〉
= i

2!1!N
θiθ j

∫
dτ1

∫
dτ2

∫
dτ3

(
Θ (τ123)Tr TaTbT c +Θ (τ132)Tr TaT cTb + ...

)
× ẋµ2

〈
φi

1,a A2,µ,bφ
j
3,c...

〉
=− 1

8N
θiθ j f abc

∫
dτ1

∫
dτ2

∫
dτ3 ε (τ1τ2τ3) ẋµ2

〈
φi

1,a A2,µ,bφ
j
3,c...

〉
+ i

8N
θiθ j d

abc
∫

dτ1

∫
dτ2

∫
dτ3 ẋµ2

〈
φi

1,a A2,µ,bφ
j
3,c...

〉
, (3.17)

where we defined the path-ordering symbols Θ
(
τi jk

)
and ε

(
τiτ jτk

)
as follows:

Θ
(
τi jk

)≡Θ(
τi j

)
Θ

(
τ jk

)
, (3.18a)

ε
(
τiτ jτk

)≡ sgn
(
τi j

)
sgn(τik)sgn

(
τ jk

)
. (3.18b)

The second definition is needed in order to account for the antisymmetry of f abc. The second term in
(3.17) will always vanish in this work. Note that once again the diagrammatic representation of (3.17)
includes all possible path-orderings.

Finally, we will also need the fourth-order insertion involving only scalar fields, i.e.:

= 1
4!N

θiθ jθkθl

∫
dτ1

∫
dτ2

∫
dτ3

∫
dτ4

(
Θ (τ1234) Tr TaTbT cTd +Θ (τ1243) Tr TaTbTdT c + ...

)
×〈

φi
1,aφ

j
2,bφ

k
3,cφ

l
4,d...

〉
, (3.19)

with:

Θ
(
τi jkl

)≡Θ(
τi j

)
Θ

(
τ jk

)
Θ (τkl) . (3.20)

In the absence of vertices, this expression simply reduces to:

1
N
θiθ jθkθl Tr TaTbT cTd

∫
dτ1

∫
dτ2

∫
dτ3

∫
dτ4 Θ (τ1234)〈φi

1,aφ
j
2,bφ

k
3,cφ

l
4,d... 〉.

An identity relating the trace of 4 generators and the structure constants of the gauge group is given
by eq. (A.18) in appendix A.2.

Scalar Self-Energy
We now turn our attention to the one-loop correction of the scalar propagator. It consists of the following
diagrams:

= + + + .

All the diagrams are easy to compute. The first one gives:
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= (−i)2 2
g4

∫
d4x3 d4x4

〈
φa

1,iφ
b
2, j Tr ∂µφ

k
3 Aµ

3φ3,k Tr ∂νφ
l
4Aν

4φ4,l
〉

= 2g4Nδabδi jY112 + g4Nδabδi j
1

(2π)2ε2

∫
d4x3 I13I23.

Note that the Y-integral of the first term is given explicitly in eq. (C.9) and contains a logarithmic
divergence, while the second term contains a quadratic divergence encoded by the 1/ε2. This factor
arises when defining:

I33 ≡ 1
(2π)2ε2 . (3.21)

This is called point-splitting regularization, i.e. the zero is replaced by an infinitesimal distance.

The second diagram reads:

=−4g4Nδabδi j

{
Y112 − 2

(2π)2ε2

∫
d4x3 I13I23

}
,

where we recognize the same types of divergences as in the first diagram.

The last two diagrams differ only by a multiplicative factor, and give:

=−5g4Nδabδi j
1

(2π)2ε2

∫
d4x3 I13I23,

=−4g4Nδabδi j
1

(2π)2ε2

∫
d4x3 I13I23.

Those diagrams only contain quadratic divergences, and they would have vanished had we used di-
mensional regularization. Nevertheless they cancel each other when we sum up all the contributions
together, and we are left with an expression containing only one log divergence:

i,a

1

j,b

2
=−2g4Nδabδi jY112. (3.22)

This expression is well-known, and is the same as the one given in e.g. [19, 40]. The expression for the
gluon self-energy is very similar at one-loop and can also be found in [19, 40] (it will not be needed in
this work).

n-Point Insertions
We now derive the 3- and 4-point insertions that will be needed in chapter 4. The only 3-point insertion
that is relevant is the vertex connecting two scalar fields and one gauge field, which is easy to obtain
from the action (3.9):

i,a
1

j,b
2

µ, c

3
= 2i

g2 Tr Td[T e,T f ]
∫

d4x4
〈
φ

i,a
1 φ

j,b
2 Ac

3,µ ∂
νφk

4,dφ4,e,k A4,ν, f
〉

=−g4 f abcδi j (∂1 −∂2)µY123. (3.23)
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Another vertex that we need is the 4-scalars coupling. Similarly to the 3-vertex, it is straightforward to
read the corresponding Feynman rule from the action and perform the Wick contractions to get:

i,a
1

j,b
2

k, c
3

l,d
4

=−g6
{

f abe f cde (
δikδ jl −δilδ jk

)+ f ace f bde (
δi jδkl −δilδ jk

)
+ f ade f bce (

δi jδkl −δikδ jl
)}

X1234. (3.24)

We will also use the 4-coupling between 2 scalars and 2 gluons. This vertex reads:

i,a
1

j,b
2

µ, c
3

ν,d
4

=−g6δi jδµν( f ace f bde + f ade f bce) X1234. (3.25)

There are two more sophisticated 4-point insertions that we require. The first one reads:

i,a
1

j,b
2

k, c
3

l,d
4

= g6
{
δikδ jl f ace f bdeI13I24F13,24 +δilδ jk f ade f bceI14I23F14,23

}
, (3.26)

with F13,24 as defined in (3.10e).

The second (and last) insertion rule needed is the following:

i,a
1

j,b
2

µ, c
3

ν,d
4

= g6δi j f ace f bde [
4∂1µ∂2ν+2

(
∂1µ∂4ν+∂3µ∂2ν

)+∂3µ∂4ν
]
H13,24 + (1,µ,a ↔ 2,ν,b). (3.27)

Equipped with the Feynman rules and these insertion formulae, we are now ready to write the two-point
function with line defect up to the next-to-leading order.



CHAPTER 4

Two-Point Function at Next-To-Leading Order and CFT Data

This final chapter presents the most important results of this thesis. The first section shows the topolo-
gies that are relevant up to order O(g8) (NLO) and the corresponding Feynman diagrams to compute.
We then compute the correlator up to leading order (LO), and show some intermediate results at NLO.
In particular, the integral of the 2-channel could be solved in a closed form. Finally, we extract the CFT
data order by order using the perturbative results and the expansions presented in section 2.3.

4.1 Feynman Diagrams

We start by collecting the diagrams which are relevant for the computation of the two-point function
at O(g8). We first show classes of vanishing diagrams, and discuss the non-renormalization of the
disconnected two-point function. Then we derive a set of two equations to help us find the surviving
topologies, and give the diagrams that we will need to compute in the subsequent sections.

Vanishing Graphs

We already mentioned that graphs with only one point on the Wilson line are not to be considered in
section 3.2. When there are two points on the Wilson line, the diagram vanishes if the two propagators
coming from the line directly meet at a 3-point vertex. This happens because of the color factor:

∝ f cde
∫

dτ1

∫
dτ2

∫
d4x3

〈
Tr φi

1φ
j
2 ∂

µφk
3,c A3,µ,dφ

l
3,e ...

〉∝ f ada = 0, (4.1a)

where it is understood that the trace acts on φ1 and φ2 only. It follows analogously that:

= = 0, (4.1b)

and in the very same way we also find that such a 3-vertex contracted on the two fields of a single-trace
operator produces a vanishing diagrams - or with less words:

= 0, (4.1c)

where the rightmost circle with the two points represents a single-trace operator (the circle being the
trace).

43
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Non-Renormalization of the Defect-Free Two-Point Function

It is a well-known result that the two-point function of 1/2-BPS operators does not renormalize at any
loop-order [12, 13], i.e. the two-point function of single-trace operators O without defect reads:

〈O(x1)O(x2)〉 = f (g, N) ·

= f (g, N)
g4N2

2
(u1 ·u2)2I2

12

= (u1 ·θ)2(u2 ·θ)2

x2
1x2

2
f (g, N)

g4N2

25π4 Ω
2, (4.2)

with f (g, N) a function depending on the regularization scheme and Ω as defined in (2.24). Note that
here the expectation value does not include the defect, and hence it corresponds to the identity contri-
bution in the full defect two-point function at order O(g4), where f (g, N) = 1. The k = 2 operators find
themselves in the same multiplet as the energy-momentum tensor Tµν, which does not renormalize,
hence by supersymmetry 〈O(x1)O(x2)〉 is protected as well and its conformal dimension is preserved at
the quantum level [46].

In order to make this discussion plausible, let us compute explicitly the two-point function at one-loop.
It consists of the following diagrams:

〈O(x1)O(x2)〉|disconnected = + + + .

We can use our insertion rules from the previous chapter as well as the identity (C.6) in order to figure
out what each diagram corresponds to. After doing the Wick contractions, we easily find:

= =−(u1 ·u2)2 g6N3I12Y112,

= 1
2

(u1 ·u2)2 g6N3I2
12

{
−X1122

I2
12

+4
Y112

I12

}
,

= 1
2

(u1 ·u2)2 g6N3X1122,

where for the second and third diagrams we took the limit N →∞. Adding these results together shows
that the two-point function vanishes at one loop, i.e.:

f (g, N)|O(g6) = 0, (4.4)

when using point-splitting regularization. This shows that we do not have to consider diagrams where
the two operators and the Wilson line are disconnected. This is also the case in the context of the Ward
identities, as even a non-zero f (g, N) would only correspond to a constant shift in e.g. eq. (2.39a) and
(2.39b).
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Table 4.1: Solutions of topology eq. (4.5a) and (4.5b), excluding the vanishing graphs.

O(g4) O(g6) O(g8)

O(Γ) 4 6 8 8 8 8 8
ωC 0 2 2 2 2 3 4
v3 0 0 0 2 0 1 0
v4 0 0 0 0 1 0 0
p0 2 3 2 6 5 5 4
p1 0 0 1 0 0 0 0

Topologies and Diagrams
We will now derive equations that will allow us to easily determine the allowed topologies. For any
Feynman diagram Γ, it is convenient to define the following variables: p0 is the number of tree-level
propagators, p1 is the number of one-loop propagators, v3 is the number of 3-vertices and v4 the number
of 4-vertices. Moreover, let ωC be the number of points on the Wilson line.

The first equation that we are looking for should relate the order of a graph Γ to the numbers of propa-
gators and vertices in it. This is straightforward to obtain, since (i) a tree-level propagator contributes
O(g2), (ii) a one-loop propagator contributes O(g4), and (iii) any vertex contributes O(g−2). This trans-
lates mathematically to:

O(Γ) != 2(p0 +2p1 −v3 −v4) , (4.5a)

where O(Γ) is the order of Γ in g.

We need one more equation, since this one does not involve ωC. The (total) number of propagators
p ≡ p0 + p1 in a graph Γ can only depend on (i) the number of points on the Wilson line ωC, (ii) the
number of 3- and 4- vertices, and (iii) the number of fields in each 1/2-BPS operator, here fixed at 2.
The third dependence means that we have at least 2 propagators in the diagrams at all times. Each
point on the Wilson line contributes a half-propagator, from which the other half must end somewhere.
Similarly, the 3-vertices contribute three halves of a propagator and the 4-vertices four halves. Writing
this as an equation gives:

p != 2+ 1
2

(
ωC + ∑

n=3,4
nvn

)
, (4.5b)

where of course p should be an integer. Moreover, we have seen in the previous section that (i) all
diagrams with ωC = 0 can be ignored at order O(Γ)≥ 6, and (ii) all diagrams vanish when ωC = 1.

Using the two equations and the constraints, we easily obtain all the topologies relevant up to order
O(g8). The corresponding configurations are gathered in table 4.1.

It is now straightforward to read the topologies of table 4.1 and dress the diagrams accordingly. The
resulting (planar) configurations are summarized in table 4.2 and categorized in function of their R-
symmetry channel (see section 2.3).

We already know that the self-energy diagrams are log-divergent. We will show in section 4.2 that
these divergences are in fact canceled by the ones arising from other diagrams, thus making the full
expectation value finite.



46 4.2. Perturbative Computation

Table 4.2: Connected diagrams for the computation of the two-point function with line defect up to
next-to-leading order (NLO). The configurations are classified in function of their R-symmetry channel.

LO NLO

0-Channel

1-Channel

2-Channel

4.2 Perturbative Computation
We now compute the correlator for the two-point function with line-defect up to leading order, and show
how far the integrals can be taken analytically for the next-to-leading order. We also show that the Ward
identities are satisfied in a non-trivial way at NLO on the line z = z̄ by using numerical computations.

Identity and Leading Orders
We call the identity order the order at which the two-point function without defect contributes. There is
only one diagram consisting of two propagators, and hence it is of order O(g4).

The diagram is the following, and we refer to it as disconnected since it does not couple to the defect:

= 1
2

(u1 ·u2)2 g4N2I2
12

= (u1 ·θ)2(u2 ·θ)2

x2
1x2

2

g4N2

25π4 Ω
2. (4.6)

There is no integral to solve, and it is easy to see that the g-functions defined in section 2.3 are constant,
i.e.:

g0(z, z̄)= g4N2

25π4 , (4.7a)
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and:

g1(z, z̄)= g2(z, z̄)= 0. (4.7b)

We saw at the end of section 2.3 that the most convenient formulation of the correlator in order to
extract the CFT data was in terms of the F̃ ’s, which are defined in eq. (2.40). The translation of the
results given above simply reads:

F̃0(z, z̄)= g4N2

25π4 Ω
2
ST, (4.8)

while the contributions to the other channels still vanish of course.

The leading order is the order at which the first connected diagram appears. Since the two-point func-
tion does not renormalize, we are left with only one contribution:

= δab

4N
θiθ ju1,ku1,lu2,mu2,n

δcdδe f

4

∫
dτ3

∫
dτ4

〈
φ

i,a
3 φ

j,b
4 φ

k,c
1 φ

l,d
1 φ

m,e
2 φ

n, f
2

〉
.

Doing the contractions, using the integral given in (C.1b) and inserting the invariant defined in (2.24),
it is easy to obtain the following expression:

= (u1 ·θ)2(u2 ·θ)2

x2
1x2

2

g6N
27π4Ω. (4.9)

This translates into the F̃-function:

F̃1(z, z̄)= g6N
27π4ΩST, (4.10a)

while the other channels vanish, i.e.:

F̃0(z, z̄)= F̃2(z, z̄)= 0. (4.10b)

The full correlator up to order O(g6) is therefore:

〈O(x1)O(x2)〉|O(g6) =
(u1 ·θ)2(u2 ·θ)2

x2
1x2

2

g4N2

25π4

{
Ω2 + g2

8N
Ω

}
, (4.11)

which easily converts back to F̃c’s by dropping the leftmost prefactor and by replacing Ω by ΩST.

