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Preliminaries

Calculus of Variations
A function maps a number x and to another number f(x):

R 3 x 7→ f(x) ∈ R . (1)

The derivative of a function is defined as:

f ′(x) =
df

dx
:= lim

h→0

f(x+ h)− f(x)

h
. (2)

The Taylor expansion of a function is:

f(x+ h)− f(x) = f ′(x)h+O(h2) , (3)

h = ∆x , δf(x) = f(x+ h)− f(x) = f ′(x)∆x . (4)

Let us extend this concept to functionals. A functional S maps a function ϕ(x) to a
number S[ϕ(x)] ∈ R. Let ϕ(x)→ ϕ(x)+εξ(x), where ε is small. The variational derivative
of the functional S[ϕ(x)] is

δϕS := S[ϕ(x) + εξ(x)]− S[ϕ(x)] ≡
∫
dx
δS

δϕ
εξ(x) +O(ε2) . (5)

This is the implicit definition of functional derivative δS
δϕ . Usually, we denote δϕ(x) ≡ εξ(x).

The variational principle states that δS
!

= 0, ∀δϕ. If we demand the variational principle,

δS =

∫
dx
δS

δϕ
δϕ = 0 only if

δS

δϕ
= 0 , (6)

one obtains the equations of motion.
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Consider the example:

S[ϕ(x)] =

∫
dxϕ2(x) . (7)

We compute:

S[ϕ(x) + εξ(x)] =

∫
dx(ϕ(x) + εξ(x))2

=

∫
dx(ϕ(x)2 + 2εϕ(x)ξ(x) +O(ε2)) = S[ϕ(x)] +

∫
dx2ϕ(x)εξ(x) ,

(8)

δS =

∫
dx2ϕ(x)εξ(x) =⇒ δS

δϕ(x)
= 2ϕ(x) . (9)

You can see that taking functional derivatives is similar to taking ordinary derivatives.
Let us consider the arbitrary function f(x),

S[ϕ(x)] :=

∫
dxf(ϕ(x)) (10)

S[ϕ(x) + εξ(x)] =

∫
dxf(ϕ(x) + εξ(x))

=

∫
dx
(
f(ϕ(x)) + f ′(ϕ(x))εξ(x) +O(ε2)

) (11)

δϕS(x) =

∫
dxf ′(ϕ(x))δϕ(x) =

∫
dxf ′(ϕ(x))εξ(x) (12)

Above we have applied the chain rule and the Leibniz rule. Consider another example:

S[ϕ] =

∫
dxe−αϕ(x)(ϕ′)2 , (13)

δϕS =

∫
dx

{
− αδϕe−αϕ(ϕ′)2 + e−αϕ(2ϕ′δ(ϕ′)

}
=

∫
dx

{
− αδϕe−αϕ(ϕ′)2 + e−αϕ(2ϕ′δ

(
dϕ

dx

)}
=

∫
dx

{
− αδϕe−αϕ(ϕ′)2 + e−αϕ(2ϕ′δ

d

dx
(δϕ)

)}
=

∫
dxδϕ

{
− αe−αϕ(ϕ′)2 − d

dx

(
2e−αϕϕ′

)}
.

(14)

Now let us review the Dirac delta distribution. Let x ∈ R be fixed, then S[ϕ] = ϕ(x) ∈ R
is the Dirac delta functional, related to the more familiar physicist’s notation by

S[ϕ] =

∫
dx′δ(x− x′)ϕ(x′) (15)
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δS[ϕ] = δϕ(x) =

∫
dx′δ(x− x′)δϕ(x′) =

∫
dx′

δS

δϕ(x′)
δϕ(x′) (16)

δS[ϕ]

δϕ(x′)
=
δϕ(x)

δϕ(x′)
= δ(x− x′) (17)

δϕ(x)
δϕ(x′) = δ(x−x′) is, so to say, the infinite-dimensional form of familiar relation ∂xµ

∂xν = δµν
from multi-variable calculus.

Lecture 1

Introduction

Lecture 2

Special Relativity

Let M be Minkowski space (which is R4 as a vector space). Take xµ ∈M, µ, ν = 0, ..., 3.
Then let us define:

ηµν = diag(−1, 1, 1, 1) , (18)

x2 = 〈x, x〉 = ηµνx
µxν = −(x0)2 + (x1)2 + (x2)2 + (x3)2 . (19)

It is useful to think about invariant objects. There is an invariant notion of distance
between two points in Minkowski spacetime:

I(p, q) = ηµν∆xµ∆xν . (20)

Instead of rulers and compasses, in special relativity, we use clocks and light rays.
Exercise:
Let A and B be two observers. A moves and is constantly sending light rays in the direction
of B. Assume that the light ray that hits B is at some point reflected back towards A. Show
that the invariant spacetime interval is I(p, q) = −ab.
Motion in Minkowski Space

Consider a general curve. How do we determine the invariant interval between p and
q for a general curve? Let us introduce coordinates, xµ(τ), parameterized by τ ∈ I ⊂ R.
This is the parameterization of the curve c, for I = [a, b], x(a) = p, x(b) = q. What is
the invariant length along the curve? Assume this is a timelike curve, meaning that the
derivative at each point is timelike, ẋ2 < 0. The invariant length of a section along the
curve is

∆si =
√
−ηµν∆xµxν . (21)

The total length of the curve is thus

S(p, q) =
∑
i

∆si =
∑
i

√
−ηµν∆xµi ∆xνi . (22)
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In the continuum limit the sum becomes an integral:

S(p, q) =

∫
c
ds =

∫
I

√
−ηµν

dxµ

dτ

dxν

dτ
dτ . (23)

This is the invariant length between p and q. (23) is a good candidate to determine the
equation of motion of a free particle. Let us introduce the notation,

ẋµ =
dxµ

dτ
, ẋ2 = ηµν ẋ

µẋν . (24)

Let us then write the action,

S[x(τ)] =

∫ √
−ηµν ẋµẋνdτ . (25)

Consider an arbitrary, small variation xµ(τ)→ xµ(τ) + δxµ(τ). The equations of motion
are

u̇µ =
duµ

dτ
= 0 , where uµ :=

ẋµ√
−ẋ2

. (26)

uµ is known as the 4-velocity. You see immediately as a consequence of the definition of
uµ that

u2 = −1 . (27)

Exercise: show that δS =
∫
dτδxµ

duµ
dτ .

Now we have determined the equations of motion for a free particle. How many
solutions should we expect? How many initial data can we specify? (24) is a second
order differential equation for four functions xµ. Naively, we could specify xµ(0) = xµ0 and
ẋµ(0) = uµ0 . This is not how it works, because there is one constraint,

uµu̇
µ = 0 , (28)

which is identically satisfied (by using the definition of uµ). One can see this by (27),

0 =
d

dτ
u2 = 2uµu̇

µ . (29)

Thus, there is a redundancy in the formulation. This comes from reparameterization
invariance. Consider the reparameterization, τ → τ ′ = f(τ). xµ is a scalar and transforms
as

xµ′(τ ′) = xµ(τ) . (30)

Consequently,

dxµ′(τ ′)

dτ ′
=
dxµ(τ)

dτ ′
=
dxµ

dτ

dτ

dτ ′
. (31)
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The action (25) is invariant under reparameterization:

S[x′(τ ′)] =

∫
dτ ′
√
−ηµν

dxµ′

dτ ′
dxν ′

dτ ′

=

∫
dτ ′
√
−ηµν

dxµ

dτ

dxν

dτ

∣∣∣∣ dτdτ ′
∣∣∣∣

=

∫
dτ
√
−ηµν ẋµẋν

= S[x(τ)] .

(32)

This explains why we have the constraint, because it can be interpreted as a Bianchi
identity for reparameterization invariance as follows: Instead of performing a finite repa-
rameterization, consider an infinitesimal reparameterization, τ → τ ′ = τ − λ(τ), where λ
is an arbitrary and small function of τ .
Exercise: denote δxµ = xµ′(τ)− xµ(τ); prove that δxµ = λẋµ.
The variation that is induced by this change of parameterization reads

δλS =

∫
dτλ(τ)ẋµu̇µ

!
= 0 , ∀λ(τ) . (33)

This one-dimensional reparameterization invariance, also called diffeomorphism invari-
ance, implies the Bianchi identity, ẋµu̇µ = 0. It is often convenient to introduce a parame-
ter for the curve in the formulation of an action principle, but the price to pay is a certain
redundancy. We can make a choice, called “gauge fixing.” We can choose τ → s(τ), and
simply take the invariant length itself to be the parameter to parametrize the curve:

s(τ) =

∫ τ

0
ds =

∫ τ

0
dτ ′
√
−ẋµẋµ ,

ds

dτ
=
√
−ẋ2 .

(34)

The 4-velocity then takes a simple form,

uµ =
dxµ

dτ

1√
−ẋ2

=
1√
−ẋ2

dxµ

ds

ds

dτ
=
dxµ

ds
. (35)

Then ẋµ(s)ẋµ(s) = −1. The initial conditions in terms of proper time can be specified:

xµ(0) = xµ0 , ẋµ(0) = uµ0 , uµ0u0µ = −1 . (36)

The equations of motion read
d2xµ

ds2
= 0 , (37)

whose solution is a straight line in Minkowski space,

xµ(s) = uµ0s+ xµ0 . (38)
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An alternative parameterization is to demand τ = x0 = t, t being the time coordinate,
so xµ(τ) =

(
t(τ), xi(τ)

)
=
(
t, xi(t)

)
. Every point on the line is labelled by its projection

onto the x0 = t axis. Then

ẋµ =

(
1,
dxi

dt

)
= (1, vi) , (39)

where vi is the conventional 3-velocity. The invariant length,√
−ẋ2 =

√
1− |v|2 =

1

γ
, (40)

contains the familiar gamma factor γ = 1√
1−v2 . The 4-velocity is given by

uµ(t) = (γ, γvi) . (41)

Then we can define the 4-momentum,

pµ := muµ = (γm, γmvi) , where m is the rest mass. (42)

The 4-momentum satisfies
pµpµ = −m2 . (43)

Consider the action for a particle in terms of these parameters.

Sparticle = −mc
∫
ds

= −mc
∫
dτ

√
1− v2

c2

(44)

The sign in front of the integral is conventional so that the extremum of Sparticle is a
minimum. Note that this action is not manifestly Lorentz invariant, but of course it is
Lorentz invariant by construction. Let us expand the action in 1

c2
, to see the relativistic

corrections:

Sparticle '
1

c

[
−mc2 +

1

2
mv2 +O

(
1

c2

)]
. (45)

Maxwell’s Theory
Consider Maxwell’s theory of electrodynamics in the Lorentz covariant formulation.

The electromagnetic field is described by a 4-potential, Aµ(x) on Minkowski space M, for
which the field strength is Fµν = ∂µAν − ∂νAµ, where ∂µ := ∂

∂xµ . Let us split the indices,
µ = (0, i), i = 1, 2, 3. Think of a specific observer with respect to a rest frame. With
respect to the observer:

F00 = 0 ,

F0i = Ei ,

Fij = −εijkBk ,

(46)
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where Ei is the electric field, Bi is the magnetic field, and εijk is the Levi-Civita symbol.
The above can be collected in a matrix:

Fµν =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 . (47)

There is a gauge symmetry:

Aµ → Aµ + δAµ , δAµ = ∂µΛ (48)

where Λ = Λ(x) is arbitrary function of x. Since Fµν is gauge invariant (by the fact that
partial derivatives commute), it is natural to write a quadratic term in Fµν .

S[A] = −1

4

∫
d4xFµνFµν = −1

4

∫
d4x(∂µAν − ∂νAµ)(∂µAν − ∂νAµ) (49)

∂µ := ηµν∂ν and Aµ = ηµνAν . (49) is a good candidate for the action, whose variation
reads

δS = −1

2

∫
d4xFµνδFµν = −1

2

∫
d4xFµν

[
∂µ(δAν)− ∂ν(δAµ)

]
= −

∫
d4xFµν∂µδAν =

∫
d4xδAν∂µF

µν = 0

(50)

Thus, the field equations are

∂µF
µν = 0 . (51)

These are Maxwell’s equations in a vacuum written in covariant form. How do we couple
the electromagnetic field to charged matter? Consider the action:

S[x,A] =

∫
c
−mds− eAµdxµ −

1

4

∫
FµνF

µνd4x . (52)

Let us write the part of the action describing the interaction as

Sint = −e
∫
Aµ(x(τ))ẋµdτ . (53)

We need to check that this is gauge invariant:

δSint = −e
∫
∂µΛẋµdτ = e

∫
− ∂Λ

∂xµ
dxµ

dτ
dτ = e

∫
−dΛ

dτ
dτ = 0 , (54)

assuming boundary conditions so that Λ(a) = Λ(b) = 0 as a, b → ∞, Λ → 0. Consider
only the gauge transformations that have certain assumptions near infinity. The equations
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of motion for xµ can be derived:

δxSint = −e
∫ (

∂νAµδx
ν ẋµ +Aµ

d

dτ
(δxµ)

)
dτ

= −e
∫ (

∂νAµδx
ν ẋµ − ∂νAµẋνδxµ

)
dτ

= −e
∫
δxµ(∂µAν − ∂νAµ)ẋνdτ

= −e
∫
δxµFµν ẋ

νdτ .

