General Relativity

Olaf Hohm
Exercise Sheet 4

June 5, 2019

Exercise 1: Relations for the metric tensor

In the lecture we postulated the gauge transformation of the metric tensor $g_{\mu \nu}$,

$$
\begin{equation*}
\delta_{\xi} g_{\mu \nu}=\xi^{\rho} \partial_{\rho} g_{\mu \nu}+\partial_{\mu} \xi^{\rho} g_{\rho \nu}+\partial_{\nu} \xi^{\rho} g_{\mu \rho} \tag{1}
\end{equation*}
$$

1.1) Compute the gauge transformation of the inverse metric $g^{\mu \nu}$.
1.2) Prove that the determinant $|g| \equiv \operatorname{det} g_{\mu \nu}$ and the inverse metric $g^{\mu \nu}$ can be written as

$$
\begin{aligned}
|g| & =\frac{1}{4!} \varepsilon^{\mu \nu \rho \sigma} \varepsilon^{\alpha \beta \gamma \delta} g_{\mu \alpha} g_{\nu \beta} g_{\rho \gamma} g_{\sigma \delta} \\
g^{\mu \nu} & =\frac{1}{3!} \frac{1}{|g|} \varepsilon^{\mu \rho \sigma \kappa} \varepsilon^{\nu \alpha \beta \gamma} g_{\rho \alpha} g_{\sigma \beta} g_{\kappa \gamma}
\end{aligned}
$$

where $\varepsilon^{\mu \nu \rho \sigma}$ is the totally antisymmetric Levi-Civita symbol with $\varepsilon^{0123}=+1$.
1.3) Determine $\delta \sqrt{-g}$, where $g \equiv|g|$, under arbitrary variations $\delta g_{\mu \nu}$.

Exercise 2: Lie derivatives

Lie derivatives are defined as

$$
\mathcal{L}_{\xi} V^{\mu}=\xi^{\nu} \partial_{\nu} V^{\mu}-\partial_{\nu} \xi^{\mu} V^{\nu}, \quad \mathcal{L}_{\xi} W_{\mu}=\xi^{\nu} \partial_{\nu} W_{\mu}+\partial_{\mu} \xi^{\nu} W_{\nu}
$$

and analogously for objects with an arbitrary number of upper and lower indices.
2.1) Prove that the Lie derivative operators \mathcal{L}_{ξ} satisfy the algebra

$$
\left[\mathcal{L}_{\xi_{1}}, \mathcal{L}_{\xi_{2}}\right]=\mathcal{L}_{\left[\xi_{1}, \xi_{2}\right]}
$$

where [,] on the left-hand side denotes the commutator. In the process, determine the Lie bracket $\left[\xi_{1}, \xi_{2}\right]$ defined by the right-hand side.
2.2) We defined the non-covariant variation $\Delta_{\xi} \equiv \delta_{\xi}-\mathcal{L}_{\xi}$, the difference of the actual gauge transformation and the covariant one given by the Lie derivative. Compute

$$
\Delta_{\xi} \Gamma_{\mu \nu}^{\rho} \quad \text { and } \quad \Delta_{\xi}\left(\partial_{\mu} \Gamma_{\nu \sigma}^{\rho}\right)
$$

where $\Gamma_{\mu \nu}^{\rho}$ are the Christoffel symbols for $g_{\mu \nu}$, and express the result, to the extent possible, with matrix notation for $\boldsymbol{\Gamma}_{\mu} \equiv\left(\boldsymbol{\Gamma}_{\mu}\right)^{\rho}{ }_{\nu} \equiv \Gamma_{\mu \nu}^{\rho}$ and $\boldsymbol{\sigma} \equiv \boldsymbol{\sigma}^{\mu}{ }_{\nu} \equiv \partial_{\nu} \xi^{\mu}$.

Exercise 3: Expansion of non-linear gravity around flat space

In the lecture it was claimed that the following action describes non-linear gravity:

$$
\begin{aligned}
S=\int \mathrm{d}^{4} x \sqrt{-g} & \left(\frac{1}{4} g^{\mu \nu} \partial_{\mu} g^{\rho \sigma} \partial_{\nu} g_{\rho \sigma}-\frac{1}{2} g^{\mu \nu} \partial_{\mu} g^{\rho \sigma} \partial_{\rho} g_{\sigma \nu}\right. \\
& \left.+\partial_{\mu} g^{\mu \nu} \frac{1}{\sqrt{-g}} \partial_{\nu} \sqrt{-g}+g^{\mu \nu}\left(\frac{1}{\sqrt{-g}} \partial_{\mu} \sqrt{-g}\right)\left(\frac{1}{\sqrt{-g}} \partial_{\nu} \sqrt{-g}\right)\right) .
\end{aligned}
$$

3.1) Expand the above action around Minkowski space to second order in h, writing

$$
g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}
$$

and show that it reproduces the Fierz-Pauli action.
Hint: Use the result of 1.3) in order to expand $\sqrt{-g}$.
3.2) Take the above expansion of $g_{\mu \nu}$ to be exact (i.e. no higher order terms of h are included on the right-hand side). Determine the complete gauge transformation $\delta_{\xi} h_{\mu \nu}$ for the fluctuation field from eq. (1) above.