The Ward identities are manifestly fulfilled at this order, since the F-function only consists of powers of
Ω (see eq. (2.25)).

2-Channel at Next-to-Leading Order
We now turn our attention to the more challenging computation of the correlator at next-to-leading or-
der. In order to have compact expressions, it is convenient to define the following R-symmetry constant:

λc ≡ g8N2(u1 ·u2)2−c(u1 ·θ)c(u2 ·θ)c, (4.12)

where c = 0,1,2 refers to the channel just as it was the case in section 2.3.
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We start by considering the 2-channel, which is the simplest one since it consists of only one diagram
without any vertex. After discarding the non-planar diagrams (this diagram was explicitly given as an
example for the large N limit in section 3.1) and doing the Wick contractions, it reads:

= λ2

8

∫
dτ3

∫
dτ4

∫
dτ5

∫
dτ6 Θ(τ3456) (I13I25 + I15I23)(I14I26 + I16I24),

where it should be remembered that we considered all permutations of the points on the Wilson line
when defining the insertion rule (3.19). Θ(τ3456) is defined in (3.20). This translates into:

F̃2(z, z̄,ω)= 1
8

g8N2 I(1, x2
2),

with I(x2
1, x2

2) the integral given above, and which is also defined in eq. (C.12). The diagram depends
manifestly only on x2

2, i.e. the only variable is the distance between the operator and the line, and the
distance between the two bulk operators is irrelevant for this channel. The integral also exhibits an
interesting inversion symmetry, i.e. it is invariant under the transformation |xi| ↔ 1/|xi| for i = 1,2.
This means that knowing the behavior of the channel for the range (0,1) in the limit z = z̄ is enough for
knowing it for the entire R2.

The computation of the integral can be performed analytically, except for the last one-dimensional
integral. We were able to find an exact expansion of the integral using numerical data, and from there
it happened to be possible to guess the exact closed form. This procedure is detailed in appendix C.2,
and we obtain the following expression:

F̃2(z, z̄,ω)= 1
212π6 g8N2

{
3π2 −4iπ log2+4tanh−1pzz̄

(
log zz̄+4log2−2tanh−1pzz̄

)
+4log2

(
1−p

zz̄
)
+2log

(p
zz̄−1

)(
−2log

(
1−p

zz̄
)
+ log

(p
zz̄−1

)
+2log2

)
−2log

(
1+p

zz̄
)
log4

(
1+p

zz̄
)
+4Li2

(
−pzz̄

)
−4Li2

p
zz̄

−4Li2
1
2

(
1−p

zz̄
)
+4Li2

1
2

(
1+p

zz̄
)}

. (4.13)

The corresponding g-function, useful for checking that the Ward identities are fulfilled, is plotted in fig.
4.1.

1-Channel at Next-to-Leading Order

The 1-channel contains many more diagrams, which now include vertices and that we therefore expect
to be more difficult. Indeed it will be shown that the integrals are too hard to be solved, but that they
can be computed numerically in the limit z = z̄. The insertion rules used for reading the diagrams can
all be found in section 3.2.

The first category of diagrams that we will treat are the divergent diagrams, where an infinity arises
when we "pinch" the vertices towards one operator. We will refer to such diagrams as corner diagrams,
in which we also include the self-energy diagrams for reasons that will soon become clear.

The X-diagram pinched at x1 results in the following expression (after performing the contractions and
taking the symmetry factors into account):
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Figure 4.1: The left plot presents the numerical data gathered for the g-functions of each channel on
the line z = z̄. The dots represent the actual measurements, which can be found in table C.6, while the
dashed lines just connect the dots and are here to guide the eye. Note that g2(x, x) is known analytically
(see eq. (4.13)). On the right side of the figure, the superconformal Ward identities are tested with the
data of the left plot following eq. (2.39a) and (2.39b). The identities are seen to be fulfilled, in that the
function is constant for x < 0 and x > 0. The dots are the measurements, while the dashed lines indicate
the constants c1 = 1/3 ·26π4 and c2 = 0.

=−λ1

∫
dτ3

∫
dτ4 I24 X1123, (4.14)

where we note that the pinching limit X1123 is known analytically and given by eq. (C.10) in appendix
C.1. But since some cancellation will occur, let us first collect the expressions associated to each dia-
gram before attempting any computation. For now we simply note that this diagram is logarithmically
divergent.

The H-diagram pinched at x1 turns out to be:

=−λ1 I12

∫
dτ3

∫
dτ4 I13I24 F12,13

=−λ1 I12

∫
dτ3

∫
dτ4 I13I24

{
− X1123

I12I13
+ Y112

I12
+ Y113

I13
+

(
1

I12
+ 1

I13
− 2

I23

)
Y123

}
, (4.15)

where in the second line we have made use of the pinched integral identity given in eq. (C.11). The
three first terms are also logarithmically divergent.

The self-energy diagrams are straightforward to read using (3.22) and give:

= 2 λ1

∫
dτ3

∫
dτ4 I13I24 Y112, (4.16)

as well as:

= 2 λ1 I12

∫
dτ3

∫
dτ4 I24 Y113. (4.17)
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As we already know, these diagrams are also logarithmically divergent.

Comparing expressions in eq. (4.14-4.17), we notice that many terms occur several times with different
signs. Hence it makes sense to group the diagrams in an upper-right corner diagram as follows:

≡ + + 1
2

 +


=−λ1 I12

∫
dτ3

∫
dτ4 I13I24

(
1

I12
+ 1

I13
− 2

I23

)
Y123. (4.18)

Due to cancellations, the expression has considerably simplified and the integral is now finite! Note
that this expression is in phase with the treatment of corner interactions performed in [42].

In a fully analogous way, we can treat the diagrams of the opposite corner, using the remaining half of
the symmetric self-energy diagram:

≡ + + 1
2

 +


=−λ1 I12

∫
dτ3

∫
dτ4 I13I24

(
1

I12
+ 1

I24
− 2

I14

)
Y124. (4.19)

The corner IYI-diagram at x1 is defined as follows:

=λ1 I12

∫
dτ3

∫
dτ4

∫
dτ5 ε(τ3 τ4 τ5) I13

(
∂τ2 −∂τ5

)
Y245,

where we recall that all permutations of the legs connected to the line are considered. The path-ordering
symbol is defined by eq. (3.18b).

This expression can be further simplified in the following way. Using integration by parts, one can
rewrite

(
∂τ2 −∂τ5

)
Y245=̂− (

∂τ4 +2∂τ5

)
Y245. Since the derivatives now only act on the Wilson-line points,

we can integrate by parts with respect to τ4 and τ5, and use the fact that:

∂τ4ε(τ3 τ4 τ5)= 2(δ(τ45)−δ(τ43)) ,

with τi j ≡ τi −τ j as usual. The δ-functions kill one τ-integral, and we are left with:

=λ1 I12

∫
dτ3

∫
dτ4 I13 (Y234 −Y244) . (4.20)

We can combine this diagram with the remaining half of the corresponding self-energy to obtain the
following upper-left corner diagram:

≡ + 1
2

=λ1 I12

∫
dτ3

∫
dτ4 I13 Y234. (4.21)
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Once again, we see that the pinched integrals canceled, thus making this expression finite.

Similarly, we define the following lower-left corner diagram:

≡ + 1
2

=λ1 I12

∫
dτ3

∫
dτ4 I24 Y134. (4.22)

Another class of diagrams are the so-called symmetric diagrams, where the integrals are invariant
under a permutation x1 ↔ x2. Using the 4-point insertion rules from section 3.2, it is straightforward to
write down the expressions corresponding to each diagram and to perform the Wick contractions. There
is one X-diagram, which reads: ∣∣∣∣∣∣∣

1

=−λ1 I12

∫
dτ3

∫
dτ4 X1234, (4.23)

where the subscript 1 means that we only consider the 1-channel of the diagram. Indeed, the diagram
contributes in principle also to the 0-channel, as we will see in the next subsection.

There is also one H-diagram, which gives:

=−λ1 I12

∫
dτ3

∫
dτ4 I13I24 F13,24, (4.24)

where the F- and X-integrals are defined in section 3.1. Note that we have made use of the insertion
rules (3.26) and of the fact that:∫

dτ3

∫
dτ4

{
I13I24 F13,24 + I14I23 F14,23

}= 2
∫

dτ3

∫
dτ4 I13I24 F13,24. (4.25)

In the same way, the symmetric IYI-diagram gives:

=−λ1

2

∫
dτ3

∫
dτ4

∫
dτ5 ε(τ3 τ4 τ5) I13I25

(
∂τ1 −∂τ2

)
Y124.

The τ3- and τ5-integrals can be performed as follows: insert the definition (3.18b) of the path-ordering
symbol ε(τ3 τ4 τ5), split e.g. the τ5-integral into pieces such that the signum functions involving τ5 can
be eliminated, and integrate termwise. This results in the following expression:∫

dτ5 ε(τ3 τ4 τ5) I25 = 1
(2π)2 |x2|

{
2

(
tan−1 τ4

|x2|
− tan−1 τ3

|x2|
)
+sgnτ34π

}
.

The τ3-integral is easy to do, and the IYI-diagram turns out to be:

=−1
2

λ1

(2π)3 |x1| |x2|
∫

dτ4

(
tan−1 τ4

|x2|
− tan−1 τ4

|x1|
)(
∂τ1 −∂τ2

)
Y124. (4.26)

There remains only a one-dimensional integral to do for this diagram. All the symmetric diagrams are
finite, and hence the 1-channel is also finite on its own as expected.
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Since the expressions for the Y-, X- and F-integrals are known analytically, we are left with one-
dimensional and two-dimensional integrals. We can group them accordingly, and we define:

F1d
1 (z, z̄,ω)≡ FIYI(z, z̄,ω)+FY123(z, z̄,ω)+FY124(z, z̄,ω), (4.27)

with:

FY123(z, z̄,ω)≡λ1 I12

∫
dτ3

∫
dτ4 I13I24

(
1

I23
− 1

I13

)
Y123

= λ1

4π|x2|
I12

∫
dτ3

(
I13

I23
−1

)
Y123,

where we have used the elementary integral given in eq. (C.1b), and:

FY124(z, z̄,ω)≡ λ1

4π|x1|
I12

∫
dτ4

(
I24

I14
−1

)
Y124.

FIYI is simply defined by the symmetric IYI-diagram of eq. (4.26).

Similarly, grouping the 2d integrals together results in:

F2d
1 (z, z̄,ω)≡ FX (z, z̄,ω)+FY134(z, z̄,ω)+FY234(z, z̄,ω), (4.28)

where we have defined:

FX (z, z̄,ω)≡λ1 I12

∫
dτ3

∫
dτ4 I13I24

(
1

I14I23
− 1

I13I24
− 1

I12I34

)
X1234,

as well as:

FY134(z, z̄,ω)≡λ1 I12

∫
dτ3

∫
dτ4 I13I24

(
1

I13
− 1

I14
+ 1

I34

)
Y134,

and:

FY234(z, z̄,ω)≡λ1 I12

∫
dτ3

∫
dτ4 I13I24

(
1

I24
− 1

I23
+ 1

I34

)
Y234.

We will not be able to solve these integrals analytically. However it is possible to numerically integrate
both (4.27) and (4.28) on the line z = z̄ ≡ x. This procedure is shown in detail in appendix C.2. In this
limit, the integrals exhibit the same inversion symmetry x ↔ 1/x that we already encountered in our
treatment of the 2-channel. It is not clear how this symmetry extends to the whole of R2, and that would
be an interesting thing to investigate in future work. In addition, we found numerically the following
properties for some parts of the correlator:

gX (x, x)= 0 ∀x ≥ 0, (4.29a)

as well as:

g1(x, x)− gX (x, x)= const.= g8N2

3 ·29π4 ∀x ≤ 0. (4.29b)

The first relation simply means that the X-integrals do not contribute to the correlator for x ≥ 0, while
the second one implies that only the X-integrals are relevant for x ≤ 0. We will not need to exploit these
interesting properties in this work, but it would be great to see whether it can be used in the future for
checking the results of this thesis.
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Both analytical results (see eq. (2.42) in section 2.3) and numerical results indicate that the correlator
corresponding to the 1-channel takes the following form:

F̃1(x, x)= g8N2

3 ·29π4 x− g8N2

27π6 x2 log x+O(x2). (4.30)

We were not able to perform the numerical integration precisely enough to obtain the closed form of
the coefficients at higher-order. To be more specific, the problem is that the 2d integrals are difficult to
perform numerically at a sufficient precision (see appendix C.2 for a discussion).

0-Channel at Next-to-Leading Order
Similarly to the previous section, we will now write down the integrals of the 0-channel and show that
it is finite on its own. In particular, we conclude that only one diagram contributes at this order and
that its corresponding g-function is constant on the line z = z̄ for x ≤ 0.

But let us start by reviewing the vanishing diagrams. There are two X-diagrams contributing to the
0-channel, the scalars-to-scalars one giving:∣∣∣∣∣∣∣

0

=−λ0 I12

∫
dτ3

∫
dτ4 X1234,

where we recall that the subscript 0 is here to avoid including the 1-channel part of the diagram, as we
have already discussed in the last subsection. The gluons-to-scalars diagram reads:

=+λ0 I12

∫
dτ3

∫
dτ4 X1234

!=−

∣∣∣∣∣∣∣
0

.

The two diagrams consequently cancel each other:∣∣∣∣∣∣∣
0

+ = 0, (4.31)

and thus the X-diagrams do not contribute to the 0-channel.

The next diagram that we study will be referred to as the YY-diagram. The two Y-integrals that it
consists of are independent and hence we can factorize them and write:

=−λ0

(∫
dτ3

(
∂τ1 −∂τ2

)
Y123

)2
. (4.32)

It is easy to see that the integral vanishes for any x2, since the integrand is antisymmetric with respect
to τ3 ↔−τ3. This diagram therefore does not contribute to the 0-channel and can be discarded.

The last diagram that we must consider is a H-diagram, which is more intricate because of the compli-
cated look of the 4-point insertions given in eq. (3.26) and (3.27). However, noticing that:∫

dτi ∂τi I i j = 0

allows the diagram to be simplified to the following compact expression:
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Table 4.3: Leading CFT data coefficients at order O(g4), obtained from the exact expression given in
(4.8). The corresponding closed forms are given in the text.

A B C Ds −Fs+1,s E0 E1 E2 E3 F2,0 F3,0 F3,1 F4,0 F4,1 F4,2

0 0 g4N2

29π4 0 g4N2

27π4
g4N2

27π4
3g4N2

5·26π4
5g4N2

7·26π4
3g4N2

5·26π4 0 3g4N2

7·25π4
5g4N2

7·3222π4 0 5g4N2

32·25π4

=−4λ0 I12 ∂τ1∂τ2

∫
dτ3

∫
dτ4 H13,24. (4.33)

This integral is the most difficult that we have encountered so far, since (i) the H-integral is not known
analytically, and (ii) the fact that the derivatives are not contracted as in the 1-channel prevents us
from reducing it to one-loop integrals using an identity such as the one given in eq. (C.6) (see footnote
in appendix C.1 for an informal explanation about why such an identity cannot exist). Note that the
integral is finite, and hence the 0-channel is finite on its own just like its siblings.