(55)

The full equation of motion is

−mu̇µ − eFµν ẋν = 0 . (56)

Lecture 3

Electrodynamics
Consider a particle of mass m, charge e, described by xµ(τ), and a 4-vector field Aµ(x)
on M. The action describing the system is

S[x,A] =

∫
c

(
−mds− eAµdxµ

)
− 1

4

∫
d4xFµνFµν , (57)

where Fµν = ∂µAν−∂νAµ is the field strength. The curve, along which the particle moves,
responds according to the vector potential of the electromagnetic field. Let us define a
current density,

jµ(x) := e

∫
dτẋµ(τ)δ(4)(x− x(τ)) . (58)

Here, remember that x(τ) is the parametrized curve and that x is the coordinate of a
point in space. The interaction term in (57) can be written in terms of the current.

−
∫
d4xAµ(x)jµ(x) = −e

∫
dτẋµ(τ)

∫
d4xδ(4)(x− x(τ))Aµ(x)

= −e
∫
dτẋµ(τ)Aµ(x(τ))

= −e
∫
Aµdx

µ

(59)

We can then rewrite the A-dependent part of (57) as

S[A] =

∫
d4x

(
− 1

4
FµνFµν −Aµjµ

)
, (60)

where
∂µF

µν = jν . (61)
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Exercise: show that for any test function φ(x),
∫
d4xφ(x)∂µj

µ = 0.
The action is invariant under the transformations:

Aµ → Aµ + δAµ

δAµ = ∂µΛ .
(62)

A Bianchi identity arises from the gauge variation of the action:

δS[A] =

∫
d4xδAν∂µF

µν =

∫
d4x∂νΛ∂µF

µν = −
∫
d4xΛ(x)∂ν∂µF

µν . (63)

The action is gauge invariant, that is, δS[A] = 0, and

∂µ∂νF
µν = 0 . (64)

(64) is called a Bianchi identity. This is identically satisfied, since

∂µ∂νF
µν = ∂ν∂µF

µν = ∂µ∂νF
νµ = −∂µ∂νFµν = 0 . (65)

Comment:
In the literature you will find the “Bianchi identity” for Fµν as

∂µFνρ + ∂νFρµ + ∂ρFµν ≡ 3∂[µFνρ] = 0 , (66)

which is identically satisfied. Here we have introduced the notation,

A[µν] :=
1

2
(Aµν −Aνµ)

A(µν) :=
1

2
(Aµν +Aνµ) .

(67)

The continuity equation can now be derived. The zeroth component of the current
density is the charge density, and the current vector encodes the current.

jµ = (j0, ji) = (ρ,~j) (68)

Using the Bianchi identity and (61),

∂µj
µ = ∂tρ+ div~j = 0 . (69)

Solutions of the Maxwell Equations
Consider the rest frame of some observer in which there are static charges, so the current
density is jµ = (ρ(~x),~0). We use the ansatz, Aµ = (φ(~x),~0), where φ(~x) is a scalar
potential. Using (61),

jν = ∂µ(∂µAν − ∂νAµ) . (70)

For ν = 0,

ρ =

(
− ∂2

∂t2
+ ∆

)
φ− ∂t(∂µAµ) , (71)
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which results in the Poisson equation,

∆φ = ρ . (72)

For a point-charge at ~v = 0: ρ(~r) = eδ(r), ∆
(

1
r

)
= −4πδ(r), the solution to (72) is

φ(~r) = − e

4πr
, (73)

which is the familiar Coulomb potential.
Electromagnetic Waves
Let us assume that there is no matter, i.e. Maxwell equations in a vacuum. In Newtonian
theory, if there is no matter nothing happens. But for electromagnetism we have nontrivial
equations,

Eµ := ∂νF
νµ = �Aµ − ∂µ(∂ ·A) = 0 (74)

where ∂ ·A = ∂µA
µ.

Let us identify field configurations which are gauge equivalent. Not all 4 components of
Aµ are physical.
From the Bianchi identity: ∂µE

µ = 0. As a rule of thumb, each local gauge symmetry
removes 2 degrees of freedom (per point in space). For Aµ we have 4− 2 = 2 d.o.f.. The
proof can be carried out in light-cone coordinates. Light-cone coordinates are given by:

x+ =
1√
2

(x0 + x1) ,

x− =
1√
2

(x0 − x1) .

(75)

The invariant interval is then

− (x0)2 +
3∑
i=1

(xi)
2 = −2x+x− +

2∑
α=1

(xα)2 = η′µνx
µxν , (76)

where

η′µν =


0 −1 0 0
−1 0 0 0
0 0 1 0
0 0 0 1

 . (77)

Here we have renamed x0 and x3 to x1 and x2. The vector potential can be written in
components as Aµ(x) = (A+, A−, Aα). In Fourier space,

Aµ(x) =

∫
d4kaµ(k)eikνx

ν
(78)

Λ(x) =

∫
d4kλ(k)eikνx

ν
. (79)
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The gauge transformations are then given by:

δλaµ(k) = ikµλ(k) . (80)

Eµ ≡ 0 gives the gauge invariant equation:

k2aµ − kµ(k · a) = 0 . (81)

Assume we pick k+ 6= 0,
δa+(k) = ik+λ(k) . (82)

We can then choose λ = ia
+(k)
k+

to impose the gauge-fixing condition (“light-cone gauge”)

a+(k) = 0 . (83)

We still have three components left. There is one more to be eliminated. By analyzing
the gauge invariant equation, with µ = +,

0 = k2a+ − k+(k · a) → k · a = 0 (84)

Let us write out this condition with the η′ metric,

0 = η′µνk
µaν = −k+a− − k−a+ − kαaα (85)

a− is entirely dependent on k+, kα and aα: a− = 1
k+
kαaα. Let now µ = α, then

k2aα(k) = 0 (86)

which is solved by k2 = 0. This now shows that we have two independent degrees of
freedom, i.e. two independent solutions of the Maxwell equations, Aα(x) = aα(k)eikx for
k2 = 0.
This is the dynamical part of the Maxwell equations. Why don’t we always choose light-
cone coordinates? In the process, we give up manifest Lorentz invariance.

Energy-Momentum Tensor
The energy-momentum tensor can be obtained thourugh an application of Noether’s The-
orem. From time translation invariance (no explicit t-dependence), one can prove that
energy is conserved. From spatial translation invariance (no explicit x-dependence), one
can prove that momentum is conserved. Similarly, for a relativistic field theory with
Lagrangian L[φ, ∂φ], with φ generically denoting the fields, we demand that there is
no explicit xµ dependence. We require four-dimensional translational invariance under
xµ → xµ + aµ, where aµ = const. Then the fields transform as

φ(x)→ φ′(x) := φ(x+ a) = φ(x) + aµ∂µφ(x) + ... , (87)

and the infinitesimal variation is

δaφ(x) = φ′(x)− φ(x) = aµ∂µφ . (88)
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The invariance condition is

δaS = 0 , for a = const. (89)

Noether’s theorem can now be derived by a trick: We first promote aµ to a spacetime
dependent vector aµ(x). Then, of course, the action is generally no longer invariant, but
we can still conclude that its variation must be writable as

δaS(x) = −
∫
d4x∂µaνT

µν . (90)

Indeed, for constant aµ we then have δaS = 0, as assumed. Second, we can now prove
that Tµν is conserved in the sense of satisfying ∂µT

µν = 0. To this end we integrate by
parts,

δaS(x) =

∫
d4xaν∂µT

µν .
= 0 , (91)

and use that on-shell the action is invariant under arbitrary variations. Since this holds
for arbitrary a(x), we infer the conservation equation

∂µT
µν = 0 . (92)

Tµν is called the energy-momentum tensor.
As a remark, for a macroscopic body/fluid, Tµν = (p+ ρ)uµuν − pηµν .
Exercise: show that for

S[A] = −1

4

∫
d4xFµνFµν , (93)

the energy-momentum tensor is Tµν = FµρF νρ − 1
4η

µνF ρσFρσ, for the transformations
given by δAµ = aν∂νAµ + ∂µΛ, Λ = −aνAν . Hint: rewrite δAµ = aνFνµ.

Comment: from ∂µT
µν .

= 0, the conserved charges are energy density, M =
∫
d3xT00

and momentum density, pi =
∫
d3xT i0.

Lecture 4

Relativistic Field Theory of Gravity
In analogy to Maxwell’s theory (see (60)),

S[A] = −1

4

∫
d4x
(
FµνFµν +Aµj

µ
)

=

∫
d4x

(
− 1

2
∂µAν∂µAν +

1

2
(∂µA

µ)2 −Aµjµ
)
.

(94)

Recall the invariance under the gauge transformation, Aµ → Aµ + δAµ, δAµ = ∂µΛ.
The energy-momentum tensor is proper relativistic presentation of mass/energy, which
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should be conserved, i.e. ∂µTµν = 0. For gravity, the idea is to take a symmetric tensor,
hµν = hνµ, on Minkowski space M. In the action, we want the structure to be of this sort,

S[h] =

∫
d4x(“∂h∂h” + hµνT

µν) , (95)

in order to immediately couple to the stress-energy tensor and to obtain second-order
equations of motion. In analogy to electrodynamics, we expect to have a gauge symmetry,
which shifts the metric tensor by a symmetric gradient,

δξhµν = ∂µξν + ∂νξµ , (96)

where S is gauge-invariant if the stress-energy tensor is conserved. The kinetic terms for
h should be quadratic in h, with two derivatives ∂µ, and be Lorentz invariant. Comparing
with (94) and defining a Lorentz invariant object which is the trace of hµν , h := ηµνhµν ,
we try to write down all possible allowed terms:

S[h] =

∫
d4x

(
a∂µhνρ∂µhνρ + b∂µh

µν∂ρhρν + c∂µh
µν∂νh+ d∂µh∂µh

)
. (97)

We demand the invariance under the transformation (96). Let us also introduce the
notation, � := ηµν∂µ∂ν = ∂µ∂µ. We have four coefficients and we want to fix them by
demanding gauge invariance:

0
!

= δξS[h] =

∫
d4x

(
2a∂µhνρδξ(∂µhνρ) + 2b∂µh

µνδξ(∂
ρhρν)

+ cδξ(∂µh
µν)∂νh+ c∂µh

µνδξ(∂νh) + 2d∂µhδξ(∂µh)

)
=

∫
d4x

(
4a∂µhνρ∂µ∂νξρ + 2b∂µh

µν
[
�ξν + ∂ν(∂ · ξ)

]
+ c
[
�ξν + ∂ν(∂ · ξ)

]
∂νh+ 2c∂µh

µν∂ν(∂ · ξ) + 4d∂µh∂µ∂ · ξ
)
,

(98)

where we have used
δξ(∂µh

µν) = �ξν + ∂µ∂
νξµ . (99)

We are free to rescale the action by an overall factor, so we can choose one of the coef-
ficients. We fix a = −1

4 . Can we now fix b, c, and d? We expect the following terms to
cancel:

− ∂µhνρ∂µ∂νξρ + 2b∂µh
µν�ξν . (100)

By integration by parts, we find that b = 1
2 . By isolating terms with ∂ · ξ and hµν ,

2b∂µh
µν∂ν(∂ · ξ) + c∂µh

µν∂ν(∂ · ξ) = 0 , (101)

we find that c = −1
2 . By observing the other terms containing h and ∂ · ξ,

− 1

2
�ξν∂ν −

1

2
∂ν(∂ · ξ)∂νh+ 4d∂µh∂µ(∂ · ξ) , (102)
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and after integration by parts, we find that d = 1
4 . Inserting all the coefficients back into

(97), we obtain

SFP =

∫
d4x

(
− 1

4
∂µhνρ∂µhνρ +

1

2
∂µh

µν∂ρhρν −
1

2
∂µh

µν∂νh+
1

4
∂µh∂µh

)
. (103)

This is known as the Fierz-Pauli action. Let us couple the gravitational field to some
matter.

S = SFP [h] + 8πG

∫
d4xhµνT

µν + “matter kinetic energy” , (104)

where G is Newton’s constant. The Fierz-Pauli action can be written as follows,

SFP = −1

2

∫
d4xhµνGµν(h) , (105)

where Gµν := Rµν − 1
2Rηµν is the Einstein tensor, Rµν = Rρµ

ρ
ν is the Ricci tensor,

Rµνρσ := −∂µ∂[ρhσ]ν + ∂ν∂[ρhσ]µ (106)

is the Riemann tensor, R := Rµµ is the Ricci scalar.
Exercise: prove that (103) can be written as (105).
The variation of the Fierz-Pauli action is

δSFP = −
∫
d4xδhµνGµν(h) . (107)

The Einstein tensor satisfies the Bianchi identity ∂µGµν ≡ 0. The gravitational field
equations from (104) are:

Gµν = Rµν −
1

2
Rηµν = 8πGTµν . (108)

For completeness, let us take the trace of the field equations:

R− 1

2
Rηµνηµν = −R = 8πGT , (109)

(since ηµνηµν = 4) where T = ηµνT
µν . We can insert this into (108) and write

Rµν = 8πG

(
Tµν −

1

2
Tηµν

)
. (110)

Gravitational Waves (in Vacuum)
In vacuum, the field equations are

Gµν = 0 . (111)

hµν is a symmetric tensor in four dimensions and thus has 10 components. ξµ has 4
components. From the gauge symmetry,

hµν ' hµν + ∂µξν + ∂νξµ . (112)
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The four constraints and four components of the gauge parameter reduce the physical
degrees of freedom to 10− 4− 4 = 2.
Exercise: prove that hµν only has 2 physical degrees of freedom using light-cone gauge.
Let us assume the Lorentz gauge fixing condition

∂µh̄µν = 0 ,where h̄µν := hµν −
1

2
hηµν . (113)

The gauge transformation of this condition is

δ(∂µh̄µν) = ∂µ
(
∂µξν + ∂νξµ −

1

2
[2(∂ · ξ)ηµν ]

)
= �ξν + ∂ν(∂ · ξ)− ∂ν(∂ · ξ)
= �ξν .

