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Preliminaries

Calculus of Variations
A function maps a number z and to another number f(z):

Ro>zw— f(z) eR. (1)

The derivative of a function is defined as:

df fz+h) - f(x)
- :

/ _ Y
f(x)_dx' lglg%)

The Taylor expansion of a function is:
fla+h) = f(x) = f'(x)h + O(R?), (3)
h=Az, 6f(z)=flz+h) - flz)=f(z)Az. (4)

Let us extend this concept to functionals. A functional S maps a function ¢(x) to a
number S[p(x)] € R. Let o(x) — ¢(x)+e£(x), where € is small. The variational derivative
of the functional S[p(z)] is

3,8 = Slpla) + <€()] = Sli(a)] = [ doFetla) + OC). (5)

This is the implicit definition of functional derivative %. Usually, we denote dp(x) = e£(x).

The variational principle states that §.5 . 0, Vop. If we demand the variational principle,

5S 6S
08 /d:v&P&p 0 only i 50 0, (6)

one obtains the equations of motion.



Consider the example:

We compute:

Sle(z) + e€(a :/dx 2) + e€(z))2 N
8

= [ aste@? + 2e0()e(@) + O)) = STe@) + [ arp(@ieete),
58 = / 20 ()€ (z) —> 522’;) — 20(x). ()

You can see that taking functional derivatives is similar to taking ordinary derivatives.
Let us consider the arbitrary function f(z),

Slp()] = / d f(p()) (10)
Slo() + et (x)] = / dr (o) + e€())
(11)
/ dn(f(0(x)) + £ (p(2))e€ () + O(e2))
5,5(x) = / d ' (p(a))0ip(x) = / dx ' (p(x)) € () (12)

Above we have applied the chain rule and the Leibniz rule. Consider another example:

Sle] = / dre=#) ()2 (13)

5,8

/ d;r{ — adpe ()2 + e“”‘*’(290’5(90’)}

/ d:c{ — abipe () + e (2 ’5(2‘5) }

= [ de! — adpe ()% + e*a@(zgp’ai(&p)
oo 509)}

_ /dxésO{ —ae ()2 - % <26_W<p’> } .

Now let us review the Dirac delta distribution. Let z € R be fixed, then S[p] = p(z) € R
is the Dirac delta functional, related to the more familiar physicist’s notation by

(14)

Stel = [ da's(e — aela) (15)
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5S[p] = bip(x) = / da' 8z — 2')0p(a’) = / do' 2550z (16)

dp(z’)
6Slpl _ dp(x) I
Sol) ~ Bplar) ) 17)
dp(x) ozt

Sl = 6(z — ') is, so to say, the infinite-dimensional form of familiar relation §% = 0%,
from multi-variable calculus.

Lecture 1

Introduction

Lecture 2

Special Relativity
Let M be Minkowski space (which is R* as a vector space). Take 2 € M, pu,v =0, ..., 3.
Then let us define:
N = diag(—1,1,1,1), (18)

22 = (z,x) = Nuwatz” = —(29)? 4+ (2H)? + ()2 + (23)2. (19)

It is useful to think about invariant objects. There is an invariant notion of distance
between two points in Minkowski spacetime:

I(p, Q) = anAmquu . (20)

Instead of rulers and compasses, in special relativity, we use clocks and light rays.
Ezercise:
Let A and B be two observers. A moves and is constantly sending light rays in the direction
of B. Assume that the light ray that hits B is at some point reflected back towards A. Show
that the invariant spacetime interval is I(p,q) = —ab.
Motion in Minkowski Space

Consider a general curve. How do we determine the invariant interval between p and
q for a general curve? Let us introduce coordinates, z#(7), parameterized by 7 € I C R.
This is the parameterization of the curve ¢, for I = [a,b], z(a) = p, z(b) = q. What is
the invariant length along the curve? Assume this is a timelike curve, meaning that the
derivative at each point is timelike, ©? < 0. The invariant length of a section along the

curve is
As; = \/—nuwAzha . (21)

The total length of the curve is thus

S(p,q) = Z As; = Z — N Azt Az? . (22)

3



In the continuum limit the sum becomes an integral:

dxt dzv
S(p,q) = /ds :/l _Uuuﬁﬁdf (23)

This is the invariant length between p and gq. is a good candidate to determine the
equation of motion of a free particle. Let us introduce the notation,

dx
Pt = % 02 = it (24)

Let us then write the action,

Slie(r)] = / e dr (25)

Consider an arbitrary, small variation z#(7) — z#(7) + dz#(7). The equations of motion

are J

ut Th
- o
ut = ——=0 where u = .
dr ’ V—i2

(26)

ut is known as the 4-velocity. You see immediately as a consequence of the definition of
ut that
u?=—1. (27)

Ezercise: show that 6S = fdréa;“(%“.

Now we have determined the equations of motion for a free particle. How many
solutions should we expect? How many initial data can we specify? is a second
order differential equation for four functions z#. Naively, we could specify 2#(0) = zf and
@#(0) = ufy. This is not how it works, because there is one constraint,

uy it =0, (28)

which is identically satisfied (by using the definition of u#*). One can see this by ,

d
0= —u?=2u,u". 29

dr I ( )
Thus, there is a redundancy in the formulation. This comes from reparameterization
invariance. Consider the reparameterization, 7 — 7" = f(7). a* is a scalar and transforms
as

oM (7)) = 2t (7). (30)
Consequently,

det'(7')  dat(r)  dat dr

dr’ dr’  dr dr’’

(31)



The action (25)) is invariant under reparameterization:

dzH dzv’
S[xl(T,)] = /dT, *HNVWW

i v
:/dT’ _mwdx dav | dr

dr dr |dr' (32)
= /dT\/—nWj:“dU”
= Sla(7)].

This explains why we have the constraint, because it can be interpreted as a Bianchi
identity for reparameterization invariance as follows: Instead of performing a finite repa-
rameterization, consider an infinitesimal reparameterization, 7 — 7/ = 7 — \(7), where A
is an arbitrary and small function of 7.

Ezercise: denote dz = z*' (1) — x#(7); prove that dx* = \it.

The variation that is induced by this change of parameterization reads

&S:/ﬁﬂﬁﬁ%ﬂémVMﬂ. (33)

This one-dimensional reparameterization invariance, also called diffeomorphism invari-
ance, implies the Bianchi identity, 2#1, = 0. It is often convenient to introduce a parame-
ter for the curve in the formulation of an action principle, but the price to pay is a certain
redundancy. We can make a choice, called “gauge fixing.” We can choose 7 — s(7), and
simply take the invariant length itself to be the parameter to parametrize the curve:

s(T):/ ds:/ dr'\/—iti,,
0 0
ds

(34)
& i
dr v
The 4-velocity then takes a simple form,
gt 11 deds o )
dr /—32 N —12 ds dt ds
Then @*(s)&,(s) = —1. The initial conditions in terms of proper time can be specified:
2" (0) =z, "(0) =uf, uhuo,=—1. (36)
The equations of motion read
Tat_y 37
PR (37)
whose solution is a straight line in Minkowski space,
zt(s) = upy's + af - (38)



An alternative parameterization is to demand 7 = 2% = t, t being the time coordinate,
so 2#(1) = (¢(7),2' (1)) = (¢,2"(t)). Every point on the line is labelled by its projection

onto the 2 = ¢ axis. Then '
dxt ~
= (17 Cft) = (LUZ) 5 (39)

where v’ is the conventional 3-velocity. The invariant length,

VR = VISR = 2 (10)

1

contains the familiar gamma factor v = The 4-velocity is given by

A
u'(t) = (y,70") - (41)
Then we can define the 4-momentum,
P! := mut = (ym,ymv'), where m is the rest mass. (42)
The 4-momentum satisfies
P'pu=—m”. (43)

Consider the action for a particle in terms of these parameters.

Sparticle = —mc/ds

2
:—mc/dT 1—1)—2
c

The sign in front of the integral is conventional so that the extremum of Spg,ticie is a
minimum. Note that this action is not manifestly Lorentz invariant, but of course it is
Lorentz invariant by construction. Let us expand the action in C%, to see the relativistic
corrections:

(44)

1 1 1
Sparticle ~ - [ —me® + im’UQ + O <C2>:| . (45)

Maxwell’s Theory

Consider Maxwell’s theory of electrodynamics in the Lorentz covariant formulation.
The electromagnetic field is described by a 4-potential, A, (z) on Minkowski space M, for
which the field strength is F},, = 0,4, — 0, A, where 0, := &%. Let us split the indices,
p = (0,4), i = 1,2,3. Think of a specific observer with respect to a rest frame. With
respect to the observer:

Foo =0,
Fij = —eijiB",



where Ej is the electric field, B; is the magnetic field, and €;; is the Levi-Civita symbol.
The above can be collected in a matrix:

0 Eq Es5 FE3
I e it 0 —Bs By
Fp= B, Bs 0 B |- (47)
—FE3 —By B 0
There is a gauge symmetry:

Ay = Ay +06A,, 6A, =0,A (48)

where A = A(z) is arbitrary function of z. Since F},, is gauge invariant (by the fact that
partial derivatives commute), it is natural to write a quadratic term in Fj,,,.

S[A] = _i / daFE,, = _% / da( A — AN, A, — DA, (49)

o* = n*9, and A* = n*vA,. is a good candidate for the action, whose variation
reads

68 = —% / d*cF'"SF,, = —% / d*zF" [0,(6A,) — 0, (5A,)]
(50)
= - / d*zF*™ 9,04, = / d*z6A,0,F" =0
Thus, the field equations are
D F* =0. (51)

These are Maxwell’s equations in a vacuum written in covariant form. How do we couple
the electromagnetic field to charged matter? Consider the action:

1
Slz, A] = /—mds —eA,dxt — 4/FWF’“’d"‘aU. (52)

Let us write the part of the action describing the interaction as

Sint = —e/AM(a:(T))dz“dT. (53)

We need to check that this is gauge invariant:

OA dz* / dA
oxH dr dr

0Sint = —e/@MAJ’:“dT =e | —w——dr=e | ——dr =0, (54)

assuming boundary conditions so that A(a) = A(b) = 0 as a,b — oo, A — 0. Consider
only the gauge transformations that have certain assumptions near infinity. The equations



of motion for z* can be derived:
d
OxSint = —e/ (8,,Au5:c”m'“ + Aud(éfn“)>d7
T

= —e/ (8,,Auf5x”9'v“ — 8,,AM:'U”5x“> dr

(55)
= —e/da:“(@“Ay — 0, A& dr
= —¢ / ozt Fy,atdr .
The full equation of motion is
—may, — eF,,d" =0. (56)
Lecture 3
Electrodynamics

Consider a particle of mass m, charge e, described by x#(7), and a 4-vector field A, (x)
on M. The action describing the system is

1
Sz, A] = /(— mds — eA, dz*) — 1 /d4xF“”FW, (57)
&
where F),, = 0,4, —0,A, is the field strength. The curve, along which the particle moves,

responds according to the vector potential of the electromagnetic field. Let us define a
current density,

(@) = e / drit ()50 (z — 2(7)). (58)

Here, remember that x(7) is the parametrized curve and that x is the coordinate of a
point in space. The interaction term in (57)) can be written in terms of the current.

