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Chapter 1

Motivation and Outline

Integrable models such as the harmonic oscillator, the Kepler problem and the
Heisenberg spin chain are characterized by – an often unexpected – beauty and
simplicity of the structures emerging in their solution. These features allow for
a detailed understanding of their fundamental properties and make them an ideal
starting point for the study of more general, i.e. non-integrable, models. The origin
and form of appearance of the simplifications in integrable models is diverse and
there exist several definitions of integrability. For finite-dimensional classical me-
chanical systems the various approaches are closely related and can be united to a
universal definition of classical integrability called Liouville integrability. By con-
trast, their connection for infinite-dimensional models, but also finite-dimensional
quantum systems, is not always evident. In this thesis we study several perspectives
on quantum integrability. We focus on its definition via a tower of commuting lo-
cal charges that are conserved and an infinite-dimensional symmetry algebra called
Yangian. We discuss these versions of integrability mainly in the context of factor-
ized scattering. It makes the scattering of an arbitrary number of particles reducible
to the successive scattering of two particles. This simplification of a model’s scat-
tering properties is a common feature of integrable quantum field theories (QFTs)
and quantum spin chains. In fact, this motivates the definition of quantum integra-
bility via factorization of scattering itself – a definition which is considered to be the
least problematic. Nevertheless, the formulation of quantum integrability via hidden
symmetries is more desirable. Therefore, we investigate in this thesis how factor-
ized scattering originates from defining symmetry properties of quantum integrable
models. For (1+1)-dimensional QFTs with massive particles it was already shown
that the existence of a tower of conserved local charges directly implies factorization
of scattering. We review this proof briefly on the basis of [1–4] in order to motivate
the subsequent discussion.

Factorized Scattering in Integrable Quantum Field Theories

Let us consider a (1+1)-dimensional relativistic QFT with massive particles. For
such a continuous model with infinitely many degrees of freedom, integrability is
often defined via the existence of infinitely many commuting independent conserved
local charges Qs of different Lorentz spin s satisfying1

Qs |a, u〉 ∼ ps |a, u〉 . (1.1)
1Note that this definition of quantum integrability is problematic since there exists no consistent

notion of independent operators in quantum systems.
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Here the vector |a, u〉 is associated to the wave-packet of a one-particle state. a
denotes the set of quantum numbers characterizing the particle’s type. u is its
rapidity which is associated to the light-cone momentum p = mae

u via the mass ma.
Due to locality the charges Qs act on m-particle states as

Qs |a1, u1; a2, u2; ...; am, um〉 ∼
m∑
n=1

psn |a1, u1; a2, u2; ...; am, um〉 . (1.2)

Note that these multi-particle states are asymptotic in the sense that the particles
are largely separated compared to the typical interaction range of the model. Similar
to the notation of the one-particle state, the ai characterize the m particles which
move with rapidities ui, i = 1, ...,m.

Demanding the conservation of Qs constrains a scattering process in such a way
that its incoming state |in〉 and outgoing state |out〉 obey

〈in|Qs|in〉 = 〈out|Qs|out〉 . (1.3)

Using (1.2) this gives the constraint
min∑
i=1

psi =
mout∑
f=1

psf , (1.4)

where min and mout are the numbers of incoming and outgoing particles. They have
momenta {pi}, i = 1, ...,min, and {pf}, f = 1, ...,mout, respectively. For integrable
QFTs with infinitely many degrees of freedom this relation must hold for infinitely
many s. Consequently, the set of incoming and outgoing momenta is identical and
the particle number is conserved during a scattering process, i.e. min = mout. In
fact, (1.3) also implies factorization of scattering. This statement can be verified by
the introduction of a quantity called S-matrix. It characterizes scattering processes
and will be of great importance throughout this thesis. It maps the out-state of a
scattering process to the in-state via2

|in〉 = S |out〉 . (1.5)

Together with the conservation equation (1.3) this results in [S,Qs] = 0 or

〈in|S|out〉 = 〈in|e−iαQsSeiαQs |out〉 ∀α ∈ R. (1.6)

The term on the left hand side is the transition amplitude of the process |in〉 → |out〉.
Interpreting Qs as generator of finite symmetry transformations eiαQs implies that
the term on the right hand side of (1.6) corresponds to the transition amplitude
between the symmetry transformed in- and out-states. The equality of both ampli-
tudes for arbitrary in- and out-states implies the equality of the scattering ampli-
tudes in the original and symmetry transformed system.

This constraint can be analysed geometrically3. For this purpose, we examine
the Fourier-transformed multi-particle states |a1, x1; ...; am, xm〉 in position space.
The xi denote the approximate positions of the wave-packets. The evolution of this
vector in time, i.e. the propagation of the particles through space, can be illustrated
in a diagram such as

2This definition is in accordance with the standard convention where S maps the outgoing state
into the incoming state, rather than vice versa.

3A more algebraic discussion can be found in [3].
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with space- and time-direction as indicated. The lines correspond to the positions
of the asymptotically free wave-packets. Their slope is proportional to the velocities
of the particles which, for simplicity, shall all have equal masses in the diagram.
The shaded circles are associated to scattering processes via the action of the S-
matrix. We already used the above conclusion that there is no particle creation
or annihilation during a scattering process and that the set of momenta for the
incoming and outgoing states is the same.

Using this picture we can easily interpret (1.6) for s = 1. Due to (1.1) the
charge Q1 corresponds to the momentum operator. As a generator of symmetry
transformations, it generates translations in space, i.e.

eiαQ1 |a1, x1; a2, x2; ...; am, xm〉 ∼ |a1, x1 + α; a2, x2 + α; ...; am, xm + α〉 . (1.7)

The parameter α ∈ R is a measure for the magnitude of the displacement. Ge-
ometrically the action of the operator eiαQ1 on a multi-particle state corresponds
to a parallel shift of the particles’ lines in space. As a consequence, the conserva-
tion equation (1.6) for s = 1 in position space implies the translation invariance of
scattering processes as the one shown above.

What kind of symmetry transformations do the remaining charges Qs for s > 1
generate? In order to understand this, one assumes that the wave-function of a single
particle with approximate position x1 and momentum p1 is a Gaussian wave-packet
in position space [3,5]. One finds4 that the operators eiαQs for s > 1 displace wave-
packets of momentum p1 by an amount −αsps−1

1 rather than by a constant. Since
the particles in a scattering process have different momenta, they will be shifted by
different amounts

eiαQs |a1, x1; ...; am, xm〉 ∼ |a1, x1 − αsps−1
1 ; ...; am, xm − αsps−1

m 〉 . (1.8)

As a result, we may displace each m-particle scattering process in such a way that it
only contains two-particle scattering processes. In particular, (1.6) for s > 1 implies
the equality of the transition amplitudes of

S and
S

S
S

and
S

S
S

.

This phenomenon is called factorization of scattering since the m-particle S-matrix
factorizes into a product of several two-particle S-matrices. The equality of the last

4See [3] or the analogue discussion for spin chains in section 3.4.
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two diagrams illustrates the famous quantum Yang-Baxter equation and ensures the
consistency of the factorization.

Note that this result strongly relies on having a single space-direction. The
Coleman-Mandula theorem [6] states that for d > 2 the S-matrix is trivial, i.e.
|in〉 ∼ |out〉, if there exists a single conserved higher-order charge. Similar to the
above charges Qs for s > 1, a higher-order charge generates momentum-dependent
shifts of a particle’s trajectory. The conservation of such a charge results in the
equality of the transition amplitude of some scattering process and the symmetry-
transformed one. Since in more than one space-direction we may shift all lines
apart such that they do not cross, the transition amplitude is only non-zero for
|in〉 ∼ |out〉.

Factorized Scattering for Integrable Spin Chains

The above proof for the factorization of scattering in (1+1) dimensions as a result
of the hidden symmetries associated to integrability is remarkable. Similar to QFT-
models, one may define integrability in the context of spin chains via the existence of
a tower of conserved local charges. Interestingly, factorized scattering is occurring in
these models as well. This gives the motivation to translate the above proof into the
language of spin chains which we will do in this thesis. This discussion will reveal
the close connection between conserved local charges and factorization of scattering
for integrable spin chains.

From Yangian Symmetry to Factorized Scattering

In the main part of this thesis we investigate another formulation of quantum inte-
grability that is based on the existence of an infinite-dimensional symmetry algebra
called Yangian. For many integrable models the existence of infinitely many com-
muting conserved local charges and the invariance of the model’s S-matrix under
a Yangian are closely related. In these models factorization of the S-matrix can
be understood as a consequence of a conserved Yangian via the existence of local
charges. Nevertheless, the close connection between local charges and the Yangian is
not always manifest which we will review on the basis of [7]. In these cases it is not
clear how the Yangian algebra and factorization of scattering are connected and one
might ask whether the factorization can also be understood as a direct consequence
of imposing its invariance under Yangian symmetry. This will be the issue of the
main part of this thesis. In the analysis we focus on specific symmetry algebras: We
look at the Yangians Y [su(n)], Y [su(1|1)] and Y [su(2|2) nR2] in their fundamental
representations. The latter are particularly relevant in the context of the AdS/CFT
correspondence which we want to briefly review now.

AdS/CFT Correspondence and Integrable Spin Chains

The AdS/CFT correspondence is a useful tool in the investigation of strongly-
interacting conformal field theories (CFTs). The duality can be used to relate
strong coupling QFT-observables to weak coupling string theory calculations and
vice versa. The most prominent example in this context is N = 4 Super Yang-Mills
theory (SYM) which is supposed to be dual to type-II B string theory living on the
Anti-de-Sitter (AdS) space AdS5 × S5. An interesting region for the study of this
conjectured duality is the planar limit where integrable structures occur on both
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sides of the duality. On the CFT-side integrable spin chains arise in the eigenvalue
problem of the dilatation operator. In particular, in N = 4 SYM an integrable spin
chain with psu(2,2|4) symmetry algebra appears [8, 9]. A subsector of this model is
an integrable long-range su(1|2) spin chain. The scattering of the so-called magnons,
which are the quasi-particles in spin chain models, is described by su(1|1)-invariant
S-matrices. In this thesis we lift the invariance of the S-matrix under the Lie su-
peralgebra su(1|1) to an invariance under the corresponding Yangian Y [su(1|1)] and
check whether it implies factorization of scattering.

The S-matrix of the psu(2,2|4) spin chain of N = 4 SYM is the tensor-product
of two S-matrices which are invariant under su(2|2) nR2 with two bosonic and two
fermionic particles in the fundamental representation [10]. This motivates the inves-
tigation of the latter algebra. In [11] it was already shown that the corresponding
su(2|2) n R2-invariant S-matrix is also invariant under the associated Yangian. In
this thesis we explore the connection between the invariance of the S-matrix under
this Yangian and factorization of scattering.

Relevance of Yangian-Invariants in Other Contexts

In the following, we mainly discuss the Yangian in the context of integrable spin
chains having a Yangian-invariant S-matrix. Nevertheless, Yangian-invariant objects
occur also in other contexts. In [12] it is shown that the tree-level scattering ampli-
tudes in four-dimensional N = 4 SYM exhibit a Yangian structure corresponding
to the Lie symmetry algebra psu(2, 2|4). In fact, the corresponding generators act
similarly to Yangian generators in spin chain models on sites defined by the fields
in the color ordered amplitude. Another domain where Yangian-invariants are rel-
evant is the hexagon construction of correlation functions in planar N = 4 SYM.
In [13] it is shown that the Y [su(2|2)nR2]-invariant S-matrix that we will discuss in
this thesis is a building block in the hexagon approach to correlation functions. As
proposed by the authors of this paper, it could be interesting to examine whether
their approach – that includes demanding factorization of the form factors – can
be reformulated in terms of the Yangian. Thus, the study of the implications of
imposing Yangian invariance of an object is relevant in a much broader field than
that of integrable spin chain models.

Outline

Having motivated the main parts of this thesis, let us outline its contents. We
start with an introduction to quantum integrability in chapter 2. This is done with
special focus on spin chains and their most important toy model – the Heisenberg
spin chain. During its discussion, we will encounter factorization of scattering.
In order to reveal the origin of this simplicity of the model’s dynamics, we then
introduce the Lax formalism. Doing so, we show that the Heisenberg spin chain has
infinitely many conserved local charges. This discussion is the motivation for several
definitions of integrability in the context of general quantum systems.

Afterwards, we move on to more general spin chains and their S-matrices in
chapter 3. We show the connection between the existence of local conserved charges
and factorized scattering by translating the argumentation for massive relativistic
QFTs given in section 1.1 into the language of spin chains.

In chapter 4 we introduce the formulation of integrability that is based on the
infinite-dimensional symmetry algebra called Yangian. We motivate it by showing
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its close connection to the existence of local charges for the Heisenberg spin chain.
We end this chapter by developing the Yangian constraints on the S-matrix.

In the following chapters 5-7 we explicitly evaluate these constraints and inves-
tigate the results with particular focus on consistent factorization. We begin with
a fairly simple example – the fundamental representation of the Yangian Y [su(n)]
that is associated to the Lie algebra su(n). Its discussion will help us to set the
ground for more challenging algebras.

We proceed with the Yangian Y [su(1|1)] whose Lie superalgebra su(1|1) allows
for a wider range of structure. In its fundamental representation it not only contains
a bosonic but also a fermionic particle and thus it is a good starting point for the
discussion of Yangian-symmetric S-matrices of supersymmetric models. First we
investigate this symmetry in the context of conventional models where the Hamilto-
nian is invariant under su(1|1). We then move on to more exotic models which are
mainly studied in the context of integrable spin chains that arise in the planar limit
of CFTs relevant for the AdS/CFT correspondence. Here the Hamiltonian is not
invariant under an external symmetry algebra but is rather a part of it, see e.g. [14].
Since its eigenvalues depend on the momenta of the magnons, the representation of
this algebra becomes momentum-dependent. This feature is often called dynamical,
in contrast to the conventional undynamical case.

The last algebra that we discuss is su(2|2). It contains two bosonic and two
fermionic particles in its fundamental representation. Furthermore, it allows for
length-changing operators. This feature can be captured in the representation of
the algebra by making it dynamical. In order to obtain the correct eigenvalues of
the Hamiltonian, it is necessary to extend the algebra by two central charges to
su(2|2)nR2. We will comment on this in more detail in chapter 7 and calculate the
Yangian-invariant S-matrices in this setup.

In chapter 8 we summarize the results of this thesis and conclude with a brief
outlook on possible future directions of research.



Chapter 2

Review of Integrability for Spin
Chains

The field of integrability emerged together with the search for exactly solvable clas-
sical mechanical systems since integrability and solvability often go hand in hand.
Nevertheless, both terms emphasize different facets when trying to understand the
dynamics of a system. As discussed above, integrability is an intrinsic feature of
a system resulting in unexpected simplicity of its equations and is thus closely re-
lated to symmetries. In contrast to this, solvability describes one’s ability to solve
a model’s dynamics to the very end. Unfortunately, there exists no universally ap-
plicable definition of integrability for all physical systems. Integrability of classical
mechanical systems with a finite number of degrees of freedom is well-defined (cf.
appendix A) whereas its notion for quantum systems and systems with infinitely
many degrees of freedom is less satisfactory.

In this chapter we review some aspects of integrability for spin chains with par-
ticular focus on the Heisenberg spin chain. We start by discussing this model and its
dynamics in sections 2.1 and 2.2. Afterwards, we move on to the origin of the arising
simplicity. Doing so, we introduce the Lax formalism and show that the Heisenberg
spin chain allows for a tower of conserved local charges in section 2.3 which moti-
vates one definition of quantum integrability. In section 2.4 we derive an important
equation in the context of integrable quantum models – the quantum Yang-Baxter
equation – which will also be relevant in our discussion of factorized scattering.
The sections 2.3 and 2.4 focus on integrability for a special class of integrable spin
chains, the so-called fundamental spin chains. In the last section 2.5 of this chapter
we discuss integrability in the context of a general, i.e. non-fundamental, spin chain.

2.1 Definition of the Heisenberg Spin Chain
An su(n) spin chain consists of N sites, each equipped with a vector space transform-
ing under a representation of su(n). It has either periodic, cyclic, open or infinite
boundary conditions. Such a model corresponds to a theory whose Hamiltonian
is su(n) invariant. Let us focus on the Heisenberg spin-1/2-chain in this section.
It is a special type of su(n) spin chains for n= 2 and lattice sites transforming in
the fundamental representation of su(2) associated to spin 1/2. Its discussion will
help us to set up and illustrate the framework for more general spin chains that are
relevant in the following. This section is developed in close analogy to [15–17].

7
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The State Space

The natural coordinates for a system consisting of localized spins are spin variables.
Since we focus on the fundamental representation of su(2), the spin state at each
site can be written as a linear combination of spin-up |↑〉 and -down |↓〉 vectors.
They span a 2-dimensional Hilbert space denoted by H . The total state of the spin
chain is described by the tensor product of all of the individual vectors. It lives in
the Hilbert space H ⊗N having 2N basis vectors, e.g.

|m1〉 ⊗ ...⊗ |mn〉 ⊗ ...⊗ |mN〉 =: |m1 ... mn ... mN〉 (2.1)

where mn is either ↑ or ↓.

Spin Operators

Now let us turn to operators acting on these states. An operator acting non-trivially
on one site only is denoted by

Xn := I⊗ I⊗ ...⊗X ⊗ ...⊗ I (2.2)
nth site

with n = 1, ..., N . I ∈H is the identity matrix.
Take as an example the spin operators1 San which measure the spin of the nth

site of the chain in the direction a with a = x, y, z. These operators satisfy the usual
angular momentum commutation relations

[San1 ,S
b
n2 ] = iδn1n2ε

abcScn1 (2.3)

locally. εabc denotes the completely antisymmetric tensor with εxyz = 1. The small-
est non-trivial representation of the corresponding Lie algebra su(2) associated to
spins s = 1/2 maps the three generators at each site to the Pauli matrices σa

San = σa

2 (2.4)

(~ = 1) with

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.5)

Thus, the one-site Hilbert space H is the space C2 of all 2× 2 hermitian matrices
with identity matrix

I = (σa)2 =
(

1 0
0 1

)
. (2.6)

The basis of the states at each site can be chosen to consist of the eigenvectors of
σz that are

|↑〉 =
(

1
0

)
|↓〉 =

(
0
1

)
. (2.7)

The total spin operators of a spin chain are given by

Sa =
N∑
n=1
San. (2.8)

1Note the difference between the spin operators denoted by S and the S-matrix denoted by S.
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The Heisenberg Hamiltonian

Having a notation for states of the spin chain and spin operators we may proceed
with the spin chain’s dynamics. A Heisenberg spin chain is characterized by the
Hamiltonian

H =
∑
n

(
1
4 − S

a
nSan+1

)
. (2.9)

For spin chains with periodic boundaries the sum over n runs from 1 to N and we
identify the spins SaN+n and San. For open spin chains n varies between 1 and N − 1.
The Hamiltonian commutes with the total spin operators Sa, [H,Sa] = 0, and thus
the Heisenberg spin chain is indeed su(2) symmetric.

The Hamiltonian only includes nearest-neighbor spin-spin interactions. One gets
a deeper insight into these interactions by introducing raising and lowering spin
operators S±n = Sxn ± iSyn which satisfy the usual raising and lowering conditions

S+ |↑〉 = 0, S− |↑〉 = |↓〉 , Sz |↑〉 = +1
2 |↑〉 ,

S+ |↓〉 = |↑〉 , S− |↓〉 = 0, Sz |↓〉 = −1
2 |↓〉 . (2.10)

Using these operators we can rewrite (2.9) as

H =
∑
n

(
1
4 −

1
2(S+

n S−n+1 + S−n S+
n+1)− SznSzn+1

)
. (2.11)

Thus, the Hamiltonian allows for scattering of neighboring |↑〉 and |↓〉 leaving the
total spin eigenvalue sz of Sz constant in time [H,Sz] = 0. Furthermore, the spin
chain’s energy eigenvalue gets smaller the more spins are aligned, i.e. the model
describes a ferromagnetic spin chain.

2.2 The Coordinate Bethe Ansatz
In order to understand the physics of a spin chain, we need to find the energy spec-
trum and eigenstates of the Hamiltonian. Since dim(H ⊗N) = 2N , the Hamiltonian
H is a 2N × 2N matrix. It can become rather involved to diagonalize such a matrix
by brute force to obtain the energy spectrum. In fact, there exists a more convenient
approach called Coordinate Bethe Ansatz [18] for the Heisenberg spin chain. In this
section we outline this approach for periodic spin chains on the basis of [4], [15]
and [19,20].

Translational and su(2) Invariance

By confining this discussion to homogeneous spin chains with periodic boundary
conditions, we gain translational symmetry of the system. This symmetry is man-
ifest for the Heisenberg spin chain since the Hamiltonian H in (2.9) for periodic
boundaries commutes with the shift operator U that shifts the chain by one site, i.e.
[H,U ] = 0. Shifting a chain of length N by N sites must re-establish its original
form, i.e.

UN = I⊗N (2.12)

where I⊗N denotes the identity in H ⊗N . Therefore the eigenvalues Uk of U are

Uk = eik with k = 2π
N
n, n = 0, ..., N − 1 (2.13)
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which is invariant under k → k+ 2π. We identify the total momentum operator2 K
as the generator of translations, i.e.

U = eiK. (2.14)

Thus, the variables k in (2.13) coincide with the momentum eigenvalues and the
periodicity condition results in the quantization of the total momentum of the chain.

The Vacuum State

The Coordinate Bethe Ansatz exploits the fact that the model has even more sym-
metry. The invariance under su(2) symmetry transformations can be used to de-
compose the space H ⊗N of eigenstates into N +1 subspaces, called spin-multiplets,
consisting of states with the same eigenvalue sz of Sz. The subspace with highest
sz = N/2 consists of a single vector

|0〉 = |↑↑ ... ↑〉 . (2.15)

It is called Bethe reference state and – since this eigenvector of Sz is non-degenerate –
it is also an eigenvector ofH with vanishing energyH |0〉 = 0. This state corresponds
to the ferromagnetic vacuum of a magnetic spin chain. Applying the shift operator
to this state leaves it unchanged, U |0〉 = |0〉, i.e. the total momentum k is 0.

