General Relativity

Olaf Hohm

Exercise Sheet 3

May 15, 2019

Exercise 1: Motion of massless particles

The equations for a massless particle parametrized by $x^{\mu}(\tau)$ are given by

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho} \dot{x}^{\nu} \dot{x}^{\rho} = 0 , \qquad (1)$$

$$g_{\mu\nu}(x)\dot{x}^{\mu}\dot{x}^{\nu} = 0 , \qquad (2)$$

where $\Gamma^{\rho}_{\mu\nu}$ are the full Christoffel symbols for $g_{\mu\nu}$ and $\dot{} = \frac{d}{d\tau}$.

1.1) Prove that the equation of motion (1) is invariant under infinitesimal reparametrizations of the affine parameter λ ,

$$x^{\mu} \to x^{\mu} + \delta x^{\mu} , \qquad \delta x^{\mu} = \lambda \dot{x}^{\mu} , \qquad \ddot{\lambda} = 0 .$$
 (3)

i.e., for redefinitions of the form $\lambda = a\tau + b$, with $a, b \in \mathbb{R}$ constant.

(1.2) Prove that the constraint (2) is preserved under time evolution.

Exercise 2: Bending of light in gravitational field

In the lecture we showed that light is deflected in a gravitational field with potential $\phi = \phi(\vec{r})$. The deflection vector is given by the integral

$$\Delta \vec{\ell} = -2k \int \vec{\nabla}_{\perp} \phi \, dx \tag{4}$$

along the x-axis, where the gradient transverse $\vec{\nabla}_{\perp}$ is defined by

$$\vec{\nabla}_{\perp}\phi := \vec{\nabla}\phi - k^{-2}(\vec{k}\cdot\vec{\nabla}\phi)\vec{k}$$
(5)

in terms of the null vector $k^{\mu} := \frac{dx^{(0)\mu}}{d\tau} = (k, \vec{k}), |\vec{k}|^2 = k^2$, with $x^{(0)\mu}$ the trajectory of the unperturbed light ray.

2.1) Take the unperturbed light ray to be along the x-axis and the gravitational potential to be sourced by a mass M,

$$\phi(\vec{r}) = -\frac{GM}{r} , \qquad (6)$$

which we assume to be located at (0, -b, 0). Determine the deflection angle $\alpha = \frac{|\Delta \ell|}{k}$, using the integral (4) along the x-axis from $-\infty$ to $+\infty$.

2.2) Estimate the deflection of light passing by the sun, as becomes measurable during a total eclipse.