_ / da A, (0)" (x) = —e / drit(7) / 426@ (2 — 2(7)) Au()
= —C/deZ‘u(T)AM(ﬂS‘(T)) (59)

= —e/A#dx“

We can then rewrite the A-dependent part of as

S[A] = / d4:1:< — %F“”FW = A,J“) , (60)

where

B FM = 4V . (61)



Ezercise: show that for any test function ¢(x), [ d*zd(x)d,j* = 0.
The action is invariant under the transformations:

Ay — A, + 84,
A, = d,A.

A Bianchi identity arises from the gauge variation of the action:
§S[A] = / d*r§A,0,F" = / d*z0, N0, FM = — / d*zA(2)0,0,F" . (63)

The action is gauge invariant, that is, S[A] = 0, and
0,0, FH =0. (64)
is called a Bianchi identity. This is identically satisfied, since
0,0, F" = 0,0, F"" = 0,0, F"" = —=0,0,F"" = 0. (65)

Comment:
In the literature you will find the “Bianchi identity” for F,, as

Oulvp + OpFpy + Oply = 30, F,, =0, (66)

which is identically satisfied. Here we have introduced the notation,

1
A = §(A/W — Avp)
(67)

1
Ay = §(AW +A,,).

The continuity equation can now be derived. The zeroth component of the current
density is the charge density, and the current vector encodes the current.

-,

=03 =(p.9) (68)
Using the Bianchi identity and ,
duj* = dp + divi = 0. (69)

Solutions of the Maxwell Equations

Consider the rest frame of some observer in which there are static charges, so the current
density is j* = (p(Z),0). We use the ansatz, A* = (¢(F),0), where $(Z) is a scalar
potential. Using ,

7 = 0, (O AY — 9V A1 (70)
For v =0,
82
p= (= g+ A)o- 20,40, (1)



which results in the Poisson equation,

Ap=p. (72)

For a point-charge at ¥ = 0: p(7) = ed(r), A (L) = —4x4(r), the solution to is

() = —7—, (73)

which is the familiar Coulomb potential.
Electromagnetic Waves
Let us assume that there is no matter, i.e. Maxwell equations in a vacuum. In Newtonian
theory, if there is no matter nothing happens. But for electromagnetism we have nontrivial
equations,

Et =09, ,F"F =0AF —0"(0-A) =0 (74)

where 0 - A = 0, A",

Let us identify field configurations which are gauge equivalent. Not all 4 components of
AF are physical.

From the Bianchi identity: J,E" = 0. As a rule of thumb, each local gauge symmetry
removes 2 degrees of freedom (per point in space). For A, we have 4 — 2 = 2 d.o.f.. The
proof can be carried out in light-cone coordinates. Light-cone coordinates are given by:

1
T =—(z+z),
\/5( )
| (75)
- 0 1
T =—(2" —x
\/5( )
The invariant interval is then
3 2
— (@) + ) (@) = —2ztaT + ) (2a)” =),k (76)
i=1 a=1
where
0 -1 0 0
;, _|-1 0 00
=10 0 10 (77
0 0 01

Here we have renamed 2" and 22 to z' and 2. The vector potential can be written in
components as A*(z) = (AT, A, A%). In Fourier space,

AH(z) = / d*kat (k)ekv (78)
Az) = / (k) (79)
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The gauge transformations are then given by:

onay(k) =ik, A(k) . (80)
E,, = 0 gives the gauge invariant equation:

E2a” — kM(k-a)=0. (81)

Assume we pick kT # 0,
Sa™ (k) = ikTA(k). (82)

We can then choose A = ia;(f) to impose the gauge-fixing condition (“light-cone gauge”)

at(k)=0. (83)

We still have three components left. There is one more to be eliminated. By analyzing
the gauge invariant equation, with pu = +,

0=Fkat —kT(k-a) - k-a=0 (84)
Let us write out this condition with the 1’ metric,

0= niwk“a” =—kTa —k at —k%® (85)

a~ is entirely dependent on kT, k% and a®: a~ = k%k‘o‘aa. Let now p = «, then

k2a®(k) =0 (86)

which is solved by k%2 = 0. This now shows that we have two independent degrees of
freedom, i.e. two independent solutions of the Maxwell equations, A%(z) = a®(k)e*® for
k? = 0.

This is the dynamical part of the Maxwell equations. Why don’t we always choose light-
cone coordinates? In the process, we give up manifest Lorentz invariance.

Energy-Momentum Tensor

The energy-momentum tensor can be obtained thourugh an application of Noether’s The-
orem. From time translation invariance (no explicit ¢-dependence), one can prove that
energy is conserved. From spatial translation invariance (no explicit z-dependence), one
can prove that momentum is conserved. Similarly, for a relativistic field theory with
Lagrangian L[¢,d¢], with ¢ generically denoting the fields, we demand that there is
no explicit x* dependence. We require four-dimensional translational invariance under
* — x#* 4+ o, where a* = const. Then the fields transform as

o(z) = ¢'(z) == ¢(x + a) = ¢(x) + a0, ¢(z) + ..., (87)

and the infinitesimal variation is
dap(x) = ¢'(x) — ¢(x) = a0 (88)
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The invariance condition is
35S =0, for a = const. (89)

Noether’s theorem can now be derived by a trick: We first promote a* to a spacetime
dependent vector a*(x). Then, of course, the action is generally no longer invariant, but
we can still conclude that its variation must be writable as

6,8(x) = — / d*zd,a, TH . (90)

Indeed, for constant a* we then have 0,5 = 0, as assumed. Second, we can now prove
that T is conserved in the sense of satisfying 9,7"" = 0. To this end we integrate by
parts,

6a5(z) = / d*ra,0,T" =0, (91)

and use that on-shell the action is invariant under arbitrary variations. Since this holds
for arbitrary a(z), we infer the conservation equation

9, =0. (92)

T}, is called the energy-momentum tensor.
As a remark, for a macroscopic body/fluid, T"" = (p + p)utu” — pnt".
Ezercise: show that for

S[A] = —i / daFPE,, . (93)

the energy-momentum tensor is THY = FHPEY, — %n“”Fp"Fpg, for the transformations
gwen by 6A, = a"0, A, + O\, A = —a"A,. Hint: rewrite 6A, = a"F,,.

Comment: from 0,T"" = 0, the conserved charges are energy density, M = [ d3xTyo
and momentum density, p' = fd3:nTi0.

Lecture 4

Relativistic Field Theory of Gravity
In analogy to Maxwell’s theory (see (60)),

S[A] = _i/d%(FWFW + Aug")
4 L AV L )2 10 (94)
= [ d'z( — 50" A0 A, + (0,4 — Aus” )

Recall the invariance under the gauge transformation, A, — A, + 0A,, 64, = O,A.
The energy-momentum tensor is proper relativistic presentation of mass/energy, which

12



should be conserved, i.e. 0"T),, = 0. For gravity, the idea is to take a symmetric tensor,
huw = hy,, on Minkowski space M. In the action, we want the structure to be of this sort,

S[h] = / d*z(“OhOR” + h,, TH), (95)

in order to immediately couple to the stress-energy tensor and to obtain second-order
equations of motion. In analogy to electrodynamics, we expect to have a gauge symmetry,
which shifts the metric tensor by a symmetric gradient,

Ochuy = Oy + 0u&yu (96)

where S is gauge-invariant if the stress-energy tensor is conserved. The kinetic terms for
h should be quadratic in h, with two derivatives d,, and be Lorentz invariant. Comparing
with and defining a Lorentz invariant object which is the trace of h,,, h := 7" h,,,
we try to write down all possible allowed terms:

Slh] = /d4x <a8”h””8uh,,p + b0, h*"" 0Py, + O, WM O, h + d@“h@uh) . (97)
We demand the invariance under the transformation . Let us also introduce the

notation, O := 7*”9,,0, = 0*0,. We have four coeflicients and we want to fix them by
demanding gauge invariance:

02 5e5[n) = / d'a (ma%uﬂag(auhyp) 1200, h 5 (0P

+ e (D,h™)Dy b + cOuh™ (D, h) + 2d8"h5§(8”h))

(98)
= / d*z <4aa“h”ﬂaua,,5p + 200,h* [3&, + 0,(0 - §)]
+ C[Df” +0"(0 - f)}@,jh + 2¢0,,h""0,(0 - §) + 4d0" h0,,0 - 5) ,
where we have used
0¢ (0 W) = 1Y + 0,,07¢" . (99)

We are free to rescale the action by an overall factor, so we can choose one of the coef-
ficients. We fix a = —%. Can we now fix b, ¢, and d? We expect the following terms to
cancel:

1
1

— 0"h"?0,,0,€, + 2b0, ' TIE, . (100)
By integration by parts, we find that b = % By isolating terms with 0 - £ and h*",

260,11 9,,(0 - £) + cO,h,(0 - €) =0, (101)

we find that ¢ = —%. By observing the other terms containing h and 0 - &,
1 1
— §D§”61, — 50"(8 -€)0yh 4+ 4d0"h0,(0 - £), (102)
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and after integration by parts, we find that d = i. Inserting all the coeflicients back into

, we obtain
1 1 1 1
Srp = /d4x< — Za“h”pauh,,p + iﬁuh”’jf)’)h/w — §8uhw/8vh + 48”/18“}1) . (103)

This is known as the Fierz-Pauli action. Let us couple the gravitational field to some
matter.

S = Spplh] + 87rG/d4:BhWT’“’ + “matter kinetic energy” , (104)

where G is Newton’s constant. The Fierz-Pauli action can be written as follows,
1
Srp = =5 / d*ch™ G (h), (105)

where G, == R, — %Rnwj is the Einstein tensor, R, = R,,”, is the Ricci tensor,

Ruvpo = =0u0)phe)y + 000l (106)
is the Riemann tensor, R := R¥, is the Ricci scalar.
Ezercise: prove that can be written as .
The variation of the Fierz-Pauli action is
§Spp = — / d*xSh"™ G (h) . (107)

The Einstein tensor satisfies the Bianchi identity 0#G, = 0. The gravitational field
equations from (104) are:

1
Gu = Ry — iRnW = 81GT - (108)
For completeness, let us take the trace of the field equations:
1
R— §R77W77/w = —R =8nGT, (109)

(since n**ny, = 4) where T' = 1, T" . We can insert this into (108) and write

1
R, =8rG <T;w — 2T77W> . (110)

Gravitational Waves (in Vacuum)
In vacuum, the field equations are
Guw=0. (111)

h,. is a symmetric tensor in four dimensions and thus has 10 components. &, has 4
components. From the gauge symmetry,

h,uu = h;w + 8u§u + augu . (112>

14



The four constraints and four components of the gauge parameter reduce the physical
degrees of freedom to 10 — 4 — 4 = 2.