The First Excited State

The spin-multiplet with sz = N/2−1 consists of states with a single spin down. Let
us denote its position in the chain by n and the vector associated to a pure state in
this multiplet by

|n〉 = |↑↑ ... ↑↓↑ ... ↑〉 . (2.16)
nth site

This subspace is N -dimensional and the Hamiltonian H acts inside the multiplet.
We need to diagonalize it, i.e. find a basis of eigenvectors, in order to obtain the
energy spectrum. The Bethe ansatz proposes that the energy eigenstates are plane
waves of the form

|k〉 =
N∑
n=1

eikn |n〉 . (2.17)

Note that |k〉 denotes a state in momentum space, whereas |n〉 is a vector in position
space. The state (2.17) is indeed an eigenstate with energy eigenvalue

H |k〉 = 2 sin2 k
2 |k〉 . (2.18)

Acting with the shift operator defined by U |n〉 = |n− 1〉 on such a state yields

U |k〉 =
N∑
n=1

eikn |n− 1〉 =
N∑
n=1

eik(n+1) |n〉 = eik |k〉 . (2.19)

2Strictly speaking, K is a quasi-momentum operator since the translational symmetry is not
continuous.
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Accordingly, |k〉 is also an eigenvector of U and we identify k with the momentum
discussed above which is why we already denoted it with the same letter. Demanding
periodicity of |k〉, i.e. its invariance under n → n + N , we obtain the momentum
quantization condition discussed above

eikN = 1. (2.20)

Consequently, k can be identified as the quasi-momentum of the quasi-particle with
spin down that can hop between neighboring sites in a vacuum of spin up states.
This state is often called one-magnon state.

The Second Excited State

Let us move on to the spin multiplet sz = N/2 − 2 consisting of states with two
spins down. Similar to (2.16) we denote such a spin chain by

|n1, n2〉 = |↑↑ ... ↑↓↑ ... ↑↓↑ ... ↑〉 (2.21)
n1 n2

with 1 ≤ n1 < n2 ≤ N . The Bethe ansatz for the energy eigenstates corresponding
to two excitations is

|k1, k2〉 =
∑

1≤n1<n2≤N

(
ei(k1n1+k2n2) + S(k1, k2)ei(k2n1+k1n2)

)
|n1, n2〉 . (2.22)

This is not automatically an energy eigenvector. One finds that the factor S(k1, k2)
must satisfy

S(k1, k2) = u1 − u2 − i
u1 − u2 + i

(2.23)

where we introduced the rapidity variables

uj = 1
2 cot kj

2 ⇔ eikj =
uj + i

2
uj − i

2
. (2.24)

Calculating the associated energy eigenvalues gives

H |k1, k2〉 =
2

2∑
j=1

sin2 kj

2

 |k1, k2〉 , (2.25)

which is the sum of two single-magnon energies corresponding to momenta k1 and
k2. Thus, this state is called two-magnon state and the two summands in the ansatz
(2.22) can be interpreted as spin chain states containing two magnons of momenta k1
and k2. In the first term the magnon of momentum k2 is to the right of the magnon
with momentum k1 and vice versa for the second term. The factor connecting both
terms is S and is called scattering matrix (or S-matrix) which is – in this model
– just a number. Demanding translational invariance of |k1, k2〉 under the shifts
n1,2 → n1,2 +N yields the quantization of the total momentum k1 + k2

ei(k1+k2)N = 1. (2.26)

By imposing invariance under n1 → n1 +N we obtain constraints on S(k1, k2)

S(k1, k2) = eik2N S(k2, k1) = eik1N , (2.27)
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i.e. a magnon picks up a pure phase factor when shifted around the chain due to
scattering with the other magnon. If we let both magnons travel around the chain
we end up with the original situation S(k1, k2)S(k2, k1) = 1. Combining (2.23) and
(2.27) yields the so-called Bethe equations for two magnons(

uj + i
2

uj − i
2

)N
=

2∏
k=1
k 6=j

uj − uk + i

uj − uk − i
, j = 1, 2 (2.28)

that enable us to determine the allowed momenta k1 and k2.

Higher Excited States

One can carry out this procedure for every number of magnons m = 0, ..., N cor-
responding to the multiplet of spin sz = N/2 −m. The Bethe ansatz for the cor-
responding eigenstates |k1, k2, ..., km〉 is a generalization of the eigenvectors (2.15),
(2.17) and (2.22) discussed above. Take as an example m = 3 and define the vector

|k1, k2, k3〉o :=
∑

1≤n1<n2<n3≤N
ei(k1n1+k2n2+k3n3) |n1, n2, n3〉 . (2.29)

Then, the Bethe ansatz is given by

|k1, k2, k3〉 = |k1, k2, k3〉o + S213 |k2, k1, k3〉o + S132 |k1, k3, k2〉o
+ S231 |k2, k3, k1〉o + S312 |k3, k1, k2〉o + S321 |k3, k2, k1〉o (2.30)

where each factor Sijk in general depends on all momenta Sijk = Sijk(k1, k2, k3).
Demanding that this state is an eigenstate of the Hamiltonian fixes these coefficients
and we obtain [20]

|k1, k2, k3〉 = |k1, k2, k3〉o + S12 |k2, k1, k3〉o + S23 |k1, k3, k2〉o
+ S12S13 |k2, k3, k1〉o + S23S13 |k3, k1, k2〉o + S12S13S23 |k3, k2, k1〉o

(2.31)

with Sij := S(ki, kj) which is the two-particle S-matrix satisfying

S(kj, kk) = uj − uk + i

uj − uk − i
. (2.32)

This implies that the overall scattering factor for magnons going around the chain
consists of two-magnon S-matrices for each scattering between magnons along the
way. This factorization of multi-particle S-matrices into two-particle S-matrices
works for all m and is a characteristic feature of integrable models that we focus on
in this thesis. The associated energy eigenvalues for arbitrary m are given by

H |k1, k2, ..., km〉 = 1
2

m∑
j=1

1
u2
j + 1

4
|k1, k2, ..., km〉 (2.33)

in agreement with the above results. Demanding translational invariance of the
eigenstates yields the total momentum conservation and fixes products of S-matrices

eikjN =
m∏
k=1
k 6=j

S(kj, kk). (2.34)
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Combining (2.32) and (2.34) yields the generalization of (2.28) as(
uj + i

2
uj − i

2

)N
=

m∏
k=1
k 6=j

uj − uk + i

uj − uk − i
, j = 1, ...,m. (2.35)

These so-called Bethe-equations constrain the allowed momenta.
Thus, we encounter a remarkable simplicity of the equations describing the dy-

namics of the Heisenberg spin chain. Its whole spectrum and scattering information
is encoded in a set of algebraic relations: The calculation of energies is reduced
to the calculation of allowed momenta and the corresponding one-magnon energies.
The scattering of m magnons reduces to the successive scattering of two magnons.
This simplicity of the model’s solution hints on its integrability whose origin we
want to discuss in the following section.

2.3 Lax Operator and Monodromy Matrix
In this section we introduce the quantum version of the classical Lax formalism3

along the lines of [15–17]. It is crucial in the discussion of spin chain models whose
dynamics are unexpectedly simple because it provides the natural framework in
which these simplifications can be traced back to symmetries. Furthermore, it will
help us to motivate various definitions of quantum integrability. Since we want to
discuss general spin chain models in the following, we develop this section with no
special focus on the Heisenberg spin chain. Nevertheless, we refer to it whenever it
is useful as an example.

The Lax Operator

Let us begin by denoting the Hilbert space at a site n of a general spin chain model
by Hn. Then the complete state space of a spin chain of length N is H ⊗N and is
given by the tensor product of the individual Hilbert spaces

H ⊗N =
N⊗
n=1

Hn. (2.36)

In this thesis we only study spin chains whose Hilbert spaces Hn are isomorphic.
Whenever it is useful, we denote the single-site Hilbert space by H0 with

Hn ≡H0 ∀ n ∈ {1, ..., N}. (2.37)

In the Lax formalism the discussion of the dynamics of the model is based on the
Lax operator L(λ) rather than the Hamiltonian H. It acts on the tensor product of
two spaces Ln,a: Hn ⊗ Va →Hn ⊗ Va, i.e. on the physical Hilbert space Hn at site
n of the chain and on an auxiliary space Va. Moreover, it depends on the spectral
parameter λ which is a complex continuous variable whose role becomes clear in the
following. The Lax operator for the Heisenberg spin chain is given by

Ln,a(λ) = −iλ(I⊗ I)n,a + (Sb ⊗ σb)n,a (2.38)

and acts on Hn = C2 and Va = C2. It has two features which make the Heisenberg
spin chain a so-called fundamental model [7]:

3A brief review of the classical Lax formalism is given in the appendix A.2.
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• The auxiliary space Va and physical space H0 are identical, i.e. Va ≡H0.

• The Lax operator corresponds to the permutation operator P on H0 ⊗H0 at
a point λ = λ0, i.e. L(λ0) = P.

For the Heisenberg spin chain we identify the point λ0 by introducing the permuta-
tion operator on C2 ⊗ C2 at sites n1 and n2

Pn1,n2 = 1
2(I⊗ I + σa ⊗ σa)n1,n2 . (2.39)

In order to confirm that this is indeed the permutation operator, one can explicitly
act on a two-spin state represented by the vectors in (2.7). This operator satisfies

Pn,n1Pn,n2 = Pn1,n2Pn,n1 = Pn,n2Pn2,n1 ,

Pn1,n2 = Pn2,n1 ,

Pn1,n2Pn1,n2 = In1,n2 . (2.40)

Using P we may rewrite the expression in (2.38) as

Ln,a(λ) = −i
(
λ− i

2

)
In,a + Pn,a (2.41)

and identify the Lax operator (2.38) at λ0 = i
2 with the permutation operator.

Monodromy and Transfer Matrix

In the following we want to answer two questions: How can we approach the concept
of integrability for a model on the basis of the Lax operator and how is such an
operator related to a spin chain at all? In particular, what is the connection between
the object in (2.38) and the Heisenberg spin chain discussed in section 2.1 and 2.2?
In order to answer these questions, let us begin by promoting Ln,a to an operator
acting non-trivially on the whole spin chain

Ta(λ) = L1,a(λ)L2,a(λ)...LN,a(λ). (2.42)

This object is called monodromy matrix and acts on H ⊗N ⊗ Va. Tracing over the
auxiliary space gives the transfer matrix

t(λ) = tra(Ta(λ)) (2.43)

which only acts on the physical spaces.

Local Operators from the Monodromy

Interestingly, we can use the point λ = λ0 of fundamental models to find a quantity
that we already discussed in the previous sections – the shift operator U . For this
purpose, let us calculate the monodromy matrix (2.42) at the point λ0 for general
fundamental spin chain models. Rearranging the permutation operators with the
help of (2.40) yields

Ta (λ0) = P1,aP2,aP3,a...PN,a = P2,aP1,2P3,a...PN,a
= ... = PN,aPN−1,NPN−2,N−1...P2,3P1,2. (2.44)



15

Now we can take the trace over the auxiliary space using traPN,a = IN . For the
Heisenberg spin chain this can be verified easily by writing PN,a as a matrix in the
auxiliary space

PN,a = 1
2

(
I + σz σx − iσy
σx + iσy I− σz

)
. (2.45)

This yields
t (λ0) = PN−1,N ...P2,3P1,2 ≡ U , (2.46)

i.e. the transfer matrix t evaluated at λ = λ0 gives the left-shift operator U . Using
U = eiK with momentum operator K we find

K = −i ln (t(λ0)) , (2.47)
where ln denotes the matrix logarithm for t in matrix representation. Thus, the
Lax operator of fundamental spin chain models contains the shift operator U and
its generator K.

Let us examine the next order of the expansion of t around λ0. We concentrate
on the Heisenberg spin chain for which we know the explicit λ-dependence of L.
Differentiating Ta with respect to λ and using (2.40) gives
dTa

dλ

∣∣∣∣∣
λ= i

2

= −i
∑
n

P1,a...Pn−1,aPn+1,a...PN,a = −i
∑
n

PN,aPN−1,N ...Pn−1,n+1...P2,3P1,2

(2.48)
and thus we find

t( i2)−1 dt
dλ

∣∣∣∣∣
λ= i

2

= −i (P1,2...Pm−2,m−1Pm−1,mPm,m+1Pm+1,m+2...PN−2,N−1PN−1,N) ·

·
∑
n

(PN−1,NPN−2,N−1...Pn+1,n+2Pn−1,n+1Pn−2,n−1...P1,2)

= −i
∑
n

Pn,n+1. (2.49)

This corresponds to the Heisenberg Hamiltonian (2.9) since we may rewrite it in
terms of the permutation operator as

H = 1
2

∑
n

(In,n+1 − Pn,n+1) . (2.50)

Hence we can identify the second term in the expansion of t around λ0 with the
Heisenberg Hamiltonian up to a trivial constant, e.g. for the closed spin chain

H = N
2 −

i
2

d
dλ ln (t(λ))

∣∣∣
λ= i

2
. (2.51)

This justifies the statement that the Lax operator (2.38) is associated to the Heisen-
berg spin chain. For general spin chain models the first order of the expansion of t
in the form d

dλ ln (t(λ))
∣∣∣
λ=λ0

is typically connected to the Hamiltonian of the system.
In [21] it was shown that the remaining charges in the expansion of the form

Qr = − i
r!

dr−1

dλr−1 ln(t(λ))
∣∣∣
λ=λ0

(2.52)

are local of degree r for the XYZ spin-1/2 chain, i.e. they only act on r neighboring
sites. For fundamental models this construction is supposed to be analogous [7],
in particular the charge Q2 associated to the Hamiltonian only contains nearest-
neighbor interactions.



16

Conserved Charges from the Monodromy

Having shown the connection of Lax operators and Hamiltonians of spin chain mod-
els, we still need to answer the following question: Why should we prefer basing
the discussion of a spin chain model on a Lax operator rather than a Hamiltonian?
In fact, the great advantage of defining a system via the Lax operator is that there
exists a procedure that enables us to obtain a tower of conserved operators from this
object for certain models. This large amount of symmetry leads to the simplicity of
the model’s solution and can be used as a definition of quantum integrability. We
want to demonstrate this in the following.

Let us begin by introducing the so-called RLL-relation

Ra,b(λ1 − λ2)Ln,a(λ1)Ln,b(λ2) = Ln,b(λ2)Ln,a(λ1)Ra,b(λ1 − λ2) (2.53)

with the R-operator Ra,b(λ): Va ⊗ Vb → Va ⊗ Vb. This equation is defined on Hn ⊗
Va ⊗ Vb with auxiliary spaces Va,b. The existence of an R-operator satisfying (2.53)
for a specific Lax operator has tremendous implications on the model’s dynamics.
This can be shown by rewriting this equation into a formula for the transfer matrix.
In order to do so, let us repeatedly use it on all sites of the chain such that we obtain
the so-called RTT-relation

Ra,b(λ1 − λ2)Ta(λ1)Tb(λ2) = Tb(λ2)Ta(λ1)Ra,b(λ1 − λ2). (2.54)

For an invertible R-matrix this implies

Ta(λ1)Tb(λ2) = Ra,b(λ1 − λ2)−1Tb(λ2)Ta(λ1)Ra,b(λ1 − λ2) (2.55)

which can be traced over in both auxiliary spaces yielding

[t(λ1), t(λ2)] = 0. (2.56)

Expanding this relation in λ1 and λ2 generates all possible commutators of the
operators produced in an expansion of t. Equating coefficients reveals that these
commutators have to vanish. In particular, since the Hamiltonian is one of the
operators in the expansion around λ0, all operators in any expansion are conserved,
i.e. commute with the Hamiltonian. Therefore, the transfer matrix generates a
tower of commuting conserved quantities. Using (2.52) one may construct N local
charges, i.e. the system allows for exactly the same number of conserved charges
as there are degrees of freedom. This leads to our first formulation of quantum
integrability: We call a spin chain of length N integrable if there exists a tower of N
local independent conserved operators whose commutators vanish4. This is in close
analogy to the definition of integrability for continuous quantum field theories from
above (see chapter 1) and classical theories (see appendix A).

For the Heisenberg spin chain one finds that

Ra,b(λ) = λIa,b + iPa,b (2.57)

satisfies (2.53). The existence of this R-operator implies the existence of a tower
of conserved commuting operators and thus it is integrable in the above sense. As
we already discussed above, the momentum Q1 = K and energy operator Q2 ∼

4As already mentioned above, this formulation is not suitable as a general definition of quantum
integrability since the notion of independence of operators in quantum models is problematic.



17

H are among these charges. It is not clear whether the higher charges contain
physical information but they generate hidden symmetries which are the basis of the
model’s integrability. The Lax formalism can even be used to efficiently calculate
the spectrum of the Heisenberg spin chain by a variation of the Coordinate Bethe
Ansatz called Algebraic Bethe Ansatz. We do not discuss it in detail but sketch some
results in the appendix B.

2.4 The Quantum Yang-Baxter Equation
The crucial ingredient in the proof that a spin chain is integrable in the above sense
is the existence of an R-matrix satisfying the RLL-relation. Therefore, one often
reformulates integrability in the following way: A spin chain model with Lax matrix
L(λ) is integrable if there exists an R-matrix R: Va⊗Vb → Va⊗Vb which satisfies the
RLL-relation (2.53)5. This definition can be used to find new integrable quantum
models. In order to demonstrate this, let us first develop a consistency condition for
the RLL-relation. We start with the combination Ln,a(λ1)Ln,b(λ2)Ln,c(λ3) of three
Lax matrices acting on the space Hn ⊗ Va ⊗ Vb ⊗ Vc and rewrite it using (2.53) as

LaLbLc = R−1
a,bRa,bLaLbLc = R−1

a,bLbLaLcRa,b

= ... = (Rb,cRa,cRa,b)−1 LcLbLa (Rb,cRa,cRa,b) . (2.58)

Here we drop the index n on the Lax operators and the dependence on the spectral
parameters. On the other hand, we may also rearrange this combination of Lax
operators as

LaLbLc = LaR−1
b,cRb,cLbLc = ... = (Ra,bRa,cRb,c)−1 LcLbLa (Ra,bRa,cRb,c) (2.59)

and thus we find the quantum Yang-Baxter equation (qYBE)

Ra,b(λ1 − λ2)Ra,c(λ1 − λ3)Rb,c(λ2 − λ3) = Rb,c(λ2 − λ3)Ra,c(λ1 − λ3)Ra,b(λ1 − λ2).
(2.60)

Here we reintroduced the dependence on the spectral parameters. Any solution R(λ)
to the qYBE with R(0) = P defines a fundamental integrable quantum model with
Lax operator

L : Hn ⊗ Va →Hn ⊗ Va and Ln,a(λ) = Ra,n(λ− λ0) (2.61)

for Hn ≡ Va in the version of integrability discussed at the beginning of this section.
This can easily be verified by checking the RLL-relation starting from the qYBE
(2.60) and using (2.61). Due to the existence of a point λ0 with L(λ0) = P and the
equivalence of the one-site Hilbert space H0 and the auxiliary space Va, the model
is fundamental.

It will turn out in the following that the qYBE and the R-matrix are crucial
in the study of factorization of scattering for integrable quantum models. Indeed,
this equation is associated to the consistency of the factorization which we already
commented on in chapter 1.

5This is the formulation used by Faddeev et al in [7]. Note that for non-fundamental models
this formulation is problematic, see the discussion in section 2.5.
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2.5 Fundamental and Non-Fundamental Models
In the previous sections we often restricted ourselves to fundamental models. In the
following we want to show the close connection between the existence of a tower
of commuting conserved local charges and the factorization of scattering for both
fundamental and non-fundamental models. For this purpose, let us briefly review
from [7] how it is possible to construct local charges for integrable models that do
not satisfy the above properties.

We start with a model with Lax operator L(λ) acting on Hn ⊗ Va. It shall be
integrable in the sense that there is an R-matrix acting on Va⊗Vb and satisfying the
RLL-relation (2.53). For fundamental models the transfer matrix built from the Lax
operator generates a tower of commuting conserved charges. Via the proof in [21] it
should be possible to find a formulation in which these act locally on neighbouring
sites. For non-fundamental models it is less clear whether the charges (2.52) built
from the transfer matrix act locally since the equality of the permutation operator
and the Lax operator at the expansion point λ0 is crucial in the proof of locality
of (2.52) given in [7, 21]. But there exists a way to construct local charges for non-
fundamental models that we want to review on the basis of the original paper [7].
For this purpose, one needs to find an R-matrix R(λ) on the physical space

R : Hn ⊗H0 → R : Hn ⊗H0 (2.62)

that fulfills R(λ0) = P at a point λ = λ0 and which satisfies a version of the RLL-
relation

Rn,0(λ1 − λ2)Ln,a(λ1)L0,a(λ2) = L0,a(λ2)Ln,a(λ1)Rn,0(λ1 − λ2) (2.63)

acting on Hn ⊗H0 ⊗ Va. Then we may define a version of the monodromy matrix

T0(λ) = RN,0(λ)RN−1,0(λ)...R1,0(λ) (2.64)

that is a matrix in H0. Tracing over this space gives

t(λ) = tr0 (T0(λ)) . (2.65)

This object is similar to the transfer matrix in (2.43) for fundamental models and
thus the operator t(λ) generates operators Qr

Qr = − i
r!

dr−1

dλr−1 ln(t(λ))
∣∣∣
λ=λ0

. (2.66)

Their construction is equivalent to the charges in (2.52) and thus, by the proof
in [21], they are supposed to be local.

One might ask whether these operators are conserved with respect to the original
model’s Hamiltonian Qr for some r. In order to check this, let us rewrite (2.63)

Rn,0(λ3)Ln,a(λ1)L0,a(λ1 − λ3) = L0,a(λ1 − λ3)Ln,a(λ1)Rn,0(λ3) (2.67)

with a change of variables λ3 = λ1 − λ2. Using this equation on all sites n we find

T0(λ3)Ta(λ1)L0,a(λ1 − λ3) = L0,a(λ1 − λ3)Ta(λ1)T0(λ3) (2.68)
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that includes both the monodromy matrix Ta(λ) of the original model and the
version for non-fundamental models T0(λ). Multiplying this equation by the inverse
of L0,a(λ1 − λ3) and taking the trace tr0,a over the space Va ⊗H0 yields

[t(λ1), t(λ3)] = 0. (2.69)

Expanding this relation in λ1 and λ3 and equating coefficients implies the vanishing
of the commutators of the original Qr and new charges Qr. In particular, the Qr

commute with the Hamiltonian of the original system and thus they are indeed
conserved.