We will not be able to solve the 10d integral given in (4.33) analytically. On the line z = z̄ ≡ x, it can be
reduced to a 4d integral by applying the integrals given in appendix C.1 and using spherical coordinates
as detailed in appendix C.2. It can be seen numerically that this integral also exhibits the inversion
symmetry x ↔ 1/x observed in the other channels, and that was to be expected for the Ward identities
to be fulfilled everywhere. Again, it is not clear what happens to the symmetry outside of the line z = z̄.

It is not easy to obtain an expansion of (4.33) for x ≥ 0, however we found numerically (see fig. 4.1) that:

g0(x, x)= const.=− g8N2

3 ·28π4 ∀x ≤ 0, (4.34)

and thus we have:

F̃0(x, x)=− g8N2

3 ·28π4
x2

(1− x)4 ∀x ≤ 0. (4.35)

This is a very important result, since it allows us to expand the correlator at x ∼ 0 from below and to
obtain infinitely many terms, which can be compared to the expansion of the superblocks given in eq.
(2.41) and (2.42) in order to extract the CFT data. This expansion reads:

F̃0(x, x)
∣∣
x<0 =− g8N2

3 ·211π4

∞∑
k=1

k(k+1)(k+2) xk+1. (4.36)

Note that this expression contains no log term.

Ward Identities in the Collinear Limit
We wish now to check whether the Ward identities that we presented in section 2.3 for the limiting case
z = z̄ are fulfilled by the expressions that we obtained in this section. We recall that the Ward identities
take the following form:

16g0(x, x)+4g1(x, x)+ g2(x, x)= c1 ∀x > 0,
16g0(x, x)−4g1(x, x)+ g2(x, x)= c2 ∀x < 0,
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Figure 4.2: The plots show the matching between the exact correlator (dots) and the expansion in su-
perblocks (solid lines) for the line z = z̄. The left plot corresponds to the 0-channel at identity order, with
the coefficients given in table 4.3, while the right one represents the 1-channel at leading order, using the
coefficients listed in table 4.4. The perfect agreement validates the closed forms given in eq. (4.42) and
(4.47).

where the constants c1 and c2 do not have to be equal since the relation suffers a discontinuity at x = 0.
Indeed, the numerical data reveal that:

c1 = g8N2

3 ·26π4 , (4.38a)

c2 = 0, (4.38b)

as it can be seen in fig. 4.1. This is a very important check of our results, and in addition to that it
implies that it is sufficient to know two channels analytically in order to know the full correlator!

4.3 CFT Data

We are now ready to use the perturbative computation of the previous section for extracting the CFT
data and to present the most important results of this thesis. We consider the expansions given above
order by order and proceed to extract the coefficients of (2.30). In particular, we show that the knowledge
that we gathered about the integrals in the last section suffices to extract the CFT data at next-to-
leading order and to bring us close to being able to reconstruct the full correlator.

Identity Order

It was easy at order O(g4) to obtain an exact analytical expression for the correlator. This result is
given in eq. (4.8). Nevertheless, it is convenient to perform an expansion on the line z = z̄ for reading
the CFT data. The expansion gives:

F̃0(x, x)= g4N2

3 ·26π4

∞∑
k=1

k(k+1)(k+2) xk+1. (4.39)

Similarly, we can expand (4.8) on the line z =−z̄, and we obtain:

F̃0(ix,−ix)= g4N2

25π4

∞∑
k=1

(−1)k+1x2k. (4.40)
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Table 4.4: Leading CFT data coefficients at order O(g6), obtained by comparing the expansion of the
correlator given in eq. (4.10) and the expansion in superblocks. The closed form is given in the text.

A B C D0 −F1,0 D1 −F2,1 D2 −F3,2 D3 −F4,3 Es F∆̂,s(∆̂ 6= s+1)

0 g6N
29π4 0 g6N

3·27π4
3g6N
5·28π4

g6N
7·26π4

g6N
29π4 0 0

These expansions are easy to match to the expansions of superblocks presented in section 2.3. Let us
illustrate the method with several examples, which can be derived using eq. (2.43). The coefficient A
appears only as the leading term in the expansion of the 2-channel on the line z = z̄, and since the latter
vanishes at O(g4) we find:

A != 0. (4.41a)

The coefficient B is the leading term of the 1-channel, which also vanishes, and thus:

B != 0. (4.41b)

Similarly, the leading term of the 0-channel involves the coefficient C, but this time the channel is
non-zero and from eq. (4.39) we obtain the following relation:

16C != g4N2

25π4 . (4.41c)

We can play the same game with the next orders in x in order to obtain infinitely many coefficients.
The expressions get more involved as higher powers of x are considered, and that is why the expansion
given in (4.40) is also needed. If enough CFT data is gathered, the closed form can be guessed and the
result can be checked against the exact correlator with the superblocks.

Due to multiplet shortening (see section 2.3), we have at this order:

ĜLs+1
[0,s]

(z, z̄,ω)=−Ĝ(B,1)[0,s](z, z̄,ω),

and hence the coefficients Ds and Fs+1,s in (2.30) cannot be distinguished. But the expansion has to be
unique, so we expect the log terms of the LO and NLO to disentangle Ds and Fs+1,s at this order.

The leading CFT coefficients obtained with that method are listed in table 4.3. It is not hard to guess
the closed form for the non-vanishing coefficients:

Es = g4N2

28π4
(1+ s)(2+ s)

1+2s
∀s ≥ 0, (4.42a)

F∆̂,s =
g4N2

29π4
Γ(∆̂+2)Γ(s+3/2)
Γ(∆̂+3/2)Γ(s+1)

(∆̂− s)(∆̂+ s+1)
(∆̂+ s)(∆̂− s−1)

∀∆̂− s even. (4.42b)

Note that F∆̂,s = 0 for ∆̂− s odd and ∆̂− s 6= 1. The closed forms can easily be checked by comparing
the exact correlator with the expansion in superblocks. Both are plotted in fig. 4.2, and the perfect
agreement validates eq. (4.42a) and (4.42b).
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Table 4.5: Products of the CFT data Fs+1,s∆̂
(2)
s+1,s at order O(g6) obtained with the log terms of the

perturbative computation at NLO. The corresponding closed form is given in eq. (4.48).

F1,0∆̂
(2)
1,0 F2,1∆̂

(2)
2,1 F3,2∆̂

(2)
3,2 F4,3∆̂

(2)
4,3 F5,4∆̂

(2)
5,4 F6,5∆̂

(2)
6,5 F7,6∆̂

(2)
7,6 F8,7∆̂

(2)
8,7

g6N2

29π6
g6N2

29π6
11g6N2

5·210π6
25g6N2

7·3·29π6
137g6N2

9·3·211π6
147g6N2

11·5·210π6
363g6N2

13·5·211π6
761g6N2

15·7·5·29π6

Leading Order
The exact correlator is also known exactly at leading order and given in eq. (4.10). As for the identity
order, we can expand the result on the line z = z̄ at x ∼ 0:

F̃1(x, x)= g6N
27π4

∞∑
k=1

kxk, (4.43)

as well as on the line z =−z̄:

F̃1(ix,−ix)= g6N
27π4

∞∑
k=1

(−1)k−1x2k−1, (4.44)

where we assume in both cases 0≤ x < 1.

The log terms in the expansion of the superblocks take the schematic form:(
g2 ∑

F
∆̂,s
∆̂(2)
∆̂,s

+O(g4)
)
xk log x,

and at O(g6) (i.e. F∆̂,s is truncated at order O(g4)) this is equal to zero since there are no log terms in
eq. (4.43) and (4.44). As an example, the first relation that we obtain is the following:

g2F1,0∆̂
(2)
1,0 + g4F1,0∆̂

(4)
1,0

!= 0.

This follows from the leading log term of the 2-channel (see eq. (2.43) and (4.13)). For the LHS to be of
order O(g6), the F1,0 of the first term must be of order O(g4), while it is of order O(g2) in the second
one. Clearly the second term has to vanish, and hence we are left with the relation:

F1,0∆̂
(2)
1,0 = 0.

In fact, looking at the higher-order terms shows that:

Fs+1,s∆̂
(2)
s+1,s = 0 ∀s ≥ 0 (4.45)

for Fs+1,s at order O(g4). This result would allow us to disentangle the Ds and the Fs+1,s of the previous
section, if only we were able to show that ∆̂(2)

s+1,s 6= 0 (we would then have Fs+1,s = 0). This is in fact the
case, as it will be shown with the results at next-to-leading order.

The next log term in the 2-channel leads to the following relation:

−2g2F1,0∆̂
(2)
1,0 + g2F2,0∆̂

(2)
2,0 +2g2F2,1∆̂

(2)
2,1

!= 0.

We know that F2,0 6= 0 from the previous subsection, and using eq. (4.45) it is clear that:

∆̂(2)
2,0 = 0.

The higher-order terms lead to the following generalization:
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Figure 4.3: The plots show from left to right the F̃-functions of the 0-, 1- and 2-channels computed
numerically (dots) on the line z = z̄, and compared to the expansion in superblocks with the CFT data
given in table 4.6 (solid lines). The discrepancy away from zero is expected, since the closed form is not
known and hence the expansion is truncated early on. The remarkable agreement near zero seems to
validate the coefficients that we managed to extract so far.

∆̂(2)
∆̂,s

= 0 ∀∆̂− s even. (4.46)

This result means that the conformal dimensions of the long operators with ∆̂−s even do not receive an
anomalous contribution at O(g2). This is discussed in further detail in the next subsection.

We proceed now to the matching of the power terms, in the same way as it was done at identity order.
As before, we are not able to disentangle the Ds and the Fs+1,s. The CFT data is given in table 4.4.

Again, the closed form for the coefficients Ds −Fs+1,s is easy to guess and we find:

Ds −Fs+1,s = g6N
28π4

1+ s
1+2s

. (4.47)

The comparison between the exact correlator and the expansion in superblocks using the CFT data is
shown in fig. 4.2, where the agreement leaves no doubt on the validity of (4.47).

Next-to-Leading Order
At NLO the situation is a little different since we were not able to compute the full correlator analyt-
ically. However we will see that the information that we managed to obtain is sufficient for deriving
an infinite amount of CFT data, even if once again the Ds and Fs+1,s are not distinguishable. Here we
must use all of the limiting cases that were introduced in section 2.3, i.e. z = z̄, z = −z̄ and y = kx for
different values of k.

We start with the log terms of the 2-channel. We proceed in the same way as we did at LO. This allows
us to reach two statements. First, we observe that the products Fs+1,s∆̂

(2)
s+1,s are non-vanishing for Fs+1,s

at order O(g6), which implies that both Fs+1,s and ∆̂(2)
s+1,s are non-zero for all s ≥ 0. The last condition

was needed for us to assess that Fs+1,s = 0 at order O(g4), as already discussed in the previous section.

The products Fs+1,s∆
(2)
s+1,s are given in table 4.5 for some values of s, and it is easy to guess the closed

form:

Fs+1,s∆̂
(2)
s+1,s =

g6N2

29π6
1+ s

1+2s
Hs. (4.48)

Unfortunately this still does not allow us to disentangle Ds and Fs+1,s at O(g6). But this result is
strikingly similar to eq. (4.47), and a conjecture based on that observation is discussed in the conclusion
of this thesis.
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Table 4.6: Leading CFT data coefficients at order O(g8). Notice that the coefficients Ds and Fs+1,s
cannot be distinguished because of multiplet shortening, as explained in the text. We have not been able
to guess all of the closed forms yet.

A B C

g8N2

212π4
g8N2

3·211π4 − g8N2

3·212π4

E0 E1 E2 E3

− g8N2(−3+π2)
3·210π6 − g8N2(−9+2π2)

3·211π6 − g8N2(−65+12π2)
5·3·211π6 − g8N2(−145+24π2)

7·32·212π6

E4 E5 E6 E7

− g8N2(−3899+600π2)
9·5·3·213π6 − g8N2(−4109+600π2)

11·52·3·213π6 − g8N2(−419017+58800π2)
13·7·52·32·212π6 − g8N2(−288223+39200π2)

72·53·213π6

F2,0 F3,0 F3,1 F4,0

− g8N2

5·34π4
23g8N2

7·32·27π6
g8N2(5−4π2)

7·210π6 − 5g8N2

7·34·25π4

F4,1 F4,2 F5,0 F5,1

g8N2

28π6
5g8N2(9−4π2)

33·210π6
139g8N2

11·52·3·26π6
g8N2(7−10π2)
11·5·33·24π6

F5,2 F5,3 F6,0 F6,1

29g8N2

72·27π6
g8N2(91−30π2)

11·3·210π6 − 7g8N2

13·11·5·32·22π4
263g8N2

13·11·5·3·25π6

F6,2 F6,3 F6,4 F7,0

5g8N2(83−60π2)
13·11·3·28π6

931g8N2

13·33·29π6
7g8N2(439−120π2)

13·5·3·212π6
191833g8N2

13·11·72·53·34π6

F7,1 F7,2 F7,3 F7,4

g8N2(761−1680π2)
13·11·7·53·25π6

2201g8N2

13·7·34·26π6
g8N2(3341−1680π2)

13·52·35·25π6
397g8N2

11·52·28π6

F7,5 F8,0 F8,1 F8,2

7g8N2(35011−8400π2)
53·33·211π6 − 24g8N2

17·13·11·7·5π4
50381g8N2

17·13·7·52·34·22π6
3g8N2(531−560π2)

17·13·7·53·24π6

F8,3 F8,4 F8,5 F8,6

5251g8N2

17·112·5·3·25π6
g8N2(845−336π2)

17·11·32·28π6
8871g8N2

17·132·29π6 − g8N2(130213+25200π2)
17·7·52·211π6

D0 −F1,0 D1 −F2,1 D2 −F3,2 D3 −F4,3

g8N2(6+π2−12log2)
3·210π6

g8N2(9+2π2−36log2)
32·210π6

g8N2(89+20π2−440log2)
52·212π6

g8N2(755+168π2−4200log2)
72·32·211π6

D4 −F5,4 D5 −F6,5 D6 −F7,6 D7 −F8,7

g8N2(3271+720π2−19728log2)
92·3·214π6

g8N2(60529+13200π2−388080log2)
112·52·3·213π6

g8N2(504599+109200π2−3397680log2)
132·52·32·214π6

g8N2(109373+23520π2−767088log2)
152·72·3·212π6
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The second statement is the following:

∆̂(4)
∆̂,s

= 0 ∀∆̂− s even. (4.49)

We have already seen in eq. (4.46) that long operators with ∆̂− s even do not receive an anomalous
contribution ∆̂(2) neither. This means that such operators are protected at least up to this order. This is
a rather surprising result, which should be investigated in more detail in future work.