Ezercise: prove that h,, only has 2 physical degrees of freedom using light-cone gauge.
Let us assume the Lorentz gauge fixing condition

_ - 1
0"hyy = 0, where hy, == hy, — §h77,w. (113)
The gauge transformation of this condition is

5(0h0) = 0 (346, + 06— 51200

= Dgu + au(a ' 5) - 81/(8 : 5)
— e, .

(114)

If 1€, = 0, we maintain the gauge fixing condition. We can express the linearized Einstein
tensor in terms of h. We can use the relation, h,, = hy, — %hnw,, which one can derive
from the definition of h. The linearized Einstein tensor is then rewritten as

1 - _ —
GHV = _imhl‘y + a(ﬂaph’/)ﬁ B (apaahpa)mw' (115)

We can set any divergence of h to zero by the gauge fixing condition. Inserting this into
the vacuum field equation (111]), we obtain the wave equation,

Ohy, =0. (116)
This can be solved by the plane-wave ansatz:
B/,Ll/ = Cuueikx > (117)

where C}, is constant. Inserting the ansatz into (116), we find that £ must be a null
vector, i.e. k? = 0. By inserting the ansatz into the gauge condition (113)),

0= 0'h,, = ik'Cpe™™ —  kFCL, =0. (118)

Let us choose a basis in which k& = (w,0,0,w), such that k*k, = 0 and describes a wave
traveling in the 23 direction. Taking C to be traceless, the two degrees of freedom are
given by 011, 0122

0 0 0 0

. 0 Ci1 Ci2 O
“w =10 Ci2 —Cnn 0 (119)

0 0 0 0

Gravitostatic Case
Let the energy-momentum tensor encode some matter distribution of particles that do not
move at high speeds:

Ty = puyty (120)
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where the 4-velocities are u* = (1,0,0,0) and u, = (-1,0,0,0) for z#(7) = (7,0,0,0).
We want to investigate what the gravitational field of this point particle is. The field
equations are then:

1 -
Guw = _§Dh’w =81GT), . (121)
The static solution is given by B
oo = —46(7) (122)
and the wave equation gives the Poisson equation:
06(7) = Vo(F) = 4nGp. (123)

Inserting the density of a point particle of mass m,

plr) = md(r), (124)
and using V (%) = —4md(r), we obtain the Newtonian potential,
o(r) = —G% . (125)

We have recovered Newton’s theory of gravity as a special case of the theory we have
developed here. We can write down the matrix form of A by using

h ="y, = n""hoo = —hoo = 4¢, (126)
_ 1- _
Py = by — §h77;w = hyw — 20N (127)
so that
—2¢ 0 0 0
o -2 0o o0
Py 0 0 -2 0 (128)
0 0 0 —2¢
Lecture 5

Field Theory of Gravity
We have so far introduced the field h,,, and we have constructed an action that is manifestly
Lorentz invariant and that has this symmetry given by h,, — hu, + 0,8, +0,§,. We have
also been able to define an invariant object, the Riemann tensor, R, 0, (see (106))) which
is the analog of the gauge invariant electromagnetic field strength F},,. We have also
defined the Ricci tensor, R, and the Ricci scalar, R = n*" R,,,,.

Now we will consider massive point particles in a gravitational field h, (). In order
to do this, we will switch on an interaction term,

1
Sint. = / d*xh,, TH . (129)
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Let the worldline of the point particle x be parameterized by 7. The energy-momentum
tensor then reads

—m/dTn Vit (1) (1)6@ (z — 2(7)), (130)

where n, transforming as n(7') = 4Zn(r), is known as the lapse function. This is analagous
to the current density which was used to couple a charged particle to the electromagnetic
field. Note that n(7) was introduced to maintain the reparameterization invariance of

TH. Inserting the ansatz (130]) into ((129)).
1
S = g [ drn i ()i (r) [ dtoh,s(o - o)

1 (131)
= 2m/dTn_th(:c(T))Jb“(T):t*”(T),
Recall the point particle action and insert a mass term m:
1 _ e
Sparticle = 2/d7’(n 177#1/«’13M$V — mzn) . (132)

The equation of motion for n is
1
n=—(V-i%), (133)
which simplifies (132)) to
Sparticle = _m/dT( V —«i?Q) = —m/ds. (134)
We rewrite (131)) as

iy = / dr {0 (1, + My (@(r) Y (1)3" () — m?n(7). (135)

So far we have taken the Minkowski metric to encode the geometry and define the light-
cones. In general relativity, the geometry is encoded by the deviation of the Minkowksi
metric. Let us introduce the notation,

Guv = N +mhyy (136)
and write the action in terms of g,
1
S = 3 /dT{n1gw,(ac(7'))j:“(7')ab”(7') - mzn(T)} (137)

Now our task is to find the equation of motion of this particle and to find out how the
particle responds to the gravitational field. Taking the variation of the action with respect
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to z(7) and using the chain rule and integration by parts, we obtain
1 -1 TR d sV
0,8 = B dmn (5(gm,(a:))x“a: + 29, (x(7)) d—éx“ T
T

= % /dTn_1 [Opguy&npi"i” + 5:L‘“< - Q(i(guy(x(T))n_lj:”)} (138)

1

d
=3 / drézt (nlaug,,pi’yx'p — 2071 0pg 37 3P — ngdTu”> ,

where u* = %i“. The equation of motion given from 6,5 is:

du” 1 _ .
G~ = = 5N 1(8u9w) - 28p9u1/)x i
T . (139)
= _”_1§ (3,/9,0# + OpGon — augvp)iyip :

We define )
FVPW = 5 (81’9/?# + 809!/# - 6#91/;)) (140)
as the Christoffel symbol. Let us assume that g,, is invertible, and the inverse is written

as g"¥ which satisfies g"”g,, = 0*,. If g, has an inverse, then the Christoffel symbol can
be written (in the more common notation) as:

1
FZZ/ = Qgpg(a,ugua + aug,ua - 8ag;w) . (141)

Writing the equation of motion in terms of the Christoffel symbol,

1 du*

-7 B VP —

T + I u"u” = 0. (142)
This is the geodesic equation. Let us consider the particle moving in a static gravitational
field and assume that it is moving slowly and its worldline is described by z#(t) = (¢, 2*(t)),
where t is the coordinate time.

1 .
ut = E:b“ = m~y(t,v") (143)

Let us assume that v < 1, i.e. v is much smaller than the speed of light, so v ~ 1 and
u® > u’. The equation of motion for the y = i component is then

d da’ 1, ,
— (m’y da; ) = —m—fyfgououo = —m~Lg

dr
. (144)
d?z i
>z~ T
Computing T}, from (125)) and (128)),
A 1 .. A
00 = 597 (=0jho0) = 9. (145)
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Inserting this into the equation of motion,

2zt

el —(grad ¢)" (146)

Notice that this equation is independent of the rest mass of the particle, m. This is known
as the Equivalence Principle.

Lecture 6

In the last lecture, we introduced the energy-momentum tensor (130]) which we used to
couple the massive point particle to the gravitational field via the interaction given by
. Let us take a moment now to derive the energy-momentum tensor from Noether’s
theorem and translation invariance of the action of a free massive particle in Minkowski
space:

1
S = 3 /dT(n_anj:“a'c” —m? ). (147)

The action is invariant under translations:
(1) = at(1) + oat (1), ozt =da", (a=const.). (148)

Promote the translation parameter to have spacetime dependence, a* = a*(z). The
variation of x*# becomes:

St = %(61‘“) - di‘i(a#(x(f)) = 8,a"3" (149)

0aS = /dTn_lnw,ﬁpa“i‘pj:”
_ / dr(Day) (2(7))dH ()3 (7)
_ / d' 20,0, (x) / drn=Lit ()i (7)0@ (@ — (7))

~ /d4x(9ua,,T’”’,

(150)

where then T := m [ drn= (1) (7)3" (1)6W (x — (7).
Gravitational Deflection of Light
We will now look at post-Newtonian effects of general relativity, in particular the bending
of light in a gravitational field. In order to do that, we will consider massless particles.
Let us use the equations of motion. Recall the geodesic equation (equation of motion for
o),

1 du*

1
EF + F’lfpu”up = O, Uu = ﬁjﬁu, (151)
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and from 6,5,

1
oS = B /dT(—n_zéngW:t'“:b” — m26n)
| (152)
=3 /dTn_25n(ng3“j:l’ —m?n?),
the equation of motion is
n*m? = —g,,ati" . (153)
When m? # 0, (153) can be written as
1
n(T) = — —gw,x'ﬂx'l’, (154)
m
When we take the limit m — 0, (153]) becomes
Gt = 0. (155)

Since we are dealing with light rays, we indeed expect their trajectories to be null with
respect to the full metric. Because of reparameterization invariance, we can fix n = const.
and we can write as ,
v

ot pp BT (156)

dr? VP dr dr
Ezercise: show that these equations are invariant under reparameterizations, dx* = A,
provided X\ =0 (X is an affine parameter, \(7) = at + b, where a, b = const.).
Now consider the situation in the figure, in which a source emits light near a massive
body, say, the sun, with mass M. Let the impact parameter, i.e. the distance between
unperturbed light ray and massive object, to be b. Let us denote the unperturbed light
ray by z(¥ (7). An observer sees the bent light with angle o. Let us assume that the
gravitational field is weak and we will only consider the small deviation of the light ray to
first-order. Let the light ray be described as the sum of the unperturbed light ray and its
deviation, () (7): z#(7) = 2O (7) + z(MH(7). Let us define:

0)p (Lp
dz . dx ' (157)

k=
dr '’ dr ’

explicitly, z# = k* 4+ [*. Let us expand
0= gud"t” = nuk"'k” + 20, k"1 + hy kHEY (158)

and keep in mind that the first term of the expansion on the right-hand side is zeroth
order in perturbations and the second and third terms are first order. Thus we have two
equations:
ktk, =0, (159)
20 kP + hy KMEY = 0. (160)
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In the weak-field regime, the Christoffel symbol is simply given by
1 ag
Ffjp = 577# (auhpa + 8phaz/ - 8ahz/p) . (161)

Let us decompose k* = (k°, k), where (k)2 = |k|2 = k? since k" is a null vector. We
require the components of the Christoffel symbol.