In order to show that the charges Qr are not only conserved, but also build a
tower of commuting charges, we derive the qYBE for the alternative R-matrices
R(λ). This is done analogously to the procedure in the previous section 2.4 by
rewriting a combination of Lax operators acting on H0 ⊗H0̄ ⊗H1 ⊗ Va as

L0L0̄L1 = R−1
0,0̄R0,0̄L0L0̄L1 = ... = (R0̄,1R0,1R0,0̄)−1L1L0̄L0(R0,0̄R0,1R0̄,1) (2.70)

where we drop the index a for the auxiliary space and the dependence on the spectral
parameter. On the other hand, we have

L0L0̄L1 = ... = (R0,0̄R0,1R0̄,1)−1L1L0̄L0(R0̄,1R0,1R0,0̄) (2.71)

which yields together with (2.70)

R0,0̄(λ1 − λ2)R0,1(λ1 − λ3)R0̄,1(λ2 − λ3) = R0̄,1(λ2 − λ3)R0,1(λ1 − λ3)R0,0̄(λ1 − λ2)
(2.72)

where we reintroduced the dependence on spectral parameters. This alternative
qYBE can be repeatedly used on all sites which gives

R0,0̄(λ1 − λ2)T0(λ1 − λ3)T0̄(λ2 − λ3) = T0̄(λ2 − λ3)T0(λ1 − λ3)R0,0̄(λ1 − λ2).
(2.73)

Assuming that R0,0̄ is invertible we may multiply by the inverse and afterwards
trace over the spaces H0 and H0̄ which yields

[t(λ1 − λ3), t(λ2 − λ3)] = 0. (2.74)

By similar arguments as for fundamental models, this equation implies that the
charges Qr commute. Thus they build a tower of conserved and commuting local
charges.

This discussion shows that the existence of an R-matrix that satisfies the RLL-
relation (2.53) for a non-fundamental model with Lax operator L(λ) does not nec-
essarily imply the existence of a tower of local charges. We showed in this section
that one may construct them if one assumes the existence of an alternative R-matrix
R(λ) that satisfies (2.63). It is not clear whether each integrable non-fundamental
model allows for such an object and thus allows for a tower of local charges.
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Chapter 3

Spin Chain S-Matrices

In the previous chapter we introduced some basic concepts of integrability in the
context of spin chains and have encountered the factorization of scattering for the
Heisenberg spin chain. This is a common feature of many integrable spin chain
models that we want to investigate in more detail in the following. In order to do
so, we introduce the quantity that characterizes scattering processes in these models
– the spin chain’s S-matrix. For this purpose, we develop the notion of the vacuum
and particle states for general spin chains in section 3.1. Afterwards in 3.2, we
discuss the symmetry algebra of asymptotic states and proceed in section 3.3 by
introducing the S-matrix. This discussion is partly based on [22,23]. Then we move
on to the connection of the existence of a tower of conserved local charges in a spin
chain model and factorization of scattering in section 3.4.

3.1 Vacuum and Asymptotic States
The S-matrix is a quantity that relates asymptotic states. In the context of con-
tinuous QFTs, asymptotic states consist of asymptotically free particles, i.e. their
separation is large compared to their interaction range. They propagate on a vac-
uum without interacting with it – it is just the stage on which the scattering process
takes place. In order to define the S-matrix for spin chains, we first need to trans-
late this picture of vacua, particles and asymptotic states into the language of spin
chains. We discuss these concepts in the context of g-invariant spin chains. These
spin chains consist of particles transforming under some representation of the alge-
bra g and are associated to Hamiltonians invariant under this algebra. We will call g
the full symmetry algebra in the following in order to distinguish it from the residual
symmetry algebra which we introduce in the next section. The simplest example
of such a spin chain is the previously discussed Heisenberg spin chain which is an
su(2) spin chain whose particles transform in the fundamental representation. In
contrast to the discussion of this model, we will not specify the spin chain models
by introducing Hamiltonians, but base the discussion on their symmetry properties.

Spin Chain Vacua

What is the vacuum for a spin chain? Clearly the notion of space void of particles
is not suitable for a lattice model. Let us take inspiration from the discussion of the
Heisenberg spin chain. There we already encountered the notion of "vacuum" and
"(quasi-)particle". We defined one spin configuration (|↑〉) as vacuum orientation and
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a linear combination of states with a single reverse orientation (|↓〉) as one-particle
state called magnon. We were able to assign a (quasi-)momentum to the motion
of this particle on the vacuum. Furthermore, we were able to build multi-particle
states. We may generalize this notion of the vacuum and excitations by picking
a specific spin orientation from the representation as vacuum configuration. This
orientation shall be denoted by a0 in the following such that the vacuum state of
the spin chain is given by

|0〉 = |a0 ... a0 a0 ... a0〉 (3.1)
similar to (2.15) of the Heisenberg spin chain. The remaining possible states of a
site are excitations which we want to denote by a.

One-Particle and Asymptotic States

Just as in the discussion of the Heisenberg spin chain in (3.2), one may introduce
linear combinations of the form

|a, u〉 =
N∑
n=1

eikn |a, n〉 (3.2)

with
|a, n〉 = |a0 ... a0 a a0 ... a0〉 . (3.3)

nth site

We interpret these as quasi-particles – the so-called magnons – moving along the
chain with momentum k and corresponding rapidity u = u(k).

These one-particle states can be used to build asymptoticm-particle states. They
are multi-particle states consisting of m magnons that are largely separated on the
chain, i.e.
|a1, u1; a2, u2; ...; am, um〉 :=

∑
n1�...�nm

ei(k1n1+k2n2+...+kmnm) |... a1 ... a2 ... am ...〉 .
↑ ↑ ↑
n1 n2 ... nm

(3.4)
The symbols ai, i = 1, ...,m denote the excitations of the m particles moving with
momentum ki and corresponding rapidities ui = ui(ki).

3.2 Residual Symmetry Algebra
Picking a specific spin orientation as vacuum configuration breaks the symmetry of
the model. Only some generators of the full symmetry algebra g will preserve the
vacuum and number of excitations. They correspond to a subalgebra gr of g which
is called residual symmetry algebra. Let us illustrate this for an su(3) spin chain.

Example: su(3) Spin Chain

In the fundamental representation the su(3) generators at each site are the Gell-
Mann matrices

λ1 =

0 1 0
1 0 0
0 0 0

 , λ2 =

0 −i 0
i 0 0
0 0 0

 , λ3 =

1 0 0
0 −1 0
0 0 0

 ,
(3.5)
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λ4 =

0 0 1
0 0 0
1 0 0

 , λ5 =

0 0 −i
0 0 0
i 0 0

 ,

λ6 =

0 0 0
0 0 1
0 1 0

 , λ7 =

0 0 0
0 0 −i
0 i 0

 ,

λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 . (3.6)

The matrices λ3 and λ8 span the Cartan subalgebra and can be diagonalized simul-
taneously. The state at each site of the spin chain is a linear combination of the
three eigenstates of the Cartan operators

|u〉 =

1
0
0

 , |d〉 =

0
1
0

 , |s〉 =

0
0
1

 . (3.7)

By choosing |s〉 as vacuum spin configuration, there are two types of excitations |u〉
and |d〉. Only the generators

{λ1, λ2, λ3} (3.8)

transform between them and preserve the vacuum state. The corresponding residual
symmetry algebra is su(2) which is obvious since the generators λ1, λ2 and λ3 embed
the Pauli matrices into 3× 3-matrices. Thus the excitations transform as spin-1/2-
particles.

The full symmetry algebra su(3) generates two more residual su(2) subalgebras.
One consists of the generators

{λ4, λ5,
1√
2

(
√

3λ8 + λ3)} (3.9)

corresponding to a vacuum |d〉 and the last subalgebra consists of

{λ6, λ7,
1√
2

(
√

3λ8 − λ3)} (3.10)

corresponding to the vacuum |u〉.
In general, one can show that each Lie algebra su(n) contains Lie subalgebras

su(n-1), see e.g. [24]. Therefore, for each su(n) spin chain it is possible to define a
vacuum state and the n-1 excitations transform under a residual symmetry algebra
su(n-1). In a concrete model with known Hamiltonian, the state of lowest energy is
chosen to be the vacuum state.

Example: The su(1|2) Spin Chain

Let us illustrate this concept for a super spin chain, i.e. a spin chain corresponding
to a Lie superalgebra. One of the simplest examples is the su(1|2) spin chain. In its
fundamental representation the particles’ states are given by a linear combination
of three basis states denoted by Z, φ and ψ. The first two are bosonic and the
latter is fermionic. If we choose Z as vacuum orientation, the residual algebra of
the excitations φ and ψ is su(1|1), cf. [14]. We discuss this algebra in section 6.1.
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Example: The su(2|3) Spin Chain

Let us move on to a more complex spin chain model, the su(2|3) spin chain. This
spin chain is interesting in the context of N = 4 SYM with superconformal alge-
bra psu(2,2|4) which we already discussed in chapter 1. In the fundamental rep-
resentation the Hilbert space at each site consists of five possible spin orientations
{φ1, φ2, φ3|ψ1, ψ2}, where the first three represent bosonic states and the last two
fermionic states. Choosing the bosonic complex combination Z = φ2 + iφ3 as vac-
uum state reduces the amount of symmetry for the excitations. This state minimizes
the energy eigenvalue of the corresponding Hamiltonian that is given in [25]. The
residual symmetry subalgebra of the excitations {φ1, φ2|ψ1, ψ2} is su(2|2) [10]. We
will discuss this Lie superalgebra in section 7.1.

The Hilbert Space of Asymptotic States

Under a residual symmetry algebra gr, which preserves the number of excitations,
vacuum and spin chain length, the Hilbert space Hasym of asymptotic states decom-
poses into subspaces1

H ⊗N
asym = (V0) ⊕ (V1) ⊕ (V1 ⊗ V2) ⊕ ... (3.11)

The space V0 is the vacuum space and only contains the state (3.1). V1 contains all
one-magnon states (3.2) and V1 ⊗ V2 ⊗ ... ⊗ Vm contains all m-magnon asymptotic
states (3.4). Note that the sum in (3.11) does not go all the way to m = N but
stops as soon as the number of magnons is not compatible with an asymptotic state
anymore. In the next section we introduce the m→ m S-matrix which we define as
an operator that maps inside the subspaces ⊗m

n=1 Vn for m ≥ 2.

3.3 Spin Chain S-Matrices
Incoming and Outgoing States

As we already discussed in chapter 1, it is a special feature of theories in (1+1)
dimensions that we may order particles with respect to their velocities. We want to
use this feature to define incoming and outgoing states in a scattering process. An
incoming state in an m-particle scattering process is an asymptotic state

|a1, u1; a2, u2; ...; am, um〉in ∈Hin (3.12)

where the magnon of type a1 moves behind the magnon of type a2 etc. The corre-
sponding rapidities are such that u1 > u2 > ... > um and all particles participate in
the scattering process. The Hilbert space Hin contains all possible incoming states.
Similarly, for an outgoing state of an m-particle scattering process

|a1, u1; a2, u2; ...; am, um〉out ∈Hout (3.13)

the magnon a1 moves behind a2 etc., but the rapidities are in the reverse order
u1 < u2 < ... < um. Thus no scattering is possible. All outgoing states form the
Hilbert space Hout.

1Note that there occur subtleties for spin chain models with length-changing symmetry gener-
ators. This length-changing effect can be captured by making the algebra momentum-dependent,
see chapter 7.
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Definition of the S-Matrix

The m-particle S-matrix is an operator that maps an m-particle outgoing state into
an m-particle incoming state

|a1, u1; a2, u2; ...; am, um〉in = Sa1 a2 ... am
b1 b2 ... bm

(ui, vi) |b1, v1; b2, v2; ...; bm, vm〉out (3.14)

and thus characterizes the scattering of m magnons. In general, an S-matrix may
depend on all the rapidities ui and vi, i = 1, ...,m, of both states. The object
defined in (3.14) is the generalization of the coefficients in the Coordinate Bethe
Ansatz discussed in section 2.2. For general periodic spin chains, the S-matrices are
the prefactors in the asymptotic Bethe Ansatz.

The S-matrix maps from the asymptotic Hilbert space Hout of outgoing states
to Hin of incoming states

S : Hout →Hin. (3.15)

These Hilbert spaces correspond to the previously discussed m-particle asymptotic
Hilbert spaces (3.11). Let us label the single-particle Hilbert spaces by the rapidity
u of the particle as Vu.2 Thus the S-matrix is an operator that maps as

S : Vv1 ⊗ Vv2 ⊗ ...⊗ Vvm → Vu1 ⊗ Vu2 ⊗ ...⊗ Vum (3.16)

with incoming rapidities u1 > u2 > ... > um and outgoing rapidities v1 < v2 < ... <
vm. Take as an example a free theory, i.e. the particles do not interact at all and
they may only overtake each other. In this case, the S-matrix simply permutes the
one-particle Hilbert spaces

S : Vum ⊗ ...⊗ Vu2 ⊗ Vu1 → Vu1 ⊗ Vu2 ⊗ ...⊗ Vum (3.17)

and acts on a two-particle state as

S |a2, u2; a1, u1〉out ∼ |a1, u1; a2, u2〉in . (3.18)

Here the particle with quantum numbers a1 and rapidity u1 overtakes the particle
a2 with smaller rapidity u2 without an interaction.

The symmetries of the spin chain model under consideration restrict the form
of the S-matrix. In particular, since it is the map inside the subspaces of the de-
composed asymptotic Hilbert space (3.11), it must be invariant under the residual
algebra gr of the model. We will use this feature in the following chapters to con-
strain the S-matrix.

3.4 From Conserved Local Charges to Factorized
Scattering

Having defined spin chain S-matrices, we can now investigate how the existence of a
tower of commuting conserved local charges Qr constrains a scattering process. As
discussed in chapter 1, in a massive relativistic QFT the existence of infinitely many
conserved charges of different Lorentz spin s constrains the theory’s S-matrices in
such a way that

2In chapter 6 and 7 there will be further quantum numbers labeling these spaces.
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• they allow for no particle creation and annihilation,

• there are equal sets of rapidities for the initial and final state,

• the m-particle S-matrix factorizes into two-particle S-matrices.

In the discussion of scattering for the Heisenberg spin chain in section 2.2 we ob-
served the same features. Indeed, one can translate the proof for integrable massive
relativistic QFTs into the language of integrable spin chains which we will do in the
following by transferring the argumentation given in [3].

The crucial ingredient in the proof of factorization is the definition of integrability
via a tower of conserved local charges. For massive relativistic QFTs with infinitely
many degrees of freedom we demanded the existence of infinitely many charges Qs
that all have different Lorentz spin s. They act on one-particle states as (1.1). Let
us formulate integrability in the context of spin chains of length N as the existence
of N local conserved commuting charges Qr that act as

Qr |a, u〉 ∼ kr (1 +O(k)) |a, u〉 (3.19)

with u = u(k) and r ∈ N, 1 ≤ r ≤ N .
Before proceeding with the proof of factorization of S-matrices, let us study

how this definition of integrability fits into the framework of integrability that we
introduced in chapter 2. For fundamental models with Lax matrix L=L(λ) the
existence of a tower of local charges Qr of the form (2.52) can be used as a definition
of integrability. For non-fundamental models we may construct local charges Qr as
in (2.66). Indeed, the local charges obtained in these ways are supposed to act on
one-particle states as in (3.19)3. Let us motivate this statement by studying once
more the Heisenberg spin chain. Calculating the normalized eigenvalues qr of Qr
from the eigenvalues of the transfer matrix (B.4) and identifying the Bethe roots
and rapidities4 gives single-particle eigenvalues qr of the form

qr(u) = i

r

(
1

(u+ λ0)r−1 −
1

(u− λ0)r−1

)
(3.20)

with λ0 = i
2 . Note that for r = 2 we rediscover the one-magnon energy E = E(u)

given in (B.7) in the appendix B. Using the relation (2.24) and Taylor-expanding
around k = 0, we find that qr indeed scales as

qr(u(k)) ∼ kr
(
1 +O(k2)

)
. (3.21)

This result is in accordance with the assumption in (3.19).
Having motivated this definition of integrability for spin chains, let us use it to

analyse the implications from demanding the conservation of Qr during scattering
processes

〈Qr〉in = 〈Qr〉out . (3.22)
3In fact, that might be only true up to a trivial additive constant. We discard this constant in the

following by normalizing Qr in such a way that its eigenvalue qr = qr(u) satisfies qr(u(k = 0)) = 0
for a concrete model with known u = u(k).

4For a comment on this identification see the end of appendix B.
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The incoming and outgoing states are denoted by |...〉in and |...〉out and correspond to
the asymptotic states in (3.12) and (3.13), respectively. Due to locality the charges
act on asymptotic states as

Qr |a1, u1; ...; am, um〉 ∼
m∑
n=1

krn
(
1 +O(kr+1

n )
)
|a1, u1; ...; am, um〉 . (3.23)

with rapidities ui = u(ki). The conservation equation (3.22) implies the equality of
the sum of the individual eigenvalues of the charges in the incoming and outgoing
state. Since these eigenvalues qr scale like kr only up to higher-order terms, the
following argumentation for spin chain models is more subtle than the proof for
massive relativistic QFTs given in chapter 1. There the one-particle eigenvalues qs of
Qs are qs ∼ ps. In order to circumvent this difficulty, we assume that there are linear
combinations Qr of the original Qr that act on one-particle states as eigenoperators
with eigenvalues ∼ kr. Their existence is not obvious for infinitely long spin chains
which, however, are of purely theoretical nature anyway. By contrast, for finite, i.e.
physical, spin chains their construction is less straightforward due to the finiteness
of these linear combinations. For incoming momenta {ki} and outgoing momenta
{kf} in an min → mout scattering process the existence of these linear combinations
Qr implies

min∑
i=1

kri =
mout∑
f=1

krf ∀ r > 0 (3.24)

where the sum on the left hand side is over all initial momenta and the sum on
the right hand side over all final momenta. Note that we included the momentum
conservation equation given by (3.24) for r = 1. This is the analogue of the relation
(1.4) of the massive relativistic QFT. Similarly to its discussion, we can use (3.24)
for r > 0 to conclude the conservation of the magnon number and the equivalence
of the initial and final sets of momenta.

We now focus on the question whether (3.22) also implies factorization of scat-
tering. Introducing the S-matrix via (3.14) and demanding the conservation of the
local charges gives

〈in|S|out〉 = 〈in|e−iαQrSeiαQr |out〉 ∀ α ∈ Z, 1 ≤ r ≤ N. (3.25)

For r = 1 and Q1 = K, the transformation eiαK corresponds to the shift operator Uα
that moves the excitations on the chain by α sites. This results in a constant shift of
all magnons. Thus the conservation equation (3.25) for r = 1 implies shift invariance
of the S-matrix. In order to investigate the implications of (3.25) for higher-order
charges r > 1, we describe the magnons moving along the spin chain via a lattice
version of the Gaussian wave packet. This is in close connection to the proof for
massive relativistic QFTs. By straightforward discretization, the wave-function of a
one-magnon state moving with momentum k1 is given by

ψ(n) ∝
∫

dkeik(n−n1)e−c
2(k−k1)2 (3.26)

in lattice space with c ∈ R. Note that n ∈ N, 1 ≤ n ≤ N denotes the sites of the
chain. For n1 ∈ N, 1 ≤ n1 ≤ N the Gaussian wave-packet is centered around site
n1. Otherwise, i.e. for general n1 ∈ R, 1 ≤ n1 ≤ N , the maximal probability of
finding the excitation is at the site corresponding to the nearest integer of n1. Note
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that for finite spin chains the momentum integral becomes a summation over the
allowed momenta on the chain.

Acting with the symmetry operator eiαQr on the wave-function (3.26) changes it
to

ψ̄(n) ∝
∫

dkeik(n−n1)ec
2(k−k1)2

eiαk
r

. (3.27)

The integrand can be Taylor-expanded around k1 since this region gives the biggest
contribution to the integral

kr = kr1 + rkr−1
1 (k − k1) +O((k − k1)2). (3.28)

The same also works for finite spin chains – here only the terms with momentum k
close to k1 contribute in the sum. (3.28) gives

ψ̄(n) ∝
∫

dkeik(n−n1+αrkr−1
1 )e−c

2(k−k1)2
eiα(1−r)kr

1 (3.29)

and thus the wave-packet is shifted in space by an amount −αrkr−1
1 . Note that this

shift is momentum-dependent. Since the magnons in a general scattering process
have different momenta, they get shifted by different amounts under a transforma-
tion eiαQr for r > 1. As a result, we can shift scattering events of more than two
magnons apart such that they only contain two-particle scattering events. By the
conservation equation (3.25), the probability amplitude for the original and shifted
process must be the same, i.e.m-magnon S-matrices must factorize into two-magnon
S-matrices. In particular, a three-magnon S-matrix factorizes into three two-magnon
S-matrices that have to satisfy a consistency equation

S123 =

S12

S12

S12

=

S12

S12

S12

.

(3.30)
Thus the definition of integrability via the existence of local charges of the form
(3.19) implies factorization of scattering for the physical finite spin chains by argu-
ments similar to the ones for massive relativistic QFTs given in chapter 1.



Chapter 4

The Yangian

As we already realized in the previous chapters, integrability is closely related to
symmetries: The presence of a tower of commuting conserved local charges is one
possible defining characteristics of quantum integrable models. Another version is
the existence of hidden symmetries that form a quantum algebra called Yangian.
We define it in section 4.1. That definition once more contains a tower of conserved
charges. However, in this case these charges act non-locally and satisfy non-trivial
commutation relations. In section 4.2 we study the Yangian for a concrete example
– the Heisenberg spin chain. This discussion will reveal the close connection between
the existence of conserved Yangian generators and local charges Qr. Nevertheless,
we will argue that this connection is not always manifest. At the end of this chapter
we investigate the constraints resulting from the presence of Yangian symmetries
on the model’s S-matrix. This will help us to analyse the scattering behavior of
particles in various integrable models in the following chapters 5-7.

4.1 Definition of the Yangian
We begin this chapter with a review of the Yangian algebra on the basis of [17]
and [26–28].