Let us now consider the power terms in order to extract the CFT data at order O(g8). The coefficients
A, B and C can be obtained as discussed for the identity order, and the results are given in table 4.6.
For the other coefficients, we consider the expansion of the 2-channel in all the limiting cases that we
mentioned, and in particular we consider the line y= kx for all positive integer k ≤ 8. We also have the
expansion of the 0-channel for x ≤ 0 in the collinear limit (see eq. (4.36)). We are now well-acquainted
with the method used for obtaining the coefficients, and solving order by order we were able to extract
the Es up to s = 7, the F∆̂,s (∆̂ 6= s+1) up to ∆̂= 8 and the now also familiar Ds−Fs+1,s up to s = 7. These
results are the most important ones of this thesis and are gathered in table 4.6.

Note that we have not been able to find a closed form for all the coefficients yet, and filling this gap will
be the main focus of future work. So far we could only guess the closed form of the coefficients Es, which
reads:

Es = g8N2

28π6
(1+ s)(2+ s)

1+2s

(
H(2)

s+2 −
Hs+2

2+ s
− π2

6

)
. (4.50)

The last term has the same form as eq. (4.42a), which suggests the presence of a Ω2 term. It is easy
to check that it is the case, since (4.42b) is fulfilled by the 1/π4 part of the coefficients F∆,s with ∆− s
even, and the coefficient C behaves exactly as in (4.41c). In the same way, we can probe (and confirm)
the presence of Ω by comparing eq. (4.47) with the 1/π4 terms of Ds −Fs+1,s.

Comparisons of the numerical results with the expansions in superblocks are shown in fig. 4.3, and
the plots seem to validate the results of tables 4.5 and 4.6. Accessorily, it also reveals that f (g, N)
(see eq. (4.4)) vanishes at O(g8) as well in point-splitting regularization. In any case, we are now
in position to obtain as many coefficients as we wish, the only limitation being the computing time
necessary to expand the superblocks at a high-enough order in x. Therefore we expect to extract many
more coefficients in the near future, with the hope that we will be able to understand their closed form.

Direct Computation of Coefficient A

To conclude this work, we would like to perform a direct computation of the coefficient A. The goal is to
see whether we obtain independently the same coefficient as given in table 4.6. This is easy to do since
the physical meaning of A is just:

A ≡ a2
O,

i.e. it is the square of the coefficient for the one-point function of a single-trace operator O(x) in presence
of the line defect. We have to consider the following correlator:

〈
O(x)

〉= (u ·θ)2

x2 F(x,ω), (4.51)

where F is defined similarly to eq. (2.22).

At leading order there is only one diagram, which is easy to compute:
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= 1
N

(u ·θ) g4 Tr TaTb Tr TaTb

∫
dτ3

∫
dτ4 I13I14

= (u ·θ)2

x2
g4N
26π2 . (4.52)

This result matches perfectly the coefficient A that we provided in table 4.6 and reinforces our trust in
the CFT data that we derived. Note that this is the easiest check of the CFT data that can be performed
independently, but we can do the same type of computation for other coefficients. It will be one of the
focuses of future work to compare our results with such direct calculations.





Conclusion and Outlook

We conclude this thesis with a brief summary of what has been achieved, and some thoughts about
computations that should be done in the near future in order to complement the current results.

Following mostly the works of [14, 20], we have rederived the superblocks for the two-point function in
defect N = 4 SYM, with the defect being specialized to the case of the Maldacena-Wilson line. The new
results consist of the perturbative computation of the correlator at up to leading order while gathering
important informations about the next-to-leading order. In particular, an analytical expression for the
2-channel could be obtained, and restricting ourselves to some limiting cases we were able to derive the
CFT data at this order. So far we have not been able to determine the closed form of all the coefficients,
but we are fairly confident that this can be achieved in the very near future after having extracted more
coefficients. Still it was possible to confirm the presence of Ω and Ω2 terms. We performed various
checks of the validity of the results, and in particular we saw that the integrals computed numerically
satisfy the superconformal Ward identities in the collinear limit z = z̄. Moreover, it was easy to obtain
directly (and independently) the coefficient A, and we reached the same result as the one presented in
table 4.6. The CFT data allows us to know a large number of two-point functions at order O(g4) without
having to compute them independently, and this illustrates how the conformal bootstrap can be used in
association to perturbation theory in order to indirectly compute correlators in a defect CFT.

Clearly the most urgent task left to accomplish is to find the closed form for the coefficients F∆̂,s and
Ds −Fs+1,s. We are not limited in the number of coefficients that we can produce in addition to table
4.6, hence it is reasonable to expect that guessing the closed form is an accessible target. Once this
is done, we will be in possession of the full correlator at NLO, and therefore we can go back to the
R-symmetry channels and give an analytical expression for each of them, which can easily be compared
to the numerical data presented in this thesis.

There are several ways in which we can complete the checking of our results. The most obvious and
straightforward one would be to extend the numerical computations to the whole R2 plane and confirm
that the Ward identities are indeed fulfilled everywhere. At the same time, it would shed light on the
nature of the inversion symmetry that we observed for each channel independently, as it is so far not
clear how it would manifest itself outside of the collinear limit. It would also be interesting to directly
compute other coefficients, in the same way as we did for A, and compare such independent results
with table 4.6. In particular, we have seen in section 4.3 that the defect long operators with ∆̂− s even
satisfy:

∆(2)
∆̂,s

= ∆̂(4)
∆̂,s

= 0,

possibly suggesting that such operators are protected for a reason yet unknown. This should be checked
explicitly, and might be easy to understand diagrammatically.

It is unfortunate that the coefficients Ds and Fs+1,s could not be distinguished at orders O(g6) and
O(g8). It seems likely that this can only be realized by computing at least the log terms at NNLO,
and maybe looking at the 2-channel would be enough to reach that goal. At order O(g6), we notice an
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extraordinary similarity between the expressions that we found for Ds −Fs+1,s (see eq. (4.47)) and for
Fs+1,s∆̂

(2)
s+1,s (eq. (4.48)). The following conjecture arises naturally:

∆̂(2)
s+1,s

?= N
2

Hs, Ds
?= 0.

Of course this is only one possibility out of infinitely many solutions, and it should be checked explicitly.

In this work we have looked at the case of single-trace operators with two scalar fields. However
it should not be hard to generalize the results to the case of k scalar fields, since the number of R-
symmetry channels remains locked at three at NLO1 (see section 2.3). In particular, the table of topolo-
gies 4.1 remains basically unchanged and thus the integrals are very similar (in most cases they are
perfectly identical) to the case k = 2.

The most important piece of work remaining to be done is to consider the bulk channel expansion, which
was left aside in the course of chapter 2. But even in that case, the hard part of the work is already done,
and using a method similar to what we presented in section 4.3 should deliver the products aOc12O for
the bulk operators O listed in section 2.2, i.e. the operators which can have a non-vanishing one-point
function. Moreover, we should also be able to extract the anomalous dimensions of many operators, and
in that case they can be compared to the literature since they are related to bulk operators (see e.g.
[47]).

Finally, Wilson lines appear to play an important role in other frameworks, and in particular it is
known to be an invariant of the Nicolai map [48], which consists in formulating N = 4 SYM without
anticommuting variables, with the help of a non-local and non-linear mapping to a free Maxwell theory.
It would be interesting to investigate how the axioms of the conformal bootstrap could be related to
this approach, and to see whether a completely rigorous construction of N = 4 SYM is possible at the
non-perturbative level.

1Note that we expect the difference to be greater at NNLO, where a fourth R-symmetry channel would appear for k ≥ 3
but not for k = 2.



APPENDIX A

Lie Algebras and Superconformal Algebra

This appendix is dedicated to reviewing the concepts of Lie algebras and of the superconformal algebra.
The first and third sections are mostly based on the appendix of [24]. We start with an introduction to
Lie groups and algebras, including a discussion of the representation theory, in particular for the special
cases of interest u(N) and su(4)R. We then prove trace and structure constant identities that are useful
for the computation of the Feynman diagrams. Finally, we review the (anti)commutation relations of
the superconformal algebra.

A.1 Lie Groups and Lie Algebras

In this section, we introduce Lie groups and Lie algebras, review some useful properties and investigate
the representation theory of Lie algebras. We conclude with a focus on the gauge algebra u(N) and on
the R-symmetry algebra su(4)R.

Definitions and Properties
A Lie group is a smooth manifold G with a group structure that can be either Abelian or non-Abelian.
A Lie algebra is a vector space g over some field F with an operation [·, ·] : g×g→ g, called Lie bracket,
which satisfies ∀α,β ∈ F,∀x, y, z ∈ g:

(i) bilinearity: [αx+βy, z]=α[x, z]+β[y, z], (A.1a)
(ii) antisymmetry: [x, y]=−[y, x], (A.1b)

(iii) Jacobi identities: [x, [y, z]]+ [y, [z, x]]+ [z, [x, y]]= 0. (A.1c)

Lie algebras are related to Lie groups, in that they correspond to the tangent space T1(G) at the identity
element 1 of G. Consequently, there can exist for a given Lie algebra g more than one corresponding Lie
group G, i.e. the mapping between Lie groups and Lie algebras is not one-to-one.

Any element x of g can be expressed as x = xaTa, with xa ∈ F and Ta a basis vector of g (a = 1, ...,dim g).
These basis vectors are called generators of the Lie algebra g, and they satisfy the following commuta-
tion relation:

[Ta,Tb]= i f ab
c T c, (A.2)

where the f ab
c are called structure constants and also satisfy Jacobi identities. In the case where the

Lie group is Abelian, then all the structure constants vanish. The definition of the structure constant
follows from (A.2):
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f abc =−2i Tr
(
[Ta,Tb]T c). (A.3)

It is useful to define the following constant as well:

dabc = 2Tr
(
{Ta,Tb}T c). (A.4)

We would like now to specialize our analysis to the case of simple and semi-simple Lie algebras. In order
to do that, we first need to define ideals (also called invariant subalgebras), which are subalgebras h⊆ g
such that:

[x, y] ∈ h and [y1, y2] ∈ h ∀x ∈ g ∀y, y1, y2 ∈ h.

Then a simple Lie algebra is a non-Abelian Lie algebra g for which {0} and {g} are the only ideals. A Lie
algebra is called semi-simple if its only Abelian ideal is {0}.

A semi-simple Lie algebra can always be expressed as the direct sum of simple Lie algebras. To be more
specific, the direct sum of algebras is defined as follows:

g1 ⊕g2 ≡ {x1 + x2|x1 ∈ g1, x2 ∈ g2} with [x1 + x2, y1 + y2]= [x1, x2]+ [y1, y2] ∀x1, x2 ∈ g1 ∀y1, y2 ∈ g2.

For a Lie algebra g, there always exists a maximal set of linearly independent generators hi ∈ g (i =
1, ..., l) which commute with each other, i.e.:

[hi,h j]= 0 ∀i, j = 1, ..., l.

Such a subalgebra is called the Cartan subalgebra, and l is referred to as the rank of the Lie algebra g.

Finally, the Casimir operators of a Lie algebra are operators C such that:

[C, x]= 0 ∀x ∈ g,

i.e. they commute with all the elements of the Lie algebra. We find l Casimir operators for a semi-
simple Lie algebra of rank l. Of particular interest is the quadratic Casimir operator, which is defined
as:

C2 ≡ κabTaTb, (A.5)

where κab is called the Killing form and is defined as:

κab ≡− f cd
a fbcd .

Representations of Lie Algebras
We review now the representation theory of Lie algebras. A representation of a Lie algebra g is a map
D : g→Mat(N,F) assigning to each element x ∈ g a N ×N-matrix, such that:

D([x, y])= [D(x),D(y)] ∀x, y ∈ g. (A.6)

N is called the dimension of the representation, and should not be confused with dim g. Such a rep-
resentation is denoted by N. We call a faithful representation a representation such that the map D is
injective.

We will now list some important representations. The simplest one is called the trivial representation
(or singlet) and is defined by D : g→ Mat(1,R) with D(x) ≡ 0 ∀x ∈ g. It is obviously not faithful, and is
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denoted by 1 since it is one-dimensional. Next we can also obtain a representation by defining D ≡ id.
In that case, the representation is faithful and is of dimension N. This is called the fundamental
representation, denoted by N. Finally, another very useful representation is the adjoint representation.
The map D is in that case defined as D : g→ GL(g) with D(x)(y) ≡ [x, y] ∀x ∈ g fixed and ∀y ∈ g. The
generators of this representation are given by:(

T adj
a

)b
c = i f b

ac . (A.7)

The adjoint representation is dim g-dimensional, and is faithful in the case of semi-simple algebras. We
call irreducible representations (or irreps) representations which cannot be brought into a block-diagonal
form by a transformation of the form D(g) 7→ P−1D(g)P.

We can classify the representations of a semi-simple Lie algebra by using Dynkin labels, building upon
the concept of Cartan subalgebra that we introduced in the previous subsection. It is convenient to
express the Lie algebra in the so-called Cartan-Weyl form, which consists of decomposing g into the
generators hi (i = 1, ..., l) of the Cartan subalgebra and the remaining generators, which we label eρ. It
is elementary to see that any x ∈ g can be expressed as:

x = xihi + xρeρ.

The commutation relations thus become:

[hi, eρ]=αi eρ,

[eρ, eσ]=
{

nρσeρ+σ, i f ρ 6=σ
αihi, i f ρ =−σ ,

where the nρσ are normalization constants, and where the α are l-dimensional vectors called the roots
of g. We also call the weight space the space of such roots.

Roots have some important properties. First, if α is a root, then −α is also a root, and thus we need
only to consider positive roots, i.e. roots with the first component α1 being positive. We then call simple
roots positive roots αi which cannot be decomposed into a sum of positive roots. Hence we can express
any positive root β as a sum of simple roots:

β=∑
niαi,

with ni ∈N. We can define a reciprocal basis η j with:

〈η j ,αi〉
〈ηi ,αi〉

= δ j
i .

An irreducible representation of a Lie algebra can be characterized by its highest-weight vector Λ ≡∑
m jη

j , and in particular by the coefficients m j. The Dynkin labels are defined as the collection of these
coefficients, such that [m1, ...,ml] characterizes the representation.

u(N) and su(4)R

We specialize now the considerations of the previous subsections to the cases of u(N) and su(4)R. In this
thesis, u(N) is used as a gauge group of Yang-Mills theory, while su(4)R is the R-symmetry group.

The unitary group U(N) is defined as the group of unitary complex N × N matrices, i.e. matrices U
which satisfy:
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U†U = 1. (A.9)

It is easy to see that the dimension of the unitary group is dim U(N) = N2. The special unitary group
SU(N) is defined by the matrices U ∈ U(N) with the additional requirement that det U = +1. This
results in the loss of one degree of freedom in comparison to the U(N) group, and thus the dimension of
the special unitary group is dim SU(N)= N2 −1.

Both U(N) and SU(N) are connected to the identity and hence are Lie groups. Their elements can be
expressed infinitesimally as:

U = 1+ iαaTa +O(α2),

with Ta the generators of the groups and α an infinitesimal real parameter. As a consequence, the
generators must satisfy:

Ta != (Ta)†. (A.10)

U(N) and SU(N) can be formulated such that they share N2 −1 traceless generators, i.e. U(N) has an
extra generator, which we define to be T0 and which is not traceless. In the large N limit (see section
3.1), SU(N) tends towards U(N), and hence we directly work with U(N) as gauge group in this thesis,
while we ignore the artefacts arising from the fact that Tr T0 6= 0.