1
g = —*(30%0 + 0;ihoo — Oohoi) = 0;9,
00 = *5]( djhoo) = 00, (162)
= f(s“(a hit + Okhjy — Oihij) = —26(;00)¢ + 0" ¢, -

Here we have recalled the matrix form of h,, in (128)), in which the off-diagonal elements
are zero, e. g hoi = hijo = 0. Now we are ready to address the first-order equation by

inserting (157)) and (§ - ) into (| -

dir
— = —T» EkP 1
e vp ; (163)
le 0 7.07.2 0.2
= —2kk-Vo, (164)
dl? L .
p=i, o= —Th kK — TokOk°
= (20650k — 0" 403 ) K7 K" — 0" pk” . (165)
Rewriting in vector notation,
dl -
— = —2k? 1
I Vio, (166)

where we used a split of the gradient into parallel and transverse components, ﬁqﬁ =
V¢ + V.1, where

Vi =k"2(kVo)k,
L L (167)
V,=Vé—k 2(k-V¢)k, suchthat k-V,¢=0.
We claim that (164)) is solved by
1°=—2kp, (I°=0 for ¢=0). (168)
Indeed,
d’ » 0¢ da' » ¢ dxt(©)
dr oxt dr ox' dr (169)

= —2kk'0;¢ .
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From ([160),
(170)

and indeed we do expect the deviation of the light ray to be perpendicular to the unper-
turbed light ray. The total deviation of the light ray can be computed as the following
integral, where we used and we have assumed the unperturbed light ray to be
zO8(7) = k(7,7,0,0), so that z(r) = kr:

Af:/;”df = —21.@2/6@617 = —21@/6@@. (171)
T

We can then determine the angle of the deflection, «, since |AZ_I = ok as demonstrated in
the figure.

Ezercise: compute o for ¢ = —%.

The gravitational deflection of light was one of the first experimental confirmations of
general relativity in the weak field approximation.

Lecture 7

Towards a Nonlinear Theory

Let us revisit the analogy between electromagnetism and general relativity. The photon is
a massless particle of spin-1. This means that the particle has two physical polarizations.
Without a gauge symmetry, it would carry an extra polarization. Gauge invariance is
mandatory in order to describe a spin-1 particle with two physical polarizations. The
relative coefficients of the Fierz-Pauli action are fixed by demanding the gauge invariance,
d¢hyw = 0,8, + 0,€,. Gravitational waves have two physical polarizations.

The interaction of the point particle and the electromagnetic field gives a conserved
current, j* (as shown in an exercise following equation ) We will now show that the
energy-momentum tensor for gravity is not conserved. Let us remind ourselves that the
energy-momentum tensor is:

T () = / dT%g‘Mva‘*(x a(r). (172)
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Let us consider a test-vector v, and the following integral:

/d4xvl,8uT”” = /d4l‘vyau/dTl.i’“iTV54(x—I(T))
n
= —/d4x8#vl,/d72jc“5v”54(m—ac(T))

Y (173)

d
/ v dTu
du”
= [ d*zv, dr 6W (z — .
/ ) (:U)/ T (x —z(7)) I

We have thus obtained an equation for the divergence of TH":

du”
dr -’

0, TH = / dr 6™ (z — (7)) (174)
If the particle were free, the right-hand side would be zero. But now the particle interacts
with the gravitational field, with its interaction described in the action as

1 .,. n .y
S = /dT <2nac“xu - 2m2> —|—/d4xhu,,T“ . (175)

In contrast, for electromagnetism one finds that the current is conserved, i.e. 9,5* = 0,
regardless of whether the particle is free or not. To make sense of this, we must recall
that the charged particles generate an electric current, but the electromagnetic field itself
is not charged, i.e. does not source another electromagnetic field. The photon is a neutral
particle. On the contrary, the gravitational field h,, must generate energy and momen-
tum, but it also couples to the energy-momentum tensor. The particle in a gravitational
field exchanges energy with the gravitational field, whereas a charged particle in an elec-
tromagnetic field does not transfer its charge into the electromagnetic field because the
electromagnetic field is not charged. Gravity is a non-linear, self-coupled theory.

We can rewrite (L75]) as
Slz;h] = Spp + /dT ig'c“jc LS + ih fating (176)
’ 2n” H 2 2n '
Varying with respect to x and gauge-fixing n(7) = 1, the equation of motion is the geodesic
equation,

By =iy + T, i’ = 0. (177)
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Taking the gauge variation of I',, ,,

1
5£FVp|u = 5(8,/('3”&) + 0u0p&p + 0,048 + 0p0uEy — 0u0uEp — 0u0,Ey)
= auapéu )

(178)

one sees that the Christoffel symbol is not a gauge invariant object. The gauge variation
of the geodesic equation is

Og (B + Duppd”il) = &P 0,0,
d
= x’”df&,gu
> (179)

= pfu —270,¢,
= éu + O(h) -

Remember that h,, and , are both first order in perturbations. The equation of motion
of the particle is not gauge invariant.

Let us try to amend this. Suppose the gauge transformation of h,, includes dz# =
—&*(x(7)), i.e. simultaneously change the trajectory of the particle and the field h,,.

52 (By) = iy + & + 2T, p 3" 627 (180)
Since 0i# = —&M and the last term is second order in perturbations, o (Ey) = 0.
What can we learn from this? For d¢hy, = 0,6, + 0,€,, we must change the trajectory

(1) = a#(7) —&*(x(7)). This means that the interval ds® := 5, dz*dz" is not invariant.
We are forced to realize, for the theory to make sense, that the true invariant interval is
taken from the curved geometry, that is, ds? := gudxtdx”, where g, = nu + hyy. Let
us see if the quantity g, (z)&#2" is invariant:

O (M + Ty ()1 3” = 2865 1y + (Sehyu )23 + O(hE)
= 20, BHEY 4 (D&, + D,€,) i "
= —2m,, BM i ONEY + 20,8, 313
=0.

(181)

The newly defined invariant interval is indeed gauge invariant. This is due to the presence
of gravity. (175)) can now be rewritten as

1 n
= —guiti’ — =m? . 182
S /dT{Qngw,:U z 2m} (182)

Now we will try to find the full gauge transformation of the full metric, g, = Nuw + huw
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(without assuming that hy, is small) with d¢a# = —&H#(7), where & is infinitesimal:

1
0=0eS =5 / drn ™ (0pgu Ol i 3" + (Oggyuw)itd" + 29, 3" 55" )
1 .
=5 / drnt (= 20,9 3" " — 29, 3"E" + Segu i) (183)

1
=2 / drn = (= €0y it — 20,0, i" N ONEY + Oegyuiti) |

We see that the infinitesimal transformation of g,, must be

5£guu = gpapg/w + augpgup + 8u§pgup . (184)

One can check that in the weak field limit, i.e. for h,, small, the gauge transformation of
guv to zeroth order in h (neglecting O(£h)), reproduces d¢hy, = 0,6, +0,€,. How does one
find the finite transformation of g,,? An infinitesimal transformation , ¢zt = —£#(x),
gives x# — x'F =zt —¢H(x), i.e. a small local translation. A finite transformation is z# —
z'M(x). To find the finite transformation for g,,, we can inspect the finite transformation
of the action:

1
S = /dTgLV(x’)x'/“Jb/V

2n
. 1 / ’ 8.%”'“6.77”/,)\,p
_/dTQngW(g;)axA i (185)

1 s
=5= /dT%gwx”x”,

z'H(x) _ dat GV
dr —  dr Ozv
equated the transformed action to the original action. For this equality to be true, the

finite transformation of g, must be

where we have used in the second line, and in the last line we have

oz dxP
giw@fl) = ww%p(ﬂv) . (186)

Lecture 8

Our task today is to find a nonlinear action which is invariant under the gauge transfor-
mations in (184)) for g,,. For this we need the following definitions:

g"” is the inverse of g, : ¢"°gp = "y, 187)
g=lg|=detg, <0, for (—,+,+,+) signature.

A useful formula is

1 v
gl = 4" P70 G GG Ios » (188)
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0123

where € is the Levi-Civita symbol and e = +1. A useful way of writing g"” is

11
3!g]

Ezercise: prove and .

We can then write the gauge transformation of the determinant |gl:

g = ok vafy

9pa9aBYkry - (189)

1
5§|g| EMVPU aﬁws(é&g,ua)guﬁgpwgaé

- ‘g‘gﬂ 559;41/ (190>
- ‘g‘g/w(gpapgw/ + 23p€pgpy)
= &£P0,lg] +20,€"(g] -

We see that the square-root of minus the determinant \/—g transforms as:
0ev/—9 = EP0pV/ =g + 0p8" V=g = 0,("V—g) - (191)

Suppose we had a function, i.e. a scalar F(g), transforming as 0¢F = £°0,F. Then the
action

5= [ d'av=gr() (192)

is gauge invariant:
5¢S = /d4 (£ =9)F + /—gEP0,F)

= / d*z8,(6.\/—gF) (193)
=0.

The next step is to construct a function out of the metric tensor and its derivatives that has
this property. Can we write a two-derivative action for g,,,7 We claim that, since we can
always integrate by parts, we can at most have first-order derivatives of g,,,,: S ~ (9g)(0g).
We have assumed this before when deriving the Fierz-Pauli action. In addition, we claim
that there are only four independent structures, since

917" 0ulgl = 9”7 0uGpo - (194)

Here we give the action that we want:

1 1
S = /d4{ { 9" 009" 09po — 59" 049" pGov + 0, W(ay\/—)
,ng gﬁ g g g ,ng \/jg g

(195)
+g" (\/_—gau\/ —9> <\/_—gau\/ —!J)] } + Smatter -
Smatter describes the coupling to matter, for instance,
1
SMaxweH = _Z /d4x\/ _gg'ungUFHl/FPU (196)
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where we have promoted [ diz — S diz\/—g and n* — ¢g"¥ from its special relativity
form. We will prove that is gauge invariant once we develop some geometrical
methods.

Differential Geometry I: Quick and Dirty

Let us start with Lie derivatives. A Lie derivative L with respect to {# acting on a scalar
(a function) is

Lef =€ "Ouf . (197)
A Lie derivative acting on a vector field is
LVHE =0,V —0,6"VY (198)
and on a co-vector it is
LW, :=E"0,W, +0,8W,. (199)

We can generalize these rules to a general tensor TH1""#s,, ..,

1 - 1 1 2 1 fs—1
LT bs,, o= EPY,THV s, G Mozt G eI e

+ ay1§pTulmuSpu2mw + o+ 8Vr§pT#1mMSV1--~VT,1p .

"

(200)

The Lie derivative has the following properties:

1) [ﬁfl’[’&] = ‘6[61,52] ) where [51752]# = 511181/55 - gélal/gf = ‘66155 = _[’525?7 (201)
2) Le(VEW,) = (LVEYW, + VELW, =£70,(VFW ) . (202)
In words, the Lie derivative 1) obeys the Leibniz rule and 2) is consistent with index

contractions. How is this related to the gauge-transformation of g,,? A collection of
functions TH1#s,, ..., is a tensor field of rank (r, s), provided it transforms as

SeTHIHe oy = LeTHIHa

r

(203)

Thus, g, is a (2,0) tensor field and g"” is a (0, 2) tensor field. Is there a way to take one
or two derviatives of g,,, such that the result is also a tensor field? Can we build tensors
from derivatives of g,,,? Let us introduce the non-covariant variation,

A i= 6 — L . (204)

This notation allows us to keep track of the non-covariant parts of the variations of objects.
Note that A¢ acts trivially on tensors, e.g. A¢g"” = 0, and A¢ behaves as a variation:
A¢(R-S)=A¢R-S+ RA:S. Let us see how derivatives of g, transform.