Generators of the Yangian Algebra

The Yangian is an algebra containing an infinite number of generators that are
arranged in infinitely many levels. The first set contains the level-0 generators Ja.
They span a finite-dimensional simple Lie algebra g with structure constants fabc

[Ja, Jb] = fabcJc. (4.1)

Hence the dimensionality of this level is given by the dimension dim(g) of the Lie
algebra, i.e. a = 1, ..., dim(g). The Killing form κab and its inverse raises and lowers
indices. The second set of generators contains the same number of elements. These
are called level-1 generators and are denoted by Ĵa. They satisfy a commutation
relation with the level-0 generators of the form

[Ja, Ĵb] = fabcĴc. (4.2)

All further levels are successively generated by commuting the generators of the
previous level. Take as an example the level-2 generators which are given by ˆ̂Ja ∼

29
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fabc[Ĵb, Ĵc]. This procedure is only constrained by the Serre-relations

[Ĵa, [Ĵb, Jc]] = gabcdef{Jd, Je, Jf},
[[Ĵa, Ĵb], [Jr, Ĵs]] + [[Ĵr, Ĵs], [Ja, Ĵb]] = (gabcdeff rsc + grscdeff

ab
c ){Jd, Je, Jf}, (4.3)

where

gabcdef = 1
24f

ai
df

bj
ef

ck
ffijk, {x1, x2, x3} =

∑
i 6=j 6=k

xixjxk. (4.4)

Thus, although the Yangian is an infinite-dimensional algebra, it is spanned by
a finite set of operators – the level-0 and level-1 generators – that must satisfy
the Jacobi-like relations in (4.3). Since a Yangian algebra is always based on the
underlying Lie algebra g, it is denoted by Y [g].

The Coproduct Structure

An important property of the Yangian is its coproduct structure. If we think of
Ja and Ĵa as symmetry generators acting on a one-particle state, the action on
two-particle states is specified by the coproduct ∆ with

∆(1) = 1⊗ 1,
∆(Ja) = Ja ⊗ 1 + 1⊗ Ja,
∆(Ĵa) = Ĵa ⊗ 1 + 1⊗ Ĵa + fabcJb ⊗ Jc. (4.5)

Just like in the usual Lie algebra, the action of a level-0 generator on a two-particle
state is the sum of the level-0 generators acting on both particles separately. The
action of the level-1 generator is slightly more involved. It contains the separate
action of level-1 generators on the first and second particle but also includes the
simultaneous action of level-0 generators on both particles. Note that the last line
in (4.5) is sensitive to a rescaling of the generators due to an imbalance of the number
of generators and structure constants. For the action on an m-particle state these
relations generalize to

∆m−1(Ja) =
m∑
n=1

Jan,

∆m−1(Ĵa) =
m∑
n=1

Ĵan + fabc
m∑

n1=1

n1−1∑
n2=1

Jbn2J
c
n1 . (4.6)

Here the generators Jan and Ĵan act non-trivially on the nth particle and trivially on
the remaining m− 1 particles, e.g.

Jan = 1⊗ 1⊗ ... ⊗ Ja ⊗ ...⊗ 1. (4.7)
1 2 ... n ... m

The coproduct structure reveals that the Yangian is an algebra of non-local charges:
While the coproduct of the level-0 generators acts locally on single spaces, the
coproduct of the level-1 generator acts non-locally on two spaces simultaneously.
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The Evaluation Representation

One possible representation of the Yangian generators is the evaluation representa-
tion ρū. It lifts the level-0 representation ρ of the underlying Lie algebra (4.1) to a
representation of both the level-0 and level-1 Yangian generators via

ρū(Ja) = ρ(Ja) ρū(Ĵa) = ūρ(Ja). (4.8)

For theories with moving particles the role of the parameter ū is taken by the rapidity
u of the particle that is characterized by the set of quantum numbers a, i.e.

ρū(Ja) |a, u〉 = ρ(Ja) |a, u〉 ρū(Ĵa) |a, u〉 = ūρ(Ja) |a, u〉 (4.9)

with ū ∝ u up to a model-dependent constant1. See e.g. [17] for a discussion of
this connection between both parameters in a massive, relativistic, two-dimensional
QFT. In order to be a representation for the whole Yangian algebra, the Serre-
relations (4.3) have to be satisfied for ρū. For ū = 0 the left hand sides of these
relations vanish trivially. Thus the Lie algebra representation ρ of the right hand side
has to vanish. This constraint reduces the number of Lie algebra representations
ρ that are suitable for the construction of evaluation representations of the form
(4.8). Acting with the Yangian generators in the evaluation representation on multi-
particle states is defined via the coproduct (4.6) as

ρ⊗mū (∆m−1Ja) |a1, u1; ...; am, um〉 =
m∑
n=1

ρ⊗m(Jan) |a1, u1; ...; am, um〉

ρ⊗mū (∆m−1Ĵa) |a1, u1; ...; am, um〉

=
 m∑
n=1

ūnρ
⊗m(Jan) + 1

2f
a
bc

∑
1≤n1<n2≤m

ρ⊗m(Jbn1)ρ⊗m(Jcn2)
 |a1, u1; ...; am, um〉 .

(4.10)

Here ρ⊗mū and ρ⊗m denote the representations on a tensor product of length m.
Note that there exist several realizations of the Yangian, c.f. [17]. In particular,

the generators of the Yangian algebra were first discovered in the context of the RTT-
relation (2.54). In the corresponding RTT-realization one defines the monodromy
matrix T as the solution of the RTT-relation for a given R-matrix, which is in the
case of the fundamental representation of su(n) Yang’s R-matrix

R = I + P
λ
. (4.11)

This solution T=T(λ) can be expanded for large λ which yields the generators of
the Yangian algebra satisfying the same commutation relations as the generators
discussed in this section. We show this explicitly for the Heisenberg spin chain
in the next section. In this version of the Yangian, the close connection between
the Yangian and integrability via its definition by the R-matrix satisfying (2.54) is
visible.

1In the following chapters we will not distinguish between the parameter ū and u. Thus, when
making use of the results of this thesis, one has to bear in mind a potential model-dependent factor.
Importantly, since u is shifted under a Lorentz boost, the parameter ū is also additive.
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4.2 The Yangian of the Heisenberg Spin Chain
In this section we want to motivate an enlargement of the set of definitions of
quantum integrability by a formulation including the Yangian which is: The theory’s
S-matrices are Yangian invariants. In order to do so, we discuss this statement for
the Heisenberg spin chain2.

Yangian Invariance of the Heisenberg Spin Chain

We start by investigating its monodromy along the lines of [17]. The monodromy
defined by (2.42) for the Lax operator (2.38) is a matrix in auxiliary space with
matrix elements

Tα
β(λ) =

(
λI1 ⊗ Iαγ1 + iSa1

1 ⊗ (σa1)αγ1

)
·
(
λI2 ⊗ Iγ1

γ2 + iSa2
2 ⊗ (σa2)γ1

γ2

)
·

... ·
(
λIN ⊗ IγN−1

β + iSaN
N ⊗ (σaN )γN−1

β

)
. (4.12)

Expanding it around λ0 = i
2 and tracing over the auxiliary space gives local charges.

Let us now do the expansion for large λ. This yields

Tα
β(λ) = λN

 i
λ

N∑
n=1
San − 1

λ2f
abc

∑
1≤n1<n2≤N

Sbn1S
c
n2

⊗ (σa)αβ

+ λN

I− 1
λ2

∑
1≤n1<n2≤N

San1S
a
n2

⊗ Iαβ + λNO
(

1
λ3

)
, (4.13)

where we used σaσb = fabcσc + δab. The leading contribution in the first term corre-
sponds to the total spin operator ∑N

n=1 San which is an invariant of the Hamiltonian.
The emergence of the generators of the su(2) symmetry algebra in the expansion of
the monodromy for large λ points towards the exceptionality of this point which is
why we proceed with the analysis of the subleading contribution of this expansion.

In fact, we show that the terms in the first summand build the Yangian algebra
Y [su(2)]. Its level-0 generators in the evaluation representation ρu is given by the
fundamental representation discussed in section 2.1

ρu(Ja) = Sa. (4.14)

The structure constants are fabc = iεabc. The action on N sites is given by the total
spin operators

ρ⊗Nu (∆N−1Ja) =
N∑
n=1
San (4.15)

that we discovered in the first term of the expansion. Let us now look for the level-1
generators Ĵa of Y [su(2)]. On N sites in the evaluation representation ρu for u = 0
they are given by

ρ⊗N0 (∆N−1Ĵa) = 1
2f

abc
∑

1≤n1<n2≤N
Sbn1S

c
n2 . (4.16)

2Note that in [29] the relation of local charges and non-local Yangian charges in principal chiral
(1 + 1)-dimensional models are investigated.
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Indeed, this operator corresponds to the term in the second order of the expansion
in the first summand in (4.13). Further powers in the expansion of the monodromy
will give the higher-level generators. As we already discussed in the last section, the
level-0 and level-1 generators in the evaluation representation span the whole set
of Yangian generators. The second summand in (4.13) consists of the identity and
powers of the level-0 generator which can be seen by calculating

∑
1≤n1<n2≤N

San1S
a
n2 = 1

2

N∑
n1,n2=1

San1S
a
n2 −

1
2

N∑
n=1
SanSan = 1

2S
aSa − 1

8I. (4.17)

Thus we proved that the Yangian Y [su(2)] naturally arises in the monodromy of
the Heisenberg spin chain. Its generators commute with the Hamiltonian (2.9)
for infinitely long spin chains and thus the Yangian is a symmetry algebra of the
model. For finite chains this is only true up to boundary terms, i.e. the Yangian is
a symmetry algebra only in the bulk. Therefore, magnons moving along Heisenberg
spin chains must transform under the Yangian and the S-matrix – which maps
outgoing magnons onto incoming magnons – must be a Yangian-invariant.

Fundamental and Non-Fundamental Spin Chain Models

We have shown that for the Heisenberg spin chain the conserved local charges and
Yangian generators follow from the same monodromy. Thus the definition of inte-
grability via a conserved Yangian automatically yields a tower of conserved local
charges. We conclude by the arguments in section 3.4 that scattering processes
in this model factorize. This argumentation holds for all spin chains whose mon-
odromy generates both Yangian and local operators, i.e. for all fundamental models.
This implicit proof of factorized scattering from a conserved Yangian is also pos-
sible for integrable QFTs with Yangian and local charges following from the same
monodromy via the argumentation outlined in chapter 1.

Nevertheless, it is not clear whether this implicit proof is possible for all quantum
models which are integrable via a conserved Yangian. Take as an example the
non-fundamental models that we discussed in section 2.5. Although there exists
a technique to construct local charges from an alternative monodromy, it is not
clear whether one always finds the alternative R-matrix R that is essential in this
construction. Thus it makes sense to investigate whether Yangian symmetry directly
implies factorization of scattering. This study is also particularly relevant in the
context of Yangian-invariant scattering amplitudes of N = 4 SYM and the hexagon
approach to form factors as discussed in the introductory chapter.

4.3 Yangian Invariant S-Matrices
For integrable spin chain models with Yangian symmetry the magnons transform
under the Yangian Y [gr] corresponding to the residual Lie algebra gr. This symmetry
has important implications on the S-matrix which relates multi-magnon states. The
conservation of the Yangian charges during a scattering process constrains the m-
particle S-matrix such that

level 0: [∆m−1Ja, S] = 0 (4.18)
level 1: [∆m−1Ĵa, S] = 0. (4.19)
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We investigate these constraints and their implications on S-matrices for the three
different Yangian algebras Y [su(n)], Y [su(1|1)] and Y [su(2|2) nR2] in detail in the
following chapters. Doing so we focus on 2 → 2 and 3 → 3 S-matrices and check
their consistent factorization. In fact, the results of this discussion are not only valid
for the corresponding spin chain models. The results can be used for any Yangian-
invariant model with an S-matrix whose particles transform under the evaluation
representation (4.9) of the above algebras in the fundamental representation.



Chapter 5

Y [su(n)]-Invariant S-Matrices

In this chapter we carry out the explicit analysis of the constraints (4.18) and (4.19)
for the Yangian generators of Y [su(n)]. For this purpose, we begin with a discussion
of the algebra, its generators and its coproduct structure in section 5.1. This will
help us to set up a framework for the explicit realization of the Yangian constraints.
We then move on to the solution of these constraints for the two- and three-particle
S-matrix in 5.2 and 5.3 and discuss the results with focus on consistent factorization.

5.1 The Algebra Y [su(n)] and Its Fundamental
Representation

Generators of su(n)

Let us begin by reviewing the algebra su(n) and introducing a suitable basis for
its generators. A basis of the algebra u(n) is spanned by the n2 operators R̄a

b ,
a, b = 1, 2, ...,n, satisfying

[R̄a
b , R̄

c
d] = δcbR̄

a
d − δadR̄c

b. (5.1)
The fundamental representation of these operators in bra-ket notation is

ρ
(
R̄a
b

)
= |a〉 〈b| (5.2)

with 〈a|b〉 = δba. The generators Ra
b of su(n) satisfy the same commutation relation

[Ra
b ,R

c
d] = δcbR

a
d − δadRc

b. (5.3)
and are moreover traceless. To form traceless operators, we may subtract the identity
operator ρ(1) = ∑

c |c〉 〈c| from (5.2) such that

ρ (Ra
b ) = |a〉 〈b| − δab

1
n
∑
c

|c〉 〈c| . (5.4)

As expected, we obtain n2 − 1 independent generators which may be arranged in
the following sets:

Ro = {Ra
b , 1 ≤ a = b ≤ n− 1}

R− = {Ra
b , 1 ≤ a < b ≤ n}

R+ = {Ra
b , 1 ≤ b < a ≤ n}. (5.5)

The set Ro contains the Cartan operators that generate the maximal abelian sub-
algebra of su(n). The operators in R+ can be interpreted as raising operators and
similarly R− contains the lowering operators, cf. the example below.

35
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Y [su(n)] in the Evaluation Representation

Now let us turn to the Yangian that is associated to su(n). The level-0 generators
are the su(n)-generators Ra

b . For the evaluation representation ρu (4.8) we use (5.4)
as the Lie algebra representation ρ, i.e.

ρu(Ra
b ) = ρ(Ra

b ). (5.6)

In this representation a single particle may take n "spin" orientations labeled by a

|a〉 , a = 1, ..., n. (5.7)

These states are the eigenstates of the Cartan operators of Ro. The action of
the level-1 generators R̂a

b in the evaluation representation makes it necessary to
introduce an evaluation parameter. We identify it with the rapidity u and label
each one-particle state as

|a, u〉 . (5.8)

These states shall form an orthonormal set, i.e. 〈a, u|b, v〉 = δab δu,v. The operators in
(5.4) do not change the rapidity of a particle. The corresponding level-1 generators
R̂a
b of Y [su(n)] in the evaluation representation (4.8) are given by

ρu(R̂a
b ) |a, u〉 = uρ(Ra

b ) |a, u〉 . (5.9)

Example: Y [su(2)]

Take as an example the evaluation representation for the Yangian Y [su(2)]. The
Lie algebra su(2) is spanned by a single Cartan operator R1

1, as well as the ladder
operators R1

2 and R2
1. They satisfy the commutation relations (5.3), i.e.

[R1
1,R

2
1] = −R2

1, [R1
1,R

1
2] = +R1

2, [R2
1,R

1
2] = −2R1

1. (5.10)

By comparing these with the commutation relations of the spin operators Sz, S+

and S− from 2.1

[Sz,S+] = S+, [Sz,S−] = −S−, [S+,S−] = 2Sz (5.11)

we can identify

Sz ∼ −R1
1, S+ ∼ R2

1, S− ∼ R1
2. (5.12)

The two single-particle states are |1, u〉 and |2, u〉 which correspond to the previ-
ously introduced eigenstates |↓〉 and |↑〉 of the Pauli matrices (2.7). We obtain the
analogous relations to (2.10) for su(2)

− ρ(R1
1) |1, u〉 = −1

2 |1, u〉 , ρ(R2
1) |1, u〉 = |2, u〉 , ρ(R1

2) |1, u〉 = 0,
− ρ(R1

1) |2, u〉 = +1
2 |2, u〉 , ρ(R2

1) |2, u〉 = 0, ρ(R1
2) |2, u〉 = |1, u〉 .

(5.13)

The action of the level-1 generator is given by the above relations multiplied by the
rapidity u of the particle as (5.9).
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Coproduct Structure of Y [su(n)]

In order to calculate the S-matrix corresponding to the scattering of 2→ 2 and 3→ 3
particles, we need the action of the Yangian generators on two- and three-particle
states. As discussed in the previous chapter, this is defined via the coproduct (4.6).
For the level-0 generators we find

∆Ra
b = Ra

b ⊗ 1 + 1⊗Ra
b ,

∆2Ra
b = Ra

b ⊗ 1⊗ 1 + 1⊗Ra
b ⊗ 1 + 1⊗ 1⊗Ra

b (5.14)
and for the level-1 generators

∆R̂a
b = R̂a

b ⊗ 1 + 1⊗ R̂a
b + 1

4f
ace
bdf Rd

c ⊗Rf
e ,

∆2R̂a
b = R̂a

b ⊗ 1⊗ 1 + 1⊗ R̂a
b ⊗ 1 + 1⊗ 1⊗ R̂a

b+
1
4f

ace
bdf

(
Rd
c ⊗Rf

e ⊗ 1 + Rd
c ⊗ 1⊗Rf

e + 1⊗Rd
c ⊗Rf

e

)
(5.15)

with constants facebdf defined by

facebdf = δcbδ
e
dδ
a
f − δadδebδcf . (5.16)

The coproduct structure in (5.15) can be derived by evaluating the term1 fabcJb⊗Jc
from (4.6) for su(2) in the representation via spin operators Sa given in (2.4). Take
as an example the x-component fxabSa ⊗ Sb. Using the identifications (5.12) gives

fxabSa ⊗ Sb = iSy ⊗ Sz − iSy ⊗ Sz

= 1
2

(
S+ ⊗ Sz − S− ⊗ Sz − Sz ⊗ S+ + Sz ⊗ S−

)
∼ 1

2

(
−R2

1 ⊗R1
1 + R1

2 ⊗R1
1 + R1

1 ⊗R2
1 −R1

1 ⊗R1
2

)
= 1

4

(
f 2ac

1bdR
b
a ⊗Rd

c + f 1ac
2bdR

b
a ⊗Rd

c

)
. (5.17)

Identifying Sx ∼ 1
2(R2

1 + R1
2) we verify the coproduct structure in (5.15). Similar

calculations can be done for the y- and z-component. For an arbitrary su(n) the same
identification is true as long as we normalize the operators Sa via tr(SaSb) = 1

2δ
ab.

These identifications ensure that the result is in the same convention as the results
of [17].

Y [su(n)]-Constraints on the S-Matrix

Having a representation of the Yangian generators as well as the formulas for their
action on multi-particle states, we can make the constraints on S given by (4.18)
and (4.19) explicit. For the Y [su(n)]-invariant m-particle S-matrix S12...m they are
given by

level 0:
[
m∑
n=1

(Ra
b )n, S12...m(ui, vi)

]
= 0 (5.18)

level 1:
 m∑
n=1

un(Ra
b )n + 1

4f
ace
bdf

m∑
n1=1

n1−1∑
n2=1

(Rd
c)n2(Rf

e )n1

 S12...m(ui, vi) =

S12...m(ui, vi)
 m∑
n=1

vn(Ra
b )n + 1

4f
ace
bdf

m∑
n1=2

n1−1∑
n2=1

(Rd
c)n2(Rf

e )n1

 .
(5.19)

1Note that the indices a, b, c in fa
bcJb ⊗ Jc in the fundamental representation take the values

x, y, z whereas the indices in face
bdf Rd

c ⊗Rf
e run from 1, ...,n with n = 3.
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Here the ui are the rapidities of the incoming and vi of the outgoing particles. As
we discussed in the previous chapters, it is a feature of integrable theories in (1+1)
dimensions that the sets of incoming rapidities vi and outgoing rapidities ui of a
scattering process are equal. Nevertheless, we do not postulate this feature here but
check whether Yangian symmetry yields it automatically. Thus, the level-0 condition
(5.18) implies that the S-matrix is invariant under su(n) transformations. The level-
1 condition (5.19) is a bilocal constraint. Higher orders of Yangian generators do
not impose further constraints on S as long as the Serre-relations are satisfied.

5.2 Solution of the Level-0 Constraint
Let us turn to the explicit analysis of the Yangian constraints (5.18) and (5.19) on
S. We calculate the S-matrix for two- and three-particle scattering processes but the
discussion can be easily extended to the scattering of more particles. (5.18) restricts
the S-matrix to be a linear combination of su(n)-invariant operators. There are
several possibilities to obtain these. We will discuss two approaches in the following.

5.2.1 su(n)-Invariant Operators from the Symmetric Group Sm
First we use the symmetric group Sm. It contains all permutations of a set of
m objects. One can show that the permutation operators projecting onto these
permutations span the space of all linear invariants of su(n) over the tensor product
of m Hilbert spaces (see e.g. [30, 31]). Thus we realize that the level-0 condition
constrains the S-matrix to be a linear combination of Sm permutation operators
that permute m particles.

Invariant Operators of Length 1

Let us examine the Sm permutation operators form = 1, 2, 3. The invariant operator
on a single site corresponding to m = 1 is given by

P1 =
∑
a

|a〉 〈a| (5.20)

where we sum over all excitation types. It acts as an identity map concerning the
particle’s quantum number a, i.e. P1 |a〉 = |a〉. An su(n)-invariant tensor acting on
a single particle moving with rapidity u and conserving its momentum is thus given
by2

I1(u) = A1(u)
∑
a

|a, u〉 〈a, u| (5.21)

with arbitrary factor A1(u). For A1 ≡ 1 this operator can be used to define the
particle number operator via

L :=
m∑
n=1

(∑
u

I1(u)|A≡1

)
n

=
m∑
n=1

1⊗ 1⊗ ...⊗
∑
u

I1(u)|A≡1 ⊗ ...⊗ 1. (5.22)
↑

nth site

2In fact, the level-0 constraint that arises from the invariance of S under the Lie-algebra symme-
try does not require the labeling of one- and multi-particle states by the rapidity u. Nevertheless,
since this will become relevant at level-1 in the evaluation representation of the Yangian, we already
introduce the notation including u here.
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Here we sum over all allowed rapidities3 u. This operator acts as

L |a1, u1; a2, u2; ...; am, um〉 = m |a1, u1; a2, u2; ...; am, um〉 . (5.23)

Invariant Operators of Length 2

For m = 2 there exist two permutation operators which we denote by P12 and P21
and represent their action on a two-particle state by

P12 =
∑
a1,a2

|a1; a2〉 〈a1; a2| , P21 =
∑
a1,a2

|a2; a1〉 〈a1; a2| . (5.24)

P12 is the identity map for two particles and thus describes a trivial permutation,
whereas P21 really permutes the two particles’ types. An su(n)-invariant opera-
tor is the superposition of both permutation operators. Introducing rapidities and
allowing the invariant operator to change these yields the general form

I12(u1,2; v1,2) = A12 |a2, u1; a1, u2〉 〈a1, v1; a2, v2|+B12 |a1, u1; a2, u2〉 〈a1, v1; a2, v2| .
(5.25)

Here the summation over excitation types is implicit. The coefficients A12 and
B12 may depend on u1,2 and v1,2. Denoting the momenta of the particles by k1 =
k(u1), k2 = k(u2), p1 = k(v1) and p2 = k(v2), momentum conservation restricts the
rapidities via k1 + k2 = p1 + p2. For the S-matrix we will later on demand u1 > u2
and v1 < v2 due to the convention regarding the ordering of rapidities in incoming
and outgoing states as discussed in section (3.3).