Let us now move to the corresponding Lie algebras u(N) and su(N). We first normalize the generators
such that:

Tr TaTb = δab

2
, (A.11)

while the commutator is given by eq. (A.2). The quadratic Casimir is:

C2 ≡ TaTa = N
2
1. (A.12)

All the fields of N = 4 SYM are in the adjoint representation of the gauge group.

We will now discuss the representations of the R-symmetry algebra su(4)R. su(4)R has rank l = 3, which
corresponds to the number of diagonal generators in the Cartan-Weyl basis. Hence the irreducibles
representations of the R-symmetry are characterized by the Dynkin labels [m1,m2,m3]. The dimension
of the representation is given by the following formula:

dim [m1,m2,m3]= 1
12

(m1 +1)(m2 +2)(m3 +1)(m1 +m2 +2)(m2 +m3 +2)(m1 +m2 +m3 +3).

Of particular interest for this work are the representations of BPS operators (see section 1.2 for the
definition). It turns out that 1/2-BPS operators correspond to the Dynkin labels [0,k,0] (k ≥ 2, ∆ = k),
1/4-BPS operators to the labels [l,k, l] (l ≥ 1,∆ = k+2l), and 1/8-BPS operators are characterized by
[l,k, l+2m] (m ≥ 1, ∆= k+2l+3m).

A.2 u(N) Identities

In this section, we will review and prove identities related to the u(N) algebra. They are separated into
two groups: trace identities, i.e. traces of generators, and structure constant identities, which involve
the tensors f abc and dabc.
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Trace Identities
We start with trace identities. First, it is useful to derive the following completeness relation:

Ta
i jTa,lk =

1
2
δikδ jl . (A.13)

To see that, note that any complex matrix M can be expressed as:

M = maTa,

with ma ∈C, since the generators of u(N) form a basis of the N ×N matrices. Thus we have:

Tr MTa = mb Tr TaTb = ma

2
,

and from this follows that we can write M as:

M = 2 Tr
(
MTa)

Ta ,

or in index notation:

Mi j = Mklδikδ jl
!= 2MklTa

lkTa,i j .

From this expression we can extract eq. (A.13).

The completeness relation allows us to obtain the two following help identities:

Tr Ta A Tr TaB = Ta
i jTa,lk A jiBkl = 1

2
Tr AB, (A.14a)

Tr Ta ATaB = Ta
i jTa,lk A jlBik = 1

2
Tr A Tr B. (A.14b)

It is straightforward to find the expression for the trace of one generator. The trace of Ta is non-zero
only for a = 0, and we have:

(
Tr Ta)2 =Tr Ta1 Tr Ta1=

N
2

.

Thus we find:

Tr Ta =
√

N
2
δa0. (A.15)

Note that, as mentioned before, the generators of the su(N) algebra are traceless and hence are zero for
all a.

The trace of two generators has been defined by the normalization condition (A.11). When the indices
are contracted, we have the following equality:

Tr TaTa = N2

2
, (A.16)

which is the trace of the Casimir operator defined in (A.12).

For three generators, we will make use of the constants defined in (A.3) and (A.4). We find that:
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dabc + f abc = 2
{
Tr

(
{Ta,Tb}T c)+Tr

(
[Ta,Tb]T c)}

= 4 Tr TaTbT c,

from which follows:

Tr TaTbT c = 1
4

(
dabc + i f abc

)
. (A.17)

For the trace of four generators, we start by writing:

TaTbT cTd = 1
4

(
[Ta,Tb]+ {Ta.Tb}

)(
[T c,Td]+ {T c.Td}

)
,

and we note that:

{Ta,Tb}= 2 Tr
(
{Ta,Tb}Tc

)
T c = dab

cT c.

Inserting this in the previous equation and taking the trace, it is straightforward to obtain:

Tr TaTbT cTd = 1
8

(
dabedcde − f abe f cde + i f abedcde + idabe f cde). (A.18)

Structure Constant Identities

We will now consider identities which involve the structure constants f abc and dabc.

We start by noting that:

Tr [Ta,Tb]=Tr TaTb −Tr TbTa = 0 != i f ab
c Tr T c ∝ f ab0,

and thus:

f ab0 = 0. (A.19)

The product of two structure constants with two indices free out of the six can be obtained as follows:

f acd f b
cd =−4 Tr

(
[Ta,T c]Td)

Tr
(
[Tb,Tc ]Td

)
=−2 Tr

(
[Ta,T c][Tb,Tc ]

)
=−2 Tr Ta Tr Tb +2N Tr TaTb,

where in the second line we have used (A.14a), and in the third line (A.14b). The remaining traces are
given in the previous subsection, and we obtain:

f acd f b
cd = N

(
δab −δa0δb0)= Nδãb̃, (A.20)

where ã, b̃ ≡ 1, ..., N are su(N) indices (one generator less). This is used in e.g. [40]. By abuse of notation
we often drop the tilde in this thesis. This is harmless in the large N limit.

From the previous result we immediately obtain the case in which all indices are contracted:

f abc fabc = N(N2 −1)∼ N3, (A.21)

where the last equality holds in the large N limit.
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The product of two dabc can be obtained in exactly the same way. For the case in which two indices are
kept free, we find:

dacddb
cd = N

(
δab +δa0δb0). (A.22)

The full contraction becomes:

dabcdabc = N(N2 +1)∼ N3, (A.23)

where again the last equality is relevant in the limit N →∞.

Finally, we would like to show that the product of one f and one d vanishes when two indices are kept
free:

f acddb
cd = f acddb

dc =− f adcdb
dc =− f acddb

cd ,

where we have used dabc = dacb and f abc =− f acb, and in the last equality we have renamed the indices.
It follows:

f acddb
cd = 0. (A.24)

A.3 Superconformal Algebra

For completeness we list in this section all the (anti)commutation relations of the superconformal alge-
bra su(2,2|4) introduced in section 1.2. We recall that two generators obey the following relation:

[O1,O2]± =O1O2 − (−1)g1 g2O2O1,

where g i refers to the grade of the corresponding generator (0 for bosonic, 1 for fermionic). It follows
that anticommutators arise only in the case where g1 = g2 =+1, i.e. when both generators are fermionic.

We start by listing all the relations that involve the generators of the Lorentz group:

[Jµν, Jρσ]=−i
(
ηµρJνσ−ηµσJνρ−ηνρJµσ+ηνσJµρ

)
, (A.25a)

[Jµν,Pρ]= i
(
ηµρPν−ηνρPµ

)
, (A.25b)

[Jµν,Kρ]= i
(
ηµρKν−ηνρKµ

)
, [Jµν,D]= 0, (A.25c)

[Jµν,QA
α ]=−(σµν) β

α QA
β , [Jµν,Q̄Aα̇]=−εα̇β̇(σ̄µν)β̇γ̇Q̄γ̇

A, (A.25d)

[Jµν,SA
α ]=−(σµν) β

α SA
β , [Jµν, S̄A

α̇ ]=−εα̇β̇(σ̄µν)β̇γ̇S̄Aγ̇. (A.25e)

The remaining commutators of the conformal algebra obey:

[Pµ,Pν]= 0, [Kµ,Kν]= 0, (A.26a)
[Kµ,Pν]= 2i

(
ηµνD− Jµν

)
, (A.26b)

[D,Pµ]= iPµ, [D,Kµ]=−iKµ. (A.26c)
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Anticommutation relations concern only the Poincaré and fermionic supercharges Q, Q̄, S, S̄ :

{QA
α ,Q̄Bβ̇}= 2(σµ)αβ̇Pµδ

A
B, {QA

α ,QB
β }= εαβZAB, {Q̄Aα̇,Q̄Bβ̇}= εα̇β̇Z̄AB , (A.27a)

{SAα, S̄B
β̇ }= 2(σµ)αβ̇Kµδ

B
A, {SAα,SBβ}= {S̄A

α̇ , S̄B
β̇ }= 0, (A.27b)

{QA
α ,SBβ}= 2εαβδ

A
BD− i(σµν) γ

α εγβJµνδ
A

B −4iεαβBiA
BTi , (A.27c)

{Q̄Aα̇, S̄B
β̇ }= 2εα̇β̇δ

B
AD− i(σµν)γ̇β̇εα̇γ̇Jµνδ

B
A +4iεα̇β̇Bi B

A Ti , (A.27d)

{QA
α , S̄B

β̇ }= {Q̄Aα̇,SBβ}= 0. (A.27e)

where the B′s are defined by the commutators between the supercharges and the R-symmetry gener-
ators T i, as given below. We first list the commutation relations involving the supercharges and the
remaining generators of the conformal group:

[QA
α ,D]=− i

2
QA
α , [Q̄Aα̇,D]=− i

2
Q̄Aα̇, (A.28a)

[QA
α ,Pµ]= 0, [Q̄Aα̇,Pµ]= 0, (A.28b)

[QA
α ,Kµ]= i(σµ)αα̇S̄Aα̇, [Q̄Aα̇,Kµ]=−iεα̇β̇(σ̄µ)β̇αSAα, (A.28c)

[D,SAα]=− i
2

SAα, [D, S̄A
α̇ ]=− i

2
S̄A
α̇ , (A.28d)

[SAα,Pµ]=−i(σµ) α̇
α Q̄Aα̇, [S̄A

α̇ ,Pµ]= iεα̇β̇(σ̄µ)β̇γQA
γ , (A.28e)

[SAα,Kµ]= 0, [S̄A
α̇ ,Kµ]= 0. (A.28f)

Finally, we cover the commutators involving the R-symmetry generators T:

[Jµν,T i]= [Pµ,T i]= [Kµ,T i]= [D,T i]= 0, [T i,T j]= i f i j
k Tk, (A.29a)

[QA
α̇ ,T i]= BiA

BQB
α̇ , [S̄A

α̇ ,T i]= BiA
BS̄B

α̇ . (A.29b)



APPENDIX B

Superblock Coefficients

In this appendix, we give the coefficients that relate the blocks inside the superblocks, following eq.
(2.26). We recall the definition of the R-symmetry variable:

ΩR ≡ (1−ω)2

4ω
.

We found in section 2.1 that defect spacetime blocks (which are the solutions of the defect Casimir
equations) take the following form:

f̂∆̂,0,s(z, z̄)= z
∆̂−s

2 z̄
∆̂+s

2 2F1

(
−s,

1
2

,
1
2
− s;

z
z̄

)
2F1

(
∆̂,

1
2

,∆̂+ 1
2

; zz̄
)
.

Similarly, we showed in section 2.2 that the defect R-symmetry blocks are:

ĥk(ω)= (4ΩR)k
2F1

(−1−k,−k,−2(1+k);−Ω−1
R

)
.

It is explained in section 2.2 that the superblock corresponding to a representation χ̂ of the osp(4|4)
algebra read:

Ĝχ̂(z, z̄,ω)= ∑
∆̂,k,s

c∆̂,k(χ̂)ĥk(ω) f̂∆̂,0,s(z, z̄).

The allowed operators are listed in section 2.2. The superblock corresponding to the identity operator 1
is just 1.

B.1 Coefficients of the (B,+)k Superblocks

The method used to find the coefficients is explained at the end of section 2.2 and illustrated for the
case (B,+)k. The following coefficients were obtained:

a0 = 1, (B.1a)

a1 =− 2k
1+2k

, (B.1b)

a2 = 16k(k−1)(k+1)2

(2k−1)(2k+3)(1+2k)2 . (B.1c)
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B.2 Coefficients of the (B,1)[k,s] Superblocks
We move now our attention to (B,1)[k,s], for which we make the following ansatz based on the content
of the multiplet:

Ĝ(B,1)[k,s](z, z̄,ω)= b0 f̂3+k+s,sĥk−2 +
(
b1,1 f̂2+k+s,s−1 +b1,2 f̂2+k+s,s+1 +b1,3 f̂4+k+s,s+1

)
ĥk−1

+ (
b2,1 f̂1+k+s,s +b2,2 f̂3+k+s,s +b2,3 f̂3+k+s,s+2

)
ĥk +b3 f̂2+k+s,s+1ĥk+1. (B.2)

Applying the Ward identities, we find the following solution for the coefficients (setting b2,1 ≡−1):

b0 = 16k(k+1)(k−1)(2+k+ s)
(1−2k)(1+2k)2(5+2k+2s)

, (B.3a)

b1,1 =− 8ks2

(1+2k)(1+2s)(1−2s)
, (B.3b)

b1,2 = 8k(2+k)(2+k+ s)
(1+2k)(3+2k)(5+2k+2s)

, (B.3c)

b1,3 = 8k(2+k+ s)(3+k+ s)2(1+2s)
(1+2k)(1+ s)(5+2k+2s)2(7+2k+2s)

, (B.3d)

b2,1 =−1, (B.3e)

b2,2 =− 16k(1+ s)(2+k+ s)2

(1+2k)(3+2s)(3+2k+2s)(5+2k+2s)
, (B.3f)

b2,3 =− (2+k+ s)(1+2s)
(1+ s)(5+2k+2s)

, (B.3g)

b3 = 1+2s
2(1+ s)

. (B.3h)

B.3 Coefficients of the L∆̂[k,s] Superblocks

For the long operators, we have the following ansatz based on the multiplet content of L∆̂[k,s]:

ĜL∆̂[k,s]
(z, z̄,ω)= c0 f̂∆̂+2,sĥk+2 +

(
c1,1 f̂∆̂+1,s+1 + c1,2 f̂∆̂+3,s+1 + c1,3 f̂∆̂+1,s−1 + c1,4 f̂∆̂+3,s−1

)
ĥk+1

+
(
c2,1 f̂∆̂,s + c2,2 f̂∆̂+2,s+2 + c2,3 f̂∆̂+2,s + c2,4 f̂∆̂+2,s−2 + c2,5 f̂∆̂+4,s

)
ĥk

+
(
c3,1 f̂∆̂+3,s−1 + c3,2 f̂∆̂+1,s−1 + c3,3 f̂∆̂+3,s+1 + c3,4 f̂∆̂+1,s+1

)
ĥk−1 + c4 f̂∆̂+2,sĥk−2. (B.4)

Repeating the same method, we find the following solution:

c0 =− (1+k+ s− ∆̂)(k− s− ∆̂)
(1−k+ s+ ∆̂)(k+ s− ∆̂)

, (B.5a)

c1,1 =− k+ s− ∆̂
1+k+ s− ∆̂ , (B.5b)

c1,2 =− 4(∆̂+2)2(3+k+ s+ ∆̂)
(4+k+ s+ ∆̂)(3+2∆̂)(5+2∆̂)

, (B.5c)

c1,3 =− 16s2(∆̂+2)2(2+k− s+ ∆̂)
(4s2 −1)(3+k− s+ ∆̂)(3+2∆̂)(5+2∆̂)