5E(augup) = 8#(6691//))
= 0u(&7059up + 0uE° gop + 0pE° Guo)
= £7000u9vp + 0uE° 0o gup + 00E° Opgop + 0p€° Opguo
+ 00vE% Gop + 010pE° o

(205)
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We can write the non-covariant variation of 9,g,,,
Ae(0uGvp) = 0u0uE° gop + 010p€ guo - (206)

If we antisymmetrize p and v, we could eliminate the first term of A¢(9,9.,), but the
second term would not vanish. We conclude that no combination of 9,,g,, is a tensor. We
can work with the Christoffel symbol I';,, and we find that AT, = 9,0,€°.
Ezercise: explicitly compute the non-covariant variation of the Christoffel symbol,

0L, = 0,0,EP + §7 051, + 0,871, + 0,87, — 0,871, . (207)
FExercise: prove

Ae(0%,) = 040,056 + 0,0, T8 + 0,056 7, — 9,006°T, . (208)

It is useful to use matrix notation:

T,= (T, =T%,, (209)
o=oc!,=0,&". (210)

In matrix notation,

A¢(0, X)) = 00,0 + 0,0,T, — [0,0,T,],

(211)
Af(a[uru]) = _[a[,uo'a Fu]] .
We can then write the Riemann tensor:
R =0, -0,,+[,T,]. (212)
Unpacking to index form,
R’y = 010, — 0,10, + T, T, —T0, T, (213)
We compute the non-covariant variation,
Ag'R,MV = A£(28[HFV}) + 2[A§F[/“ FV}]
= _2[8[MU’ FV]] + 2[8[MU7 FV]] (214)
=0.
Therefore,
0¢Ruo = LeRy 5 . (215)

We have proved that the non-covariant variation of the Riemann tensor is zero and that
the Riemann tensor is a (3,1) tensor. We can construct the Ricci tensor, Ry, := R,."y,
which is a symmetric (2,0) tensor. We can also construct the Ricci scalar, R := g"' Ry,
which transforms as 6¢ R = £#0,R. The Riemann tensor also has the properties (R0 :=
gpAR/w)\o):

Ryvpe = —Ruppo = —Ryuvop (216)
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and also satisfies the Bianchi identity:
Rm/pa + Rl/pua + Rp/u/a =0. (217)

We can then write the gauge-invariant action by using the Ricci scalar,

S / oy —gR. (218)

218)) is called the Einstein-Hilbert action. The Einstein-Hilbert action is equivalent to
195)) up to total derivatives.

Lecture 9

Today we will continue our discussion of differential geometry. The gauge transformation
for g, is
O¢Guv = Leguw (219)

and g, is a (2,0) tensor. In the previous lecture we showed that the Christoffel symbol
is not a tensor:

0y, = 0u0,E° + LT, (220)
We showed that the Riemann tensor is a (3, 1) tensor ,
— A
R#fof - 2(6[MF5]0' + Fi[uru]a) : (221)

From this we have then constructed the Einstein-Hilbert action in (218]). In order to
couple matter fields to gravity, we need to define covariant derivatives. Let us consider
the vector field A* of Maxwell’s theory and its gauge transformation:

0¢Ay =LA, =E"0,A, +0u8"A,
O (OuAy) = 0u(EP0p Ay + 0,67 Ay)
= fpap(auAV) + 8u§papAl/ + 8u§p8uAP + 8uanpAp )
A¢(0,A)) = 0,0,8°A, .

(222)

We would like to define a covariant derivative V,, such that VA, transforms as a tensor,
VA = 0,A, — T, A,. (223)

The noncovariant variation of VA, vanishes:
Ae(VyAy) = 040,87 Ap — Aelf Ay, = 0. (224)

We have thus successfully defined a covariant derivative. The covariant derivative of A*
is

VuAY = 9, A7 + TV, A (225)
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For a scalar f, the partial derivative 0, f transforms as a covariant vector. Whenever a
special relativistic theory is coupled to gravity, as a general rule, the Minkowski metric
N should be replaced by g,, and the partial derivative 9, should be replaced by V.
The electromagnetic field tensor for example becomes

F,=V,A, -V,A,
= 0,4, — 0,A, — QFf’W]Ap (226)
=0, A, — 0, A,.

Let us now discuss some properties of covariant derivatives. First, the metric g, is
covariantly constant, meaning

Vugyp = 8ugup - P;\“/g)\p - Fl);pgu)\ =0. (227)
Second, the commutator of V,, gives the Riemann tensor R,
Vi, Vo] =R . (228)

Thus, [V,,V,] # 0, unlike the commutator of the usual partial derivatives [0,,0,] = 0.
For instance, [V, V,]V? = R,,”,V, since

Vi VIV = 0,(V,VP) =T, VaVP + T8V, VA — (6 v)
= 0,(0, VP +TO V) +T0, (0VA+T5,V) = (n & v)

= Q0 VA+T0 T3,V — (> v) (229)
= (3NP'Z>\ - aVPZ)\ =+ FZO’ g)\ - PI@JFZA) V)\
=R, \V.

Third, the variations of the Christoffel symbol and the Riemann tensor under dg,, are
tensors:

1
orh, = igpﬁ(vu5gyg + Vubguo — Vobgu) (230)

SRy’ s = V8T8, — V,0T%,

(231)
Ry = V0%, — V7,615, .

The Christoffel symbol itself is not a tensor, but its variation is a tensor. There are two
kinds of Bianchi identities for the Riemann tensor. One is algebraic and one is differential.
The algebraic Bianchi identity for R, ,, = gpARW)‘G is

Ruupo’ + Rl/pua + Rpuua =0. (232)
This can also be written in a more compact form,

R[,uup]a =0. (233)
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The differential Bianchi identity is
VR, x+ ViR, 2+ VR0 =0. (234)
The proof of this is the Jacobi identity,
[V, Voo Vo] + [V, VoI, Vil + [V, Vi, Vo] =0. (235)

(234) can be written as V[, R,, = 0. Our goal now is to derive the Einstein equations
from the Einstein-Hilbert action (218]). In order to do this, we have to remember to take
all the contributions of the metric.

Seu =3 [ dlov/=g9" By
1
- /d4x (2\/—99“”59WR +V=909" Ry + /—gg"" (V ,01%,, — V@%)) (236)
1
= /d4x\/jgégu,, <R/w - 2R9W>

Ezercise: show that [ dx\/—gV,V* = fd4mau(\/?gV“) =0.
Thus we have obtained the full non-linear extension of the vacuum Einstein equation:

1
Guw = Ry — §9WR =0, (237)

G is the Einstein tensor. The matter couplings, i.e. in S = ﬁ [ d*z\/=gR + Smatter,
would result in a source term to the Einstein equation. Recall that the G in front of the
integral is Newton’s constant. This gives us a new definition of the energy-momentum
tensor 1),

2 5Smatter
T,w=-—. 2
7 =g g (238)
The variation of the action can be written in terms of 7),,,
1 6 matter
68 = —— / d* 2/ —g6g" G + / d4x57ttég‘“’
167G dgHv
1 (239)
4 v
= 16-C /d xy/—gog" (GW — 87rGTW),
which then gives
1
Guw = Ry — QRQW = 87GT),, . (240)
G, satisfies the differential Bianchi identity,
VEG,, =0, (241)

which is consistent with V#T},, = 0 on-shell (as a consequence of matter field equations).
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Differential Geometry II: Classical Approach

We want to develop a kind of calculus on curved surfaces. Consider a curved smooth space
(“manifold”) M, embedded in D-dimensional flat space RP with coordinates ZM, M =
1, ..., D and basis ey, and a constant metric Gp;n. We will describe an arbitrary surface by
means of a parametrization. We have already briefly discussed the one-dimensional curve
and its parameterization. As a one-dimensional curve is described by one parameter, an
n-dimensional surface is described by n parameters. Let us try to draw such a surface
called M in RP. We parameterize the surface by functions

ZMhy, pu=0,..,d—1. (242)

The dimension of the manifold is dim(M) = d if %i ]K are all linearly independent. We

can draw a surface tangent to the point p. The tangent space T,M at p is spanned by:

ozM
=0,..,d—1. 243
Ot peM y M PRREE ( )
A general vector of M is written as
ozM
—H
V=V e (244)
P
A vector field V,
ZM
V(z) = V“(x)aaﬂ(bx)eM, (245)

assigns a vector V), € T, M to each point p € M. Is there a natural metric to measure the
length of such vectors? The flat metric of the full space induces a metric on the manifold
M. If V and W are vector fields, we can define

L0zM L 0ZN
oxH ox¥

VW)=V Gun = VW g, (246)

where g, = %ZW%i ~G v is called the induced metric. We do not care about the way
we parameterize surfaces, we only care about the shape of the surface (its curvature). Let
us connect to our previous lectures by considering a reparameterization z# — z/*(z),

;o 0ZMozZN
.g,u,y(x): ax/# ax”j MN
B oOZM dxP OZN axaG
= OxP Ozt Ozo oz MN
OxP 0x°
= Gun 09"

(247)

and on the vector field,

oz’
— v 248
D VY (z). (248)

V' (2))
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The infinitesimal transformation z'* = z# — & (x) acting on a vector V# is
SeVHE =V (z) — VH(z) = LV (249)

We see now that the gauge transformations are general coordinate transformations on a
curved space M.

Lecture 10

Parallel Transport

We will discuss the geometrical interpretation of the Christoffel symbol I" as a connection
and the Riemann tensor R as a curvature. Consider a vector space RP. Let there be a
vector VM at point p and a vector at point ¢ in the same direction. With respect to a
basis, these vectors have the same components. You can think of a vector as an equivalence
class of parallel arrows. On flat space, we do not care whether the vector is at point p or
point ¢. On a curved surface, we may have two different tangent surfaces at two different
points. Mathematically, T, M and T;M have a priori nothing to do with each other and
are different spaces. It does not make sense to ask: given a vector in T, M, what is the
corresponding vector at q? Let us draw a curve from point p to point q. Suppose we want
to move a vector in T, M to point q. What is the canonically associated vector at point ¢
in T,M?