Let us introduce a diagrammatic way to represent the action of I12 on a two-
particle state using permutation diagrams of the form

I12(u1,2; v1,2) = A12

v1 v2

u1 u2

+B12

v1 v2

u1 u2

.

(5.26)

Here the two dots at the bottom of each diagram represent the particles before the
action of the operator, i.e. in case of the S-matrix corresponding to the outgoing state
with rapidities v1 < v2. The state after the action of the operator is represented
by the top dots which are associated to the incoming state with rapidities u1 > u2
for the S-matrix. The lines represent the action of the corresponding permutation
operators and connect particles of the same type. Let us analyse these diagrams
in the context of S-matrices, i.e. for the ordering of rapidities as u1 > u2 and
v1 < v2. Then, the first diagram illustrates a process where the faster particle of
rapidity u1 overtakes the second particle of rapidity u2 without a change of type
but redistribution of momenta to v1 and v2 with v1 < v2. In contrast to this, the
second diagram represents a scattering process where the two particles interchange
their type, i.e. the ordering of the quantum numbers ai is the same in the initial and
final state.

3A discrete set of allowed rapidities is a special feature of periodic spin chains and field theories,
see e.g. the discussion in section 2.2. For infinite spin chains or unbounded field theories there might
be no quantization of momentum and thus we would need to integrate over the allowed range of
rapidities.
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Invariant Operators of Length 3

Now let us move on to m = 3. Here we find 3! = 6 permutation operators that
permute the excitation types of three particles

P123 = |a1; a2; a3〉 〈a1; a2; a3| , P213 = |a2; a1; a3〉 〈a1; a2; a3| ,
P132 = |a1; a3; a2〉 〈a1; a2; a3| , P231 = |a2; a3; a1〉 〈a1; a2; a3| ,
P312 = |a3; a1; a2〉 〈a1; a2; a3| , P321 = |a3; a2; a1〉 〈a1; a2; a3| . (5.27)

Thus an su(n)-invariant operator of length 3 can be written as a linear combination

I123(u1,2,3; v1,2,3) = A123

v1 v2 v3

u1 u2 u3

+B123

v1 v2 v3

u1 u2 u3

+C123

v1 v2 v3

u1 u2 u3

+D123

v1 v2 v3

u1 u2 u3

+E123

v1 v2 v3

u1 u2 u3

+F123

v1 v2 v3

u1 u2 u3

(5.28)

with coefficients A123, ..., F123 which may be rapidity-dependent.
Note that the number of orthogonal su(n)-invariant operators does not neces-

sarily coincide with the number of permutations in Sm given by m!. In fact, this is
only true as long as m ≤ n. Take as an example the su(2)-invariant operator I123.
Here the permutation operators obey a relation which may be represented by the
permutation diagrams as

−

v1 v2 v3

u1 u2 u3

+

v1 v2 v3

u1 u2 u3

+

v1 v2 v3

u1 u2 u3

−

v1 v2 v3

u1 u2 u3

−

v1 v2 v3

u1 u2 u3

+

v1 v2 v3

u1 u2 u3

= 0.

(5.29)

The left hand side of this equation is an operator that antisymmetrizes three ex-
citation types. Since for su(2) there are only two allowed values for the ai, this
operator vanishes. Thus for su(2) the invariant operator I123 can be written as a
linear combination of an arbitrary set of five permutation operators.

5.2.2 su(n)-Invariant Operators from Young tableaux
We may also obtain invariant operators by constructing them as hermitian Young
projection operators and transition operators. In [31] it is shown that these span
the whole space of su(n)-invariants. Let us illustrate this construction for invariant
operators of length 2 and 3. Any two-particle state transforming under su(n) can
be depicted by the Young diagrams as

corresponding to the two Young tableaux
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1 2 1
2 .

Thus there exist two Young projection operators that project onto this completely
symmetric and completely antisymmetric representation. They span the whole space
of su(n) invariant operators of length 2. Now let us move on to m = 3 where the
states correspond to three Young diagrams

and four Young tableaux

1 2 3 1 2
3

1 3
2

1
2
3

.

We can construct four Young projectors projecting onto the three-particle states
corresponding to these tableaux. In [32] it was shown that tableaux of the same
shape correspond to equivalent representations. Thus the authors argue that there
must exist transition operators that project between these representations. In the
case of m = 3, there are two transition operators corresponding to two tableaux
of the same shape. Together with the four Young projection operators they span a
fully orthogonal basis of invariants. Note that for n=2 the completely antisymmetric
representation for m = 3 is empty. The corresponding Young projection operator
is the null operator and there are five orthogonal operators in agreement with the
above discussion. Thus, in this approach we immediately get the correct number of
orthogonal operators without looking for relations between the permutation opera-
tors.

This procedure can be applied for all particle numbers m. There exists a stan-
dard method that allows us to build the Young projection and transition operators
explicitly, see e.g. [32]. In the following, we use the approach via the permutation
diagrams since their implementation in Mathematica is easier. We use the invariants
in (5.26) and (5.28) and further constrain them by the level-1 constraint (5.19).

5.3 Solution of the Level-1 Constraint
Having found the most general form of the su(n)-invariant operators for length 2
and 3, we proceed with the level-1 constraint (5.19). In the appendix D we briefly
show how to set up a Mathematica notebook that contains the level-0 ansatz from
section 5.3 and how to implement the level-1 constraints. In this chapter we only
discuss the results.

Two-Particle S-Matrix

Evaluating explicitly the constraint for the case of two scattering particles using the
symbolic computation program Mathematica gives two solutions for the coefficients
and rapidities of the ansatz (5.26). The first one is

(1) v1 = u1, v2 = u2, A
(1)
12 = 0, B(1)

12 = c(u1, u2) δu1,v1δu2,v2 , (5.30)
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I(1)
12 (u1,2; v1,2) = c(u1, u2) δu1,v1δu2,v2

u1 u2

u1 u2

I(2)
12 (u1,2; v1,2) = c(u1, u2) δu1,v2δu2,v1


u2 u1

u1 u2

− 1
2u12

u2 u1

u1 u2


Table 5.1: su(n)-invariant operators on length 2

where c is an unknown overall factor that may depend on the rapidities. In terms
of permutation diagrams, this result can be represented by the operator I(1)

12 given
in Table 5.1. This operator projects a state to itself up to a factor, i.e. initial
and final state coincide, and it does not describe the scattering of particles. This
would-be scattering occurs if the particle with smaller momentum moves behind the
particle with larger momentum and they never meet, i.e. in our conventions u1 < u2.
Alternatively, the scattering did not yet take place. Thus, this operator cannot be
identified with the S-matrix we are looking for.

The second solution of the constraint (5.19) is

(2) v1 = u2, v2 = u1, A
(2)
12 = c(u1, u2) δu1,v2δu2,v1 , B

(2)
12 = − c(u1, u2)

2(u1 − u2)δu1,v2δu2,v1 ,

(5.31)

where c is again an undetermined overall factor. In terms of the permutation di-
agrams this result can be illustrated as the operator I(2)

12 in Table 5.1. Here we
introduced the variable uij for the difference of rapidities

uij = ui − uj. (5.32)

This operator describes the real scattering process between two particles: The ra-
pidities in the final state are exchanged, i.e. one particle has overtaken the second
due to u1 > u2. After the action of the operator the state is a linear combination of
two states. The first one is the state where the particles simply overtake each other
without changing their type. In the second case they overtake and exchange their
type. Both operators in I(2)

12 are related by a coefficient depending on the difference
of both rapidities uij. We denote this operator by

S12(ui; vi) = I(2)
12 (ui; vi). (5.33)

Since S12 only depends on the rapidity difference uij of the incoming particles, we
will write S12 = S12(uij) in the following which corresponds to I(2)

12 (ui; vi) from Table
5.2 with dropped Kronecker-deltas.

Thus the Yangian constraint relates the coefficients A12 and B12 in (5.26) but
does not fix the overall factor. The set of momenta is conserved and we do not need
to impose momentum conservation. Furthermore, the S-matrix only depends on the
rapidity differences of the incoming particles. Note that the result is valid for all n.
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Three-Particle S-Matrix

Now let us turn to the 3-particle S-matrix. Explicitly evaluating (5.19) yields a set of
constraints on the coefficients and rapidities in (5.28) that is solved by six solutions.
Once more, this constraint restricts the set of incoming and outgoing momenta to
be the same. We do not have to impose momentum conservation. Let us discuss the
solutions obtained via Mathematica by directly representing them as permutation
diagrams which can be found in Table 5.2. In fact, we will find that only one of
these solutions can be interpreted as the real 3→3 S-matrix of the model.

The simplest solution is given by I(1)
123. Similar to I(1)

12 this matrix does not
scatter particles since the initial and final state are equivalent up to a factor. This
represents the situation where the particle of smallest rapidity moves behind the
other two and the fastest excitation in front of the others, i.e. u1 < u2 < u3.

The next solution is represented by I(2)
123. Here only the particles of momenta

u2 and u3 scatter and the particle of momentum u1 remains unchanged. Thus, this
operator describes a scattering event with rapidities u1 < u3 < u2, where the particle
of rapidity u1 never reaches the others. It corresponds to the two-particle S-matrix
S12 illustrated in Table 5.1 with one particle unchanged, i.e.

I(2)
123 = I1S23(u23). (5.34)

The operator I1 acts on the first position of a three-particle state as an identity
map. S23(u23) is the two-particle S-matrix from (5.33) acting on the second and
third position of a two-particle state. In this notation we omit the dependence of
I(2)

123 on the rapidities vi. This equation can be illustrated in a diagrammatic way
as4

I(2)
123 = .

u1 u3 u2

u1 u2 u3

S23

u1 u3 u2

u1 u2 u3

(5.35)

The diagram on the left hand side represents a scattering process with incoming
rapidities u1, u2, u3. The dots at the top of the diagram represent the incoming
particles and the dots at the bottom the outgoing particles. The operator I(2)

123 maps
the outgoing state onto the incoming state. This action of I(2)

123 can be depicted
as the diagram on the right hand side of (5.35). The particle of rapidity u1 is
unchanged while the remaining particles scatter. A similar situation is represented
by I(3)

123. Here the rapidities are ordered as u2 < u1 < u3 such that only the two
particles with rapidities u1 and u2 scatter. Once more, this operator corresponds to
the two-particle S-matrix S12 in the form

I(3)
123 = S12(u12)I3 (5.36)

with S-matrix S12 scattering the first two particles of a three-particle state and I3
being the identity map for the third particle. In a diagrammatic way this operator

4Note that these relations are only true up to overall constants that we neglect for convenience.
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I(1)
123(ui; vi) = c(ui)δu1,v1δu2,v2δu3,v3

u1 u2 u3

u1 u2 u3

I(2)
123(ui; vi) = c(ui)δu1,v1δu2,v3δu3,v2


u1 u3 u2

u1 u2 u3

− 1
2u23

u1 u3 u2

u1 u2 u3


I(3)
123(ui; vi) = c(ui)δu1,v2δu2,v1δu3,v3


u2 u1 u3

u1 u2 u3

− 1
2u12

u2 u1 u3

u1 u2 u3


I(4)
123(ui; vi) = c(ui)δu1,v3δu2,v1δu3,v2


u2 u3 u1

u1 u2 u3

− 1
2u12

u2 u3 u1

u1 u2 u3

− 1
2u13

u2 u3 u1

u1 u2 u3

+ 1
4u12u13

u2 u3 u1

u1 u2 u3


I(5)
123(ui; vi) = c(ui)δu1,v2δu2,v3δu3,v1


u3 u1 u2

u1 u2 u3

− 1
2u13

u3 u1 u2

u1 u2 u3

− 1
2u23

u3 u1 u2

u1 u2 u3

+ 1
4u13u23

u3 u1 u2

u1 u2 u3


I(6)
123(ui; vi) = c(ui)δu1,v3δu2,v2δu3,v1


u3 u2 u1

u1 u2 u3

− 1
2u23

u3 u2 u1

u1 u2 u3

− 1
2u13

u3 u2 u1

u1 u2 u3

− 1
2u12

u3 u2 u1

u1 u2 u3

+ 1
4u12u23


u3 u2 u1

u1 u2 u3

+

u3 u2 u1

u1 u2 u3


− 1
8u12u13u23

u3 u2 u1

u1 u2 u3


Table 5.2: su(n)-invariant operators on length 3
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acts as

I(3)
123 = .

u2 u1 u3

u1 u2 u3

S12

u2 u1 u3

u1 u2 u3

(5.37)

Another solution of (5.19) can be illustrated as I(4)
123. This operator represents

scattering processes where the particle with rapidity u1 overtakes the other two but
the two remaining particles do not scatter, i.e. u1 > u3 > u2. This can be illustrated
as

I(4)
123

= ,

u2 u3 u1

u1 u2 u3

S23

S12

u2 u3 u1

u1 u2 u3

(5.38)

i.e. this operator factorizes as

I(4)
123(ui; vi) = S12(u12)S23(u13) (5.39)

which we verified explicitly by using the explicit form of I(4)
123 and S12 given in (5.33).

A similar operator is I(5)
123. Here the rapidities are ordered as u2 > u1 > u3 and the

two faster particles overtake the slowest but do not scatter themselves. This can be
illustrated by

I(5)
123

= ,

u3 u1 u2

u1 u2 u3

S12

S23

u3 u1 u2

u1 u2 u3

(5.40)

i.e. the operator I(5)
123 factorizes into two-particle S-matrices as

I(5)
123(ui; vi) = S23(u23)S12(u13). (5.41)

Note that one might also interpret the first five solutions as incomplete scattering
events.

The last solution to (5.19) is I(6)
123. Here the rapidities of the state after applying

the operator are in the reverse order due to u1 > u2 > u3, i.e. this operator describes
the real 3→3 scattering we are looking for and thus we call it

S123(ui; vi) = I(6)
123(ui; vi). (5.42)
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Similar to the operators above one may check whether this operator factorizes. In
fact, there are two possibilities for this factorization which can be illustrated as

S12

S23 and

S12

u3 u2 u1

u1 u2 u3

S23

S12 .

S23

u3 u2 u1

u1 u2 u3

(5.43)

In the left diagram the two particles with rapidities u1 and u2 scatter first whereas in
the second diagram the particles with rapidities u2 and u3 scatter first. Consistent
factorization of the 3-particle S-matrix thus demands

S123 =

u3 u2 u1

u1 u2 u3

S12

S23 =

S12

u3 u2 u1

u1 u2 u3

S23

S12 .

S23

u3 u2 u1

u1 u2 u3

(5.44)

In terms of S-matrices we may formulate these relations as

S123(u1, u2, u3) = S12(u12)S23(u13)S12(u23) = S23(u23)S12(u13)S23(u12) (5.45)

where we once more drop the dependence on the outgoing rapidities vi since they
are determined completely by the incoming rapidities ui. For R = PS the second
equality corresponds to the qYBE that was introduced in (2.60). In order to verify
the factorization of S123 one has to calculate the right-hand sides of (5.45) for the
two-particle S-matrix S12 from Table 5.1. Doing so, we find that the three-particle S-
matrix indeed factorizes. Furthermore, the two-particle S-matrix satisfies the qYBE
for S. This implies consistent factorization.

Discussion of the Results

Let us summarize some important features of the resulting S-matrices. In all dis-
cussed cases the Yangian fixes the linear combination of permutation operators up
to an overall factor which cannot be obtained by demanding its invariance under a
symmetry algebra with generators J in the form [S, J] = 0. This so-called dressing
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factor can be determined by imposing unitarity and crossing relations, see e.g. [33]
for a discussion of this factor in integrable field theories and, in particular, the
dressing factor of integrable spin chains arising from N = 4 SYM.

Furthermore, Yangian symmetry restricts the set of outgoing momenta to be the
same as the set of incoming momenta, i.e.

{ui} = {vi}. (5.46)

This is a substantial feature of scattering processes in (1+1)-dimensional integrable
models that we already discussed above. Moreover, note that the S-matrices only
depend on the differences of rapidities. In a Lorentz-invariant continuum theory
with one spatial direction, this statement reflects the boost invariance of the S-
matrix provided that the rapidities are additive under Lorentz boosts. Interestingly,
this feature occurs in general Y [su(n)]-invariant S-matrices. In the context of spin
chains this hints on the existence of a lattice generalization of the continuous Lorentz
symmetry, see [34] and [35] for the construction of discrete Lorentz boost operators.
In fact, this feature of the two-particle S-matrix can be understood directly on the
basis of the Yangian by an argument given in [11]. The level-1 constraint (5.19) for
a general level-0 generator J and level-1 generator Ĵ and equal sets of rapidities is
given by[

∆Ĵ, S12
]

= (u1J⊗ 1 + u21⊗ J) S12 − S12 (u2J⊗ 1 + u11⊗ J) + [J⊗ J, S12] = 0.
(5.47)

Here J⊗J shall represent the bilocal term in (4.5). This constraint can be rearranged
using the level-0 constraint (5.18)

[J⊗ 1 + 1⊗ J, S12] = 0 (5.48)

as

− [u121⊗ J, S12] + [J⊗ J, S12] = 0. (5.49)

Thus the rapidity-dependence of the two-particle S-matrix is governed by an equa-
tion that contains only the relative rapidity. This implies S12(u1, u2) = S12(u12).
For factorized m-particle Y [su(n)]-invariant S-matrices this implies their invariance
under uniform rapidity shifts.

Furthermore, we showed that the resulting Y [su(n)]-invariant three-particle S-
matrix S123 factorizes into three two-particle S-matrices consistently. There are
similar relations for the factorization of S-matrices describing the scattering of more
than three particles. For example a four-particle scattering process factorizes into
one three-particle and three two-particle scattering events. Note that the operators
I(1)

123,...,I
(6)
123 correspond to the coefficients in the asymptotic Bethe ansatz of su(n)

spin chain models of the form (2.30) and factorize similar to the coefficients of the
Heisenberg spin chain, see section 2.2.

In the following two chapters we perform the analysis of the constraints (4.18)
and (4.19) for the Yangians corresponding to the Lie superalgebras su(1|1) and
su(2|2) nR2.
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Chapter 6

Y [su(1|1)]-Invariant S-Matrices

We now turn to the Yangian corresponding to su(1|1). Its discussion is a good
intermediate step before the investigation of su(2|2) n R2 since it only contains a
single boson and a single fermion in its fundamental representation. Furthermore,
it allows for a dynamic representation. We begin this chapter with a review on
this algebra and the corresponding Yangian in section 6.1. We develop the explicit
constraints on S-matrices in a theory with Y [su(1|1)] as the particles’ symmetry
algebra. In section 6.2 we analyse the solution of the Yangian constraints for the
undynamic representation of this algebra. In 6.3 we do so for the dynamic case. We
focus on the two-particle and three-particle S-matrix and analyse the results with
respect to consistent factorization.

6.1 The Algebra Y [su(1|1)] and its Fundamental
Representation

Generators of su(1|1) and the Fundamental Representation

Let us briefly review the Lie superalgebra su(1|1) on the basis of [14]. It consists of
the supersymmetry generators Q and S, the outer automorphism B and the central
charge C. These generators satisfy the commutation relations

{Q,S} = C, [B,Q] = −2Q, [B,S] = +2S. (6.1)

The remaining Lie brackets vanish. The fundamental representation ρ of this algebra
consists of one bosonic state |φ〉 and one fermionic state |ψ〉. The generators of
su(1|1) act on these single-particle states as1

Q |φ〉 = q |ψ〉 , Q |ψ〉 = 0,
S |φ〉 = 0, S |ψ〉 = c

q
|φ〉 ,

B |φ〉 = (b+ 1) |φ〉 , B |ψ〉 = (b− 1) |ψ〉 ,
C |φ〉 = c |φ〉 , C |ψ〉 = c |ψ〉 (6.2)

with parameters b, c and q. In the notation we used in the previous chapter for the
Y [su(n)] generators we may write the generators in the fundamental representation

1Note that we drop ρ from now on. It indicated whenever we used the operators in the funda-
mental representation. In the following it will be clear whether we use the generators as general
objects spanning the Yangian algebra or as operators acting on a state.
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as
Q = q |ψ〉 〈φ| , S = c

q
|φ〉 〈ψ| ,

B = (b+ 1) |φ〉 〈φ|+ (b− 1) |ψ〉 〈ψ| , C = c |φ〉 〈φ|+ c |ψ〉 〈ψ| . (6.3)
The central charge C is proportional to the identity operator 1 = |φ〉 〈φ|+ |ψ〉 〈ψ|.

Coproduct Structure of Y [su(1|1)]

The generators Q, S, B, C are the level-0 generators of the Yangian algebra
Y [su(1|1)]. Their action in the evaluation representation is given by (6.2). The
level-1 generators Ĵ are denoted by Q̂, Ŝ, B̂, Ĉ and act on single-particle states
as [14]

Ĵ |φ, u〉 = iuJ |φ, u〉 Ĵ |ψ, u〉 = iuJ |ψ, u〉 (6.4)

with rapidity u and level-0 generator J corresponding to Ĵ.
In order to evaluate the level-0 constraint of the two- and three-particle S-matrix,

we need the action of the level-0 generators on two and three particles which is given
by the coproduct

∆Q = Q⊗ 1 + (−1)F ⊗Q, ∆S = S⊗ 1 + (−1)F ⊗S,

∆B = B⊗ 1 + 1⊗B, ∆C = C⊗ 1 + 1⊗ C. (6.5)
Their generalization on length 3 is listed in the appendix in equation (C.1). Here,
one has to take into account the fermionic nature of the generators Q and S. It
results in factors (−1)F whenever they pass through a particle. For bosonic particles
we have F = 0 and for fermionic particles F = 1, i.e.

(−1)F |φ〉 = + |φ〉 (−1)F |ψ〉 = − |ψ〉 . (6.6)
This operator ensures the correct statistics of the fermionic and bosonic particles.