(114)

If �ξν = 0, we maintain the gauge fixing condition. We can express the linearized Einstein
tensor in terms of h̄. We can use the relation, hµν = h̄µν − 1

2 h̄ηµν , which one can derive
from the definition of h̄. The linearized Einstein tensor is then rewritten as

Gµν = −1

2
�h̄µν + ∂(µ∂

ρh̄ν)ρ − (∂ρ∂σh̄ρσ)ηµν . (115)

We can set any divergence of h̄ to zero by the gauge fixing condition. Inserting this into
the vacuum field equation (111), we obtain the wave equation,

�h̄µν = 0 . (116)

This can be solved by the plane-wave ansatz:

h̄µν = Cµνe
ikx , (117)

where Cµν is constant. Inserting the ansatz into (116), we find that k must be a null
vector, i.e. k2 = 0. By inserting the ansatz into the gauge condition (113),

0 = ∂µh̄µν = ikµCµνe
ikx → kµCµν = 0 . (118)

Let us choose a basis in which kµ = (ω, 0, 0, ω), such that kµkµ = 0 and describes a wave
traveling in the x3 direction. Taking C to be traceless, the two degrees of freedom are
given by C11, C12:

Cµν =


0 0 0 0
0 C11 C12 0
0 C12 −C11 0
0 0 0 0

 . (119)

Gravitostatic Case
Let the energy-momentum tensor encode some matter distribution of particles that do not
move at high speeds:

Tµν = ρuµuν , (120)
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where the 4-velocities are uµ = (1, 0, 0, 0) and uµ = (−1, 0, 0, 0) for xµ(τ) = (τ, 0, 0, 0).
We want to investigate what the gravitational field of this point particle is. The field
equations are then:

Gµν = −1

2
�h̄µν = 8πGTµν . (121)

The static solution is given by
h̄00 = −4φ(~r) (122)

and the wave equation gives the Poisson equation:

�φ(~r) = ∇φ(~r) = 4πGρ . (123)

Inserting the density of a point particle of mass m,

ρ(r) = mδ(r) , (124)

and using ∇
(

1
r

)
= −4πδ(r), we obtain the Newtonian potential,

φ(r) = −Gm
r
. (125)

We have recovered Newton’s theory of gravity as a special case of the theory we have
developed here. We can write down the matrix form of h by using

h̄ := ηµν h̄µν = η00h̄00 = −h̄00 = 4φ , (126)

hµν = h̄µν −
1

2
h̄ηµν = h̄µν − 2φηµν , (127)

so that

hµν =


−2φ 0 0 0

0 −2φ 0 0
0 0 −2φ 0
0 0 0 −2φ

 . (128)

Lecture 5

Field Theory of Gravity
We have so far introduced the field hµν and we have constructed an action that is manifestly
Lorentz invariant and that has this symmetry given by hµν → hµν +∂µξν +∂νξµ. We have
also been able to define an invariant object, the Riemann tensor, Rµνρσ, (see (106)) which
is the analog of the gauge invariant electromagnetic field strength Fµν . We have also
defined the Ricci tensor, Rµν , and the Ricci scalar, R = ηµνRµν .

Now we will consider massive point particles in a gravitational field hµν(x). In order
to do this, we will switch on an interaction term,

Sint =
1

2

∫
d4xhµνT

µν . (129)
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Let the worldline of the point particle x be parameterized by τ . The energy-momentum
tensor then reads

Tµν := m

∫
dτn−1ẋµ(τ)ẋν(τ)δ(4)(x− x(τ)) , (130)

where n, transforming as n(τ ′) = dτ
dτ ′n(τ), is known as the lapse function. This is analagous

to the current density which was used to couple a charged particle to the electromagnetic
field. Note that n(τ) was introduced to maintain the reparameterization invariance of
Tµν . Inserting the ansatz (130) into (129).

Sint =
1

2
m

∫
dτn−1ẋµ(τ)ẋν(τ)

∫
d4xhµνδ

(4)(x− x(τ))

=
1

2
m

∫
dτn−1hµν(x(τ))ẋµ(τ)ẋν(τ) ,

(131)

Recall the point particle action and insert a mass term m:

Sparticle =
1

2

∫
dτ
(
n−1ηµν ẋ

µẋν −m2n
)
. (132)

The equation of motion for n is

n =
1

m
(
√
−ẋ2) , (133)

which simplifies (132) to

Sparticle = −m
∫
dτ(
√
−ẋ2) = −m

∫
ds . (134)

We rewrite (131) as

Sint =
1

2

∫
dτ
{
n−1(ηµν +mhµν(x(τ))

}
ẋµ(τ)ẋν(τ)−m2n(τ) . (135)

So far we have taken the Minkowski metric to encode the geometry and define the light-
cones. In general relativity, the geometry is encoded by the deviation of the Minkowksi
metric. Let us introduce the notation,

gµν := ηµν +mhµν , (136)

and write the action in terms of gµν .

S =
1

2

∫
dτ
{
n−1gµν(x(τ))ẋµ(τ)ẋν(τ)−m2n(τ)

}
(137)

Now our task is to find the equation of motion of this particle and to find out how the
particle responds to the gravitational field. Taking the variation of the action with respect
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to x(τ) and using the chain rule and integration by parts, we obtain

δxS =
1

2

∫
dτn−1

[
δ
(
gµν(x)

)
ẋµẋν + 2gµν(x(τ))

(
d

dτ
δxµ
)
ẋν
]

=
1

2

∫
dτn−1

[
∂ρgµνδx

ρẋµẋν + δxµ
(
− 2

d

dτ

(
gµν(x(τ))n−1ẋν

)]
=

1

2

∫
dτδxµ

(
n−1∂µgνρẋ

ν ẋρ − 2n−1∂ρgµν ẋ
ν ẋρ − 2gµν

d

dτ
uν
)
,

(138)

where uµ := 1
n ẋ

µ. The equation of motion given from δxS is:

gµν
duν

dτ
=

1

2
n−1

(
∂µgνρ − 2∂ρgµν

)
ẋν ẋρ

= −n−1 1

2

(
∂νgρµ + ∂ρgνµ − ∂µgνρ

)
ẋν ẋρ .

(139)

We define

Γνρ|µ :=
1

2

(
∂νgρµ + ∂ρgνµ − ∂µgνρ

)
(140)

as the Christoffel symbol. Let us assume that gµν is invertible, and the inverse is written
as gµν which satisfies gµνgνρ = δµρ. If gµν has an inverse, then the Christoffel symbol can
be written (in the more common notation) as:

Γρµν :=
1

2
gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) . (141)

Writing the equation of motion in terms of the Christoffel symbol,

1

n

duµ

dτ
+ Γµνρu

νuρ = 0 . (142)

This is the geodesic equation. Let us consider the particle moving in a static gravitational
field and assume that it is moving slowly and its worldline is described by xµ(t) = (t, xi(t)),
where t is the coordinate time.

uµ =
1

n
ẋµ = mγ(t, vi) (143)

Let us assume that v � 1, i.e. v is much smaller than the speed of light, so γ ' 1 and
u0 � ui. The equation of motion for the µ = i component is then

d

dτ

(
mγ

dxi

dt

)
= − 1

mγ
Γi00u

0u0 = −mγΓi00

⇒ d2xi

dt2
= −Γi00 .

(144)

Computing Γi00 from (125) and (128),

Γi00 =
1

2
δij(−∂jh00) = ∂iφ . (145)
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Inserting this into the equation of motion,

d2xi

dt2
= −(gradφ)i (146)

Notice that this equation is independent of the rest mass of the particle, m. This is known
as the Equivalence Principle.

Lecture 6

In the last lecture, we introduced the energy-momentum tensor (130) which we used to
couple the massive point particle to the gravitational field via the interaction given by
(129). Let us take a moment now to derive the energy-momentum tensor from Noether’s
theorem and translation invariance of the action of a free massive particle in Minkowski
space:

S =
1

2

∫
dτ
(
n−1ηµν ẋ

µẋν −m2n
)
. (147)

The action is invariant under translations:

xµ(τ)→ xµ(τ) + δxµ(τ) , δxµ = aµ , (a = const.) . (148)

Promote the translation parameter to have spacetime dependence, aµ = aµ(x). The
variation of xµ becomes:

δẋµ =
d

dτ
(δxµ) =

d

dτ
(aµ(x(τ)) = ∂νa

µẋν (149)

δaS =

∫
dτn−1ηµν∂ρa

µẋρẋν

=

∫
dτ(∂µaν)(x(τ))ẋµ(τ)ẋν(τ)

=

∫
d4x∂µaν(x)

∫
dτn−1ẋµ(τ)ẋν(τ)δ(4)(x− x(τ))

∼
∫
d4x∂µaνT

µν ,

(150)

where then Tµν := m
∫
dτn−1(τ)ẋµ(τ)ẋν(τ)δ(4)(x− x(τ)).

Gravitational Deflection of Light
We will now look at post-Newtonian effects of general relativity, in particular the bending
of light in a gravitational field. In order to do that, we will consider massless particles.
Let us use the equations of motion. Recall the geodesic equation (equation of motion for
xµ),

1

n

duµ

dτ
+ Γµνρu

νuρ = 0 , uµ :=
1

n
ẋµ , (151)
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and from δnS,

δnS =
1

2

∫
dτ(−n−2δngµν ẋ

µẋν −m2δn)

=
1

2

∫
dτn−2δn(−gµν ẋµẋν −m2n2) ,

(152)

the equation of motion is
n2m2 = −gµν ẋµẋν . (153)

When m2 6= 0, (153) can be written as

n(τ) =
1

m

√
−gµν ẋµẋν . (154)

When we take the limit m→ 0, (153) becomes

gµν ẋ
µẋν = 0 . (155)

Since we are dealing with light rays, we indeed expect their trajectories to be null with
respect to the full metric. Because of reparameterization invariance, we can fix n = const.
and we can write (151) as

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0 . (156)

Exercise: show that these equations are invariant under reparameterizations, δxµ = λẋµ,
provided λ̈ = 0 (λ is an affine parameter, λ(τ) = aτ + b, where a, b = const.).
Now consider the situation in the figure, in which a source emits light near a massive
body, say, the sun, with mass M . Let the impact parameter, i.e. the distance between
unperturbed light ray and massive object, to be b. Let us denote the unperturbed light
ray by x(0)(τ). An observer sees the bent light with angle α. Let us assume that the
gravitational field is weak and we will only consider the small deviation of the light ray to
first-order. Let the light ray be described as the sum of the unperturbed light ray and its
deviation, x(1)(τ): xµ(τ) = x(0)(τ) + x(1)µ(τ). Let us define:

kµ :=
dx(0)µ

dτ
, lµ =

dx(1)µ

dτ
; (157)

explicitly, ẋµ = kµ + lµ. Let us expand

0 = gµν ẋ
µẋν = ηµνk

µkν + 2ηµνk
µlν + hµνk

µkν , (158)

and keep in mind that the first term of the expansion on the right-hand side is zeroth
order in perturbations and the second and third terms are first order. Thus we have two
equations:

kµkµ = 0 , (159)

2ηµνk
µlν + hµνk

µkν = 0 . (160)
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In the weak-field regime, the Christoffel symbol is simply given by

Γµνρ =
1

2
ηµσ(∂νhρσ + ∂ρhσν − ∂σhνρ) . (161)

Let us decompose kµ = (k0,~k), where (k0)2 = |~k|2 ≡ k2 since kµ is a null vector. We
require the components of the Christoffel symbol.

Γ0
0i = −1

2
(∂0hi0 + ∂ih00 − ∂0h0i) = ∂iφ ,

Γi00 =
1

2
δij(−∂jh00) = ∂iφ ,

Γijk =
1

2
δil(∂jhkl + ∂khjl − ∂lhij) = −2δi(j∂k)φ+ ∂iφδjk .

(162)

Here we have recalled the matrix form of hµν in (128), in which the off-diagonal elements
are zero, e.g. h0i = hi0 = 0. Now we are ready to address the first-order equation by
inserting (157) and (162) into (156):

dlµ

dτ
= −Γµνρk

νkρ ; (163)

µ = 0 ,
dl0

dτ
= −2Γ0

0ik
0ki = −2∂iφk

0ki

= −2k~k · ~∇φ , (164)

µ = i ,
dli

dτ
= −Γijkk

jkk − Γi00k
0k0

= (2δij∂kφ− ∂iφδjk)kjkk − ∂iφk2 . (165)

Rewriting in vector notation,

d~l

dτ
= −2k2~∇⊥φ , (166)

where we used a split of the gradient into parallel and transverse components, ~∇φ =
~∇‖φ+ ~∇⊥φ, where

~∇‖ = k−2(~k · ~∇φ)~k ,

~∇⊥ = ~∇φ− k−2(~k · ~∇φ)~k , such that ~k · ~∇⊥φ = 0 .
(167)

We claim that (164) is solved by

l0 = −2kφ , (l0 = 0 for φ = 0) . (168)

Indeed,

dl0

dτ
= −2k

∂φ

∂xi
dxi

dτ
' −2k

∂φ

∂xi
dxi(0)

dτ

= −2kki∂iφ .

