General Relativity

Olaf Hohm
Exercise Sheet 3

May 15, 2019

Exercise 1: Motion of massless particles

The equations for a massless particle parametrized by $x^{\mu}(\tau)$ are given by

$$
\begin{align*}
\ddot{x}^{\mu}+\Gamma_{\nu \rho}^{\mu} \dot{x}^{\nu} \dot{x}^{\rho} & =0 \tag{1}\\
g_{\mu \nu}(x) \dot{x}^{\dot{ }} \dot{x}^{\nu} & =0, \tag{2}
\end{align*}
$$

where $\Gamma_{\mu \nu}^{\rho}$ are the full Christoffel symbols for $g_{\mu \nu}$ and ${ }^{\circ}=\frac{d}{d \tau}$.
1.1) Prove that the equation of motion (1) is invariant under infinitesimal reparametrizations of the affine parameter λ,

$$
\begin{equation*}
x^{\mu} \rightarrow x^{\mu}+\delta x^{\mu}, \quad \delta x^{\mu}=\lambda \dot{x}^{\mu}, \quad \ddot{\lambda}=0 \tag{3}
\end{equation*}
$$

i.e., for redefinitions of the form $\lambda=a \tau+b$, with $a, b \in \mathbb{R}$ constant.
1.2) Prove that the constraint (2) is preserved under time evolution.

Exercise 2: Bending of light in gravitational field

In the lecture we showed that light is deflected in a gravitational field with potential $\phi=\phi(\vec{r})$. The deflection vector is given by the integral

$$
\begin{equation*}
\Delta \vec{\ell}=-2 k \int \vec{\nabla}_{\perp} \phi d x \tag{4}
\end{equation*}
$$

along the x-axis, where the gradient transverse $\vec{\nabla}_{\perp}$ is defined by

$$
\begin{equation*}
\vec{\nabla}_{\perp} \phi:=\vec{\nabla} \phi-k^{-2}(\vec{k} \cdot \vec{\nabla} \phi) \vec{k} \tag{5}
\end{equation*}
$$

in terms of the null vector $k^{\mu}:=\frac{d x^{(0) \mu}}{d \tau}=(k, \vec{k}),|\vec{k}|^{2}=k^{2}$, with $x^{(0) \mu}$ the trajectory of the unperturbed light ray.
2.1) Take the unperturbed light ray to be along the x-axis and the gravitational potential to be sourced by a mass M,

$$
\begin{equation*}
\phi(\vec{r})=-\frac{G M}{r} \tag{6}
\end{equation*}
$$

which we assume to be located at $(0,-b, 0)$. Determine the deflection angle $\alpha=\frac{|\Delta \vec{\ell}|}{k}$, using the integral (4) along the x-axis from $-\infty$ to $+\infty$.
2.2) Estimate the deflection of light passing by the sun, as becomes measurable during a total eclipse.