The coproduct structure of the level-1 generators can be obtained from Table 2
from [11] which shows the coproduct of the level-1 generators of su(2|2). su(1|1) is a
subalgebra of su(2|2) that only contains one boson and one fermion rather than two.
By setting all indices a, b, α, β to 1 instead of 1, 2 and including the supersymmetric
grading, we conclude

∆Q̂ = Q̂⊗ 1 + (−1)F ⊗ Q̂ + 1
2Q⊗ C− 1

2(−1)FC⊗Q,

∆Ŝ = Ŝ⊗ 1 + (−1)F ⊗ Ŝ− 1
2S⊗ C + 1

2(−1)FC⊗S,

∆B̂ = B̂⊗ 1 + 1⊗ B̂− (−1)FS⊗Q− (−1)FQ⊗S,

∆Ĉ = Ĉ⊗ 1 + 1⊗ Ĉ. (6.7)
For the action on states including more particles this can be easily generalized.
We present the results on length 3 in equation (C.2). With these relations we can
explicitly use (4.18) and (4.19) to constrain the S-matrix. We will do this analysis
in the following sections.

As discussed above, this algebra is particularly relevant in the g = su(1|2) sub-
sector of the psu(2, 2|4) spin chain of N = 4 SYM. The sites of this supersymmetric
spin chain are either in one of the two bosonic states Z and φ or in the fermionic
state ψ. By choosing Z as vacuum there are two excited states corresponding to the
states |φ〉 , |ψ〉 of the fundamental representation of su(1|1) discussed above. Thus
the algebra su(1|1) assumes the role of the residual algebra gr discussed in section
3.2.
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6.2 Undynamic Y [su(1|1)]-Invariant S-Matrices
As already indicated in chapter 1, the algebra su(1|1) can be discussed both in its
dynamical and undynamical representation. Let us first study the implications of
demanding Yangian invariance for an undynamic representation of Y [su(1|1)], i.e. it
does not depend on the rapidities of the particles and the parameters c, q, b in (6.2)
are constants. This is relevant for conventional spin chain models. For convenience,
we normalize the algebra such that

c = 1 (6.8)

which also corresponds to the conventions in [14]. Since q is only an unphysical
scaling factor between the bosonic and fermionic particle we set it to q = 1 for con-
venience. This set-up corresponds to models whose particles’ dynamics is governed
by a Hamiltonian that is invariant under the external symmetry algebra su(1|1).

6.2.1 Two-Particle S-Matrix
Now let us turn to the analysis of the level-0 constraint for a two-particle S-matrix.
It is the map

S12(u1,2; v1,2) : (1|1)v1 ⊗ (1|1)v2 → (1|1)u1 ⊗ (1|1)u2 (6.9)

with different sets of incoming and outgoing rapidities satisfying u1 > u2 and v1 < v2.
They are constrained by momentum conservation which is

p(u1) + p(u2) = p(v1) + p(v2). (6.10)

In order to evaluate this constraint explicitly one has to assume a concrete depen-
dency between the momentum and rapidity, i.e. p = p(u). This relation characterizes
the specific model under consideration.

Solution of the Level-0 Constraints

We start analysing explicitly the constraint (4.18) using the coproduct structure
(6.5) of the Y [su(1|1)] Yangian generators. We performed the explicit evaluation of
these constraints using the program Mathematica. We show some important aspects
of the implementation in the appendix D and discuss the results in this chapter.

Since the central charge C corresponds to the identity operator of the representa-
tion, the constraint [∆C, S12] = 0 puts no restriction on S12. The level-0 constraint
for the generatorB restricts the S-matrix to keep the number of bosons and fermions
constant, i.e. the S-matrix simply permutes the particles2

S12(ui, vi) |φ, v1;φ, v2〉 = A12 |φ, u1;φ, u2〉 ,
S12(ui, vi) |φ, v1;ψ, v2〉 = B12 |ψ, u1;φ, u2〉+ C12 |φ, u1;ψ, u2〉 ,
S12(ui, vi) |ψ, v1;φ, v2〉 = D12 |φ, u1;ψ, u2〉+ E12 |ψ, u1;φ, u2〉 ,
S12(ui, vi) |ψ, v1;ψ, v2〉 = F12 |ψ, u1;ψ, u2〉 (6.11)

2In the following we will neglect the indication in and out on the multi-particle states that
were introduced in (3.12) and (3.13). Nevertheless, we will keep in mind that the S-matrix maps
between states of ordered rapidities.
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with unknown coefficients A12, ..., F12. Demanding the invariance of S12 under ∆Q
and ∆S sets four of the A12, ..., F12 in relation to the remaining two coefficients.
Choosing A12 and F12 as free coefficients yields

B12 = D12 = 1
2 (A12 − F12) , C12 = E12 = 1

2 (A12 + F12) . (6.12)

Thus, after imposing the level-0 constraint there remain two degrees of freedom
which are manifested in the free coefficients A12 and F12. This corresponds to
the existence of two Casimirs of length 2 for the algebra su(1|1), see [14] for their
construction.

Solution of the Level-1 Constraint

Let us move on to the level-1 constraint (4.19) corresponding to Ĉ, B̂, Q̂ and Ŝ

with coproduct structure given in (6.7). Imposing [∆Q̂, S12] = 0 reduces the degrees
of freedom by relating the coefficients A12 and F12 via

F12 = A12
i− u12

i− v12
. (6.13)

Thus there only remains an unknown overall factor in the S-matrix. The level-1
constraint imposed by ∆Ĉ demands the conservation of the sum of rapidities for the
incoming and outgoing state, i.e.

v1 + v2 = u1 + u2. (6.14)

These rapidities are further constrained by the Yangian generator B̂ whose associ-
ated level-1 constraint only allows for the two solutions

(1) v1 = u1, v2 = u2

(2) v1 = u2, v2 = u1, (6.15)

i.e. an undynamic-Y [su(1|1)]-invariant operator restricts two-particle processes to
not change the set of rapidities. Note that in the discussion of Y [su(n)]-invariants
of length 2 we also obtained two solutions and their interpretation is analogous as
we will see in the following.

The first solution in (6.15) corresponds to the invariant operator

I12 ∝ |φ1;φ2〉 〈φ1;φ2|+ |φ1;ψ2〉 〈φ1;ψ2|+ |ψ1;φ2〉 〈ψ1;φ2|+ |ψ1;ψ2〉 〈ψ1;ψ2| ,
(6.16)

where |φ1〉 := |φ, u1〉 etc. It is the identity map on two sites, i.e.

I12(u1, u2) : (1|1)u1 ⊗ (1|1)u2 → (1|1)u1 ⊗ (1|1)u2 . (6.17)

Thus this operator does not correspond to the S-matrix we are looking for since the
incoming state and outgoing state coincide.

In the second solution, the rapidities are in the reverse order after the application
of the corresponding operator and thus it yields the S-matrix. It permutes the
subspaces of the two particles3

S12(u1,2) : (1|1)u2 ⊗ (1|1)u1 → (1|1)u1 ⊗ (1|1)u2 . (6.18)
3In fact, the S-matrix is often defined as an operator permuting the one-particle Hilbert spaces.

Since we want to check whether imposing its invariance under a specific Yangian restricts the
S-matrix in such a way that it preserves the sets of momenta, we do not demand this here. It
naturally follows from the Yangian invariance of the S-matrix.
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Its coefficients in (6.11) are given by

A12 = −S0
12δv1,u2δv2,u1

i+ u12

i− u12
, B12 = −S0

12δv1,u2δv2,u1

u12

i− u12
,

C12 = −S0
12δv1,u2δv2,u1

i

i− u12
, D12 = −S0

12δv1,u2δv2,u1

u12

i− u12
,

E12 = −S0
12δv1,u2δv2,u1

i

i− u12
, F12 = −S0

12δv1,u2δv2,u1 . (6.19)

They only depend on the differences of the incoming rapidities. The invariance
under S does not impose further constraints. This S-matrix satisfies the qYBE
given by the second equality in (5.45). This was checked by explicit calculation.

6.2.2 Three-Particle S-Matrix
Let us move on to the Y [su(1|1)]-invariant three-particle S-matrix for undynamic
representations. It is the map

S123(u1,2,3; v1,2,3) : (1|1)v1 ⊗ (1|1)v2 ⊗ (1|1)v3 → (1|1)u1 ⊗ (1|1)u2 ⊗ (1|1)u3 (6.20)

with u1 > u2 > u3 and v1 < v2 < v3.

Solution of the Level-0 Constraint

Similar to the 2 → 2 scattering case, the level-0 constraint for C is automatically
satisfied for all possible S123 since ∆2C is proportional to the identity map on length
3. Moreover, demanding [∆2B, S123] = 0 restricts the S-matrix to keep the number
of bosonic and fermionic particles constant, i.e.

S123 |φ1φ2φ3〉 = A123 |φ3φ2φ1〉
S123 |φ1φ2ψ3〉 = B123 |ψ3φ2φ1〉+ C123 |φ3ψ2φ1〉+D123 |φ3φ2ψ1〉
S123 |φ1ψ2φ3〉 = E123 |φ3ψ2φ1〉+ F123 |φ3φ2ψ1〉+G123 |ψ3φ2φ1〉
S123 |ψ1φ2φ3〉 = H123 |φ3φ2ψ1〉+K123 |φ3ψ2φ1〉+ L123 |ψ3φ2φ1〉
S123 |ψ1ψ2φ3〉 = M123 |φ3ψ2ψ1〉+N123 |ψ3φ2ψ1〉+O123 |ψ3ψ2φ1〉
S123 |ψ1φ2ψ3〉 = P123 |ψ3φ2ψ1〉+Q123 |ψ3ψ2φ1〉+R123 |φ3ψ2ψ1〉
S123 |φ1ψ2ψ3〉 = T123 |ψ3ψ2φ1〉+ U123 |ψ3φ2ψ1〉+ V123 |φ3ψ2ψ1〉
S123 |ψ1ψ2ψ3〉 = W123 |ψ3ψ2ψ1〉 (6.21)

with 20 unknown coefficients A123, ...,W123. These are constrained by imposing the
invariance of S123 under Q and S. We obtain

D123 = A123 −B123 − C123, G123 = A123 − E123 − F123,

H123 = B123 + C123 − F123, K123 = A123 − C123 − E123,

L123 = −B123 + E123 + F123, N123 = −B123 − C123 + 2F123 −M123,

O123 = −A123 + C123 + 2E123 +M123, P123 = −B123 + E123 +M123,

Q123 = −B123 + F123 −M123,

R123 = A123 −B123 − 2C123 − E123 + F123 −M123,

T123 = C123 − F123 +M123,

U123 = A123 −B123 − C123 − E123 −M123, V123 = E123 − F123 +M123,

W123 = −A123 +B123 + 2C123 + 2E123 − 2F123 + 3M123. (6.22)
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Thus, there remain six free coefficients A123, B123, C123, E123, F123,M123 and we con-
clude that there exist six Casimirs for length 3.

Solution of the Level-1 Constraint

The general form of the su(1|1)-invariant S123 given in (6.21) and (6.22) gets further
constrained by demanding its invariance under the level-1 generators of Y [su(1|1)].
A vanishing commutator of S123 with ∆2Ĉ implies the conservation of the sum of
rapidities

v1 + v2 + v3 = u1 + u2 + u3. (6.23)

The constraint imposed by Q̂ results in the relations

E123 = A123
i− v1 + u2

i− v12
− C123

2i− v13

i− v12
,

F123 = A123
u3 − v3

i− v12
+ (B123 + C123)2i− v13

i− v12
,

M123 = A123
u3 − v3

i− v12
+ (B123 + C123)i− u2 + v3

i− v12
− C123

u3 − v3

i− v12
(6.24)

such that there remain three free coefficients A123, B123, C123. From the combined
constraints of vanishing commutators of S123 with ∆2B̂ and ∆2Ŝ we obtain a set
of 35 equations that constrain the free coefficients and rapidities. Unfortunately, we
were not able to solve these for general b using Mathematica. The kernel was quit
during the evaluation, most likely due to an insufficient internal memory capacity
(16GB). Nevertheless, calculating the result for different values of b such as b = 0, 1, 2
suggests that the solutions are independent of b, similar to the two-particle case. We
obtain a set of six solutions with equal sets of incoming and outgoing rapidities

(1) v1 = u1, v2 = u2, v3 = u3, B123 = C123 = 0

(2) v1 = u1, v2 = u3, v3 = u2, B123 = 0, C123 = A123
u23

i+ u23

(3) v1 = u2, v2 = u1, v3 = u3, B123 = C123 = 0

(4) v1 = u2, v2 = u3, v3 = u1, B123 = A123
u12u13

(i+ u12)(i+ u13) ,

C123 = A123
iu13

(i+ u12)(i+ u13)
(5) v1 = u3, v2 = u1, v3 = u2, B123 = 0, C123 = A123

u23

(i+ u23)
(6) v1 = u3, v2 = u2, v3 = u1, B123 = A123

u12u13

(i+ u12)(i+ u13) ,

C123 = A123
iu13

(i+ u12)(i+ u13) . (6.25)

Once more, the number of solutions is the same as in the discussion of Y [su(n)]-
invariant S-matrices. Similarly, the solutions (1),...,(5) are scattering processes
which do not respect the ordering of rapidities of the real 3→3 S-matrix. Let us
briefly discuss the solutions to see the similarity between the results. The first solu-
tion in (6.25) corresponds to the identity map on three sites, i.e. the particles do not
scatter. The second and third solution correspond to operators that only scatter the
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latter two and first two particles of a three-particle state leaving the other particle
unchanged. In the fourth and fifth solution one particle overtakes the other two
particles. The sixth solution has the correct ordering of rapidities and represents
the real 3→3 S-matrix. Let us present the complete result for the coefficients in
(6.21)

A123 = −S0
123

(i+ u12)(i+ u13)(i+ u23)
(i− u12)(i− u13)(i− u23) , B123 = −S0

123
u12u13(i+ u23)

(i− u12)(i− u13)(i− u23) ,

C123 = −S0
123

iu13(i+ u23)
(i− u12)(i− u13)(i− u23) , D123 = −S0

123
i(i+ u12)(i+ u23)

(i− u12)(i− u13)(i− u23) ,

E123 = −S0
123

−i+ u12(i+ u13)u23

(i− u12)(i− u13)(i− u23) , F123 = −S0
123

i(i+ u12)u13

(i− u12)(i− u13)(i− u23) ,

G123 = −S0
123

iu13(i+ u23)
(i− u12)(i− u13)(i− u23) , H123 = −S0

123
(i+ u12)u13u23

(i− u12)(i− u13)(i− u23) ,

K123 = −S0
123

(i+ u12)u13

(i− u12)(i− u13)(i− u23) , L123 = −S0
123

i(i+ u12)(i+ u23)
(i− u12)(i− u13)(i− u23) ,

M123 = −S0
123

u12u13

(i− u12)(i− u13) , N123 = −S0
123

iu13

(i− u12)(i− u13) ,

O123 = −S0
123

i

(i− u13) , P123 = −S0
123

−i+ u12(i− u13)u23

(i− u12)(i− u13)(i− u23) ,

Q123 = −S0
123

iu13

(i− u13)(i− u23) , R123 = −S0
123

iu13

(i− u12)(i− u13) ,

T123 = −S0
123

u13u23

(i− u13)(i− u23) , U123 = −S0
123

iu13

(i− u13)(i− u23) ,

V123 = −S0
123

i

(i− u13) , W123 = −S0
123, (6.26)

where we drop the Kronecker deltas δv1,u3δv2,u2δv3,u1 . This S-matrix is determined
up to an overall factor and factorizes into three two-particle S-matrices of the form
(6.19). This was checked by explicit calculation.

Discussion of the Results

The resulting Y [su(1|1)]-invariant two- and three-particle S-matrices share many
features with the Y [su(n)]-invariant S-matrices that we discussed in the previous
chapter. Let us list important properties of the S-matrices in (6.19) and (6.26):

• They are completely determined up to the dressing factor. In order to obtain
this overall factor, one has to impose unitarity and crossing relations.

• They conserve the set of incoming momenta in a scattering process and thus
automatically ensure momentum conservation.

• They only depend on relative rapidities which can be understood by the dis-
cussion at the end of section 5.3. This feature reflects the boost invariance of
Lorentz-invariant theories and hints on the existence of a quasi-boost for spin
chains.

• The three-particle S-matrix factorizes into three two-particle S-matrices. These
satisfy the qYBE (5.45). Thus, the Yangian Y [su(1|1)] in its undynamic rep-
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resentation implies that multi-particle scattering processes factorize into two-
particle scattering processes consistently.

6.3 Dynamic Y [su(1|1)]-Invariant S-Matrices
In a specific sector of the planar limit of N = 4 SYM, a long-range spin chain with
full symmetry algebra su(1|2) and residual symmetry algebra su(1|1) occurs. It
does not only contain nearest-neighbor interactions, but also interactions of a larger
number of neighboring sites. In this model the central charge C corresponds to the
Hamiltonian H via [14]

C = C0 + λH(λ) (6.27)

with coupling constant4 λ. Therefore, the Hamiltonian is a part of the symmetry
algebra in this model, whereas in conventional models the Hamiltonian is invariant
under an external symmetry algebra. Using (6.27) we can interpret the coefficient
c as the energy of the spin chain. Since the eigenvalues of the Hamiltonian depend
on the momentum of the magnons moving along the spin chain, c becomes rapidity-
dependent. This makes the representation (6.2) of su(1|1) dynamic. Together with
the hypercharge b this parameter labels the representations of asymptotic states.
The coefficient q only contains unphysical degrees of freedom which correspond to
similarity transformations.

This model motivates the investigation of the implications of imposing dynamic
Yangian constraints on S-matrices. Doing so, we assume that all coefficients of the
su(1|1) generators become rapidity dependent, i.e. b = b(u), c = c(u), q = q(u).
Then the representation of an asymptotic state is given by

(1|1)u1,c(u1),b(u1),q(u1) ⊗ (1|1)u2,c(u2),b(u2),q(u2) ⊗ ...⊗ (1|1)um,c(um),b(um),q(um) (6.28)

and the S-matrix is a map between them. The conventional spin chain discussed in
the previous section can be obtained by putting c = q = 1 and b = const.

6.3.1 Two-Particle S-Matrix
We begin this discussion with an analysis of the dynamic Yangian constraints on a
two-particle S-matrix which is the map

S12(u1,2; v1,2) : (1|1)v1,c(v1),b(v1),q(v1) ⊗ (1|1)v2,c(v2),b(v2),q(v2)

→ (1|1)u1,c(u1),b(u1),q(u1) ⊗ (1|1)u2,c(u2),b(u2),q(u2). (6.29)

Solution of the Level-0 Constraint

We analyse the constraint (4.18) using the coproduct structure of the Y [su(1|1)]
Yangian generators in (6.5). The level-0 constraint for the generator C restricts the
two-particle S-matrix S12 to preserve the sum of the individual eigenvalues c of the
incoming and outgoing particles

c(v1) + c(v2) = c(u1) + c(u2). (6.30)
4Note that we used to denote the spectral parameter by the same symbol. Nevertheless, since

we will not refer to the spectral parameter in the following, we use the standard convention here,
i.e. denote the coupling constant by λ.
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In the interpretation of c as energy, this equation corresponds to the conservation
of energy during a scattering process.

Similar to the undynamic case, the level-0 constraint for the generator B implies
that bosons and fermions in a scattering process get permuted. Thus we can make
the ansatz (6.11) with unknown coefficients A12, ..., F12 once more. Moreover, we
find that the sum of the b’s of the individual particles has to be conserved, i.e.

b(v1) + b(v2) = b(u1) + b(u2). (6.31)

Demanding the invariance of S12 under ∆Q and ∆S relates the coefficients in
the ansatz such that there remain two degrees of freedom. Choosing A12 and F12 as
free coefficients yields

B12 = A12c(u2)q(v1)q(v2)− F12c(v2)q(u1)q(u2)
(c(u1) + c(u2))q(v2)q(u2) ,

C12 = A12c(u2)q(v1)q(v2) + F12c(v1)q(u1)q(u2)
(c(u1) + c(u2))q(v1)q(u2) ,

D12 = A12c(u1)q(v1)q(v2)− F12c(v1)q(u1)q(u2)
(c(u1) + c(u2))q(v1)q(u1) ,

E12 = A12c(u1)q(v1)q(v2) + F12c(v2)q(u1)q(u2)
(c(u1) + c(u2))q(v2)q(u1) . (6.32)

Setting c = q = 1 we encounter the result of the undynamic case (6.12). The re-
maining two degrees of freedom correspond to the existence of two length-2 Casimirs
of the algebra su(1|1) as before, cf. [14].

Solution of the Level-1 Constraint

We proceed with the level-1 constraint (4.19) for the Yangian generators Ĉ, B̂, Q̂
and Ŝ whose coproduct is given in (6.7). The level-1 constraint imposed by Ĉ implies

v1c(v1) + v2c(v2) = u1c(u1) + u2c(u2). (6.33)

For a known (energy) dependence c = c(u) the equations (6.30) and (6.33) com-
pletely determine the rapidities v1 and v2 of the outgoing state as functions of the
incoming rapidities u1 and u2.