(169)
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From (160),

−kl0 + ~k ·~l = 2k2φ ,

2k2φ+ ~k ·~l = 2k2φ , ⇒ ~k ·~l = 0 ,
(170)

and indeed we do expect the deviation of the light ray to be perpendicular to the unper-
turbed light ray. The total deviation of the light ray can be computed as the following
integral, where we used (166) and we have assumed the unperturbed light ray to be
x(0)µ(τ) = k(τ, τ, 0, 0), so that x(τ) = kτ :

∆~l =

∫
d~l

dτ
dτ = −2k2

∫
~∇⊥φdτ = −2k

∫
~∇⊥φdx . (171)

We can then determine the angle of the deflection, α, since |∆~l| = αk as demonstrated in
the figure.
Exercise: compute α for φ = −GM

r .
The gravitational deflection of light was one of the first experimental confirmations of
general relativity in the weak field approximation.

Lecture 7

Towards a Nonlinear Theory
Let us revisit the analogy between electromagnetism and general relativity. The photon is
a massless particle of spin-1. This means that the particle has two physical polarizations.
Without a gauge symmetry, it would carry an extra polarization. Gauge invariance is
mandatory in order to describe a spin-1 particle with two physical polarizations. The
relative coefficients of the Fierz-Pauli action are fixed by demanding the gauge invariance,
δξhµν = ∂µξν + ∂νξµ. Gravitational waves have two physical polarizations.

The interaction of the point particle and the electromagnetic field gives a conserved
current, jµ (as shown in an exercise following equation (58)). We will now show that the
energy-momentum tensor for gravity is not conserved. Let us remind ourselves that the
energy-momentum tensor is:

Tµν(x) =

∫
dτ

1

n
ẋµẋνδ4(x− x(τ)) . (172)
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Let us consider a test-vector vν and the following integral:∫
d4xvν∂µT

µν =

∫
d4xvν∂µ

∫
dτ

1

n
ẋµẋνδ4(x− x(τ))

= −
∫
d4x∂µvν

∫
dτ

1

n
ẋµẋνδ4(x− x(τ))

= −
∫
dτ∂µvν

∣∣∣∣
x(τ)

1

n
ẋµẋν

= −
∫
dτ

(
d

dτ
vν

)
1

n
ẋν

= −
∫
dτ

(
d

dτ
vν

)
uν

=

∫
dτvν

d

dτ
uν

=

∫
d4x vν(x)

∫
dτ δ(4)(x− x(τ))

duν

dτ
.

(173)

We have thus obtained an equation for the divergence of Tµν :

∂µT
µν =

∫
dτ δ(4)(x− x(τ))

duν

dτ
. (174)

If the particle were free, the right-hand side would be zero. But now the particle interacts
with the gravitational field, with its interaction described in the action as

S =

∫
dτ

(
1

2n
ẋµẋµ −

n

2
m2

)
+

∫
d4xhµνT

µν . (175)

In contrast, for electromagnetism one finds that the current is conserved, i.e. ∂µj
µ = 0,

regardless of whether the particle is free or not. To make sense of this, we must recall
that the charged particles generate an electric current, but the electromagnetic field itself
is not charged, i.e. does not source another electromagnetic field. The photon is a neutral
particle. On the contrary, the gravitational field hµν must generate energy and momen-
tum, but it also couples to the energy-momentum tensor. The particle in a gravitational
field exchanges energy with the gravitational field, whereas a charged particle in an elec-
tromagnetic field does not transfer its charge into the electromagnetic field because the
electromagnetic field is not charged. Gravity is a non-linear, self-coupled theory.

We can rewrite (175) as

S[x;h] = SFP +

∫
dτ

{
1

2n
ẋµẋµ −

n

2
m2 +

1

2n
hµν ẋ

µẋν
}
. (176)

Varying with respect to x and gauge-fixing n(τ) = 1, the equation of motion is the geodesic
equation,

Eµ ≡ ẍµ + Γνρ|µẋ
ν ẋρ = 0 . (177)
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Taking the gauge variation of Γνρ,µ,

δξΓνρ|µ =
1

2
(∂ν∂µξρ + ∂ν∂ρξµ + ∂ρ∂µξν + ∂ρ∂νξµ − ∂µ∂νξρ − ∂µ∂ρξν)

= ∂ν∂ρξµ ,
(178)

one sees that the Christoffel symbol is not a gauge invariant object. The gauge variation
of the geodesic equation is

δξ(ẍµ + Γνρ,µẋ
ν ẋρ) = ẋν ẋρ∂ν∂ρξµ

= ẋν
d

dτ
∂νξµ

=
d2

dτ2
ξµ − ẍν∂νξµ

= ξ̈µ +O(ξh) .

(179)

Remember that hµν and ξµ are both first order in perturbations. The equation of motion
of the particle is not gauge invariant.

Let us try to amend this. Suppose the gauge transformation of hµν includes δxµ =
−ξµ(x(τ)), i.e. simultaneously change the trajectory of the particle and the field hµν .

δnewξ (Eµ) = δẍµ + ξ̈µ + 2Γνρ,µẋ
νδẋρ (180)

Since δẍµ = −ξ̈µ and the last term is second order in perturbations, δnewξ (Eµ) = 0.
What can we learn from this? For δξhµν = ∂µξν + ∂νξµ, we must change the trajectory
xµ(τ)→ xµ(τ)−ξµ(x(τ)). This means that the interval ds2 := ηµνdx

µdxν is not invariant.
We are forced to realize, for the theory to make sense, that the true invariant interval is
taken from the curved geometry, that is, ds2 := gµνdx

µdxν , where gµν = ηµν + hµν . Let
us see if the quantity gµν(x)ẋµẋν is invariant:

δξ(ηµν + hµν(x))ẋµẋν = 2ẋµδẋνηµν + (δξhµν)ẋµẋν +O(hξ)

= −2ηµν ẋ
µξ̇ν + (∂µξν + ∂νξµ)ẋµẋν

= −2ηµν ẋ
µẋλ∂λξ

ν + 2∂µξν ẋ
µẋν

= 0 .

(181)

The newly defined invariant interval is indeed gauge invariant. This is due to the presence
of gravity. (175) can now be rewritten as

S =

∫
dτ

{
1

2n
gµν ẋ

µẋν − n

2
m2

}
. (182)

Now we will try to find the full gauge transformation of the full metric, gµν = ηµν + hµν
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(without assuming that hµν is small) with δξx
µ = −ξµ(τ), where ξµ is infinitesimal:

0 = δξS =
1

2

∫
dτn−1

(
∂ρgµνδξx

ρẋµẋν + (δξgµν)ẋµẋν + 2gµν ẋ
µδẋν

)
=

1

2

∫
dτn−1

(
− ξρ∂ρgµν ẋµẋν − 2gµν ẋ

µξ̇ν + δξgµν ẋ
µẋν
)

=
1

2

∫
dτn−1

(
− ξρ∂ρgµν ẋµẋν − 2gµν ẋ

µẋλ∂λξ
ν + δξgµν ẋ

µẋν
)
.

(183)

We see that the infinitesimal transformation of gµν must be

δξgµν = ξρ∂ρgµν + ∂νξ
ρgµρ + ∂µξ

ρgνρ . (184)

One can check that in the weak field limit, i.e. for hµν small, the gauge transformation of
gµν to zeroth order in h (neglecting O(ξh)), reproduces δξhµν = ∂µξν+∂νξµ. How does one
find the finite transformation of gµν? An infinitesimal transformation , δξx

µ = −ξµ(x),
gives xµ → x′µ = xµ−ξµ(x), i.e. a small local translation. A finite transformation is xµ →
x′µ(x). To find the finite transformation for gµν , we can inspect the finite transformation
of the action:

S′ =

∫
dτ

1

2n
g′µν(x′)ẋ′µẋ′ν

=

∫
dτ

1

2n
g′µν(x′)

∂x′µ

∂xλ
∂x′ν

∂xρ
ẋλẋρ

= S =

∫
dτ

1

2n
gµν ẋ

µẋν ,

(185)

where we have used x′µ(x)
dτ = dxµ

dτ
∂x′µ

∂xν in the second line, and in the last line we have
equated the transformed action to the original action. For this equality to be true, the
finite transformation of gµν must be

g′µν(x′) =
∂xλ

∂x′µ
∂xρ

∂x′ν
gλρ(x) . (186)

Lecture 8

Our task today is to find a nonlinear action which is invariant under the gauge transfor-
mations in (184) for gµν . For this we need the following definitions:

gµν is the inverse of gµν : gµρgρν = δµν ,

g ≡ |g| ≡ det gµν < 0 , for (−,+,+,+) signature .
(187)

A useful formula is

|g| = 1

4!
εµνρσεαβγδgµαgνβgργgσδ , (188)
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where ε is the Levi-Civita symbol and ε0123 = +1. A useful way of writing gµν is

gµν =
1

3!

1

|g|
εµρσκεναβγgραgαβgκγ . (189)

Exercise: prove (188) and (189).
We can then write the gauge transformation of the determinant |g|:

δξ|g| =
1

3!
εµνρσεαβγδ(δξgµα)gνβgργgσδ

= |g|gµνδξgµν
= |g|gµν(ξρ∂ρgµν + 2∂µξ

ρgρν)

= ξρ∂ρ|g|+ 2∂µξ
µ|g| .

(190)

We see that the square-root of minus the determinant
√
−g transforms as:

δξ
√
−g = ξρ∂ρ

√
−g + ∂ρξ

ρ√−g = ∂ρ(ξ
ρ√−g) . (191)

Suppose we had a function, i.e. a scalar F (g), transforming as δξF = ξρ∂ρF . Then the
action

S =

∫
d4x
√
−gF (g) (192)

is gauge invariant:

δξS =

∫
d4x
(
∂ρ(ξ

ρ√−g)F +
√
−gξρ∂ρF

)
=

∫
d4x∂ρ

(
ξρ
√
−gF

)
= 0 .

(193)

The next step is to construct a function out of the metric tensor and its derivatives that has
this property. Can we write a two-derivative action for gµν? We claim that, since we can
always integrate by parts, we can at most have first-order derivatives of gµν : S ∼ (∂g)(∂g).
We have assumed this before when deriving the Fierz-Pauli action. In addition, we claim
that there are only four independent structures, since

|g|−1∂µ|g| = gρσ∂µgρσ . (194)

Here we give the action that we want:

S =

∫
d4x

{√
−g
[

1

4
gµν∂µg

ρσ∂νgρσ −
1

2
gµν∂µg

ρσ∂ρgσν + ∂µg
µν

(
1√
−g

∂ν
√
−g
)

+ gµν
(

1√
−g

∂µ
√
−g
)(

1√
−g

∂ν
√
−g
)]}

+ Smatter .

(195)

Smatter describes the coupling to matter, for instance,

SMaxwell = −1

4

∫
d4x
√
−ggµρgνσFµνFρσ (196)
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where we have promoted
∫
d4x →

∫
d4x
√
−g and ηµν → gµν from its special relativity

form. We will prove that (195) is gauge invariant once we develop some geometrical
methods.
Differential Geometry I: Quick and Dirty
Let us start with Lie derivatives. A Lie derivative Lξ with respect to ξµ acting on a scalar
(a function) is

Lξf := ξµ∂µf . (197)

A Lie derivative acting on a vector field is

LξV µ := ξν∂νV
µ − ∂νξµV ν (198)

and on a co-vector it is
LξWµ := ξν∂νWµ + ∂µξ

νWν . (199)

We can generalize these rules to a general tensor Tµ1···µsν1···νr ,

LξTµ1···µsν1···νr := ξρ∂ρT
µ1···µs

ν1···νr − ∂ρξµ1T ρµ2···µsν1···νr − · · · − ∂ρξµsTµ1···µs−1ρ
ν1···νr

+ ∂ν1ξ
ρTµ1···µsρν2···νr + · · ·+ ∂νrξ

ρTµ1···µsν1···νr−1ρ .

(200)

The Lie derivative has the following properties:

1) [Lξ1 ,Lξ2 ] = L[ξ1,ξ2] , where [ξ1, ξ2]µ = ξν1∂νξ
µ
2 − ξ

ν
2∂νξ

µ
1 = Lξ1ξ

µ
2 = −Lξ2ξ

µ
1 , (201)

2) Lξ(V µWµ) = (LξV µ)Wµ + V µLξWµ = ξν∂ν(V µWµ) . (202)

In words, the Lie derivative 1) obeys the Leibniz rule and 2) is consistent with index
contractions. How is this related to the gauge-transformation of gµν? A collection of
functions Tµ1···µsν1···νr is a tensor field of rank (r, s), provided it transforms as

δξT
µ1···µs

ν1···νr = LξTµ1···µsν1···νr . (203)

Thus, gµν is a (2, 0) tensor field and gµν is a (0, 2) tensor field. Is there a way to take one
or two derviatives of gµν such that the result is also a tensor field? Can we build tensors
from derivatives of gµν? Let us introduce the non-covariant variation,

∆ξ := δξ − Lξ . (204)

This notation allows us to keep track of the non-covariant parts of the variations of objects.
Note that ∆ξ acts trivially on tensors, e.g. ∆ξg

µν ≡ 0, and ∆ξ behaves as a variation:
∆ξ(R · S) = ∆ξR · S +R∆ξS. Let us see how derivatives of gµν transform.