, (B.5d)
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c1,4 =− 4s2(1−k+ s+ ∆̂)
(4s2 −1)(∆̂−k+ s)

, (B.5e)

c2,1 = (k+ s− ∆̂)(k− s− ∆̂−1)
(k− s− ∆̂)(1+k+ s− ∆̂)

, (B.5f)

c2,2 = (k+ s− ∆̂)(3+k+ s+ ∆̂)
(1+k+ s− ∆̂)(4+k+ s+ ∆̂)

, (B.5g)

c2,3 =− 8
(1+2k)(5+2k)(1+2s)(3+2∆̂)

×
{
− (1+ s)(−3+2s−2∆̂)(1+ s− ∆̂)(k+ s− ∆̂)(1+ ∆̂)(1−k+ s+ ∆̂)(3+k+ s+ ∆̂)

(3+2s)(1+k+ s− ∆̂)(1+2∆̂)

+ s(−1+2s−2∆̂)(−3+ s− ∆̂)(−2−k+ s− ∆̂)(2+ ∆̂)(1−k+ s+ ∆̂)(3+k+ s+ ∆̂)
(2s−1)(3+k− s+ ∆̂)(5+2∆̂)

+ (1+ s)(−2−k+ s− ∆̂)(k+ s− ∆̂)(2+ ∆̂)(4+ s+ ∆̂)(3+k+ s+ ∆̂)(3+2s+2∆̂)
(3+2s)(4+k+ s+ ∆̂)(5+2∆̂)

+ s(−2−k+ s− ∆̂)(k+ s− ∆̂)(1+ ∆̂)(s+ ∆̂)(1−k+ s+ ∆̂)(5+2s+2∆̂)
(2s−1)(−k+ s+ ∆̂)(1+2∆̂)

}
, (B.5h)

c2,4 =− 16s2(s−1)2(−2−k+ s− ∆̂)(1−k+ s+ ∆̂)
(1−2s)2(2s−3)(1+2s)(3+k− s+ ∆̂)(−k+ s+ ∆̂)

, (B.5i)

c2,5 = 16(2+ ∆̂)2(3+ ∆̂)2(2+k− s+ ∆̂)(3+k+ s+ ∆̂)
(3+k− s+ ∆̂)(4+k+ s+ ∆̂)(3+2∆̂)(5+2∆̂)2(7+2∆̂)

, (B.5j)

c3,1 =− 64k(2+k)s2(−1+k− s− ∆̂)(2+ ∆̂)2(2+k− s+ ∆̂)(3+k+ s+ ∆̂)
(1+2k)(3+2k)(2s−1)(2s+1)(k− s− ∆̂)(3+k− s+ ∆̂)(4+k+ s+ ∆̂)(3+2∆̂)(5+2∆̂)

(B.5k)

c3,2 =− 16k(2+k)s2(−1+k− s− ∆̂)(k+ s− ∆̂)(2+k− s+ ∆̂)
(1+2k)(3+2k)(2s−1)(2s+1)(k− s− ∆̂)(1+k+ s− ∆̂)(3+k− s+ ∆̂)

, (B.5l)

c3,3 =− 16k(2+k)(k+ s− ∆̂)(2+ ∆̂)2(2+k− s+ ∆̂)(3+k+ s+ ∆̂)
(1+2k)(3+2k)(1+k+ s− ∆̂)(3+k− s+ ∆̂)(4+k+ s+ ∆̂)(3+2∆̂)(5+2∆̂)

, (B.5m)

c3,4 =− 4k(2+k)(−1+k− s− ∆̂)(k+ s− ∆̂)(3+k+ s+ ∆̂)
(1+2k)(3+2k)(k− s− ∆̂)(1+k+ s− ∆̂)(4+k+ s+ ∆̂)

, (B.5n)

c4 = 16k(k+1)(k−1)(2+k)(−1+k− s− ∆̂)(k+ s− ∆̂)(2+k− s+ ∆̂)(3+k+ s+ ∆̂)
(2k+1)2(2k−1)(3+2k)(k− s− ∆̂)(1+k+ s− ∆̂)(3+k− s+ ∆̂)(4+k+ s+ ∆̂)

. (B.5o)

These coefficients can also be found in the appendix of [20] for the case of a codimension-one defect,
and the superblocks are obtained by inserting the spacetime and R-symmetry blocks as well as the
coefficients in eq. (2.31), (B.2) and (B.4). Note that, as mentioned in the main text, the conformal
dimensions ∆̂ of (B.4) can receive anomalous corrections, which give rise to log terms.

The coefficients of the bulk channel can be derived in the very same way, although we reserve this
analysis for future work.





APPENDIX C

Integrals

This appendix is dedicated to the various integrals that appear throughout this thesis. We start by
presenting standard integrals, i.e. integrals which are either elementary or already have a known
solution in the literature. Then we present the numerical computation of the Feynman integrals, and
in particular we show how to retrieve the full analytical solution for the integral of the 2-channel. We
also show the progress made for the other channels. Finally, we gather the measurements done in this
work, i.e. the numerical data that has been collected for obtaining the expansions of the integrals and
therefore the CFT data.

C.1 Standard Integrals

This section consists of the integrals that are either elementary or which can be found in the literature.
In particular, we present the solutions of the conformal integrals Y, X and F, as well as a powerful
integral identity that reduces certain two-loop integrals to a sum of one-loop ones. Finally, we give
pinching limits of these integrals which are relevant for the computations performed in chapter 4.

Elementary Integrals
We list here the elementary integrals encountered in this work. We often make use of the following
relation:

∫ ∞

−∞
dτ

(x2 +τ2)ν
= Γ(ν−1/2)

Γ(ν)

p
π

(x2)ν−1/2 . (C.1a)

We often run into the special case ν= 1, where the expression reduces to:∫ ∞

−∞
dτ

x2 +τ2 = π

|x| . (C.1b)

Because of the path-ordering the limits of integration are often not infinite. We sometimes face the
following situation: ∫ ∞

τi

dτ j

x2 +τ2
j
= 1

|x|
(
π

2
− tan−1 τi

|x|
)
. (C.1c)

It also happens that both limits of integration are finite, and in this case the following expression holds:∫ τ j

τi

dτk

x2 +τ2
k

= 1
|x|

(
tan−1 τ j

|x| − tan−1 τi

|x|
)
. (C.1d)
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Conformal Integrals
The 3- and 4-point massless integrals in Euclidean space are conformal and have been solved analyti-
cally (see e.g. [49, 50]). The so-called X-integral is given by:

X1234 = 1
16π2 I13I24 Φ (r, s) , (C.2)

where we have defined:

Φ(r, s)≡ 1
A

Im
{

Li2 eiϕ
√

r
s
+ log

√
r
s

log
(
1− eiϕ

√
r
s

)}
, (C.3a)

eiϕ ≡ i

√
−1− r− s−4iA

1− r− s+4iA
, A ≡ 1

4

√
4rs− (1− r− s)2, (C.3b)

r ≡ I13I24

I12I34
, s ≡ I13I24

I14I23
. (C.3c)

The Y-integral can easily be obtained from this expression by taking the following limit:

Y123 = lim
x4→∞(2π)2x2

4X1234 = 1
16π2 I12 Φ (r, s) , (C.4)

where here the conformal ratios are defined as:

r ≡ I12

I13
, s ≡ I12

I23
. (C.5)

We note that both integrals are finite when the points are distinct. Furthermore, eq. (C.3a) implies that
the function Φ vanishes in the limit r →∞ and s →∞, and that Φ(r, s) =Φ(1/r, s/r)/r [41]. The latter
simply means that the conformal ratios can be defined arbitrarily, as long as consistency is respected.

A Powerful Integral Identity
We recall that the F-integral is defined as:

F13,24 ≡
(∂1 −∂3) · (∂2 −∂4)H13,24

I13I24
.

It was shown in [41] that this integral can be reduced to a sum of conformal integrals in the following
way:

F13,24 = X1234

I12I34
− X1234

I14I23
+

(
1

I14
− 1

I12

)
Y124 +

(
1

I23
− 1

I34

)
Y234

+
(

1
I23

− 1
I12

)
Y123 +

(
1

I14
− 1

I34

)
Y134, (C.6)

or diagrammatically:

1
I13I24

(∂1 −∂3) (∂2 −∂4)

1

2

3

4

=
(

1
I12I34

− 1
I14I23

) 1

2

3

4

+
(

1
I23

− 1
I12

) 1

2

3

+
(

1
I14

− 1
I12

) 1

2

4
+

(
1

I14
− 1

I34

) 1

3

4
+

(
1

I23
− 1

I34

) 2

3

4
.
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We wish to give here a detailed proof of this identity. The basic idea is to transform the left-hand side of
eq. (C.6) to momentum space, and then transform back to position space the resulting expression term
by term. Using (0.1), it is straightforward to show that the Fourier transform gives:

F̃13,24 =−(2π)8 (
∂p1 −∂p3

)2 (
∂p2 −∂p4

)2 (p1 − p3) · (p2 − p4)
p2

1 p2
2 p2

3 p2
4(p1 + p3)2

δ(P), (C.7)

with P ≡ p1 + p2 + p3 + p4. To obtain this expression, it is important to realize that:

x2
13x2

24 ei
∑

p·x = (
∂p1 −∂p3

)2 (
∂p2 −∂p4

)2 ei
∑

p·x.

To perform the derivatives in (C.7), we note that:

(
∂p1 −∂p3

)
µ f (p1, p3)δ(P)= δ(P)

(
∂p1 −∂p3

)
µ f (p1, p3)+ f (p1, p3)

(
∂p1 −∂p3

)
µδ(P)

= δ(P)
(
∂p1 −∂p3

)
µ f (p1, p3),

since (∂p1 −∂p3)µδ(P)= 0. This means that δ(P) can be moved back and forth to our liking in (C.7), and
this fact can be used to simplify the derivatives. Using the Green’s equation (0.2), we obtain:

F̃13,24 = 64(2π)8 (p1 · p2) · (p3 · p4)
p4

1 p4
2 p4

3 p4
4

δ(P)−64(2π)8 (p1 · p4) · (p2 · p3)
p4

1 p4
2 p4

3 p4
4

δ(P)

+ (2π)12 1
p4

3
δ(P)δ(p1)δ(p2)+3 similar terms. (C.8)

We note that the factor (p1 + p3)−2 disappeared in all of the terms. This factor was a mark of the two-
loop nature of the F-integral, and its absence suggests that the expression can be reduced to one-loop
integrals1. The first two terms correspond to the leading terms of the X-integrals, as it can be seen by
Fourier transforming the latter:

FT
(

X1234

I12I34

)
= 64(2π)8 (p1 · p2)(p3 · p4)

p4
1 p4

2 p4
3 p4

4
δ(P)+8(2π)10 p1 · p2

p4
1 p4

2 p2
4
δ(P)δ(p3)+3 similar terms

+ (2π)12 1
p4

2
δ(P)δ(p1)δ(p3)+3 similar terms.

The first term is exactly the same as in (C.8), but it comes with a bunch of other terms without which we
would live just as good. The terms of the form f (pi, p j, pk)δ(P)δ(pl) are the leading terms of Y-integrals.
The corresponding Fourier transform gives:

FT
(
Y124

I12

)
=−8(2π)10 p1 · p2

p4
1 p4

2 p2
4
δ(P)δ(p3)− (2π)12 1

p4
2
δ(P)δ(p1)δ(p3)− (2π)12 1

p4
1
δ(P)δ(p2)δ(p3).

It is now only a matter of gathering the correct combination of X and Y. Choosing terms such as those
with one δ-function vanish results precisely in the right-hand side of (C.6).

1This feature allows us to assess that there is no similar integral identity for the H-diagram of the direct channel given
in eq. (4.33). Because of the uncontracted indices, there always remains a term containing (p1 + p3)−2, which cannot be
generated neither by X- or Y-integrals.
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Pinching Limits
We will give here the pinching limits of the Y-, X- and F-integrals described in the previous sections.
The procedure is very simple, and we will show it explicitly for the Y-integral only, and just give the
results for the other integrals.

We use point-splitting regularization, and define:

Y122 ≡ lim
x3→x2

Y123, lim
x3→x2

I23 ≡ 1
(2π)2ε2 .

In this limit, the conformal ratios are now given by

r = 1, s = (2π)2ε2I12.

Inserting this in (C.4) and expanding up to order O(logε2), we obtain:

≡Y112 =Y122 =− 1
16π2 I12

(
log

ε2

x2
12

−2

)
. (C.9)

This result coincides with the expression given in [42].

Similarly, the pinching limit of the X-integral reads:

≡ X1123 =− 1
16π2 I12I13

(
log

ε2x2
23

x2
12x2

13
−2

)
, (C.10)

which is again the same as in [42].

Finally, the pinching limit x2 → x1 of the F-integral gives:

≡ F13,14 = F14,13 =−F13,41

=− X1134

I13I14
+ Y113

I13
+ Y114

I14
+

(
1

I13
+ 1

I14
− 2

I34

)
Y134. (C.11)

C.2 Numerical Integration

This section contains details about the numerical integrations performed in this thesis. We first show
how to obtain an analytical expression for the integral of the 2-channel at NLO. We then describe in
some detail the computations that can be done in the 1-channel, and we present some partial results
for the 1d integrals. Finally, we conclude with a description of how to handle the H-integral of the
0-channel, in particular for the line z = z̄ such that it can be integrated numerically.

Integral of the 2-Channel
As discussed in section 4.2, the only integral that needs to be computed for the 2-channel is the follow-
ing:

I(x2
1, x2

2)≡ x2
1x2

2

∫
dτ3

∫
dτ4

∫
dτ5

∫
dτ6 Θ(τ3456) (I13I25 + I15I23) (I14I26 + I16I24) , (C.12)

with Θ(τ3456) defined in (3.20). We first note that the integral does not depend on x12, but only on the
distances between the operators and the line defect. As a consequence, the integral is symmetric with
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Figure C.1: The left plot compares the numerical integration of eq. (C.13) (dots) on the line z = z̄ with the
analytical expression given in (C.16) (solid line). The agreement is perfect and validates the analytical
result. The right plot shows the numerical data (dots) for the 1d integrals of the 1-channel on the line
z = z̄ (see eq. (C.17)), while the solid line corresponds to the expansion up to order O(x11) with the
coefficients of table C.1. We observe a near-perfect agreement in the neighborhood of x ∼ 0, but we have
not been able to guess a closed form yet for the whole curve, hence the discrepancy near x ∼ 1.

respect to x2 ↔−x2. Moreover, the integral possesses a hidden symmetry with respect to inversion, i.e.
I(x2

1, x2
2) is invariant with respect to xi ↔ 1/xi. This symmetry implies that knowing the channel in the

range (0,1) is enough for knowing it everywhere.

In order to do the integral, we first perform the τ6- and τ4-integrals and we get:

I(x2
1, x2

2)= |x1||x2|
128π4

∫
dτ3

∫
dτ5 Θ(τ35) (I13I25 + I15I23)

{
π

(
tan−1 τ3

|x1|
− tan−1 τ5

|x1|
)

+tan−1 τ3

|x2|
(
2tan−1 τ5

|x1|
+π

)
+ tan−1 τ5

|x2|
(
2tan−1 τ3

|x1|
−π

)
−4tan−1 τ5

|x1|
tan−1 τ5

|x2|
}

.