The invariance under Q̂ relates the coefficients A12 and F12 as

F12 = A12
q(v1)q(v2)
q(u1)q(u2)

c(u1) + c(u2) + 2i(v1 − v2)
c(u1) + c(u2) + 2i(u1 − u2) . (6.34)

It is convenient to reparameterize the rapidities and central charges as [14]

ui = 1
2(x+

i + x−i ) c(ui) = −i(x+
i − x−i )

vi = 1
2(y+

i + y−i ) c(vi) = −i(y+
i − y−i ), (6.35)

where x±i = x±(ui) and y±i = y±(vi). For the su(1|2) sector of N = 4 SYM these
parameters are connected to the incoming momenta pi and outgoing momenta ki
via

x+
i

x−i
= eipi ,

y+
i

y−i
= eiki . (6.36)
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In a concrete model with known central charge c = c(u), one may explicitly calculate
these functions. For the su(1|2) long-range spin chain of N = 4 SYM the new
parameters collectively denoted by x± are related to the model’s coupling constant
λ by

x+ + λ

x+ − x
− − λ

x−
= i. (6.37)

For the undynamic case with c = 1 we have

x±i = ui ± i
2 y±i = vi ± i

2 . (6.38)

Rearranging the result (6.34) using the parametrization (6.35) yields

F12 = −A12
q(u1)q(u2)
q(v1)q(v2)

x−1 − x+
2

y+
2 − y−1

(6.39)

and thus we obtain for the coefficients of S12 in (6.11)

A12 = S0
12
y+

2 − y−1
y−2 − y+

1
,

B12 = S0
12
q(u1)
q(v2)

−(x+
2 − x−1 )(x+

2 − x−2 ) + (y+
2 − y1

1)(y+
2 − y−2 )

(y−2 − y+
1 )(x+

1 + x+
2 − x−1 − x−2 ) ,

C12 = S0
12
q(u2)
q(v2)

+(x+
1 − x−1 )(x+

2 − x−1 ) + (y+
2 − y−1 )(y+

2 − y−2 )
(y−2 − y+

1 )(x+
1 + x+

2 − x−1 − x−2 ) ,

D12 = S0
12
q(u2)
q(v1)

−(x+
1 − x−1 )(x+

2 − x−1 ) + (y+
1 − y−1 )(y+

2 − y−1 )
(y−2 − y+

1 )(x+
1 + x+

2 − x−1 − x−2 ) ,

E12 = S0
12
q(u1)
q(v1)

+(x+
2 − x−1 )(x+

2 − x−2 ) + (y+
1 − y−1 )(y+

2 − y−1 )
(y−2 − y+

1 )(x+
1 + x+

2 − x−1 − x−2 ) ,

F12 = −S0
12
q(u1)q(u2)
q(v1)q(v2)

x−1 − x+
2

y−2 − y+
1
. (6.40)

Here we chose a specific parametrization of A12 with respect to the unknown overall
factor S0

12.
The constraints from vanishing commutators of S12 with ∆B̂ and ∆Ŝ yield a

set of four solutions. The trivial solution is

u1 = v1 u2 = v2 (6.41)

which does not correspond to an S-matrix since the associated operator maps like
the identity matrix (6.16) on two sites with

I12 : (1|1)u1,c1,b1,q1 ⊗ (1|1)u2,c2,b2,q2 → (1|1)u1,c1,b1,q1 ⊗ (1|1)u2,c2,b2,q2 (6.42)

and ci := c(ui), bi := b(ui), qi := q(ui).
The second solution is given by

u1 = v2 u2 = v1. (6.43)

Thus, the corresponding operator maps as

S12 : (1|1)u2,c2,b2,q2 ⊗ (1|1)u1,c1,b1,q1 → (1|1)u1,c1,b1,q1 ⊗ (1|1)u2,c2,b2,q2 , (6.44)
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i.e. it permutes the Hilbert spaces of the two particles. For u1 > u2 this solution is
the 2→2 S-matrix which preserves the set of rapidities. Substituting this result into
(6.40) gives the two-particle S-matrix (6.11) with coefficients

A12 = S0
12δu1,v2δu2,v1

x+
1 − x−2
x−1 − x+

2
, B12 = S0

12δu1,v2δu2,v1

x+
1 − x+

2
x−1 − x+

2
,

C12 = S0
12δu1,v2δu2,v1

q2

q1

x+
1 − x−1
x−1 − x+

2
, D12 = S0

12δu1,v2δu2,v1

x−1 − x−2
x−1 − x+

2
,

E12 = S0
12δu1,v2δu2,v1

q1

q2

x+
2 − x−2
x−1 − x+

2
, F12 = −S0

12δu1,v2δu2,v1 . (6.45)

This is the well-known S-matrix of the su(1|2) sector, cf. [14]. It satisfies the qYBE
given by the second equality in (5.45) which we checked by direct computation. For
c = q = 1 this result simplifies to (6.19).

There are further solutions for which the set of rapidities in the incoming and
outgoing state do not coincide. We obtain the two sets

v1 + v2 = u1 + u2

v2 − v1 = ± i
2(c(u1)− c(u2))

v1b(v1) + v2b(v2) = u1b(u1) + u2b(u2) (6.46)

which only differ by a sign in the second equality. The last equation ensures the
constraint [∆B̂, S12] = 0. For the long-range su(1|2) spin chain of N = 4 SYM the
first two constraints ensure momentum conservation which can be phrased as

ei(p1+p2) = ei(k1+k2) ⇔ c(u1)− 2iu1

c(u1) + 2iu1

c(u2)− 2iu2

c(u2) + 2iu2
= c(v1)− 2iv1

c(v1) + 2iv1

c(v2)− 2iv2

c(v2) + 2iv2
(6.47)

using (6.36).
Note that the two solutions in (6.46) correspond to the two physical situations

v1 > v2 and v1 < v2. The latter represents a scattering process. For a known
dependence c = c(u) one can identify the solution corresponding to the S-matrix.
For c = 1 the second equation reduces to

v1 = v2 = u1 = u2 (6.48)

which is an unphysical constraint for a scattering process. Therefore, we did not
discuss this solution of the Yangian constraints in the previous section. Nevertheless,
one can understand the solutions in (6.46) as deformations of this trivial case.

The first equation together with (6.30) and (6.33) puts strong constraints on the
outgoing rapidities v1, v2 of a scattering process. In fact, if c = c(u) can be expanded
in a power series in u these three equations are only solved by v1, v2 ∈ {u1, u2}. Then
(6.46) can be discarded since it does not enlarge the set of solutions but corresponds
to a further constrained version of the original solutions (6.41) and (6.43).

6.3.2 Three-Particle S-Matrix
We now turn to the discussion of the 3→3 scattering process described by the S-
matrix S123. It acts on the Hilbert space (6.28) for m = 3 as

S123(ui; vi) : (1|1)v1,c(v1),b(v1),q(v1) ⊗ (1|1)v2,c(v2),b(v2),q(v2) ⊗ (1|1)v3,c(v3),b(v3),q(v3)

→ (1|1)u1,c(u1),b(u1),q(u1) ⊗ (1|1)u2,c(u2),b(u2),q(u2) ⊗ (1|1)u3,c(u3),b(u3),q(u3).
(6.49)
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Solution of the Level-0 Constraint

Similar to the level-0 constraint for the two-particle S-matrix, a vanishing commu-
tator of S123 with ∆2C demands that

c(v1) + c(v2) + c(v3) = c(u1) + c(u2) + c(u3). (6.50)

This implies energy conservation for the su(1|2) sector of N = 4 SYM.
Demanding the level-0 constraint forB restricts the S-matrix to only permute the

bosons and fermions, i.e. we can make the same ansatz (6.21) as for the undynamic
case. It has 20 unknown coefficients A123, ...,W123. Furthermore, the sum of the
hypercharges has to be conserved

b(u1) + b(u2) + b(u3) = b(v1) + b(v2) + b(v3). (6.51)

The two remaining level-0 constraints with Q and S set 14 of the coefficients in
relation to the remaining 6. Putting c = q = 1 reduces the result to the undynamic
solution (6.22). Thus we find that the algebra su(1|1) allows for six Casimirs of
length 3.

Solution of the Level-1 Constraint

Let us move on to the solution of the level-1 constraints of Y [su(1|1)]. The constraint
[∆2Ĉ, S123] = 0 implies

v1c(v1) + v2c(v2) + v3c(v3) = u1c(u1) + u2c(u2) + u3c(u3). (6.52)

Unfortunately, obtaining the solution to the remaining constraints [∆2Q̂, S123] =
[∆2B̂, S123] = [∆2Ŝ, S123] = 0 was beyond our computational power. These con-
straints are given by 35 equations restricting the six free coefficients and rapidities
v1,2,3 directly and indirectly via the functions c = c(u), b = b(u), q = q(u). Solving
this set of equations for the undynamic case with c = q = 1 and b = 0, 1, 2 using
Mathematica took several minutes. For the general case we could find no solutions
because the internal capacity of the computer was insufficient such that the evalua-
tion aborted after two weeks. Therefore, we restrict the following discussion to the
question whether the remaining constraints allow for a 3→3 S-matrix that preserves
the set of rapidities with

v1 = u3, v2 = u2, v3 = u1. (6.53)

The constraint [∆2B̂, S123] = 0 imposes a relation on five of the remaining six
coefficients such that the whole S-matrix is determined up to an overall factor. This
result does not get further constrained by imposing [∆2Q̂, S123] = [∆2Ŝ, S123] = 0.
Using Mathematica we checked that the resulting matrix factorizes into three two-
particle S-matrices.

Discussion of Results

Let us summarize the results of this section:

• We completely determined the two-particle Y [su(1|1)]-invariant and rapidity-
conserving S-matrix (6.40) up to the dressing factor. This overall factor cannot
be obtained by imposing its invariance under a Yangian.
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• We also found additional solutions which only preserve the sum of rapidities.
Together with the constraints from an invariance under C and Ĉ, this imposes
strong constraints on the outgoing rapidities of a scattering process. For phys-
ical models that allow for a power series of c = c(u) in u these are only solved
for conserved rapidities, i.e. there are no additional solutions. Thus we redis-
covered the conservation of rapidities which is a common feature of integrable
models.

• The two-particle S-matrix satisfies the qYBE.

• The Yangian constraints on length 3 together with the assumption of conserved
rapidities completely determine the three-particle S-matrix. It factorizes into
the two-particle S-matrices that preserve the rapidities and satisfy the qYBE,
i.e. it factorizes consistently.

• We could not answer the question whether the Yangian constraints on length 3
are only solved by an S-matrix which preserves the set of rapidities or whether
there exist further solutions.

• The resulting S-matrices do not depend on relative rapidities only. We can
understand this feature from the discussion at the end of chapter 5. In the
dynamic representation of the Yangian, the generators J in (5.49) become
rapidity-dependent and thus the rapidity-dependence of S12 is governed by an
equation that depends on the absolute value of both incoming rapidities u1 and
u2. This implies that such a model does not correspond to a Lorentz-invariant
theory.

• By putting c = q = 1 and b = const., we were able to obtain the S-matrices
that we calculated in the last section and which are invariant under the undy-
namical Yangian Y [su(1|1)].

Note that the dynamic level-0 and level-1 Yangian constraints of the generators
C and Ĉ form local rapidity-dependent constraints on the S-matrix. It could be
interesting to check whether the higher levels of this central charge also have local
coproducts. Then the Yangian would allow for an infinite tower of local conserved
charges and would thus imply particle number and rapidity conservation, as well
as factorization of scattering directly via the arguments given in section 3.4. This
would unite the approach to integrability via conserved local charges and via the
conservation of a Yangian for the corresponding models.
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Chapter 7

Y [su(2|2)]-Invariant S-Matrices

In this chapter, we analyse the Yangian constraints on S-matrices for Y [su(2|2)] and
Y [su(2|2) n R2], respectively. We already gave a brief review of its importance in
the context of the AdS/CFT correspondence in the introductory chapter 1. Due
to the existence of two bosonic and two fermionic particles in its fundamental rep-
resentation and the possibility of length-changing generators, this algebra is more
advanced than su(1|1). In section 7.1 we begin with a review on the algebra su(2|2)
and its central extension. Doing so, we discuss two realizations in physical models
and thus motivate the subsequent analysis of both the undynamic and dynamic rep-
resentation of this algebra. In sections 7.2 and 7.3 we perform the explicit analysis
for two- and three-particle S-matrices and investigate whether the results allow for
consistent factorization. As above, we concentrate here on the discussion of the
results and comment on a possible implementation in Mathematica in the appendix
D.

7.1 The Algebra su(2|2)nR2 and its Representa-
tions

Generators of su(2|2) nR2 and the Fundamental Representation

We begin this chapter with a discussion of the Lie superalgebra su(2|2) on the basis
of [11,36]. It consists of the su(2)×su(2) generators Ra

b and Lαβ , the supersymmetry
generators Qα

b , Sa
β and the central charge C. Note that we use Latin indices a, b, c, ...

to denote bosonic degrees of freedom and Greek indices α, β, γ, ... for fermionic
degrees of freedom. These generators satisfy the commutation relations

[Ra
b ,R

c
d] = δcbR

a
d − δadRc

b, [Lαβ ,L
γ
δ ] = δγβL

α
δ − δαδ L

γ
β,

[Ra
b ,Q

γ
d] = −δadQ

γ
b + 1

2δ
a
bQ

γ
d, [Lαβ ,Q

γ
d] = +δγβQα

d − 1
2δ
α
βQ

γ
d,

[Ra
b ,S

c
δ] = +δcbSa

δ − 1
2δ
a
bS

c
δ, [Lαβ ,Sc

δ] = −δαδSc
β + 1

2δ
α
βS

c
δ,

{Qα
b ,S

c
δ} = δcbL

α
δ + δαδR

c
b + δcbδ

α
δ C. (7.1)

The remaining Lie brackets vanish. It will become obvious in the following that one
has to extend this algebra by two central charges P and K in order to obtain the cor-
rect S-matrix for the planar limit ofN = 4 SYM. These modify the anticommutators
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as

{Qα
b ,Q

γ
d} = εαγεbdP

{Sa
β,S

c
δ} = εacεβδK. (7.2)

Demanding that P and K annihilate physical states constrains the eigenvalues of
these operators and guarantees that the physical result is compatible with an su(2|2)
invariance of the model.

The fundamental representation of this algebra contains two bosonic states |φa〉
and two fermionic states |ψα〉 with a, α = 1, 2. The su(2) generators Ra

b and Lαβ act
analogously to (5.4) as

Ra
b |φc〉 = δcb |φa〉 − 1

2 |φ
c〉 ,

Lαβ |ψγ〉 = δγβ |φα〉 − 1
2 |φ

γ〉 . (7.3)

Note that we continue not to indicate that we use the operators in the fundamental
representation ρ. In this representation the supersymmetry generators transform
bosons into fermions and vice versa with coefficients a, b, c, d as

Qα
a |φb〉 = a δba |ψα〉 , Qα

a |ψβ〉 = b εαβεab |φb〉 ,
Sa
α |φb〉 = c εabεαβ |ψβ〉 , Sa

α |ψβ〉 = d δβα |φa〉 . (7.4)

Via the anticommutation relations (7.2), the eigenvalues P and K of the central
charges P and K are given by

P = ab, K = cd. (7.5)

The anticommutator {Qα
b ,S

c
δ} in (7.1) demands that the eigenvalue C of C is

C = 1
2(ad+ bc) (7.6)

and that the coefficients a, b, c, d satisfy

ad− bc = 1. (7.7)

Realization of su(2|2) in the su(2|3) sector of N = 4 SYM

In the su(2|3) sector ofN = 4 SYM the algebra su(2|2) appears as residual symmetry
algebra gr of the excitations of the spin chain. Interestingly, there are multi-particle
states such as |φ[1φ2φ3]〉 and |ψ[1ψ2]〉 which have the same quantum numbers and
energies but different lengths [25]. This allows for fluctuations which make the length
of the spin chain a dynamical variable. This feature is obvious in another notation
of the fundamental representation discussed in [10] given by

Qα
a |φb〉 = a δba |ψα〉 , Qα

a |ψβ〉 = b̃ εαβεab |φbZ+〉 ,
Sa
α |φb〉 = c̃ εabεαβ |ψβZ−〉 , Sa

α |ψβ〉 = d δβα |φa〉 . (7.8)

The generators Qα
a and Sa

α act on fields by insertion and annihilation of vacuum
states. Z+ inserts an additional vacuum site and Z− deletes one. But this length-
changing can also be captured by using the so-called braiding factor1 U , cf. [37,38],
with

|Z±Ψ〉 = e∓ip |ΨZ±〉 =: U∓2 |Ψ〉 . (7.9)
1Note that we denoted the shift operator on spin chains by the same symbol. Since we do not

refer to this quantity any more in the following, there will be no risk of confusion.
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Here Ψ is either φ or ψ and the coefficients b̃ and c̃ are related to b and c via the
eigenvalue U = U(p) of U as

b̃ = b U−2 c̃ = c U+2. (7.10)

Since the eigenvalue U of U is momentum-dependent, the representation in (7.4)
is also momentum-dependent. Thus this discussion shows the close connection of
length-changing effects and dynamic representations for this model.

If we had not introduced the two extra central charges P and K, i.e. for P =
K = 0 on each site, we would have obtained

C = ±1
2 (7.11)

using (7.5) and (7.6). In the su(2|3) sector of N = 4 SYM the central charge C is
associated to the energy of the chain [10] and is not quantized as in (7.11). In fact,
due to the additional generators P and K this contradiction is resolved. One can
show that the one-magnon energy for non-vanishing eigenvalues P and K at single
sites and vanishing P = K = 0 on the whole cyclic spin chain is given by [10]

C = ±1
2

√
1 + 16αβ sin2

(
p
2

)
(7.12)

where α and β are constants satisfying

ab = gα
(
1− eip

)
cd = β

g

(
1− e−ip

)
. (7.13)

The product αβ = g2 corresponds to the square of the coupling constant g of the
model, i.e. (7.11) is true at leading order. This model motivates the discussion
of S-matrices that are invariant under a dynamic representation of the Yangian
Y [su(2|2) nR2]. We discuss these in section 7.3.

Realization of su(2|2) in a Condensed Matter System

In fact, the algebra su(2|2) is also relevant in the context of strongly correlated
electron systems on a one-dimensional lattice, see [39]. In this model each site is
a superposition of four possible electronic states and two of these are fermionic.
There are no length-changing effects such that the undynamic representation with
U = 1 becomes relevant and one may directly put P = K = 0 at each site, i.e.
C = ±1

2 . Thus, there is no need to make the representation (7.4) rapidity-dependent.
The R-matrix of this model corresponds to the Y [su(2|2)]-invariant S-matrix which
motivates the investigation of the undynamic Yangian Y [su(2|2)], see [40]. Since
the symmetry algebra of this model corresponds to the leading order contribution
of the dynamic representation, we will check in the following sections whether the
dynamic S-matrices contain the undynamic results.

Coproduct Structure of Y [su(2|2) nR2]

Now let us move on to the coproduct structure of the Yangian corresponding to
su(2|2) n R2. Its level-0 generators are the Lie superalgebra generators Ra

b , Lαβ ,
Qα
b , Sa

β and C, as well as the central charges P and K of the central extension.
Their action on single-particle states is given by (7.3) and (7.4) in the evaluation
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representation. The corresponding level-1 generators Ĵ are R̂a
b , L̂αβ , Q̂α

b , Ŝa
β, Ĉ, P̂

and K̂. Their action on single particles in this representation is given by

Ĵ |φ, u〉 = iguJ |φ, u〉 Ĵ |ψ, u〉 = iguJ |ψ, u〉 (7.14)

with rapidity u and J being the level-0 generator that is associated to Ĵ.
In order to evaluate explicitly the constraints (4.18) and (4.19), we need the

coproduct structure of the Yangian generators. For the level-0 generators acting on
two sites it is [11]

∆C = C⊗ 1 + 1⊗ C, ∆Ra
b = Ra

b ⊗ 1 + 1⊗Ra
b ,

∆P = P⊗ 1 + U+2 ⊗P, ∆Lαβ = Lαβ ⊗ 1 + 1⊗ Lαβ ,

∆K = K⊗ 1 + U−2 ⊗ K, ∆Qα
b = Qα

b ⊗ 1 + U+1
F ⊗Qα

b ,

∆Sa
β = Sa

β ⊗ 1 + U−1
F ⊗Sa

β (7.15)

with UF := (−1)F U . 1 is the identity operator of su(2|2) and (−1)F is the fermionic
grading operator, i.e.

1 |φa〉 = |φa〉 , 1 |ψα〉 = |ψα〉 , (−1)F |φa〉 = + |φa〉 , (−1)F |ψα〉 = − |ψα〉 .
(7.16)

(−1)F takes care of the correct statistics when anticommuting fermionic particles
and the fermionic operators Qα

b and Sa
β. The abelian braiding operator U includes

length-changing effects and can be set to 1 for conventional spin chains. The action
on a three-particle state can be obtained from (7.15) by making use of (4.10) and
incorporating all fermionic grading operators (−1)F and the braiding factors U . The
result can be found in the appendix in equation (C.3). The coproduct structure of
the level-1 generators is given by

∆Ĉ =Ĉ⊗ 1 + 1⊗ Ĉ + 1
2P U

−2 ⊗ K− 1
2K U

+2 ⊗P,

∆P̂ =P̂⊗ 1 + U+2 ⊗ P̂− C U+2 ⊗P + P⊗ C,

∆K̂ =K̂⊗ 1 + U−2 ⊗ K̂ + C U−2 ⊗ K− K⊗ C,

∆R̂a
b =R̂a

b ⊗ 1 + 1⊗ R̂a
b + 1

2R
a
c ⊗Rc

b − 1
2R

c
b ⊗Ra

c

− 1
2S

a
γ U+1

F ⊗Qγ
b − 1

2Q
γ
b U−1

F ⊗Sa
γ

+ 1
4δ
a
b Sd

γ U+1
F ⊗Qγ

d + 1
4δ
a
b Qγ

d U−1
F ⊗Sd

γ,

∆L̂αβ =L̂αβ ⊗ 1 + 1⊗ L̂αβ − 1
2L

α
γ ⊗ Lγβ + 1

2L
γ
β ⊗ Lαγ

+ 1
2Q

α
c U−1

F ⊗Sc
β + 1

2S
c
β U+1

F ⊗Qα
c

− 1
4δ
α
β Qδ

c U−1
F ⊗Sc

δ − 1
4δ
α
β Sc

δ U+1
F ⊗Qδ

c,

∆Q̂α
b =Q̂α

b ⊗ 1 + U+1
F ⊗ Q̂α

b − 1
2L

α
γ U+1

F ⊗Qγ
b + 1

2Q
γ
b ⊗ Lαγ

− 1
2R

c
b U+1

F ⊗Qα
c + 1

2Q
α
c ⊗Rc

b − 1
2C U

+1
F ⊗Qα

b + 1
2Q

α
b ⊗ C

+ 1
2ε
αγεbd P U−1

F ⊗Sd
γ − 1

2ε
αγεbd S

d
γ U+2 ⊗P,

∆Ŝa
β =Ŝa

β ⊗ 1 + U−1
F ⊗ Ŝa

β + 1
2R

a
c U−1

F ⊗Sc
β − 1

2S
c
β ⊗Ra

c

+ 1
2L

γ
β U−1

F ⊗Sa
γ − 1

2S
a
γ ⊗ Lγβ + 1

2C U
−1
F ⊗Sa

β − 1
2S

a
β ⊗ C

− 1
2ε
acεβδ K U+1

F ⊗Qδ
c + 1

2ε
acεβδ Q

δ
c U−2 ⊗ K. (7.17)

On a three-particle state they act as shown in eq. (C.4) in the appendix C. The
representation of the Yangian Y [su(2|2)] without central extension can be obtained
by setting the eigenvalues of P and K to 0 and of U to 1.
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su(1|1) as Subalgebra of su(2|2)

Note that the algebra su(2|2) contains su(1|1) as a subalgebra. One can obtain the
su(1|1) generators by setting the bosonic and fermionic indices to a = b = α = β = 1
and |φ〉 := |φ1〉 and |ψ〉 := |ψ1〉. Then the su(1|1) generators Q and S can be
obtained from Qα

a and Sa
α by putting the representation coefficients in (7.4) to

a = q and d = c
q
. The outer automorphism B can be obtained from the linear

combination
b− 1
1− 1

n
L1

1 + b+ 1
1− 1

n
R1

1 (7.18)

and the central charge C from su(1|1) is given via the combination of su(2|2) gener-
ators of the form

C + R1
1 + L1

1. (7.19)

This close connection of both algebras will allow us to derive the Y [su(1|1)]-invariant
S-matrices discussed in the previous chapter from the su(2|2) results.