δξ(∂µgνρ) = ∂µ(δξgνρ)

= ∂µ(ξσ∂σgνρ + ∂νξ
σgσρ + ∂ρξ

σgνσ)

= ξσ∂σ∂µgνρ + ∂µξ
σ∂σgνρ + ∂νξ

σ∂µgσρ + ∂ρξ
σ∂µgνσ

+ ∂µ∂νξ
σgσρ + ∂µ∂ρξ

σgνσ

(205)
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We can write the non-covariant variation of ∂µgνρ,

∆ξ(∂µgνρ) = ∂µ∂νξ
σgσρ + ∂µ∂ρξ

σgνσ . (206)

If we antisymmetrize µ and ν, we could eliminate the first term of ∆ξ(∂µgνρ), but the
second term would not vanish. We conclude that no combination of ∂µgνρ is a tensor. We
can work with the Christoffel symbol Γρµν and we find that ∆ξΓ

ρ
µν = ∂µ∂νξ

ρ.
Exercise: explicitly compute the non-covariant variation of the Christoffel symbol,

δξΓ
ρ
µν = ∂µ∂νξ

ρ + ξσ∂σΓρµν + ∂µξ
σΓρσν + ∂νξ

σΓρσµ − ∂σξρΓσµν . (207)

Exercise: prove

∆ξ(∂µΓρνσ) = ∂µ∂ν∂σξ
ρ + ∂µ∂νξ

λΓρλσ + ∂µ∂σξ
λΓρνλ − ∂µ∂λξ

ρΓλνσ . (208)

It is useful to use matrix notation:

Γµ ≡ (Γµ)ρν ≡ Γρµν , (209)

σ ≡ σµν ≡ ∂νξµ . (210)

In matrix notation,

∆ξ(∂µΓν) = ∂µ∂νσ + ∂µ∂νξ
ρΓρ − [∂µσ,Γν ] ,

∆ξ(∂[µΓν]) = −[∂[µσ,Γν]] .
(211)

We can then write the Riemann tensor:

Rµν := ∂µΓν − ∂νΓµ + [Γµ,Γν ] . (212)

Unpacking to index form,

Rµν
ρ
σ = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ . (213)

We compute the non-covariant variation,

∆ξRµν = ∆ξ(2∂[µΓν]) + 2[∆ξΓ[µ,Γν]]

= −2[∂[µσ,Γν]] + 2[∂[µσ,Γν]]

= 0 .

(214)

Therefore,
δξRµν

ρ
σ = LξRµνρσ . (215)

We have proved that the non-covariant variation of the Riemann tensor is zero and that
the Riemann tensor is a (3, 1) tensor. We can construct the Ricci tensor, Rµν := Rρµ

ρ
ν ,

which is a symmetric (2, 0) tensor. We can also construct the Ricci scalar, R := gµνRµν ,
which transforms as δξR = ξµ∂µR. The Riemann tensor also has the properties (Rµνρσ :=
gρλRµν

λ
σ):

Rµνρσ = −Rνµρσ = −Rµνσρ (216)
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and also satisfies the Bianchi identity:

Rµνρσ +Rνρµσ +Rρµνσ ≡ 0 . (217)

We can then write the gauge-invariant action by using the Ricci scalar,

S =

∫
d4x
√
−gR . (218)

(218) is called the Einstein-Hilbert action. The Einstein-Hilbert action is equivalent to
(195) up to total derivatives.

Lecture 9

Today we will continue our discussion of differential geometry. The gauge transformation
for gµν is

δξgµν ≡ Lξgµν (219)

and gµν is a (2, 0) tensor. In the previous lecture we showed that the Christoffel symbol
is not a tensor:

δξΓ
ρ
µν = ∂µ∂νξ

ρ + LξΓρµν . (220)

We showed that the Riemann tensor is a (3, 1) tensor ,

Rµν
ρ
σ = 2

(
∂[µΓρν]σ + Γρλ[µΓλν]σ

)
. (221)

From this we have then constructed the Einstein-Hilbert action in (218). In order to
couple matter fields to gravity, we need to define covariant derivatives. Let us consider
the vector field Aµ of Maxwell’s theory and its gauge transformation:

δξAµ = LξAµ = ξν∂νAµ + ∂µξ
νAν ,

δξ(∂µAν) = ∂µ(ξρ∂ρAν + ∂νξ
ρAρ)

= ξρ∂ρ(∂µAν) + ∂µξ
ρ∂ρAν + ∂νξ

ρ∂µAρ + ∂µ∂νξ
ρAρ ,

∆ξ(∂µAν) = ∂µ∂νξ
ρAρ .

(222)

We would like to define a covariant derivative ∇µ such that ∇µAν transforms as a tensor,

∇µAν = ∂µAν − ΓρµνAρ . (223)

The noncovariant variation of ∇µAν vanishes:

∆ξ(∇µAν) = ∂µ∂νξ
ρAρ −∆ξΓ

ρ
µνAρ = 0. (224)

We have thus successfully defined a covariant derivative. The covariant derivative of Aµ

is

∇µAν ≡ ∂µAν + ΓνµρA
ρ . (225)
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For a scalar f , the partial derivative ∂µf transforms as a covariant vector. Whenever a
special relativistic theory is coupled to gravity, as a general rule, the Minkowski metric
ηµν should be replaced by gµν and the partial derivative ∂µ should be replaced by ∇µ.
The electromagnetic field tensor for example becomes

Fµν = ∇µAν −∇νAµ
= ∂µAν − ∂νAµ − 2Γρ[µν]Aρ

= ∂µAν − ∂νAµ .
(226)

Let us now discuss some properties of covariant derivatives. First, the metric gµν is
covariantly constant, meaning

∇µgνρ = ∂µgνρ − Γλµνgλρ − Γλµρgνλ = 0 . (227)

Second, the commutator of ∇µ gives the Riemann tensor Rµν ,

[∇µ,∇ν ] = Rµν . (228)

Thus, [∇µ,∇ν ] 6= 0, unlike the commutator of the usual partial derivatives [∂µ, ∂ν ] = 0.
For instance, [∇µ,∇ν ]V ρ = Rµν

ρ
σV

σ, since

[∇µ,∇ν ]V ρ = ∂µ(∇νV ρ)− Γλµν∇λV ρ + Γρµλ∇νV
λ − (µ↔ ν)

= ∂µ
(
∂νV

ρ + ΓρνλV
λ
)

+ Γρµλ
(
∂νV

λ + ΓλνσV
σ
)
− (µ↔ ν)

= ∂µΓρνλV
λ + ΓρµλΓλνσV

σ − (µ↔ ν)

=
(
∂µΓρνλ − ∂νΓρµλ + ΓρµσΓσνλ − ΓρνσΓσµλ

)
V λ

= Rµν
ρ
λV

λ .

(229)

Third, the variations of the Christoffel symbol and the Riemann tensor under δgµν are
tensors:

δΓρµν =
1

2
gρσ
(
∇µδgνσ +∇νδgµσ −∇σδgµν

)
, (230)

δRµν
ρ
σ = ∇µδΓρνσ −∇νδΓρµσ

δRµν = ∇ρδΓρµν −∇µδΓρρν .
(231)

The Christoffel symbol itself is not a tensor, but its variation is a tensor. There are two
kinds of Bianchi identities for the Riemann tensor. One is algebraic and one is differential.
The algebraic Bianchi identity for Rµνρσ ≡ gρλRµνλσ is

Rµνρσ +Rνρµσ +Rρµνσ ≡ 0 . (232)

This can also be written in a more compact form,

R[µνρ]σ ≡ 0 . (233)
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The differential Bianchi identity is

∇µRνρσλ +∇νRρµσλ +∇ρRµνσλ ≡ 0 . (234)

The proof of this is the Jacobi identity,[
[∇µ,∇ν ],∇ρ

]
+
[
[∇ν ,∇ρ],∇µ

]
+
[
[∇ρ,∇µ],∇ν

]
≡ 0 . (235)

(234) can be written as ∇[µRνρ] ≡ 0. Our goal now is to derive the Einstein equations
from the Einstein-Hilbert action (218). In order to do this, we have to remember to take
all the contributions of the metric.

δSEH = δ

∫
d4x
√
−ggµνRµν

=

∫
d4x

(
1

2

√
−ggµνδgµνR+

√
−gδgµνRµν +

√
−ggµν(∇ρδΓρµν −∇µδΓρρν)

)
=

∫
d4x
√
−gδgµν

(
Rµν −

1

2
Rgµν

) (236)

Exercise: show that
∫
dx
√
−g∇µV µ =

∫
d4x∂µ(

√
−gV µ) = 0.

Thus we have obtained the full non-linear extension of the vacuum Einstein equation:

Gµν ≡ Rµν −
1

2
gµνR = 0 , (237)

Gµν is the Einstein tensor. The matter couplings, i.e. in S = 1
16πG

∫
d4x
√
−gR+ Smatter,

would result in a source term to the Einstein equation. Recall that the G in front of the
integral is Newton’s constant. This gives us a new definition of the energy-momentum
tensor Tµν ,

Tµν ≡ −
2√
−g

δSmatter
δgµν

. (238)

The variation of the action can be written in terms of Tµν ,

δS =
1

16πG

∫
d4x
√
−gδgµνGµν +

∫
d4x

δSmatter
δgµν

δgµν

=
1

16πG

∫
d4x
√
−gδgµν

(
Gµν − 8πGTµν

)
,

(239)

which then gives

Gµν = Rµν −
1

2
Rgµν = 8πGTµν . (240)

Gµν satisfies the differential Bianchi identity,

∇µGµν ≡ 0 , (241)

which is consistent with ∇µTµν = 0 on-shell (as a consequence of matter field equations).
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Differential Geometry II: Classical Approach
We want to develop a kind of calculus on curved surfaces. Consider a curved smooth space
(“manifold”) M , embedded in D-dimensional flat space RD with coordinates ZM , M =
1, ..., D and basis eM , and a constant metric GMN . We will describe an arbitrary surface by
means of a parametrization. We have already briefly discussed the one-dimensional curve
and its parameterization. As a one-dimensional curve is described by one parameter, an
n-dimensional surface is described by n parameters. Let us try to draw such a surface
called M in RD. We parameterize the surface by functions

ZM (xµ) , µ = 0, ..., d− 1 . (242)

The dimension of the manifold is dim(M) = d if ∂ZM

∂xµ are all linearly independent. We
can draw a surface tangent to the point p. The tangent space TpM at p is spanned by:

∂ZM

∂xµ

∣∣∣∣
p

eM , µ = 0, ..., d− 1 . (243)

A general vector of M is written as

V = V µ∂Z
M

∂xµ

∣∣∣∣
p

eM . (244)

A vector field V ,

V (x) = V µ(x)
∂ZM (x)

∂xµ
eM , (245)

assigns a vector Vp ∈ TpM to each point p ∈M . Is there a natural metric to measure the
length of such vectors? The flat metric of the full space induces a metric on the manifold
M . If V and W are vector fields, we can define

〈V,W 〉 ≡ V µ∂Z
M

∂xµ
W ν ∂Z

N

∂xν
GMN = V µW νgµν , (246)

where gµν ≡ ∂ZM

∂xµ
∂ZN

∂xν GMN is called the induced metric. We do not care about the way
we parameterize surfaces, we only care about the shape of the surface (its curvature). Let
us connect to our previous lectures by considering a reparameterization xµ → x′µ(x),

g′µν(x′) =
∂ZM

∂x′µ
∂ZN

∂x′ν
GMN

=
∂ZM

∂xρ
∂xρ

∂x′µ
∂ZN

∂xσ
∂xσ

∂x′ν
GMN

=
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) ,

(247)

and on the vector field,

V ′µ(x′) =
∂x′µ

∂xν
V ν(x) . (248)
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The infinitesimal transformation x′µ = xµ − ξµ(x) acting on a vector V µ is

δξV
µ ≡ V ′µ(x)− V µ(x) ≡ LξV µ . (249)

We see now that the gauge transformations are general coordinate transformations on a
curved space M .

Lecture 10

Parallel Transport
We will discuss the geometrical interpretation of the Christoffel symbol Γ as a connection
and the Riemann tensor R as a curvature. Consider a vector space RD. Let there be a
vector VM at point p and a vector at point q in the same direction. With respect to a
basis, these vectors have the same components. You can think of a vector as an equivalence
class of parallel arrows. On flat space, we do not care whether the vector is at point p or
point q. On a curved surface, we may have two different tangent surfaces at two different
points. Mathematically, TpM and TqM have a priori nothing to do with each other and
are different spaces. It does not make sense to ask: given a vector in TpM , what is the
corresponding vector at q? Let us draw a curve from point p to point q. Suppose we want
to move a vector in TpM to point q. What is the canonically associated vector at point q
in TqM?