In flat space, there is a natural way to move the vector around. If we choose to parallel
transport the vector according to the ambient space, it is not necessarily in 7T, M at point
q. Let p = Z(z) and ¢ = Z(x + dz), where dx is small. We take the projection of the
parallel transported vector at g onto the tangent space Ty M. In coordinates, let

ozM
VM(Z(z)=VH et (250)
At point g = Z(z + z),
vM=vMivM o vMer,Mm. (251)
Let us determine VHM and VLM . First, there must be a K* so that
ozM
Vit = Kt (@ 4 6z). (252)
Second, Vf_” is orthogonal to any vector at T, M € WH %Zx i\f, so
ozN
0=GuyVMwr AL (253)
07z
vM Wf(x +62)=0. (254)
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We contract (251) with %(m +dz),

MOZyt _ 1,02 02y

= H =
v OxV Oxt OxV K G = Ky
0ZM 97y,
[ /4
\% Bl Dp? (x + dz) -
=VH (z) + ox’
Ozt \ Ozxv OxVOxP
0ZM 927,
_yH P
v <QW T 8x”3xp5x ) '

The parallel transport of V,, at « to x + dx yields K, and the difference can be written as:
oV, =K, —V, =V"0,2"08,0,Znx" . (256)

Is there an intrinsic formula for §V), that is independent of ZM(z2)? Can we rewrite
(256) in terms of g, 7 To see that there is such a formula, recall

Juv = 8,uZM8VZM7

OpGuw = 0,0,ZM0, Zns + 0,2M0,0,Z 11 . (257)
so that we can compute
Ty = %(@gw + 0y Gup — 0p9u) = 0,0,ZM 0, Zyr . (258)
We can then rewrite as
6V = V"L 02 = T4, V02" . (259)

An important property is that the norm g*”V,,V, is preserved under parallel transport:

(g VL) = 0pg"” 82V, V, + 2¢" 0V, V,
= —g"g"P 0,906’ V,\V, + 29" T V62V,

= —g“ag"ﬁ@pgafgézanuVy + (Ou9po + OpGuo — O gup)VIVH (260)
= _VanBBpgag(Sxp + 620,96, VVH
=0.
Demanding
S(WHV,,) = SWHV, + WHTE, V,02" =0, (261)
one finds
SWH = —Tl W5l . (262)
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In matrix notation, (I',), =T, and

SW = =62 T, (W). (263)

If we parallel transport a vector from the north pole of a sphere to the equator, then
parallel transport to some other point on the equator, and finally parallel transport back
to the initial point on the north pole, we can see that the final transported vector is not
the same as the initial vector. This is one expression of curvature.

If we start with a vector at point p and parallel transport to another point, and to
another point, and so on, in flat space, we obtain a straight line. In curved space, the
curve we obtain is what we call a geodesic. Let u* be the vector u# = df—f. We use the
equation ,

outt + T u”dxP = 0. (264)

Dividing by d7 one obtains the geodesic equation:

I P
W 3
dr oo dr (265)
d?at L dz” daP
dr? VP dr dr
Let us take a curve 7, parameterized as z#(7), and the vector field V*.
V) = VP(x(r
7(r) = V¥ a(r) 0
VE(T) =0, VH(z(T)).
Note that V#(7) is not a vector field:
VHE(T + 1) — VH(1) > 0, VFor. (267)

This failure can be understood as a consequence of illegally comparing vectors at two
different points. In order to compare V#(7 4 d7) to V#(7) we parallel transport the latter:

V(T +07) = (VI =T} V"o2P) =V, VHor

=or(0;VH + F,‘ij”:icp) (268)
=or(V,VH),
where
V,=a"V, V¥ =iH(0, V! + F’ij”) . (269)

In the following we also use the following notation for the parallel transport of a vector
from p to ¢:
Vig) =V(p) = 6a"Tpu(V(p))- (270)

We want to consider now what happens when we parallel transport around a closed curve.
Consider the parallel transport of a vector V' from point p — ¢ — r and p — s — r in the
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figure.

V() =V —62tT,(V), V=V(p),

V(r) =V(q) — 622*T y(x + 612) (V(q))
=V —612"T (V) — b2 (T p(x) + 61270, I',) (V — 612°T,(V))
=V — (612" + 622" )T (V) — d12H002” (0, 1, — T ,) (V)

(271)

From p — s — r, we have to exchange d;2* <> dox* in the formula we just computed.
V'(r) =V — (62" + 612", (V) — 12* 692" (0,T,, — T, T)(V). (272)
We can take the difference
AV =V (r) = V'(r) = 12522 (8, — 9,L), + L —=T,L,) (V). (273)
The terms in the parantheses are precisely the matrix notation of the Riemann tensor,

AV = —512"002" Ry (V) . (274)

Lecture 11

The Schwarzschild Solution
What is the gravitational field around a star or a planet? We set the energy momentum
tensor to zero since we are in vacuum. The Einstein equations become

Ry =0 (275)
since .
G;U/ = R;u/ - §ng/ =0 (276)

and R = 0. Since we have spherical symmetry, it is intuitive to work in spherical coor-
dinates. This means that we work in coordinates z* = (2%, 2!, 22, 2%) = (¢,7,0,¢). The
general ansatz is

ds® = Gguvdaztdz” = goo(r, t)dt2 + 2go1(r, t)drdt + g11(r, t)dr2 + W(r, t)r2d§22 . (277)

where d? = df? + sin?@d¢?. This is the most general ansatz that is compatible with
spherical symmetry. Now we will look for simplifications. One simplification is Birkhoff’s
theorem, which states that upon using the vacuum Einstein equations, the solution is
necessarily stationary. This implies that one can choose the metric g,,, to be independent
of time. This simplifies the ansatz to

ds® = goo(r)dt® + 2go1 (r)drdt + g11(r)dr? + W (r)r?dQ? . (278)
We can next reparameterize time, t — ' =t — f(r), and dt’ = dt — f'(r)dr, where ' = %.

goo(dt)? = goo ((dt))? + 2f'(r)drdt + (f'(r))?dr?). (279)
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The off-diagonal term 2(go1 + goof’) can be set to zero by choosing

We can choose radial coordinates

which sets W = 1. We can finally write (278) as

ds?® = gudatdx” = —e2M a2 + 2 gr? 4 2402

or, in matrix notation,

and

The Christoffel symbols for this metric are:

1 ! 2v—2A
FOO =rve 5

2 3 -1
Ifo=T13=r"",

—e() 0 0
0 62>\(7") 0
0 0
0 0 0
—e~2() 0 0
0 672/\(1”) 0
0 0 r—2
0 0 0
F(l)o — V/,
F%Q = —re
I'2; = —sinfcosf.

Il = —rsin? e 2,

The Ricci tensor is

A A
Ry = 0,10, — 0, + TsT), — T/,T

where ', =T, = (0, + N +

o

Roo = 01Ty + I'1iTgy — rgkrgp

= {(1/” + /(2 = 2\))e P 4 (

_ <I/”+ (l//)2 _ )\’1/-|-

2

r

2 cot ,0).

>62u—2)\
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VN + =

r

pv >

2) S22\ _ 2(V1)262u2)\}

(280)

(281)

(282)

(283)

(284)

(285)

(286)

(287)



Rooz(

V”+ (Z//)2 *)\,V,*I* 71/

20/ _
2U—2A
r

/

Ry = -y + N — (V/)2 +922
r

Rog = —(1 471/ —rXN)e? +1

R33 = sin2 QRQQ .

Now to solve R, =0,

Therefore,

and

672u+2)\R00 4 Rll —

2
(V' +XN)=0

r

Vi(r)+ N(r)=0

v(r) = —=X\(r) + const.

In the limit » — oo, v, A — 0 therefore const. = 0 and hence

Next,

implies

Gudxtdx” = —(

v=-\.

Ros =0

1+ 27"1/’(7")62” =1,

by comparing this with (128)),

therefore

0
or

—(re®y =1,

re?() = 4+ C,

C
900:_€2V:—<1+r>.

The integration constant can be fixed

1 + S)dt2 + e (77#11 + h#y)dx“dxy,

2GM

h00=—2¢277

C=-2GM.

Finally, we have found the Schwarzschild solution:

d52:—<

2GM
1222
r

o

2GM
1222
r
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-1
> dr? +r? (d02 + sin? Odng) .

(288)

(289)

(290)

(291)

(292)

(293)

(294)

(295)

(296)

(297)

(298)

(299)

(300)



This is valid for r > r;, = 2GM, where ry is the Schwarzschild radius.

Time Dilatation and Redshift

Let there be two stationary observers, Alice and Bob, at distances, r4 and rg. Let
z(t) = (t,74,0,0) and z'4(t) = (¢, Rp,0,0). Let 74 > 7 > r5. Then i'y = (1,0,0,0)
and i, = (1,0,0,0). Let us compute

AT AT
TA :/ \/—guya’:ii’gdt :/ v/ —goodt
0 0

AT 1/2 1/2
:/ <1_2GM> dtz(l—QGM> At
0 rA TA

There is a similar formula for 7. The elapsed time for B is smaller than that for A:

1/2
(1 o 2GM>
B
BN . (302)

12
TA <1 _ 2GM> /
TA

(301)

This implies redshift because the frequency w ~ ﬁ, and hence the ratio
M M
o (-2
wp TA B TA
GM GM (303)
~1— + <1.
B rA
Black Holes
Now let us talk about black holes. On light cones, ds?> = 0 and therefore
2GM\ !
dt:j:<1— " ) dr. (304)

If r — oo, dt = +dr. Very far from the source, we have Minkowski space. When r — 2GM,
we can see from this formula, dt > dr. The light cone structure changes when we get
close to the black hole. What happens to a light ray emitted close to the event horizon?
Let us assume that there is a second observer who is falling into the black hole. At the
event horizon, the light cone actually aligns with the event horizon. We want to see what
happens to a freely falling observer in such a spacetime. A freely falling observer falls on
a geodesic. We have to fix some parameterization for the curve, z*(7) = (¢(7),r(7),0,0).
Let 7 be proper time and therefore 2 = —1. Let
_dx*

w'=—— = (u®,ut,0,0). (305)
T

The geodesic equation for u* is

dut
d—“T — T uuf (306)
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Then

T g0 0 — W0 5 307
dr ot 4 drdr" " (307
du® dv
2v 2v,0
du” | ,dv _0 308
dr * dTe “ ’ (308)
ie. p
%(ebuo) =0, (309)
therefore
e?u’ = K = constant. (310)
g’ =~ (u’)? + e (W) = -1 (311)
(62uu0)2 _ (ul)2 —e—=1— rs (312)
r

Now we can solve this expression for the components of u.

—1
uO:K<1—TS> ,
.

N
u1:—<K2—1—|—s> .
r

When r > ry, u® = K and v! = —/K? — 1. Thus for K # 1, there is an initial radial
velocity. Let us take the initial radial velocity to be zero so that K = 1. Let us assume

(313)

that the observer is close to the horizon so that r = rs + €, i < 1.
dt 0 1 1/2 1 1/2
A (’") =7~S<1+6> (314)
dr u 1— 2\ rs 1— Ty
dt T T
D8 315
dr € =7 (315)
Upon integration of (315]),
t =—rsln(r —rs) + const. (316)

And therefore when r — r; = 2GM, we have t — oco. Therefore it will take an infinite
time for an outside observer to see the in-falling observer to reach the horizon.