We can perform one more integration analytically by treating it term by term. The first integral gives:

I1(x2
1, x2

2)= |x1||x2|
128π3

∫
dτ3

∫
dτ5 Θ(τ35) (I13I25 + I15I23)

(
tan−1 τ3

|x1|
− tan−1 τ3

|x1|
)

= 1
256π5

∫
dτ3 tan−1 τ3

|x1|
{
|x1| I13 tan−1 τ3

|x2|
+ |x2| I23 tan−1 τ3

|x1|
}

,

where we have performed the τ3-integral in the second term and relabeled τ5 to τ3 in the second line.

The second integral reads:

I2(x2
1, x2

2)= |x1||x2|
128π4

∫
dτ3

∫
dτ5 Θ(τ35) (I13I25 + I15I23)

{
tan−1 τ3

|x2|
(
2tan−1 τ5

|x1|
+π

)
+tan−1 τ5

|x2|
(
2tan−1 τ3

|x1|
−π

)}
= |x1||x2|

64π4

∫
dτ5

∫
dτ3 (I13I25 + I15I23) tan−1 τ3

|x2|
tan−1 τ5

|x1|
+ |x1||x2|

128π4

(∫
dτ5

∫
dτ3 Θ(τ35)−

∫
dτ5

∫
dτ3 Θ(τ53)

)
(I13I25 + I15I23) tan−1 τ3

|x2|
.

The first term vanishes and we are left with:
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Table C.1: Coefficients for the expansion of I(1, x2
2) following the ansatz given in eq. (C.14) and obtained

numerically by computing (C.15a) and (C.15b). The coefficient a0 has to be multiplied by g8N2, the ak’s
for k ≥ 1 by g8N2/28π6 and the bk’s have a missing factor g8N2/29π6. Guessing the closed form leads to
the expression given in (C.16).

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1
212π4 log2− 1

2 −1
2

log2
3 + 1

9 −1
3

log2
5 + 13

100 −23
90

log2
7 + 71

588 − 22
105

log2
9 + 71

648

a10 a11 a12 a13 a14 a15 a16 a17 a18 a19

− 563
3150

log2
11 + 1447

14520 − 1627
10395

log2
13 + 617

6760 − 88069
630630

log2
15 + 1061

12600 − 5692
45045

log2
17 + 12657

161840 − 1593269
13783770

log2
19 + 132931

1819440

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 0 1
3 0 1

5 0 1
7 0 1

9 0

I2(x2
1, x2

2)= 1
256π5

∫
dτ3 tan−1 τ3

|x2|
{
|x1| I13 tan−1 τ3

|x2|
+ |x2| I23 tan−1 τ3

|x1|
}

.

The remaining term can also be reduced to a one-dimensional integral:

I3(x2
1, x2

2)=−|x1||x2|
32π4

∫
dτ3

∫
dτ5 (I13I25 + I15I23) tan−1 τ5

|x1|
tan−1 τ5

|x2|
= − 1

256π5

∫
dτ3 tan−1 τ3

|x1|
tan−1 τ3

|x2|
{
|x1| I13

(
π−2tan−1 τ3

|x2|
)

+|x2| I23

(
π−2tan−1 τ3

|x1|
)}

.

Putting everything together, the integral becomes:

I(x2
1, x2

2)= 1
256π6

∫
dτ3

{
|x1| I13 tan−2 τ3

|x2|
(
2tan−1 τ3

|x1|
+π

)
+|x2| I23 tan−2 τ3

|x1|
(
2tan−1 τ3

|x2|
+π

)}
.

The terms cubic in tan−1 vanish because of antisymmetry. The integral reduces therefore to the follow-
ing compact expression:

I(x2
1, x2

2)= 1
256π5

∫
dτ3

{
|x1| I13 tan−2 τ3

|x2|
+ |x2| I23 tan−2 τ3

|x1|
}

. (C.13)

The inversion symmetry mentioned above can be made manifest by substituting τ3 → τ3/|x2|.

We were not able to solve this integral analytically, but with the help of numericals it is still possible
to obtain the closed form. We start with the following ansatz, which is based on the expansion of the
superblocks given in (2.41) and (2.42):

I(1, x2)=
∞∑

k=0
akxk + log x

∞∑
k=1

bkxk, (C.14)
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Figure C.2: The numerical data corresponding to gX (x, x) is presented in the left plot, in which we notice
that it vanishes for all x ≥ 0. The right plot shows the function g1(x, x)− gX (x, x), and in this case it is
constant for x ≤ 0.

where we have defined |x1| = 1 and |x2| ≡ x to lighten the notation. If this expression holds, the coeffi-
cients obey the following relations:

ak =
1
k!

lim
x→0

∂k
x

{
I(1, x2)− log x

k−1∑
l=1

bl
x2l−1

2l−1

}
, (C.15a)

bk =
1
k!

lim
x→0

{
x ∂k+1

x I(1, x2)+
k−1∑
l=1

(−1)k−l+1(k− l)!l! xl−k

}
. (C.15b)

Hence the coefficients can be computed numerically for decreasing x until convergence. The convergence
also confirms the validity of the ansatz given in (C.14). The coefficients are given in table C.1, while
the numerical data can be found in table C.3. We managed to obtain accurate enough data to be able to
guess the closed form for all the coefficients. Moreover, the resulting series are all identifiable and we
could guess the closed form of the full integral:

I(1, x2
2)= 1

212π6

{
3π2 −4iπ log2+4tanh−1pzz̄

(
log zz̄+4log2−2tanh−1pzz̄

)
+4log2

(
1−p

zz̄
)
+2log

(p
zz̄−1

)(
−2log

(
1−p

zz̄
)
+ log

(p
zz̄−1

)
+2log2

)
−2log

(
1+p

zz̄
)
log4

(
1+p

zz̄
)
+4Li2

(
−pzz̄

)
−4Li2

p
zz̄

−4Li2
1
2

(
1−p

zz̄
)
+4Li2

1
2

(
1+p

zz̄
)}

. (C.16)

It is worth checking that we got the closed form right. Fig. C.1 shows a plot of the numerical data and
of eq. (C.16), which match perfectly. We have therefore obtained an exact analytical expression for the
2-channel.

Integrals of the 1-Channel
As mentioned in the main text, an analytical expression for the integrals of the 1-channel could not
be obtained, neither analytically nor numerically. The channel consists of 1-dimensional and of 2-
dimensional integrals. Using the same ansatz as in eq. (C.14) for the limiting case z = z̄, we were able
to obtain several coefficients for the 1-dimensional integrals. Unfortunately, we have not been able to
guess a closed form for the series yet. Even worse, for the 2-dimensional integrals we have only been
able to extract the leading coefficients so far.
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The expression for the 1d integrals that we wish to compute is defined as:

g1d
1 (x, x)≡ gIYI(x, x)+ gY123(x, x)+ gY124(x, x), (C.17)

which is related to (4.27) by the usual relation given in (2.36). The numerical data for the coefficients is
given in table C.4, while the closed forms can be found in table C.2. We were able to derive the closed
form for all of the sequences except for the second term in the ak’s with k odd. The rest of the expression
reads:

g1d
1 (x, x)= 1

3 ·211π4 + 1
28π6 log xtanh−1 x+ log2

27π6 tanh−1 x− 3
28π6 tanh−2 x+missing piece. (C.18)

The expansion with the known coefficients is compared to the numerical data for the full integral in fig.
C.1. Obtaining more coefficients should make it possible to guess the missing term, and that is one of
the objectives of future work.

As warned before, the situation is even worse regarding the 2d integrals. The g-function corresponding
to eq. (4.28) in the collinear limit is defined as:

g2d
1 (x, x)≡ gX (x, x)+ gY134(x, x)+ gY234(x, x). (C.19)

For x ≥ 0, we find numerically that:

gX (x, x)= 0,

while for x ≤ 0 we notice that:

g1(x, x)− gX (x, x)= const.= g8N2

3 ·29π4 .

These results are shown explicitly in fig. C.2. Using the ansatz of eq. (C.14) to which we are now used
to, we could derive only the two first coefficients of the integrals for x ≥ 0 so far, i.e.:

g2d
1 (x, x)= g8N2

3 ·29π4 − g8N2

27π6 x log x+O(x). (C.20)

We hope to be able to optimize the integration algorithms in order to obtain more coefficients in the
future. Putting together this result with the previous one for the 1d integrals results in the expression
given in (4.30). The full channel along the line z = z̄ is plotted in fig. 4.1 with the numerical data of
table C.6.

Integral of the 0-Channel

We now discuss the case of the H-integral in the 0-channel, which is by far the hardest that we have to
consider in this work. It is a 10-dimensional integral with two τ-derivatives, acting on x1 and x2:

=−4λ0 I12 ∂τ1∂τ2

∫
dτ3

∫
dτ4 H13,24, (C.21)

with H13,24 defined in (3.10d). MATHEMATICA is unable to handle such a monster, and we must simplify
it before having a chance to feed it to the computer.

Integration by parts can be used for removing the τ2-derivative:
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Table C.2: Coefficients for the 1d integrals of the 1-channels based on the same ansatz as the one used
in eq. (C.14). a0 should be multiplied by g8N2, while the other ak’s are missing a factor g8N2/27π6. The
bk’s have to be multiplied by g8N2/28π6.

a0 a1 a2 a3 a4 a5

1
3·211π4 − log2− 1

2 3 − log2
3 − 8

9 2 − log2
5 − 211

150

a6 a7 a8 a9 a10 a11

23
15 − log2

7 − 1703
1470

44
35 − log2

9 − 11213
11340

563
525 − log2

11 + 131995
152460

b1 b2 b3 b4 b5 b6

−1 0 −1
3 0 −1

5 0

∂τ2 H13,24 =
∫

d4x56 I15I35∂τ2 I26I46I56

=−
∫

d4x56 I15I35I26
(
∂τ4 +∂τ5

)
I46I56.

Since
∫

dτ4 ∂τ4 I46 = 0, we can drop the first term in the last line. Using integration by parts with respect
to the x5-integral, we obtain:

∂τ2 H13,24=̂−∂τ1 H13,24,

where the =̂ means that this equality is to be understood as valid in the context of eq. (C.21) only. Here
we have used again the fact that

∫
dτ3 ∂τ3 I35 = 0.

We have now:

∝+I12

∫
dτ3

∫
dτ4

∫
d4x5 ∂

2
τ1

I15I35 Y245,

where we do not keep trace of the numerical prefactors for compactness (they will be reinstated in the
final result). The Y-integral is known analytically, so we now find ourselves facing a 6-dimensional
integral.

The derivatives give:

∂2
τ1

I15 = 2 (2π)2I2
15

(
4 (2π)2τ2

5 I15 −1
)
,

and it is easy to do the τ3-integral using (C.1b):

∝ I12

∫
d4x5

1(
~x2

5
)1/2 x4

15

(
4τ2

5

x2
15

−1

)∫
dτ4 Y245,

where~x means that the τ-component is zero, i.e. ~x ≡ (x, y, z,0).

This is as far as we can go for a general x2. Going to the limiting case x2 = (x,0,0,0) encourages us
to introduce 3d spherical coordinates for y5, z5,τ5, because y5 and z5 now always appear in the form
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y2
5 + z2

5. The integration is independent of the azimuthal angle and we can kill one integral in exchange
of a 2π factor. What we have now is:

= 4
(2π)6 I12

∫ ∞

0
dr

∫ π

0
dθ

∫ ∞

−∞
dx

∫ ∞

−∞
dτ4

r2 sinθ

R
(
d2

)2

(
4r2cos2θ

d2 −1
)
Y245, (C.22)

where we have dropped the index 5 in order to keep our expression compact, and where all the prefactors
have been reintroduced. The functions R and d are defined as follows:

R(x, r,θ) :=
√

x2 + r2 sin2θ,

d2(x, r) := (1− x)2 + r2.

We are thus left with a hard 4-dimensional integral, and at that point we cannot go further analytically.
MATHEMATICA is able to handle this expression, although it is hard to obtain high-enough accuracy.
The behavior of the integral is shown in fig. 4.1, while the numerical data is gathered in table C.6. The
integral has the same interesting inversion symmetry x ↔ 1/x as the other channels, and we also notice
that it is constant for x ≤ 0. This remarkable feature is exploited in section 4.3 for extracting the CFT
data without having to know the full correlator analytically.

C.3 Measurements

In this section, we present the numerical measurements done throughout the work, i.e. the numerical
data resulting from computing the integrals with MATHEMATICA.

Table C.3: Coefficients for the ansatz (C.14) of the integral of the 2-channel, obtained by computing eq.
(C.15a) and (C.15b) until convergence. The numerical values should be multiplied by 10−6, and the bars
on the last digit indicate the uncertainty. The corresponding closed forms can be found in table C.1.

ak Numerical value ak Numerical value bk Numerical value

a0 2.5063433238975428̄ a10 −0.72620400479360720̄ b1 2.031565377530961516̄
a1 0.784782249586612167̄ a11 0.66094552826238291̄ b2 < 10−19

a2 −2.031565377530961516̄ a12 −0.635951297593626626̄ b3 0.67718845917698717̄
a3 1.390241515157182675̄ a13 0.587492964789104264̄ b4 < 10−19

a4 −1.3543769183539743439̄ a14 −0.567426006481690531̄ b5 0.40631307550619230̄
a5 1.0914765235815647̄· a15 0.52989791570630653̄ b6 < 10−19

a6 −1.0383556374047136636̄ a16 −0.513427467150903894̄ b7 0.2902236253615659̄
a7 0.892951503889920̄ a17 0.48343225022848530̄ b8 < 10−19

a8 −0.851322634393926730̄ a18 −0.469658175882705170̄ b9 0.22572948639232906̄
a9 0.758116223397934939̄ a19 0.4450872153926018̄ b10 < 10−19
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Table C.4: Coefficients for the ansatz (C.14) adapted to the sum of the 1d integrals of the 1-channel (see
eq. (C.17)). Here also these numerical values are obtained by computing eq. (C.15a) and (C.15b) until
convergence. The values should be multiplied by 10−6, and the corresponding closed forms are given in
table C.2. The bar on the last digit indicates the uncertainty.

ak Numerical value ak Numerical value bk Numerical value

a0 1.670896̄ a6 6.2301338̄ b1 −4.06313075̄
a1 9.695826009̄ a7 −5.511821551̄ b2 < 10−9

a2 12.189392265̄ a8 5.10793581̄ b3 −1.354377̄
a3 −9.100908649̄ a9 −4.6434816̄ b4 < 10−9

a4 8.1262615̄ a10 4.35722̄ b5 −0.8126261̄
a5 −6.8420096̄ a11 −4.02979̄ b6 < 10−9

Table C.5: Coefficients analogous to the ones of table C.4, but for the sum of 2d integrals of the 2-channel
(see eq. (C.19)). The numerical values should be multiplied by 10−6.

ak Numerical value bk Numerical value

a0 5.01268667̄ b0 −4.0631̄

Table C.6: Numerical integration of the F̃-functions for the 0- and 1-channels on the line z = z̄ ≡ x. The
corresponding g-functions are plotted in fig. 4.1. The values for the F̃ ’s should be multiplied by 10−7.
The bar on the last digit indicates the uncertainty of the measurement.

x −0.9999 −1/2 −1/3 −1/4 −1/5 −1/10 −1/100

F̃0 −8.35̄ −6.60̄ −4.70̄ −3.42̄ −2.58̄ −0.91̄ −0.11̄

x 1/100 1/10 1/5 1/4 1/3 1/2 0.9999

F̃0 −0.01̄ −1.59̄ −7.81̄ −13.75̄ −30.51̄ −121.60̄ 0

x −0.9999 −1/2 −1/3 −1/4 −1/5 −1/10 −1/100

F̃1 8.355̄ 7.911̄ 7.286̄ 6.643̄ 6.072̄ 4.167̄ 0.622̄

x 1/100 1/10 1/5 1/4 1/3 1/2 0.9999

F̃1 0.709̄ 9.365̄ 23.906̄ 33.813̄ 56.190̄ 144.160̄ > 102





Bibliography

[1] S. Ferrara, A. F. Grillo, and R. Gatto. Tensor Representations of Conformal Algebra and Confor-
mally Covariant Operator Product Expansion. Ann. Phys., 76:161–188, 1973.