In flat space, there is a natural way to move the vector around. If we choose to parallel
transport the vector according to the ambient space, it is not necessarily in TqM at point
q. Let p = Z(x) and q = Z(x + δx), where δx is small. We take the projection of the
parallel transported vector at q onto the tangent space TqM . In coordinates, let

VM (Z(x)) = V µ∂Z
M

∂xµ
. (250)

At point q = Z(x+ δx),

VM = VM
‖ + VM

⊥ , VM
‖ ∈ TpM . (251)

Let us determine VM
‖ and VM

⊥ . First, there must be a Kµ so that

VM
‖ = Kµ∂Z

M

∂xµ
(x+ δx) . (252)

Second, VM
⊥ is orthogonal to any vector at TqM ∈Wµ ∂ZM

∂xµ , so

0 = GMNV
M
⊥ Wµ∂Z

N

∂xµ
∀Wµ , (253)

VM
⊥
∂ZM
∂xµ

(x+ δx) = 0 . (254)
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We contract (251) with ∂ZM
∂xν (x+ δx) ,

VM ∂ZM
∂xν

= Kµ∂Z
M

∂xµ
∂ZM
∂xν

= Kµgµν = Kν

= V µ∂Z
M

∂xµ
∂ZM
∂xν

(x+ δx)

= V µ∂Z
M

∂xµ

(
∂ZM
∂xν

(x) +
∂2ZM
∂xν∂xρ

δxρ
)

= V µ

(
gµν +

∂ZM

∂xµ
∂2ZM
∂xν∂xρ

δxρ
)
.

(255)

The parallel transport of Vµ at x to x+ δx yields Kµ and the difference can be written as:

δVµ = Kµ − Vµ = V ν∂νZ
M∂µ∂ρZMδx

ρ . (256)

Is there an intrinsic formula for δVµ that is independent of ZM (x)? Can we rewrite
(256) in terms of gµν? To see that there is such a formula, recall

gµν = ∂µZ
M∂νZM ,

∂ρgµν = ∂µ∂ρZ
M∂νZM + ∂µZ

M∂ν∂ρZM .
(257)

so that we can compute

Γµν|ρ =
1

2
(∂µgνρ + ∂νgµρ − ∂ρgµν) = ∂µ∂νZ

M∂ρZM . (258)

We can then rewrite (256) as

δVµ = V νΓµρ|νδx
ρ = ΓρµνVρδx

ν . (259)

An important property is that the norm gµνVµVν is preserved under parallel transport:

δ(gµνVµVν) = ∂ρg
µνδxρVµVν + 2gµνδVµVν

= −gµαgνβ∂ρgαβδxρVµVν + 2gµνΓσµρVσδx
ρVν

= −gµαgνβ∂ρgαβδxρVµVν + (∂µgρσ + ∂ρgµσ − ∂σgµρ)V σV µ

= −V αV β∂ρgαβδx
ρ + δxρ∂ρgµσV

σV µ

= 0 .

(260)

Demanding

δ(WµVµ) = δWµVµ +WµΓρµνVρ∂x
ν !

= 0 , (261)

one finds

δWµ = −ΓµνρW
νδxρ . (262)

34



In matrix notation, (Γµ)νρ = Γνµρ and

δW = −δxµΓµ(W ) . (263)

If we parallel transport a vector from the north pole of a sphere to the equator, then
parallel transport to some other point on the equator, and finally parallel transport back
to the initial point on the north pole, we can see that the final transported vector is not
the same as the initial vector. This is one expression of curvature.

If we start with a vector at point p and parallel transport to another point, and to
another point, and so on, in flat space, we obtain a straight line. In curved space, the
curve we obtain is what we call a geodesic. Let uµ be the vector uµ ≡ dxµ

dτ . We use the
equation (262),

δuµ + Γµνρu
νδxρ = 0 . (264)

Dividing by δτ one obtains the geodesic equation:

duµ

dτ
+ Γµνρu

ν dx
ρ

dτ
= 0 ,

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0 .

(265)

Let us take a curve γ, parameterized as xµ(τ), and the vector field V µ.

V µ(τ) := V µ(x(τ))

V̇ µ(τ) = ∂τV
µ(x(τ)) .

(266)

Note that V̇ µ(τ) is not a vector field:

V µ(τ + δτ)− V µ(τ) ' ∂τV µδτ . (267)

This failure can be understood as a consequence of illegally comparing vectors at two
different points. In order to compare V µ(τ +δτ) to V µ(τ) we parallel transport the latter:

V µ(τ + δτ)− (V µ − ΓµνρV
νδxρ) ≡ ∇τV µδτ

= δτ(∂τV
µ + ΓµνρV

ν ẋρ)

= δτ(∇τV µ) ,

(268)

where

∇τ ≡ ẋν∇νV µ = ẋµ(∂νV
µ + ΓµνρV

ρ) . (269)

In the following we also use the following notation for the parallel transport of a vector
from p to q:

V (q) = V (p)− δxµΓµ(V (p)) . (270)

We want to consider now what happens when we parallel transport around a closed curve.
Consider the parallel transport of a vector V from point p→ q → r and p→ s→ r in the
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figure.

V (q) = V − δ1x
µΓµ(V ) , V ≡ V (p) ,

V (r) = V (q)− δ2x
µΓµ(x+ δ1x)

(
V (q)

)
= V − δ1x

µΓµ(V )− δ2x
µ(Γµ(x) + δ1x

ν∂νΓµ)(V − δ1x
ρΓρ(V )) ,

= V − (δ1x
µ + δ2x

µ)Γµ(V )− δ1x
µδ2x

ν(∂µΓν − ΓνΓµ)(V )

(271)

From p→ s→ r, we have to exchange δ1x
µ ↔ δ2x

µ in the formula (271) we just computed.

V ′(r) = V − (δ2x
µ + δ1x

µ)Γµ(V )− δ1x
µδ2x

ν(∂νΓµ − ΓµΓν)(V ) . (272)

We can take the difference

∆V := V (r)− V ′(r) = δ1x
µδ2x

ν(∂µΓν − ∂νΓµ + ΓµΓν − ΓνΓµ)(V ) . (273)

The terms in the parantheses are precisely the matrix notation of the Riemann tensor,

∆V = −δ1x
µδ2x

νRµν(V ) . (274)

Lecture 11

The Schwarzschild Solution
What is the gravitational field around a star or a planet? We set the energy momentum
tensor to zero since we are in vacuum. The Einstein equations become

Rµν = 0 (275)

since

Gµν = Rµν −
1

2
Rgµν = 0 (276)

and R = 0. Since we have spherical symmetry, it is intuitive to work in spherical coor-
dinates. This means that we work in coordinates xµ = (x0, x1, x2, x3) = (t, r, θ, φ). The
general ansatz is

ds2 = gµνdx
µdxν = g00(r, t)dt2 + 2g01(r, t)drdt+ g11(r, t)dr2 +W (r, t)r2dΩ2 , (277)

where dΩ2 = dθ2 + sin2 θdφ2. This is the most general ansatz that is compatible with
spherical symmetry. Now we will look for simplifications. One simplification is Birkhoff’s
theorem, which states that upon using the vacuum Einstein equations, the solution is
necessarily stationary. This implies that one can choose the metric gµν to be independent
of time. This simplifies the ansatz to

ds2 = g00(r)dt2 + 2g01(r)drdt+ g11(r)dr2 +W (r)r2dΩ2 . (278)

We can next reparameterize time, t→ t′ = t− f(r), and dt′ = dt− f ′(r)dr, where ′ ≡ ∂
∂r .

g00(dt)2 = g00

(
(dt′)2 + 2f ′(r)drdt+ (f ′(r))2dr2

)
. (279)
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The off-diagonal term 2(g01 + g00f
′) can be set to zero by choosing

f = −
∫ r g01(r′)

g00(r′)
dr′ (280)

We can choose radial coordinates

r̃ =
√
W (r) (281)

which sets W = 1. We can finally write (278) as

ds2 = gµνdx
µdxν = −e2ν(r)dt2 + e2λ(r)dr2 + r2dΩ2 (282)

or, in matrix notation,

gµν =


−e2ν(r) 0 0 0

0 e2λ(r) 0 0
0 0 r2 0
0 0 0 r2 sin2 θ

 (283)

and

gµν =


−e−2ν(r) 0 0 0

0 e−2λ(r) 0 0
0 0 r−2 0
0 0 0 r−2 sin−2 θ

 . (284)

The Christoffel symbols for this metric are:

Γ1
00 = ν ′e2ν−2λ , Γ0

10 = ν ′ , Γ1
11 = λ′ ,

Γ2
12 = Γ3

13 = r−1 , Γ1
22 = −re−2λ , Γ3

23 =
cos θ

sin θ
= cot θ ,

Γ1
33 = −r sin2 θe−2λ , Γ2

33 = − sin θ cos θ .

(285)

The Ricci tensor is

Rµν = ∂ρΓ
ρ
µν − ∂µΓν + ΓλΓλµν − ΓρµλΓλρν , (286)

where Γν = Γρρν = (0, ν ′ + λ′ + 2
r , cot θ, 0).

R00 = ∂1Γ1
00 + Γ1Γ1

00 − Γρ0λΓλ0ρ

=

{
(ν ′′ + ν ′(2ν ′ − 2λ′))e2ν−2λ +

(
ν ′ + λ′ +

2

r

)
ν ′e2ν−2λ − 2(ν ′)2e2ν−2λ

}
=

(
ν ′′ + (ν ′)2 − λ′ν ′ + 2ν ′

r

)
e2ν−2λ

(287)
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R00 =

(
ν ′′ + (ν ′)2 − λ′ν ′ + 2ν ′

r

)
e2ν−2λ

R11 = −ν ′′ + ν ′λ′ − (ν ′)2 + 2
λ′

r

R22 = −(1 + rν ′ − rλ′)e2λ + 1

R33 = sin2 θR22 .

(288)

Now to solve Rµν = 0,

e−2ν+2λR00 +R11 =
2

r
(ν ′ + λ′) = 0 (289)

Therefore,
ν ′(r) + λ′(r) = 0 (290)

and
ν(r) = −λ(r) + const. (291)

In the limit r →∞, ν, λ→ 0 therefore const. = 0 and hence

ν = −λ . (292)

Next,
R22 = 0 (293)

implies

1 + 2rν ′(r)e2ν = 1 ,

∂

∂r
(re2ν(r)) = 1 ,

(294)

re2ν(r) = r + C , (295)

g00 = −e2ν = −
(

1 +
C

r

)
. (296)

The integration constant can be fixed

gµνdx
µdxν = −

(
1 +

C

r

)
dt2 + · · · ' (ηµν + hµν)dxµdxν , (297)

by comparing this with (128),

h00 = −2φ =
2GM

r
, (298)

therefore
C = −2GM . (299)

Finally, we have found the Schwarzschild solution:

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (300)
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This is valid for r > rs = 2GM , where rs is the Schwarzschild radius.
Time Dilatation and Redshift
Let there be two stationary observers, Alice and Bob, at distances, rA and rB. Let
xA(t) = (t, rA, 0, 0) and xµB(t) = (t, RB, 0, 0). Let rA > rB � rs. Then ẋµA = (1, 0, 0, 0)
and ẋµB = (1, 0, 0, 0). Let us compute

τA =

∫ ∆τ

0

√
−gµν ẋµAẋνAdt =

∫ ∆τ

0

√
−g00dt

=

∫ ∆τ

0

(
1− 2GM

rA

)1/2

dt =

(
1− 2GM

rA

)1/2

∆t

(301)

There is a similar formula for τB. The elapsed time for B is smaller than that for A:

τB
τA

=

(
1− 2GM

rB

)1/2

(
1− 2GM

rA

)1/2
< 1 . (302)

This implies redshift because the frequency ω ∼ 1
time , and hence the ratio

ωA
ωB

=
τB
τA
'
(

1− GM

rB

)(
1 +

GM

rA

)
' 1− GM

rB
+
GM

rA
< 1 .

(303)

Black Holes
Now let us talk about black holes. On light cones, ds2 = 0 and therefore

dt = ±
(

1− 2GM

r

)−1

dr . (304)

If r →∞, dt = ±dr. Very far from the source, we have Minkowski space. When r → 2GM ,
we can see from this formula, dt � dr. The light cone structure changes when we get
close to the black hole. What happens to a light ray emitted close to the event horizon?
Let us assume that there is a second observer who is falling into the black hole. At the
event horizon, the light cone actually aligns with the event horizon. We want to see what
happens to a freely falling observer in such a spacetime. A freely falling observer falls on
a geodesic. We have to fix some parameterization for the curve, xµ(τ) = (t(τ), r(τ), 0, 0).
Let τ be proper time and therefore ẋ2 = −1. Let

uµ ≡ dxµ

dτ
≡ (u0, u1, 0, 0) . (305)

The geodesic equation for uµ is

duµ

dτ
= −Γµνρu

νuρ . (306)
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Then
du0

dτ
= −2Γ0

10u
1u0 = −2

dν

dr

dr

dτ
u0 = −2

dν

dτ
u0 , (307)

e2ν du
0

dτ
+ 2

dν

dτ
e2νu0 = 0 , (308)

i.e.
d

dτ
(e2νu0) = 0 , (309)

therefore

e2νu0 ≡ K = constant. (310)

gµνu
µuν = −e2ν(u0)2 + e−2ν(u′)2 ≡ −1 (311)

(e2νu0)2 − (u′)2 = e2ν = 1− rS
r

(312)

Now we can solve this expression for the components of u.

u0 = K

(
1− rs

r

)−1

,

u1 = −
(
K2 − 1 +

rs
r

)1/2

.

(313)

When r � rs, u
0 = K and u1 = −

√
K2 − 1. Thus for K 6= 1, there is an initial radial

velocity. Let us take the initial radial velocity to be zero so that K = 1. Let us assume
that the observer is close to the horizon so that r = rs + ε, ε

rs
� 1 .

dt

dr
=
u0

u1
= − 1

1− rs
r

(
r

rs

)1/2

= − 1

1− rs
rs+ε

(
1 +

ε

rs

)1/2

(314)

dt

dr
' −rs

ε
= − rs

r − rs
(315)

Upon integration of (315),

t = −rs ln(r − rs) + const. (316)

And therefore when r → rs = 2GM , we have t → ∞. Therefore it will take an infinite
time for an outside observer to see the in-falling observer to reach the horizon.