Lecture 12

We will continue our discussion of black holes. Recall the Schwarzschild solution in .
Let us call o = (t,7,0,¢) the Schwarzschild coordinates, which is valid for r > r,. Let
us imagine two observers, A and B. A is stationary at a fixed radius from the black hole.
B starts closer to the center of the black hole and falls freely toward the black hole. If B
wants to communicate with A, B has to send light signals. The closer one is to the event
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horizon, the more upwards the light cones are tilted. Closer to the black hole, the light
cones become narrower.
What is the experienced time of the observer that falls into the black hole? From the

last lecture (313]),
i dTﬁ K2_1+7’ 1/2]{::1_ rs 1/2
ul  dr ’

T—/dT—/dr— \ﬁ/ ~1/2,4, (317)
= =2Vl = 20T (Vi = Vs) >

Observer B experiences a finite proper time to get to the event horizon, whereas A had
measured an infinite time. This seems to be paradoxical.

Is there an extension of the Schwarzschild solution that goes beyond the event horizon?
To investigate this, we look at a different coordinate system. For light cones,

ds®> =0, (318)
2GM\
dt:i<1— ¢ ) dr. (319)
r
The tortoise coordinates are defined as:
r
= 2GM 1 —1 2
rr=r+2G n( 5C > (320)
This gives us
1 dr
Y= 2GM ———
dr* =dr +2G T 12GM
1 (321)
= e dr.
Then (319) can be written as
dt = +dr* . (322)
This suggests us to introduce the null coordinates:
v=t+r" (advanced
( ) (323)

u=t—r7r" (retarded).

The trick is now to look for a coordinate system in which » = ry = 2G M is not so special.
Let us make the coordinate transformation,

tv=t+r", (324)
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and leave the spatial coordinates (7,6, ¢) unchanged. We then compute

2GM\

dv:dt—l—dr*:dt+(1—G> dr, (325)
T
2GM 2GM 2GM\ !
— <1 — >dv2 =— <1 — )dt2 — 2dtdr — (1 — ) dr? (326)
T T T
2GM\
2dvdr = 2dtdr + 2 (1 _ > dr?. (327)
T
ds® becomes G M

ds? = — <1 - r> dv? + 2dvdr + r?dQ* . (328)

We have now rewritten the Schwarzschild solution using one of the null coordinates. The
coordinates used to write this metric (328]) are called Eddington-Finkelstein coordinates.

(328) can be written in terms of a metric g,g, where det g,5 = —1:
ds? = gag(r)dxo‘dxﬁ +r2dQ%; 2% = (v,7r), a,=0,1, (329)
— T
9ap ( 1 NE (330)

If we evaluate on the event horizon,

gap(r =2GM) = <(1) é) : (331)

the metric is perfectly regular. The singularity in the original coordinates is then known
as a coordinate singularity. Another example of a coordinate singularity arises when we
try to describe the Euclidean 2-plane in polar coordinates, in which the metric is

1 0
ws= (5 2) (332

which has a coordinate singularity at » = 0. In Cartesian coordinates, we know that such
a singularity does not exist.

A test of whether a singularity is “real” or due to the coordinate system is to compute
a curvature invariant such as

48G2 M*

uv po _
RMPT Ry pe = G

(333)

The curvature goes to infinity as r approaches zero. r = 0 is indeed a real physical singu-
larity.
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Gravitational Waves
We return to gravitational waves in order to work out how they interact with test particles.
In previous lectures we discussed the linearized Einstein equations (recall (111{-|116[)) and

its solution:

BW/ = /ﬂ/eikx ) (334)
0 O 0 O

e A (335)
0 0 0 O

where k* = (w,0,0,w) is null and describes a wave traveling in the 23 direction. Recall
that we had implemented a gauge fixing k#C,, = 0, which gave us 0"h,, = 0, hy,, =
Py — %hn,w. The component of the Riemann tensor 1} that we require is

1
R,LLOOO’ = 5802]71“0- . (336)
Let there be a particle z* whose trajectory is given by the geodesic equation,
d?xH dx¥ dxP
0= re —. 337
dr? Mz dr dr (337)

We need to have a bunch of test particles and investigate their relative motion. Let us
assume there is a second particle, z* + dx*, whose corresponding geodesic equation is

0= d?(z* + ozt) d(z¥ + dz") d(xP + 0xP)

m
72 + 1, (z + dx) o o (338)
Let us take the difference of the two equations to first order in dx*:
d?(6xH) dz¥ dxP d(6x") dxP
= 6 o O_I‘\,LL b N
0 dr2 + 0270,y dr dr t el dr dr (339)

We want to rewrite this in a covariant form. Suppose V* is a vector along the curve z*.
We defined the covariant derivative V on V* as

ave
VVM = 77_ + x”F’,fpr. (340)
Now we can specialize to V# = §z#. One can prove that (339)) is then equivalent to
dx¥ dxf
2
\% 6.’1)” + ngupal'a dr ? =0. (341)

This is also known as the geodesic deviation equation. For slowly moving test particles,
the four-velocity is approximately given by u* = & ~ (1,0,0,0), and 7 ~ ¢t. To first order

in dz* and h, (341) is

d?
@59”” + Ry0"06x7 =0
d2(53;“) B 1 ﬁhu 5$V 0 (342)
dt? 2\ de2” " o
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Let us assume first that hx = 0. Then (342)) becomes

d2
at?

621y — 2L eyt = o (343)
2412 "
Moving the dz! inside the derivative of the second term, using that the difference is of

higher order in h, one finds

d2 1 ikx 1 44
The solution of this is )
<1 - 2h+e“”> ozl =a+bt. (345)

Making the physical assumption that the solution does not grow linearly, we find the
perturbative solution,

1 .
dxl ~ (1 + 2h+e’kx> al, (346)
where a! is the initial separation. Similarly,
1 ,
6x? ~ <1 - 2h+elkx>a2. (347)

We assume the initial configuration of the particles is in a circle. When the gravitational
wave comes through, one can see that this corresponds to the particles oscillating in a +
formation. Let us next assume that hy = 0 and hy # 0. One finds that

1 .
ot ~a' + Zhyetq?

2 (348)
oz ~a® + ihxe’kxal .
These correspond to the particles oscillating in a x formation. One can define
1
hr = —=(hy +1hy),
R \/5( + ><)
1 (349)
hrp = —(hy —ihy).

V2

A pure hpr (hr) wave rotates the particles in the right-handed (left-handed) sense.

Lecture 13

Production of Gravitational Waves
Recall from an earlier lecture that we solved the linearized Einstein equation and used a
convenient redefinition of h,,,

1
h,uzx = h;w - 5}“7#1/ ’ (350)
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where h = n*”h,,,. With the Lorenz gauge,

OFhy, =0, (351)
G = —5 T (352)

The Einstein equation becomes
Ohy = —167GT,, (353)

One can solve this equation by the method of Green’s functions,

0o 0
O0G(z—y) =6W(z—y), O=0, =™ B0k B (354)
Thus the solution is
hu = —167G / dy G(x — )T (y) (355)

This should be familiar from electrodynamics. The retarded Green’s function can be
written explicitly as

1
47 |2

G(z)=— 5(|2| — 290(2%), z=at = (20 3). (356)

O(x) is the Heaviside function,

0(z) = {1’ v=0 (357)

0, otherwise.

This is to make sure that the retarded Green’s function vanishes for z° < 0.
1 - o
w = 4G/d4yM(5(!x — g1 — (2" = ")) 0(z° — ") T (y) (358)
Perform [ dy°, y° — 20 — |# — 7], 0(2® — y°) = 1.

() = 4G / Py ﬁ‘ Tt — |7 — §1.1) (350)

At a linearized level we can compute the gravitational field. The gravitational field at
some given time ¢ only depends on earlier times. If you imagine a matter distribution far
away, it takes the corresponding travel time for the light:

tei=t—|%— 4, (360)
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which is called retarded time. We want to derive the quadrupole formula which expresses
the gravitational field in terms of 7. It is often convenient to work in Fourier space:

(W, T) =

:*‘IZ

= \ﬁ dteWthW( )
AG o
= /dtdg _, _,‘ ,uzx(t |:E - y|7 y)

T,uu(tr:g)
|7 — 9]

(361)
dtrdSwaJtr w|Z—7|

\/7

= 4G/d3yezwx 7l H( )
|7 — 9]
In the third line, we have changed integration variables to t,.. Let us imagine an observer at
a distance r from matter, whose dimensions are described by 7, ér < r. The exponential,

w|Z—7| fwr
Tf—ﬂl ~ er . 7 fixed. (362)
(361) becomes A
(0, 7) = 4G5 / ByTo(w, 7). (363)

The goal is to compute l:z” We use the gauge condition,
OFhy,, =0,
ho, = —0"hy, (364)
foy = — i,
w

The trick one can use to simplify this is to consider the conservation of the energy-
momentum tensor, 9T}, = 0, which implies that the spatial divergence of T"is

— O THH = iwTO (365)

One can rewrite the integral,

/ dPyT" (w,§) = / Py (O (y'TH) — y' 0, TH)

= iw/dgyyifoj
= % / Py(y'T + 4/ T)

iw o L (366)
— ? d3y(al(yzy]TOZ> _ yzyjalTOZ)

w 3 i 570l 454900
=5 Py(Q(y'y’ T) + iwy'y’ T™)

2 . . o~

— _7 dSyyly]TDO
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The trick here was to rewrite such that we get the divergence of the energy-momentum
tensor. The boundary terms are zero. In the last step we have used the symmetry of the
energy-momentum tensor. Let us define the quadrupole moment tensor

ri= [ @iy T ) (367)
In summary, we have shown

wwr

]:74']' (w, :i") = —2G0J2 er

Iij(w), (368)

where fij is the Fourier transform of the quadrupole moment tensor. Let us compute the
inverse Fourier transform.

1 -
hij(t, f) = E /dwe_“"thij(w,:?)

= ] e ) (369)
2G 1 daz . -

T = L () ) T
T2 dw( a2 ) (@)

By taking the second time-derivative outside of the integral, we are left with the h in terms
of the quadrupole moment tensor:

2
hij = ?%Im(t - 7") . (370)
is called the quadrupole formula. This formula tells you how a given matter distri-
bution encoded in T gives rise to a gravitational field.
Binary Star System
Let us consider two masses of equal mass M in the ' — z2 plane. Let one of the masses,
a, be at (R,0) and the other, b, at (—R,0). From

GM?  Mv?
CGRE™ R (871
the magnitude of the velocity of each mass is
GM
and the corresponding angular frequency is
2 GM\'?
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The motion of each mass is described:

2l = Rcos(Qt), 22 = Rsin(Qt).

1 _
1 ) . (374)
x, = —Rcos(Qt), xi = —Rsin(Qt).

The component of the energy momentum tensor, 7°° is then

T, %) = M5(2*)[6(x" — Rcos(Qt))(x* — Rsin(Qt)) + 5(z' + Recos(Q))d(z® + Rsin(Q))] .
(375)

There are two delta functions that localize towards the orbit on which these objects move.