[2] A. M. Polyakov. Nonhamiltonian Approach to Conformal Quantum Field Theory. Zh. Eksp. Teor.
Fiz., 66:23–42, 1974.

[3] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite Conformal Symmetry in Two-
Dimensional Quantum Field Theory. Nucl. Phys. B, 241:333–380, 1983.

[4] R. Rattazzi, V. S. Rychkov, E. Tonni, and A. Vichi. Bounding Scalar Operator Dimensions in 4D
CFT. JHEP, 12, 2008. https://arxiv.org/abs/0807.0004.

[5] F. A. Dolan and H. Osborn. Conformal Four-Point Functions and the Operator Product Expansion.
Nucl. Phys. B, 599:459–496, 2001. https://arxiv.org/abs/hep-th/0011040.

[6] D. Poland and D. Simmons-Duffin. Bounds on 4D Conformal and Superconformal Field Theories.
JHEP, 05, 2010. https://arxiv.org/abs/1009.2087.

[7] D. Poland and D. Simmons-Duffin ans A. Vichi. Carving Out the Space of 4D CFTs. JHEP, 110,
2011. https://arxiv.org/abs/1109.5176.

[8] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin, and A. Vichi. Solving the
3D Ising Model with the Conformal Bootstrap. Phys. Rev., D86, 2012. https://arxiv.org/abs/
1203.6064.

[9] C. Beem, L. Rastelli, and B. C. van Rees. The N = 4 Superconformal Bootstrap. Phys. Rev. Lett.,
111, 2013. https://arxiv.org/abs/1304.1803.

[10] J. M. Maldacena. The Large N Limit of Superconformal Field Theories and Supergravity. Int. J.
Theor. Phys., 38, 1997. https://arxiv.org/abs/hep-th/9711200.

[11] N. Beisert and M. Staudacher. The N = 4 SYM Integrable Super Spin Chain. Nucl. Phys. B,
670:439–463, 2003. https://arxiv.org/abs/hep-th/0307042.

[12] K. A. Intriligator and W. Skiba. Bonus Symmetry and the Operator Product Expansion of N = 4
SYM. Nucl. Phys. B, 559:165–183, 1999. https://arxiv.org/abs/hep-th/9905020.

[13] A. Petkou and K. Skenderis. A Nonrenormalization Theorem for Conformal Anomalies. Nucl.
Phys. B, 561:100–116, 1999. https://arxiv.org/abs/hep-th/9906030.

[14] M. Billó, V. Gonçalves, E. Lauria, and M. Meineri. Defects in Conformal Field Theory. JHEP, 4,
2016. https://arxiv.org/abs/1601.02883.

[15] P. Liendo, L. Rastelli, and B. C. van Rees. The Bootstrap Program for Boundary CFTd. JHEP, 07,
2012. https://arxiv.org/abs/1210.4258.

89

https://arxiv.org/abs/0807.0004
https://arxiv.org/abs/hep-th/0011040
https://arxiv.org/abs/1009.2087
https://arxiv.org/abs/1109.5176
https://arxiv.org/abs/1203.6064
https://arxiv.org/abs/1203.6064
https://arxiv.org/abs/1304.1803
https://arxiv.org/abs/hep-th/9711200
https://arxiv.org/abs/hep-th/0307042
https://arxiv.org/abs/hep-th/9905020
https://arxiv.org/abs/hep-th/9906030
https://arxiv.org/abs/1601.02883
https://arxiv.org/abs/1210.4258


90 Bibliography

[16] F. Gliozzi, P. Liendo, M. Meineri, and A. Rago. Boundary and Interface CFTs from the Conformal
Bootstrap. JHEP, 05, 2015. https://arxiv.org/abs/1502.07217.

[17] J. M. Maldacena. Wilson Loops in Large N Field Theories. Phys. Rev. Lett., 80:4859–4862, 2016.
https://arxiv.org/abs/hep-th/9803002.

[18] N. Drukker, D. J. Gross, and H. Ooguri. Wilson Loops and Minimal Surfaces. Phys. Rev. D, 60,
1999. https://arxiv.org/abs/hep-th/9904191.

[19] J. K. Erickson, G. W. Semenoff, and K. Zarembo. Wilson Loops in N = 4 Supersymmetric Yang-
Mills Theory. Nucl. Phys. B, 582:155–175, 2000. https://arxiv.org/abs/hep-th/0003055.

[20] P. Liendo and Meneghelli C. Bootstrap Equations for N = 4 SYM with Defects. JHEP, 01, 2016.
https://arxiv.org/abs/1608.05126.

[21] P. Liendo, Meneghelli C, and V. Mitev. Bootstrapping the Half-BPS Line Defect. JHEP, 10, 2018.
https://arxiv.org/abs/1806.01862.

[22] A. Gimenez-Grau and P. Liendo. Bootstrapping Line Defects in N = 2 Theories. JHEP, 03, 2019.
https://arxiv.org/abs/1907.04345.

[23] P. Di Francesco, P. Mathieu, and D. Sénéchal. Conformal Field Theory. Springer-Verlag New York,
1997.

[24] M. Ammon and J. Erdmenger. Gauge/Gravity Duality. Cambridge University Press, 2015.

[25] H. J. W. Muller-Kirsten and A. Wiedemann. Introduction to Supersymmetry (Second Edition).
World Scientific Publishing Company, 2010.

[26] M. E. Peskin and D. V. Schroeder. An Introduction to Quantum Field Theory. Perseus Books
Publishing LLC, 1995.

[27] D. Poland, S. Rychkov, and A. Vichi. The Conformal Bootstrap: Theory, Numerical Techniques, and
Applications. Rev. Mod. Phys., 91, 2019. https://arxiv.org/abs/1805.04405.

[28] S. Rychkov. 3D Ising Model: A View from the Conformal Bootstrap Island. 2020. https://arxiv.
org/abs/2007.14315.

[29] S. Ribault. Minimal Lectures on Two-Dimensional Conformal Field Theory. SciPost Phys. Lect.
Notes, 1, 2018. https://arxiv.org/abs/1609.09523.

[30] S. Coleman and J. Mandula. All Possible Symmetries of the S Matrix. Phys. Rev., 159(5), 1967.

[31] L. Brink, O. L. Lindgren, and B. E. W. Nilsson. The Ultraviolet Finiteness of the N = 4 Yang-Mills
Theory. Phys. Lett. B, 123:323–328, 1982.

[32] C. Montonen and D. I. Olive. Magnetic Monopoles as Gauge Particles? Phys. Lett. B, 72:117–120,
1977.

[33] E. Witten and D. I. Olive. Supersymmetry Algebras that Include Topological Charges. Phys. Lett.
B, 78:97–101, 1977.

[34] E. B. Bogomol’nyi. Stability of Classical Solutions. Sov. J. Nucl. Phys., 24:861–870, 1976.

[35] M. K. Prasad and C. M. Sommerfield. An Exact Classical Solution for the ’t Hooft Monopole and
the Julia-Zee Dyon. Phys. Rev. Lett., 35:760–762, 1976.

https://arxiv.org/abs/1502.07217
https://arxiv.org/abs/hep-th/9803002
https://arxiv.org/abs/hep-th/9904191
https://arxiv.org/abs/hep-th/0003055
https://arxiv.org/abs/1608.05126
https://arxiv.org/abs/1806.01862
https://arxiv.org/abs/1907.04345
https://arxiv.org/abs/1805.04405
https://arxiv.org/abs/2007.14315
https://arxiv.org/abs/2007.14315
https://arxiv.org/abs/1609.09523


Bibliography 91

[36] N. Drukker. Integrable Wilson Loops. JHEP, 10, 2013. https://arxiv.org/abs/1203.1617.

[37] G. P. Korchemsky and A. V. Radyushkin. Renormalization of the Wilson Loops Beyond the Leading
Order. Nucl. Phys. B, 283:342–364, 1987.

[38] M. Cooke, A. Dekel, and N. Drukker. The Wilson Loop CFT: Insertion Dimensions and Structure
Constants from Wavy Lines. J. Phys. A, 50, 2017. https://arxiv.org/abs/1703.03812.

[39] L. Brink, J. H. Schwarz, and J. Scherk. Supersymmetric Yang-Mills Theories. Nucl. Phys. B,
121:77–92, 1976.

[40] J. Plefka and M. Staudacher. Two Loops to Two Loops in N = 4 Supersymmetric Yang-Mills Theory.
JHEP, 09, 2001. https://arxiv.org/abs/hep-th/0108182.

[41] N. Beisert, C. Kristjansen, J. Plefka, G. W. Semenoff, and M. Staudacher. BMN Correlators and
Operator Mixing in N = 4 Super Yang-Mills Theory. Nucl. Phys. B, 650:125–161, 2002. https:
//arxiv.org/abs/hep-th/0208178.

[42] N. Drukker and J. Plefka. The Structure of n-Point Functions of Chiral Primary Operators in
N = 4 Super Yang-Mills at One-Loop. JHEP, 04, 2008. https://arxiv.org/abs/0812.3341.

[43] P. Ramond. Field Theory: A Modern Primer. Sarat Book House, 2007.

[44] G. ’t Hooft. A Planar Diagram Theory for Strong Interactions. Nucl. Phys. B, 72:461–473, 1974.

[45] G. ’t Hooft. Large N. In The Phenomenology of Large N(c) QCD, pages 3–18, 2002.

[46] E. D’Hoker, D. Z. Freedman, and W. Skiba. Field Theory Tests for Correlators in the AdS/CFT
Correspondence. Phys. Rev. D, 59, 1998. https://arxiv.org/abs/hep-th/9807098.

[47] N. Beisert. The Dilatation Operator of N = 4 Super Yang-Mills Theory and Integrability. Phys.
Rept, 405:1–202, 2004. https://arxiv.org/abs/hep-th/0407277.

[48] H. Nicolai and J. Plefka. N = 4 Super Yang-Mills Correlators without Anticommuting Variables.
Phys. Rev. D, 101, 2020. https://arxiv.org/abs/2003.14325.

[49] N. I. Ussyukina and A. I. Davydychev. Some Exact Results for Two-Loop Diagrams with Three and
Four External Lines. Phys. Atom. Nucl., 56:1553–1557, 1993.

[50] G. ’t Hooft and M. Veltman. Scalar One-Loop Integrals. Nucl. Phys. B, 153:365–401, 1993.

https://arxiv.org/abs/1203.1617
https://arxiv.org/abs/1703.03812
https://arxiv.org/abs/hep-th/0108182
https://arxiv.org/abs/hep-th/0208178
https://arxiv.org/abs/hep-th/0208178
https://arxiv.org/abs/0812.3341
https://arxiv.org/abs/hep-th/9807098
https://arxiv.org/abs/hep-th/0407277
https://arxiv.org/abs/2003.14325




Declaration of Authorship

I hereby certify that the master’s thesis that I am submitting is entirely my own original work, except
where otherwise stated. I am aware of the University’s regulations concerning plagiarism, including
those regulations concerning disciplinary actions that may result from plagiarism. Any use of the works
of any other author, in any form, is properly acknowledged at their point of use.

JULIEN BARRAT

93




	Introduction
	Outline
	Conventions

	Foundations
	Conformal Field Theory in 4d
	Poincaré Symmetry
	Conformal Symmetry
	Correlation Functions of Scalar Primaries
	The Conformal Bootstrap

	Supersymmetry
	N=1 SUSY
	Extended SUSY
	Massless Representations of SUSY Algebra
	Maximally Extended SUSY
	Superconformal Algebra

	Maldacena-Wilson-Line Defect
	Conformal Defects
	Maldacena-Wilson Line


	The Superconformal Bootstrap with Line Defect
	The Conformal Bootstrap with Line Defect
	Setup
	Defect Conformal Blocks and Crossing Symmetry
	Defect Casimir Equation
	Bulk Casimir Equation

	The Superconformal Two-Point Function
	Superconformal Ward Identities
	Superblocks
	Superblock Coefficients

	CFT Data
	R-Symmetry Channels
	Limiting Cases
	Expansion of Superblocks


	Perturbation Theory
	N=4 Super Yang-Mills
	From 10d N=1 to 4d N=4
	The Action
	Feynman Rules
	Large N Expansion

	Insertion Rules
	Wilson Line
	Scalar Self-Energy
	n-Point Insertions


	Two-Point Function at Next-To-Leading Order and CFT Data
	Feynman Diagrams
	Vanishing Graphs
	Non-Renormalization of the Defect-Free Two-Point Function
	Topologies and Diagrams

	Perturbative Computation
	Identity and Leading Orders
	2-Channel at Next-to-Leading Order
	1-Channel at Next-to-Leading Order
	0-Channel at Next-to-Leading Order
	Ward Identities in the Collinear Limit

	CFT Data
	Identity Order
	Leading Order
	Next-to-Leading Order
	Direct Computation of Coefficient A


	Conclusion and Outlook
	Appendix Lie Algebras and Superconformal Algebra
	Lie Groups and Lie Algebras
	Definitions and Properties
	Representations of Lie Algebras
	u(N) and su(4)R

	u(N) Identities
	Trace Identities
	Structure Constant Identities

	Superconformal Algebra

	Appendix Superblock Coefficients
	Coefficients of the (B,+)k Superblocks
	Coefficients of the (B,1)[k,s] Superblocks
	Coefficients of the L [k,s] Superblocks

	Appendix Integrals
	Standard Integrals
	Elementary Integrals
	Conformal Integrals
	A Powerful Integral Identity
	Pinching Limits

	Numerical Integration
	Integral of the 2-Channel
	Integrals of the 1-Channel
	Integral of the 0-Channel

	Measurements

	Bibliography
	Declaration of Authorship