Lecture 12

We will continue our discussion of black holes. Recall the Schwarzschild solution in (300).
Let us call xµ = (t, r, θ, φ) the Schwarzschild coordinates, which is valid for r > rs. Let
us imagine two observers, A and B. A is stationary at a fixed radius from the black hole.
B starts closer to the center of the black hole and falls freely toward the black hole. If B
wants to communicate with A, B has to send light signals. The closer one is to the event
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horizon, the more upwards the light cones are tilted. Closer to the black hole, the light
cones become narrower.

What is the experienced time of the observer that falls into the black hole? From the
last lecture (313),

1

u1
=
dτ

dr
= −

(
K2 − 1 +

rS
r

)1/2
K=1
= −

(
rS
r

)1/2

,

τ =

∫
dτ =

∫
dτ

dr
dr = −

√
rS

∫ rS

ri

r−1/2dr

= −2
√
rS [r1/2]rSri = 2

√
rS(
√
ri −
√
rS) > 0 .

(317)

Observer B experiences a finite proper time to get to the event horizon, whereas A had
measured an infinite time. This seems to be paradoxical.

Is there an extension of the Schwarzschild solution that goes beyond the event horizon?
To investigate this, we look at a different coordinate system. For light cones,

ds2 = 0 , (318)

dt = ±
(

1− 2GM

r

)−1

dr . (319)

The tortoise coordinates are defined as:

r∗ ≡ r + 2GM ln

(
r

2GM
− 1

)
(320)

This gives us

dr∗ = dr + 2GM
1

r
2GM − 1

dr

2GM

=
1

1− 2GM
r

dr .
(321)

Then (319) can be written as

dt = ±dr∗ . (322)

This suggests us to introduce the null coordinates:

v = t+ r∗ (advanced)

u = t− r∗ (retarded) .
(323)

The trick is now to look for a coordinate system in which r = rs = 2GM is not so special.
Let us make the coordinate transformation,

t→ v = t+ r∗ , (324)
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and leave the spatial coordinates (r, θ, φ) unchanged. We then compute

dv = dt+ dr∗ = dt+

(
1− 2GM

r

)−1

dr , (325)

−
(

1− 2GM

r

)
dv2 = −

(
1− 2GM

r

)
dt2 − 2dtdr −

(
1− 2GM

r

)−1

dr2 , (326)

2dvdr = 2dtdr + 2

(
1− 2GM

r

)−1

dr2 . (327)

ds2 becomes

ds2 = −
(

1− 2GM

r

)
dv2 + 2dvdr + r2dΩ2 . (328)

We have now rewritten the Schwarzschild solution using one of the null coordinates. The
coordinates used to write this metric (328) are called Eddington-Finkelstein coordinates.
(328) can be written in terms of a metric gαβ, where det gαβ = −1:

ds2 = gαβ(r)dxαdxβ + r2dΩ2 ; xα = (v, r) , α, β = 0, 1 , (329)

gαβ =

(
−
(
1− 2GM

r

)
1

1 0

)
. (330)

If we evaluate on the event horizon,

gαβ(r = 2GM) =

(
0 1
1 0

)
. (331)

the metric is perfectly regular. The singularity in the original coordinates is then known
as a coordinate singularity. Another example of a coordinate singularity arises when we
try to describe the Euclidean 2-plane in polar coordinates, in which the metric is

gαβ =

(
1 0
0 r2

)
, (332)

which has a coordinate singularity at r = 0. In Cartesian coordinates, we know that such
a singularity does not exist.

A test of whether a singularity is “real” or due to the coordinate system is to compute
a curvature invariant such as

RµνρσRµνρσ =
48G2M2

r6
. (333)

The curvature goes to infinity as r approaches zero. r = 0 is indeed a real physical singu-
larity.
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Gravitational Waves
We return to gravitational waves in order to work out how they interact with test particles.
In previous lectures we discussed the linearized Einstein equations (recall (111 - 116)) and
its solution:

h̄µν = Cµνe
ikx , (334)

Cµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (335)

where kµ = (ω, 0, 0, ω) is null and describes a wave traveling in the x3 direction. Recall
that we had implemented a gauge fixing kµCµν = 0, which gave us ∂µh̄µν = 0, h̄µν ≡
hµν − 1

2hηµν . The component of the Riemann tensor (106) that we require is

Rµ00σ =
1

2
∂2

0hµσ . (336)

Let there be a particle xµ whose trajectory is given by the geodesic equation,

0 =
d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
. (337)

We need to have a bunch of test particles and investigate their relative motion. Let us
assume there is a second particle, xµ + δxµ, whose corresponding geodesic equation is

0 =
d2(xµ + δxµ)

dτ2
+ Γµνρ(x+ δx)

d(xν + δxν)

dτ

d(xρ + δxρ)

dτ
. (338)

Let us take the difference of the two equations to first order in δxµ:

0 =
d2(δxµ)

dτ2
+ δxσ∂σΓµνρ

dxν

dτ

dxρ

dτ
+ 2Γµνρ

d(δxν)

dτ

dxρ

dτ
. (339)

We want to rewrite this in a covariant form. Suppose V µ is a vector along the curve xµ.
We defined the covariant derivative ∇ on V µ as

∇V µ ≡ dV µ

dτ
+ ẋνΓµνρV

ρ . (340)

Now we can specialize to V µ ≡ δxµ. One can prove that (339) is then equivalent to

∇2δxµ +Rσν
µ
ρδx

σ dx
ν

dτ

dxρ

dτ
= 0 . (341)

This is also known as the geodesic deviation equation. For slowly moving test particles,
the four-velocity is approximately given by uµ = ẋµ ' (1, 0, 0, 0), and τ ' t. To first order
in δxµ and h, (341) is

d2

dt2
δxµ +Rσ0

µ
0δx

σ = 0

⇒ d2(δxµ)

dt2
− 1

2

(
d2

dt2
hµν

)
δxν = 0 .

(342)
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Let us assume first that h× = 0. Then (342) becomes

d2

dt2
(δx1)− 1

2

d2

dt2
(h+e

ikx)δx1 = 0 (343)

Moving the δx1 inside the derivative of the second term, using that the difference is of
higher order in h, one finds

d2

dt2

[(
1− 1

2
h+e

ikx

)
δx1

]
= 0 . (344)

The solution of this is (
1− 1

2
h+e

ikx

)
δx1 = a+ bt . (345)

Making the physical assumption that the solution does not grow linearly, we find the
perturbative solution,

δx1 '
(

1 +
1

2
h+e

ikx

)
a1 , (346)

where a1 is the initial separation. Similarly,

δx2 '
(

1− 1

2
h+e

ikx

)
a2 . (347)

We assume the initial configuration of the particles is in a circle. When the gravitational
wave comes through, one can see that this corresponds to the particles oscillating in a +
formation. Let us next assume that h+ = 0 and h× 6= 0. One finds that

δx1 ' a1 +
1

2
h×e

ikxa2 ,

δx2 ' a2 +
1

2
h×e

ikxa1 .

(348)

These correspond to the particles oscillating in a × formation. One can define

hR =
1√
2

(h+ + ih×) ,

hL =
1√
2

(h+ − ih×) .

(349)

A pure hR (hL) wave rotates the particles in the right-handed (left-handed) sense.

Lecture 13

Production of Gravitational Waves
Recall from an earlier lecture that we solved the linearized Einstein equation and used a
convenient redefinition of hµν ,

h̄µν = hµν −
1

2
hηµν , (350)
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where h ≡ ηµνhµν . With the Lorenz gauge,

∂µh̄µν = 0 , (351)

Gµν = −1

2
�h̄µν . (352)

The Einstein equation becomes

�h̄µν = −16πGTµν (353)

One can solve this equation by the method of Green’s functions,

�G(x− y) = δ(4)(x− y) , � ≡ �x = ηµν
∂

∂xµ
∂

∂xν
. (354)

Thus the solution is

h̄µν = −16πG

∫
d4y G(x− y)Tµν(y) (355)

This should be familiar from electrodynamics. The retarded Green’s function can be
written explicitly as

G(x) = − 1

4π|~x|
δ(|~x| − x0)θ(x0) , x ≡ xµ = (x0, ~x) . (356)

θ(x) is the Heaviside function,

θ(x) =

{
1, x > 0 ,

0, otherwise .
(357)

This is to make sure that the retarded Green’s function vanishes for x0 ≤ 0.

h̄µν = 4G

∫
d4y

1

|~x− ~y|
δ
(
|~x− ~y| − (x0 − y0)

)
θ(x0 − y0)Tµν(y) (358)

Perform
∫
dy0, y0 → x0 − |~x− ~y|, θ(x0 − y0) = 1.

h̄µν(x) = 4G

∫
d3y

1

|~x− ~y|
Tµν(t− |~x− ~y|, ~y) (359)

At a linearized level we can compute the gravitational field. The gravitational field at
some given time t only depends on earlier times. If you imagine a matter distribution far
away, it takes the corresponding travel time for the light:

tr := t− |~x− ~y| , (360)
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which is called retarded time. We want to derive the quadrupole formula which expresses
the gravitational field in terms of T 00. It is often convenient to work in Fourier space:

˜̄hµν(ω, ~x) ≡ 1√
2π

∫
dteiωth̄µν(t)

=
4G√
2π

∫
dtd3yeiωt

1

|~x− ~y|
Tµν(t− |~x− ~y|, ~y)

=
4G√
2π

∫
dtrd

3yeiωtreiω|~x−~y|
Tµν(tr, ~y)

|~x− ~y|

≡ 4G

∫
d3yeiω|~x−~y|

T̃µν(ω, ~y)

|~x− ~y|

(361)

In the third line, we have changed integration variables to tr. Let us imagine an observer at
a distance r from matter, whose dimensions are described by δr, δr � r. The exponential,

eiω|~x−~y|

|~x− ~y|
' eiωr

r
, r fixed . (362)

(361) becomes

˜̄hµν(ω, ~x) = 4G
eiωr

r

∫
d3yT̃µν(ω, ~y) . (363)

The goal is to compute ˜̄hij . We use the gauge condition,

∂µh̄µν = 0 ,

∂0h̄0ν = −∂ih̄iν
˜̄h0ν = − 1

ω
∂i˜̄hiν .

(364)

The trick one can use to simplify this is to consider the conservation of the energy-
momentum tensor, ∂µTµν = 0, which implies that the spatial divergence of T̃ is

− ∂kT̃ kµ = iωT̃ 0µ . (365)

One can rewrite the integral,∫
d3yT̃ ij(ω, ~y) =

∫
d3y
(
∂k(y

iT̃ kj)− yi∂kT̃ kj
)

= iω

∫
d3yyiT̃ 0j

=
iω

2

∫
d3y(yiT̃ 0j + yj T̃ 0i)

=
iω

2

∫
d3y
(
∂l(y

iyj T̃ 0l)− yiyj∂lT̃ 0l
)

=
iω

2

∫
d3y
(
∂l(y

iyj T̃ 0l) + iωyiyj T̃ 00
)

= −ω
2

2

∫
d3yyiyj T̃ 00

(366)
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The trick here was to rewrite such that we get the divergence of the energy-momentum
tensor. The boundary terms are zero. In the last step we have used the symmetry of the
energy-momentum tensor. Let us define the quadrupole moment tensor

Iij ≡
∫
d3yyiyjT 00(t, ~y) (367)

In summary, we have shown

˜̄hij(ω, ~x) = −2Gω2 e
iωr

r
Ĩij(ω) , (368)

where Ĩij is the Fourier transform of the quadrupole moment tensor. Let us compute the
inverse Fourier transform.

h̄ij(t, ~x) =
1√
2π

∫
dωe−iωt˜̄hij(ω, ~x)

= −2G

r

1√
2π

∫
dωω2e−iω(t−r)Ĩij(ω)

= −2G

r

1√
2π

∫
dω

(
− d2

dt2
e−iω(t−r)

)
Ĩij(ω)

(369)

By taking the second time-derivative outside of the integral, we are left with the h̄ in terms
of the quadrupole moment tensor:

h̄ij =
2G

r

d2

dt2
Iij(t− r) . (370)

(370) is called the quadrupole formula. This formula tells you how a given matter distri-
bution encoded in T 00 gives rise to a gravitational field.
Binary Star System
Let us consider two masses of equal mass M in the x1 − x2 plane. Let one of the masses,
a, be at (R, 0) and the other, b, at (−R, 0). From

GM2

(2R)2
=
Mv2

R
, (371)

the magnitude of the velocity of each mass is

v =

√
GM

4R
(372)

and the corresponding angular frequency is

Ω ≡ 2π

T
=

(
GM

4R3

)1/2

. (373)
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The motion of each mass is described:

x1
a = R cos(Ωt) , x2

a = R sin(Ωt) .

x1
b = −R cos(Ωt) , x2

b = −R sin(Ωt) .
(374)

The component of the energy momentum tensor, T 00 is then

T 00(t, ~x) = Mδ(x3)
[
δ(x1 −R cos(Ωt))δ(x2 −R sin(Ωt)) + δ(x1 +R cos(Ωt))δ(x2 +R sin(Ωt))

]
.