= /d3yy1y1M(5(y2) [6(y" — Rcos(Qt))d(y* — RsinQt) + ... ]

(376)
= M(RcosQt)?
Working out all the components,
—cos(2Qt,) —sin(2Q,) 0
) Y cos(2Qt, .
hij = &92]%2 —sin(2Qt,)  cos(2Q,) 0] . (377)
" 0 0 0

Energy of Gravitational Waves
In order to compute the energy of gravitational waves, we must determine an energy-
momentum tensor for h,,. Starting with the Einstein tensor, we expand in powers of A,
uv = Nuv + hul/'

G =G (h) + G (h) + - = 87GT (378)

The T}, on the right-hand side is the energy-momentum tensor for all other matter.
G®@(h) is quadratic in h. We can rewrite the equation as

G = 871G (T + ty) + -+, (379)
where
1 1 1
—__ - 2 — __— | p®@ _ =, pop(2)
t,LLI/ = 81G Gp,u (h’) TG <R/u/ 277 Rpa nul/> . (380)

This motivates us to identify ¢, as the energy-momentum tensor of the linearized gravi-

tational field. In fact, when evaluated for solutions A, of the linearized vacuum Einstein

equations, Gf}l,)(h) = 0, it is conserved as we prove now. The full Bianchi identity reads

V,.G" =0,G" + T, ,G" + T, ,G'" =0. (381)
Expanding this to second order in h using (378]), we obtain two equations:

9,GVH = (382)
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8MG(2)W — _I*Etlp)#Gu)PV _ P}(}p)l/g(l)#p_ (383)
Thus, on shell, for which G,(},,)(h) = 0, we have

1
wo_ = G =
Ot G (h) = 0. (384)

Unfortunately, t,,, is not gauge invariant under the lowest-order gauge transformations
appropriate for the linearized fluctuations h,,. To see this we recall that the full gauge
transformations of G, are given by:

0cGy = LGl . (385)

Expanding to second order in h with (378]), and recalling that ¢ is of the same order as h,

scl) =0, (386)
0GR + 00 GY) = L6, (387)

where we expanded the gauge variations as d¢ = 620) + 5§1) + - -+ in powers of h, with

0, _
50 by = B+ D 9
1
0 by = Lehyu, -
On-shell we have GE}V) (h) = 0 and thus || reduces to
(0) ~(2 M A(1) _
580G +6:°GL) = 0. (389)

Next, we use that G,(}V) by definition depends linearly on its argument so that we can write,
using (388), 6V G (h) = GY)(Leh), and thus

3
0
0GR =~ (Leh) . (390)
All in all, ¢, transforms on-shell as
Sety = ——GW(Leh 391
f#l’_S,ﬂG ;w(&)? ( )

where we suppressed the superscript (9 as it is understood that we consider the lowest-
order gauge transformations. Thus, ¢, is not gauge invariant and hence does not provide
meaningful physical information. This problem is usually circumvented by introducing an
averaging procedure over several wavelength for which gauge invariance is recovered. This
state of affairs is sometimes expressed with the slogan that “gravitational energy cannot
be localized in space”. Denoting the averaging schematically by brackets (---) one finally
defines the energy-momentum tensor of gravitational waves as

b = - G (392)

49



We do not have to specify the averaging (- - - ) beyond it being defined by an integral so that
any gradients average to zero: (J,(---)) = 0. Gauge invariance then follows immediately
from (391]) and recalling that the first-order “Einstein operator” reads

1
Gi)a) = —3 [Da,w —20,0%a,), + Oudya + (90 apy — D) | (393)

so that (Ggl,,)(a» = 0 for arbitrary symmetric tensor a,,,.

The formula can be used to compute the energy of gravitational waves and
hence the energy loss of a binary star system due to emission of gravitational waves. The
period of the binary system changes accordingly and has been measured to be in perfect
agreement with the predictions of general relativity.
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Addendum: Precession of Perihelia

We want to analyze the motion of freely falling objects in a spherically symmetric gravi-
tational field h,, = g, — 7 of the form

—2¢(r) 0 0 0
B 0 —2¢(r) 0 0
o = 0 0 —2¢(r) 0 ’ (394)
0 0 0 —2¢(r)

where ¢ and 1 are two a priori independent functions of the radial coordinate r, in order to
exhibit the precession of perihelia, whose effect for Mercury was one of the first spectacular
confirmations of general relativity.

We use the equations of motion for a point mass (the geodesic equation) in the form

d

v 1 12
= (G t”) = 5 (Ougup)u”u” (395)

where u# = df—: is the 4-velocity with proper time 7. This form of the equation can be

quickly seen to be equivalent to the more familiar form involving Christoffel symbols by
working out the derivative of g,,, on the left-hand side with the chain rule and bringing it
to the right-hand side. Writing g,,, = 1, + hy, this equation reduces to

d 12 12 1 1%
%(nw,u + hyu”) = §8Mhl,pu uP . (396)
Let the curve be parameterized by z#(7) = (t(7),2%(7)), so that u* = ({,4%), = (,%.

We now evaluate the four equations (396) for (394)). For u =0,

(-1 26)0) = 3Ahupua? =0, (397)

using that h,, does not depend explicitly on time. Thus, we infer the conservation law
(1+ 2¢)t = E = const. (398)

where E can be identified with energy. Next, for u = 1,

di(u —2¢)0;;47) = %aihl,pu”up = —0;0t* — 0 |%|*, (399)
-

using obvious 3-vector notation with |x|? = §;;2'z/. Employing the chain rule for differ-
entiation with respect to r = y/d;;z’a/ one obtains

5ij $j (400)

8 /
06 = ¢/(r) 20 = P10

ozt
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and similarly for ¢. Thus, (399)) can be written as

(1= 20)3") = ——(¢' (") + ¥/ (n)[x[*)a" , (401)
cancelling the Kronecker delta on both sides. With this formula we can now prove that
the three quantities

Li = —(1 — 2¢b)esp a7 a” (402)
are conserved. (Here ¢€;j; is the totally antisymmetric Levi-Civita symbol.) Indeed,

dL; d i
o= = (=200 )eijea® — (1= 2)ey 98" = 0, (403)

since both terms vanish separately by total antisymmetry of €;;;, (in the first term one has
to use that the derivative is proportional to 27 by and hence this term is proportional
to eijkxj z¥ = 0). The conserved quantities can be identified with angular momentum. We
can thus assume that the motion is confined to a plane, which we may as well identify
with the z = 0 plane. The conservation of L = L3 then reads

%((1 —2¢)(dy — yz)) = 0. (404)

We next replace (z,y) by polar coordinates (r,6), so that the 3-vector reads
x = (rcosf,rsind,0) , (405)

from which one infers by a quick computation

%[* = 72 + r26?
Ny (406)
Ty —yxr = —10.
Thus, the conserved angular momentum reads
L = (1 —2¢)r?0 = const. (407)
We have one more conserved quantity we can use, g, ufu” = —1,
—(1+26) 2+ (1 —2¢) x> = —1. (408)
We now use (398]) and (406|) to write this as
E? 2, .242
_ + (1 —=2¢)(7* 4+ r°0°) = —1. 409
g (120 ) (109)
Next, we multiply by (1 — 2¢) and rewrite
E? 2022 | 202 L 5 a2
—1)1—2 — (1= 20)2(s 0?) = = _( 62) 410
(1525~ D020 = (1= 2P+ 20) = “m (P4 028) . (410)
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using (407)) in the last step. We can finally eliminate the dependence on proper time:

E2 1—2¢ 1 (72 L\ 1 [[(d\?> o,
<1+w“>p‘v4ﬁﬁ+f>—ﬂ<(w>*” W

This is the differential equation we want to solve. It can be simplified by introducing the

_1
E? 1-2¢  (dp\®
(1+2¢—1) = _<d9) + 0% (412)

=,

So far we have not made any assumption on the functions ¢(r) and (r), but now
we want to solve for the actual functions arising in general relativity through the
Schwarzschild solution. We first have to rewrite the Schwarzschild solution in coordinates
that are appropriate for comparison with , where all three spatial coordinates are on
equal footing. The corresponding coordinates for the Schwarzschild solution are referred
to as isotropic coordinates, for which one defines a new radial function r’ by

new variable p

2
r = ,r/ (1 + %;/) , (413)

where rs = 2GM. From this one computes
r r
v (13 (e o)
" 4! * 4r! "
s )2 414
ro _ (=dy) (414)
T ()
The Schwarzschild solution in isotropic coordinates then reads

1— Ls)Q ro\4
ds® = _(74’“dt2 +(1+2) (da? +dy? +dz2?) (415)
(1+ %)2 < 4r)

where we finally dropped the prime on r. Introducing again p = % and expanding in
powers of rgp, this reads

1
ds* = — <1—7"Sp+ 2r§p2+---) dt* + <1+7“5,0+27“3p2+---> (dx2+dy2+dz2) .
(416)
We can finally read off ¢ and 1 to second order in r4p:

1 1
6= —srapt et
(417)

1 3
= orep = arept A

Returning now to the equation (412) we want to solve, we expand the left-hand side
to the same order:

E?-1 2E?-1 15E2 — 3 dp\?
Tt T Tt T r§p2+---:<d9> + p? (418)
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This equation can be solved by bringing it to the form of an harmonic oscillator with an
external force by differentiating with respect to 8 on both sides and then dividing by 23—’9’:

2% -1 15E2 -3 , d?%p

orr T TR P T TP (419)
or in explicit harmonic oscillator form:
d*p 2F%? —1
ﬁ + w2p = W?"s s (420)
where
15E2 -3 15E% —3

To first order in r; we thus have w = 1, in which case can be quickly verified to be

solved by

2E? — 1
2L

where e is an integration constant. This is the well-known form of a parameterized ellipse

with radial and angular coordinates (r,0) (but measured from one of the focal points!):

a(l —e?)
= X =)
r(©) 1+ecosf’

p= rs (1 +ecosf) , (422)

(423)

. . . . 2 ..
where ¢ is the semi-major axis and e = 4/1 — 2—2 the eccentricity. We have thus recovered,

to lowest order, Kepler’s law that closed orbits follow an ellipse. In particular, p(6) is 27-
periodic, confirming that the orbits are closed. This changes once we go to second-order,
in which case we have w # 1 and so the general solution of (420)),

2FE? —1
2L2w2
is no longer 27w periodic. In order to estimate the relative angle measuring the failure
of the orbit to be closed we assume that the object is slowly moving so that its energy
reduces to that corresponding to its rest mass. We then have E ~ mc?> = 1 in natural

units, and

p= rs (1 + ecos(wb)) , (424)

3 o
We now ask: what is the total angle that the object has to cover in order for the radial dis-
tance r (or equivalently p) to return to their initial value (say at the perihelion). Denoting

this angle by 27 + A#f one infers from (424))

w(2m 4+ Af) = 2r. (426)
Thus,
1 3 67 67 G2 M?
= ——1) = 1 2 A— ~ 2 = 4
A =2 <w ) 27 ( T ) 12 (2GM) 7T (427)

which for mercury precisely accounts for the observed discrepancy.
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