(375)

There are two delta functions that localize towards the orbit on which these objects move.

I11 =

∫
d3yy1y1Mδ(y2)

[
δ(y1 −R cos(Ωt))δ(y2 −R sin Ωt) + . . .

]
= M(R cos Ωt)2

(376)

Working out all the components,

h̄ij =
8GM

r
Ω2R2

− cos(2Ωtr) − sin(2Ωtr) 0
− sin(2Ωtr) cos(2Ωtr) 0

0 0 0

 . (377)

Energy of Gravitational Waves
In order to compute the energy of gravitational waves, we must determine an energy-
momentum tensor for hµν . Starting with the Einstein tensor, we expand in powers of h,
gµν = ηµν + hµν .

Gµν = G(1)
µν (h) +G(2)

µν (h) + · · · = 8πGTµν (378)

The Tµν on the right-hand side is the energy-momentum tensor for all other matter.
G(2)(h) is quadratic in h. We can rewrite the equation as

G(1)
µν = 8πG(Tµν + tµν) + · · · , (379)

where

tµν ≡ −
1

8πG
G(2)
µν (h) = − 1

8πG

(
R(2)
µν −

1

2
ηρσR(2)

ρσ ηµν

)
. (380)

This motivates us to identify tµν as the energy-momentum tensor of the linearized gravi-
tational field. In fact, when evaluated for solutions hµν of the linearized vacuum Einstein

equations, G
(1)
µν (h) = 0, it is conserved as we prove now. The full Bianchi identity reads

∇µGµν = ∂µG
µν + ΓµµρG

ρν + ΓνµρG
µρ ≡ 0 . (381)

Expanding this to second order in h using (378), we obtain two equations:

∂µG
(1)µν = 0 , (382)
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∂µG
(2)µν = −Γ(1)µ

µρ G(1)ρν − Γ(1)ν
µρ G(1)µρ . (383)

Thus, on shell, for which G
(1)
µν (h) = 0, we have

∂µt
µν = − 1

8πG
∂µG

(2)µν(h) = 0 . (384)

Unfortunately, tµν is not gauge invariant under the lowest-order gauge transformations
appropriate for the linearized fluctuations hµν . To see this we recall that the full gauge
transformations of Gµν are given by:

δξGµν = LξGµν . (385)

Expanding to second order in h with (378), and recalling that ξ is of the same order as h,

δ
(0)
ξ G(1)

µν = 0 , (386)

δ
(0)
ξ G(2)

µν + δ
(1)
ξ G(1)

µν = LξG(1)
µν , (387)

where we expanded the gauge variations as δξ = δ
(0)
ξ + δ

(1)
ξ + · · · in powers of h, with

δ
(0)
ξ hµν = ∂µξν + ∂νξµ ,

δ
(1)
ξ hµν = Lξhµν .

(388)

On-shell we have G
(1)
µν (h) = 0 and thus (387) reduces to

δ
(0)
ξ G(2)

µν + δ
(1)
ξ G(1)

µν = 0 . (389)

Next, we use that G
(1)
µν by definition depends linearly on its argument so that we can write,

using (388), δ
(1)
ξ G

(1)
µν (h) = G

(1)
µν (Lξh), and thus

δ
(0)
ξ G(2)

µν = −G(1)
µν (Lξh) . (390)

All in all, tµν transforms on-shell as

δξtµν =
1

8πG
G(1)
µν (Lξh) , (391)

where we suppressed the superscript (0) as it is understood that we consider the lowest-
order gauge transformations. Thus, tµν is not gauge invariant and hence does not provide
meaningful physical information. This problem is usually circumvented by introducing an
averaging procedure over several wavelength for which gauge invariance is recovered. This
state of affairs is sometimes expressed with the slogan that “gravitational energy cannot
be localized in space”. Denoting the averaging schematically by brackets 〈· · · 〉 one finally
defines the energy-momentum tensor of gravitational waves as

tµν ≡ −
1

8πG
〈G(2)

µν (h)〉 . (392)
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We do not have to specify the averaging 〈· · · 〉 beyond it being defined by an integral so that
any gradients average to zero: 〈∂α(· · · )〉 = 0. Gauge invariance then follows immediately
from (391) and recalling that the first-order “Einstein operator” reads

G(1)
µν (a) = −1

2

[
�aµν − 2∂(µ∂

ρaν)ρ + ∂µ∂νa+ (∂ρ∂σaρσ −�a)ηµν

]
, (393)

so that 〈G(1)
µν (a)〉 = 0 for arbitrary symmetric tensor aµν .

The formula (392) can be used to compute the energy of gravitational waves and
hence the energy loss of a binary star system due to emission of gravitational waves. The
period of the binary system changes accordingly and has been measured to be in perfect
agreement with the predictions of general relativity.
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Addendum: Precession of Perihelia

We want to analyze the motion of freely falling objects in a spherically symmetric gravi-
tational field hµν ≡ gµν − ηµν of the form

hµν =


−2φ(r) 0 0 0

0 −2ψ(r) 0 0

0 0 −2ψ(r) 0

0 0 0 −2ψ(r)

 , (394)

where φ and ψ are two a priori independent functions of the radial coordinate r, in order to
exhibit the precession of perihelia, whose effect for Mercury was one of the first spectacular
confirmations of general relativity.

We use the equations of motion for a point mass (the geodesic equation) in the form

d

dτ
(gµνu

ν) =
1

2
(∂µgνρ)u

νuρ , (395)

where uµ = dxµ

dτ is the 4-velocity with proper time τ . This form of the equation can be
quickly seen to be equivalent to the more familiar form involving Christoffel symbols by
working out the derivative of gµν on the left-hand side with the chain rule and bringing it
to the right-hand side. Writing gµν = ηµν + hµν this equation reduces to

d

dτ
(ηµνu

ν + hµνu
ν) =

1

2
∂µhνρ u

νuρ . (396)

Let the curve be parameterized by xµ(τ) = (t(τ), xi(τ)), so that uµ ≡ (ṫ, ẋi), ˙≡ ∂
∂τ .

We now evaluate the four equations (396) for (394). For µ = 0,

d

dτ

(
(−1− 2φ)ṫ

)
=

1

2
∂0hνρu

νuρ = 0 , (397)

using that hµν does not depend explicitly on time. Thus, we infer the conservation law

(1 + 2φ)ṫ = E = const. (398)

where E can be identified with energy. Next, for µ = i,

d

dτ

(
(1− 2ψ)δij ẋ

j
)

=
1

2
∂ihνρu

νuρ = −∂iφ ṫ2 − ∂iψ |ẋ|2 , (399)

using obvious 3-vector notation with |x|2 ≡ δijx
ixj . Employing the chain rule for differ-

entiation with respect to r =
√
δijxixj one obtains

∂iφ = φ′(r)
∂r

∂xi
=
φ′(r)

r
δijx

j (400)
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and similarly for ψ. Thus, (399) can be written as

d

dτ

(
(1− 2ψ)ẋi

)
= −1

r
(φ′(r)ṫ2 + ψ′(r)|ẋ|2)xi , (401)

cancelling the Kronecker delta on both sides. With this formula we can now prove that
the three quantities

Li ≡ −(1− 2ψ)εijk ẋ
jxk (402)

are conserved. (Here εijk is the totally antisymmetric Levi-Civita symbol.) Indeed,

dLi
dτ

= − d

dτ

(
(1− 2ψ)ẋj

)
εijkx

k − (1− 2ψ)εijk ẋ
j ẋk = 0 , (403)

since both terms vanish separately by total antisymmetry of εijk (in the first term one has
to use that the derivative is proportional to xj by (401) and hence this term is proportional
to εijkx

jxk = 0). The conserved quantities can be identified with angular momentum. We
can thus assume that the motion is confined to a plane, which we may as well identify
with the z = 0 plane. The conservation of L ≡ L3 then reads

d

dτ

(
(1− 2ψ)(ẋy − ẏx)

)
= 0 . (404)

We next replace (x, y) by polar coordinates (r, θ), so that the 3-vector reads

x = (r cos θ, r sin θ, 0) , (405)

from which one infers by a quick computation

|ẋ|2 = ṙ2 + r2θ̇2

ẋy − ẏx = −r2θ̇ .
(406)

Thus, the conserved angular momentum reads

L ≡ (1− 2ψ)r2θ̇ = const. (407)

We have one more conserved quantity we can use, gµνu
µuν = −1,

− (1 + 2φ)ṫ2 + (1− 2ψ)|ẋ|2 = −1 . (408)

We now use (398) and (406) to write this as

− E2

(1 + 2φ)
+ (1− 2ψ)(ṙ2 + r2θ̇2) = −1 . (409)

Next, we multiply by (1− 2ψ) and rewrite( E2

1 + 2φ
− 1
)

(1− 2ψ) = (1− 2ψ)2(ṙ2 + r2θ̇2) =
L2

r4θ̇2
(ṙ2 + r2θ̇2) , (410)
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using (407) in the last step. We can finally eliminate the dependence on proper time:(
E2

1 + 2φ
− 1

)
1− 2ψ

L2
=

1

r4

(
ṙ2

θ̇2
+ r2

)
=

1

r4

((
dr

dθ

)2

+ r2

)
. (411)

This is the differential equation we want to solve. It can be simplified by introducing the
new variable ρ ≡ 1

r , ( E2

1 + 2φ
− 1
)1− 2ψ

L2
=

(
dρ

dθ

)2

+ ρ2 . (412)

So far we have not made any assumption on the functions φ(r) and ψ(r), but now
we want to solve (412) for the actual functions arising in general relativity through the
Schwarzschild solution. We first have to rewrite the Schwarzschild solution in coordinates
that are appropriate for comparison with (394), where all three spatial coordinates are on
equal footing. The corresponding coordinates for the Schwarzschild solution are referred
to as isotropic coordinates, for which one defines a new radial function r′ by

r = r′
(

1 +
rs
4r′

)2
, (413)

where rs = 2GM . From this one computes

dr =
(

1− rs
4r′

)(
1 +

rs
4r′

)
dr′ ,

1− rs
r

=

(
1− rs

4r′

)2(
1 + rs

4r′

)2 . (414)

The Schwarzschild solution in isotropic coordinates then reads

ds2 = −
(
1− rs

4r

)2(
1 + rs

4r

)2dt2 +
(

1 +
rs
4r

)4 (
dx2 + dy2 + dz2

)
, (415)

where we finally dropped the prime on r. Introducing again ρ ≡ 1
r and expanding in

powers of rsρ, this reads

ds2 = −
(

1− rsρ+
1

2
r2
sρ

2 + · · ·
)
dt2 +

(
1 + rsρ+

3

8
r2
sρ

2 + · · ·
)(

dx2 + dy2 + dz2
)
.

(416)
We can finally read off φ and ψ to second order in rsρ:

φ = −1

2
rsρ+

1

4
r2
sρ

2 + · · · ,

ψ = −1

2
rsρ−

3

16
r2
sρ

2 + · · · .
(417)

Returning now to the equation (412) we want to solve, we expand the left-hand side
to the same order:

E2 − 1

L2
+

2E2 − 1

L2
rsρ+

15E2 − 3

8L2
r2
sρ

2 + · · · =
(
dρ

dθ

)2

+ ρ2 (418)
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This equation can be solved by bringing it to the form of an harmonic oscillator with an
external force by differentiating with respect to θ on both sides and then dividing by 2dρdθ :

2E2 − 1

2L2
rs +

15E2 − 3

8L2
r2
sρ =

d2ρ

dθ2
+ ρ (419)

or in explicit harmonic oscillator form:

d2ρ

dθ2
+ ω2ρ =

2E2 − 1

2L2
rs , (420)

where

ω ≡
√

1− 15E2 − 3

8L2
r2
s = 1− 15E2 − 3

16L2
r2
s + · · · (421)

To first order in rs we thus have ω = 1, in which case (420) can be quickly verified to be
solved by

ρ =
2E2 − 1

2L2
rs (1 + e cos θ) , (422)

where e is an integration constant. This is the well-known form of a parameterized ellipse
with radial and angular coordinates (r, θ) (but measured from one of the focal points!):

r(θ) =
a(1− e2)

1 + e cos θ
, (423)

where a is the semi-major axis and e =
√

1− b2

a2
the eccentricity. We have thus recovered,

to lowest order, Kepler’s law that closed orbits follow an ellipse. In particular, ρ(θ) is 2π-
periodic, confirming that the orbits are closed. This changes once we go to second-order,
in which case we have ω 6= 1 and so the general solution of (420),

ρ =
2E2 − 1

2L2ω2
rs (1 + e cos(ωθ)) , (424)

is no longer 2π periodic. In order to estimate the relative angle measuring the failure
of the orbit to be closed we assume that the object is slowly moving so that its energy
reduces to that corresponding to its rest mass. We then have E ' mc2 = 1 in natural
units, and

ω = 1− 3

4L2
r2
s + · · · . (425)

We now ask: what is the total angle that the object has to cover in order for the radial dis-
tance r (or equivalently ρ) to return to their initial value (say at the perihelion). Denoting
this angle by 2π + ∆θ one infers from (424)

ω(2π + ∆θ) = 2π . (426)

Thus,

∆θ = 2π

(
1

ω
− 1

)
= 2π

(
1 +

3

4L2
r2
s + · · · − 1

)
' 6π

4L2
(2GM)2 =

6πG2M2

L2
, (427)

which for mercury precisely accounts for the observed discrepancy.
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