7.2 Undynamic Y [su(2|2)]-Invariant S-Matrices
In this section we calculate the Y [su(2|2)]-invariant two- and three-particle S-matrices
for the Yangian in its undynamic representation.

7.2.1 Two-Particle S-Matrix
The two-particle S-matrix is the map between incoming and outgoing two-particle
states that transform under Y [su(2|2)], i.e.

S12(u1,2; v1,2) : (2|2)v1 ⊗ (2|2)v2 → (2|2)u1 ⊗ (2|2)u2 (7.20)

with different sets of incoming and outgoing rapidities satisfying u1 > u2 and v1 < v2.

Solution of the Level-0 Constraint

The constraint (4.18) for the central charge C does not restrict the form of S12 since
it is an abelian operator. Constraining the S-matrix by demanding a vanishing
commutator with the generators ∆Ra

b and ∆Lαβ restricts it to be of the form

S12 |φa, v1;φb, v2〉 = A12 |φ{a, u1;φb}, u2〉+B12 |φ[a, u1;φb], u2〉
+ 1

2C12ε
abεαβ |ψα, u1;ψβ1 , u2〉

S12 |φa, v1;ψβ, v2〉 = D12 |ψβ, u1;φa, u2〉+ E12 |φa, u1;ψβ, u2〉
S12 |ψα, v1;φb, v2〉 = F12 |ψα, u1;φb, u2〉+G12 |φb, u1;ψα, u2〉
S12 |ψα, v1;ψβ, v2〉 = H12 |ψ{α, u1;ψβ}, u2〉+K12 |ψ[α, u1;ψβ], u2〉

+ 1
2L12ε

αβεab |φa, u1;φb, u2〉 (7.21)

with ten unknown coefficients A12, ..., L12. This ansatz corresponds to the ansatz in
Table 1 of [10] where the rapidities are conserved v1 = u2 and v2 = u1. Demanding
a vanishing commutator of S12 with ∆Qα

a implies

B12 = H12, C12 = 0, D12 = 1
2(A12 −H12), E12 = 1

2(A12 +H12),
K12 = A12, L12 = 0, G12 = 1

2(A12 −H12), F12 = 1
2(A12 +H12). (7.22)



68

The resulting S-matrix automatically commutes with ∆Sα
a . We conclude that the

Yangian level-0 constraints fix the S-matrix up to two degrees of freedom corre-
sponding to two Casimirs of su(2|2). Note that due to C12 = L12 = 0 the S-matrix
permutes the particles in a scattering event. This result is in accordance with the
level-0 result for the su(1|1)-invariant S-matrix given in (6.11) and (6.12). Note that
the construction of the Casimirs from a Killing form κab of the algebra is non-trivial
since it vanishes, see [41].

Solution of the Level-1 Constraint

Let us further constrain the two-particle S-matrix by imposing [∆Ĵ, S12] = 0. For
Ĵ = Ĉ this constraint is satisfied as long as the sum of rapidities in the incoming
and outgoing state is identical

v1 + v2 = u1 + u2. (7.23)

From [∆R̂a
b , S12] = 0 we obtain a set of two solutions

(1) v1 = u1, v2 = u2, H12 = A12

(2) v1 = u2, v2 = u1, H12 = A12
i− u12

i+ u12
. (7.24)

Here we drop the Kronecker deltas δv1,u1δv2,u2 and δv1,u2δv2,u1 , respectively, in the
coefficient H12. Similar to the analogous solutions in the discussion of Y [su(n)] and
Y [su(1|1)], the first solution corresponds to the identity map

I12 ∝ |φa1;φb2〉 〈φa1;φb2|+ |φa1;ψβ2 〉 〈φa1;ψβ2 |+ |ψα1 ;φb2〉 〈ψα1 ;φb2|+ |ψα1 ;ψβ2 〉 〈ψα1 ;ψβ2 | ,
(7.25)

where the summation over the indices a, b, α, β is implicit. The second solution is
the true 2→2 S-matrix that permutes the Hilbert spaces of the particles as

S12(u1,2) : (2|2)u2 ⊗ (2|2)u1 → (2|2)u1 ⊗ (2|2)u2 . (7.26)

Its explicit form is given by (7.21) with coefficients

A12 = −S0
12
i+ u12

i− u12
= K12, B12 = −S0

12 = H12, C12 = 0 = L12,

D12 = −S0
12

u12

i− u12
= G12, E12 = −S0

12
i

i− u12
= F12. (7.27)

Note that this result is in accordance with the S-matrix of su(1|1) given in (6.11)
and (6.19). It does not get further restricted by the constraints from L̂αβ , Q̂α

a and
Ŝa
α. This two-particle S-matrix satisfies the qYBE given by the second equality in

(5.45) which we checked by explicit calculation.

7.2.2 Three-Particle S-Matrix
We proceed with the discussion of the three-particle S-matrix S123 which is the map

S123(u1,2,3; v1,2,3) : (2|2)v1 ⊗ (2|2)v2 ⊗ (2|2)v3 → (2|2)u1 ⊗ (2|2)u2 ⊗ (2|2)u3 (7.28)

with u1 > u2 > u3 and v1 < v2 < v3.
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Solution of the Level-0 Constraint

Once more, the constraint [∆2C, S123] = 0 is automatically satisfied because the co-
product ∆2C is proportional to the identity operator on length 3. The commutators
with the generators Ra

b and Lαβ restrict the S-matrix to be a linear combination of
70 operators. We do not print this operator here since it is rather lengthy. This
ansatz gets further constrained by the remaining level-0 constraint from Qα

a and we
are left with ten degrees of freedom. Qα

a and Sa
α set the same constraints on S123.

Solution of the Level-1 Constraint

By imposing the level-1 constraints of the Yangian corresponding to the Lie super-
algebra su(2|2), we further restrict the form of the coefficients and the outgoing
rapidities v1,2,3. From [∆2Ĉ, S123] = 0 we find

v1 + v2 + v3 = u1 + u2 + u3. (7.29)

Demanding its invariance under R̂a
b further constrains S123. As in the previous

discussions of three-particle S-matrices, we obtain six solutions which all have the
same rapidities in the incoming and outgoing state. For the true 3→3 S-matrix the
rapidities in the outgoing state are

v1 = u3, v2 = u2, v3 = u1. (7.30)

Furthermore, four of the ten free coefficients in S123 have to vanish and another five
are related to the remaining single degree of freedom. Thus, the resulting S-matrix
is fixed up to an overall factor and permutes the particles in a scattering event. We
checked that it does not get further constrained by the commutation relations with
K̂αβ , Q̂α

a and Ŝa
α. By comparing the three-particle S-matrix with the product of three

two-particle S-matrices as in the qYBE (5.45), we find that it factorizes.

Discussion of the Results

The S-matrices calculated in this section share the features of the S-matrices that are
invariant under the undynamic Yangian Y [su(1|1)]. The list of important features
at the end of section 6.2.2 can be inherited. We only enlarge it by the point

• The undynamic Y [su(2|2)]-invariant two- and three-particle S-matrices reduce
to the undynamic Y [su(1|1)]-invariant S-matrices of section 6.3 by restricting
to a single boson and a single fermion.

7.3 Dynamic Y [su(2|2) nR2]-Invariant S-Matrices
We now turn to the analysis of the dynamic Yangian constraints for the two- and
three-particle S-matrix.

7.3.1 Two-Particle S-Matrix
The Y [su(2|2)nR2]-invariant two-particle S-matrix in its dynamic representation is
the map

S12(u1,2, v1,2) : (2|2)v1,C(v1),P (v1),K(v1) ⊗ (2|2)v2,C(v2),P (v2),K(v2)

→ (2|2)u1,C(u1),P (u1),K(u1) ⊗ (2|2)u2,C(u2),P (u2),K(u2) (7.31)
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with u1 > u2 and v1 < v2.

Solution of the Level-0 Constraint

The level-0 constraints (4.18) for the central charges C, P and K impose the following
three relations including their eigenvalues C, P and K:

C(u1) + C(u2) = C(v1) + C(v2),
P (u1) + P (u2)U(u1)2 = P (v1) + P (v2)U(v1)2,

K(u1) + K(u2)
U(u1)2 = K(v1) + K(v2)

U(v1)2 . (7.32)

They constrain the outgoing rapidities v1 and v2 and can be analysed best by repa-
rameterizing the coefficients a, b, c, d in (7.4) via

a = √gγ, b = √gα
γ

(
1− x+

x−

)
, c = √g iγ

αx+ , d = √gx
+

iγ

(
1− x−

x+

)
(7.33)

with x± = x±(u), γ = γ(u) and x±(u) = x(u ± i
2). The parameter γ is associated

to a relative rescaling between fermions ψα and bosons φa, while the constant α
corresponds to a rescaling of the vacuum state Z. The condition (7.7) translates to

x+ + 1
x+ − x

− − 1
x−

= i

g
(7.34)

and the eigenvalues of the central charges using (7.5) and (7.6) are

C = −1
2 + igx− − igx+, P = gα

(
1− x+

x−

)
, K = g

α

(
1− x−

x+

)
. (7.35)

Demanding cocommutativity of the coproduct leads to relations between the braid-
ing factor U and the central charges P and K, see [11]. These are solved if the
eigenvalue U of U satisfies

U =
√
x+

x−
(7.36)

such that the momentum p and the parameters x± satisfy

eip = x+

x−
(7.37)

similar to (6.36). In these coordinates the rapidity can be expressed in terms of the
new coordinates x± as

u = 1
2

x+ + x−

1 + 1/x+x−
. (7.38)

These relations can be used to reformulate (7.32) for g, α 6= 0 as

x+
1 + x+

2 − x−1 − x−2 = y+
1 + y+

2 − y−1 − y−2 ,
x+

1 x
+
2

x−1 x
−
2

= y+
1 y

+
2

y−1 y
−
2
,

x−1 x
−
2

x+
1 x

+
2

= y−1 y
−
2

y+
1 y

+
2
(7.39)
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with x±i = x±(ui) and y±i = x±(vi). It is evident that they are solved by

(1) v1 = u1, v2 = u2

(2) v1 = u2, v2 = u1. (7.40)

In order to check whether there are further solutions, we use the solution for x± =
x±(u) of (7.34) found by comparison with the discussion in [42] as

x(u) = u

2g + u

2g

√
1− 4g2

u2 . (7.41)

Inserting this into (7.39) and expanding in the coupling constant g relates the in-
coming and outgoing rapidities at each order of the expansion. Indeed, we find that
the solutions (7.40) are the only possible solutions of the level-0 constraints imposed
by the central charges. Thus the Yangian constraints corresponding to su(2|2)nR2

imply a conservation of rapidities in two-particle scattering events. The first solu-
tion in (7.40) is associated to the identity map and the second solution corresponds
to the S-matrix we are looking for. Therefore, we concentrate the following analysis
on solution (2).

Analysing the constraints [∆Ra
b , S12] = [∆Lαβ , S12] = 0 shows that the S-matrix

has to be of the form given in (7.21), i.e. we continue with the same ansatz as in
the undynamic case. It has ten degrees of freedom. These are reduced by eight
if one demands the S-matrix’ invariance under ∆Qα

b . Unlike in the analysis of
the undynamic Yangian in the previous section, the constraint with ∆Sa

β removes
another degree of freedom such that the S-matrix is determined up to an overall
factor. It arises since we do not assume P = 0 and K = 0 for each particle anymore.
We obtain for the coefficients in (7.21)

A12 = S0
12
x+

1 − x−2
x−1 − x+

2
,

B12 = S0
12
x+

1 − x−2
x−1 − x+

2

(
1− 21− 1/x−1 x+

2
1− 1/x+

1 x
+
2

x−1 − x−2
x+

1 − x−2

)
,

C12 = S0
12

2γ1γ2U1

αx+
2 x

+
1

1
1− 1/x+

1 x
+
2

x−1 − x−2
x−1 − x+

2
,

D12 = S0
12

1
U2

x+
1 − x+

2
x−1 − x+

2
,

E12 = S0
12
γ2U1

γ1U2

x+
1 − x−1
x−1 − x+

2
,

F12 = S0
12
γ1

γ2

x+
2 − x−2
x−1 − x+

2
,

G12 = S0
12U1

x−1 − x−2
x−1 − x+

2

H12 = −S0
12
U1

U2
,

K12 = −S0
12
U1

U2

(
1− 21− 1/x+

1 x
−
2

1− 1/x−1 x−2
x+

1 − x+
2

x−1 − x+
2

)
,

L12 = −S0
12

2α(x+
2 − x−2 )(x+

1 − x−1 )
γ1γ2U2x

−
2 x
−
1

1
1− 1/x−2 x−1

x+
1 − x+

2
x−1 − x+

2
. (7.42)
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This is the well-known result from the literature for the su(2|2) n R2-invariant S-
matrix calculated in [10]. We made use of the equivalences (3.5) given in the original
paper and which are in this thesis’ conventions

x+
2 − x+

1
1− 1/x−2 x−1

= x−2 − x−1
1− 1/x+

2 x
+
1

x+
1 − x−1 − x+

2 + x−2
x+

2 x
+
1 − x−2 x−1

= 1
x+

2 x
−
2 x

+
1 x
−
1

x+
2 − x+

1
1− 1/x−2 x−1

B12/S0
12 = −1 + 1

x+
2 x

+
1 − x−2 x−1

x+
2 x

+
1 − 2x−2 x+

1 + x−2 x
−
1

1− 1/x−2 x−1
x+

2 − x+
1

x−1 − x+
2

E12/S0
12 = x+

1 − x−2
x−1 − x+

2
− 1
x+

2 x
+
1 − x−2 x−1

x+
2 x

+
1 − 2x+

2 x
−
1 + x−2 x

−
1

1− 1/x−2 x−1
x+

2 − x+
1

x−1 − x+
2
.

(7.43)

Solution of the Level-1 Constraint

The level-0 constraints completely determine the two-particle S-matrix. Thus there
remains the question whether this matrix is also Yangian-invariant. Checking the
level-1 constraints explicitly using the coproduct structure in (7.17) shows that this
matrix is indeed Yangian-symmetric. This was first shown in [11]. By numerical
analysis, i.e. insertion of different real and complex values for x± and g, we further-
more checked that the two-particle S-matrix satisfies the qYBE given in (5.45).

It is interesting to check whether S12 contains the two-particle S-matrix that is
invariant under the undynamic Yangian Y [su(2|2)]. In order to do so, we have to
set all eigenvalues Ui of U to 1 and expand the remaining ingredients in (7.42) in
powers of the coupling constant g. Using α = O(g), setting the unphysical degrees
of freedom γ1 and γ2 to 1 and using (7.41), we checked that (7.42) reduces to (7.27).
Thus, the limit of the dynamic su(2|2) n R2-invariant two-particle S-matrix yields
the Y [su(2|2)]-invariant S-matrix.

7.3.2 Three-Particle S-Matrix
The Y [su(2|2) nR2]-invariant three-particle S-matrix in its dynamic representation
is the map

S123(ui, vi) : (2|2)v1,C(v1),P (v1),K(v1) ⊗ (2|2)v2,C(v2),P (v2),K(v2) ⊗ (2|2)v3,C(v3),P (v3),K(v3)

→ (2|2)u1,C(u1),P (u1),K(u1) ⊗ (2|2)u2,C(u2),P (u2),K(u2) ⊗ (2|2)u3,C(u3),P (u3),K(u3)
(7.44)

with u1 > u2 > u3 and v1 < v2 < v3.

Solution of the Level-0 Constraint

Similar to the two-particle case, the level-0 constraints of the central charges demand

C(u1) + C(u2) + C(u3) = C(v1) + C(v2) + C(v3),
P (u1) + P (u2)U(u1)2 + P (u3)U(u1)2U(u2)2

= P (v1) + P (v2)U(v1)2 + P (v3)U(v1)2U(v2)2,

K(u1) + K(u2)
U(u1)2 + K(u3)

U(u1)2U(u2)2 = K(v1) + K(v2)
U(v1)2 + K(u3)

U(u1)2U(u2)2 . (7.45)
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Once more, we analyse these relations in the reparameterized form

x+
1 + x+

2 + x+
3 − x−1 − x−2 − x−3 = y+

1 + y+
2 + y+

3 − y−1 − y−2 − y−3 ,
x+

1 x
+
2 x

+
3

x−1 x
−
2 x
−
3

= y+
1 y

+
2 y

+
3

y−1 y
−
2 y
−
3
,

x−1 x
−
2 x
−
3

x+
1 x

+
2 x

+
3

= y−1 y
−
2 y
−
3

y+
1 y

+
2 y

+
3
. (7.46)

Obviously, they are solved if the outgoing rapidities correspond to the incoming
rapidities. Out of six possibilities only

v1 = u3, v2 = u2, v3 = u1 (7.47)

corresponds to a true 3→3 scattering process. In order to check whether there exist
more solutions, we use (7.41) and expand in g. The first three orders restrict the
outgoing rapidities to be equal to the incoming rapidities. Thus, the level-0 Yangian
constraints corresponding to the central charges again imply the conservation of
rapidities.

Demanding vanishing commutators [∆2Ra
b , S123] and [∆2Lαβ , S123] restricts the

three-particle S-matrix S123 to be of the same form as in the discussion of the un-
dynamic Yangian constraints in the previous section. We do not present this ansatz
here since it contains 70 terms. The corresponding 70 degrees of freedom get re-
duced by the level-0 constraint with Qα

a . It restricts 60 coefficients to depend on
the remaining ten. The commutator with ∆2Sa

α further constrains these. Since the
equations turned out to be very long and could not be evaluated analytically via
Mathematica due to an insufficient memory capacity, we evaluated the results nu-
merically for different values of the x± and g. Doing so, we found that there remain
two degrees of freedom after imposing the level-0 constrains on the S-matrix. This
is in contrast to the undynamic case where Sa

α puts no further constraints on S123,
i.e. there remained ten degrees of freedoms. Thus, similar to the two-particle case,
we find that the dynamic representation of the Yangian Y [su(2|2) n R2] is more
restrictive than the undynamic representation of Y [su(2|2)]. Note that the number
of degrees of freedom for the dynamic case corresponds to the expectations from the
discussion of the representation theory of this algebra, see [36,43]. Here it is shown
that the tensor product of three one-particle states denoted by 〈m = 0, n = 0, ~C〉
with su(2) × su(2) Dynkin labels m and n and eigenvalues ~C = (C,P,K) of the
central charges decomposes as

〈0, 0, ~C1〉 ⊗ 〈0, 0, ~C2〉 ⊗ 〈0, 0, ~C3〉 = {1, 0, ~C1 + ~C2 + ~C3} ⊕ {0, 1, ~C1 + ~C2 + ~C3}.
(7.48)

The bracket 〈..〉 denotes a state from a long multiplet and {..} from a short multiplet
with C2 − PK = 1

4(n+m+ 1)2.

Solution of the Level-1 Constraint

Since we found the three-particle su(2|2) nR2-invariant S-matrix only numerically,
we proceed with a numerical analysis of the level-1 constraints of Y [su(2|2) n R2].
The constraints imposed by the central charges Ĉ, K̂ and P̂ put no further con-
straints on the S-matrix. By contrast, the remaining constraints [∆2R̂a

b , S123] =
[∆2L̂αβ , S123] = [∆2Q̂α

b , S123] = [∆2Ŝa
β, S123] = 0 are only fulfilled if the two remain-

ing free coefficients are related to each other. This relation is the same for all the
commutators such that we are left with a three-particle S-matrix that is determined
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up to an overall factor. We compared our numerical result with the product of
the three two-particle S-matrices in the qYBE and the equality of both expressions
confirms that the three-particle S-matrix factorizes.

Discussion of the Results

Let us summarize the results of this section:

• From the level-0 Yangian constraints imposed by the central charges we found
that the outgoing rapidities in two- and three-particle scattering processes
correspond to the incoming rapidities.

• We determined the two-particle Y [su(2|2)nR2]-invariant S-matrix (7.21) with
coefficients (7.42) up to the dressing factor. A discussion of this dressing factor
can be found in [33].

• The two-particle S-matrix satisfies the qYBE which we checked numerically.

• We validated that su(2|2) n R2-invariance fixes the three-particle S-matrix
up to two degrees of freedom. The level-1 generators corresponding to the
Yangian algebra that is associated to this algebra further restricts the S-matrix
such that it is fixed up to an overall factor. The resulting matrix factorizes
consistently into two-particle S-matrices. This analysis was done numerically.

• The resulting S-matrices do not depend on relative rapidities only. Assuming a
conserved set of rapidities, this feature can be conjectured from the discussion
at the end of chapter 5 and 6.3.



Chapter 8

Summary and Outlook

Exploiting symmetries simplifies calculations all over physics. In this thesis we
focused on symmetries in quantum integrable models and explored their connection
to factorization of scattering. First, we discussed a version of the proof in [3] which
reveals that factorized scattering is a direct consequence of the existence of a tower
of conserved charges in a massive relativistic QFT. We were able to translate it into
the language of spin chains and discussed some subtleties in this translation. This
proof shows the close connection between the existence of conserved local charges
and factorization of scattering in spin chain models.

We then moved on to the connection of Yangian symmetry and factorization of
scattering. We used the Yangian corresponding to specific Lie algebras to constrain
the dynamics of scattering processes. In particular, we checked whether factorization
of the associated S-matrices is a direct consequence of the Yangian. For the Lie
(super-)algebras su(n), su(1|1), su(2|2) with undynamic representations we were able
to calculate the two- and three-particle S-matrix up to an unknown overall factor.
This dressing factor has to be determined by unitarity and crossing relations. We
showed that the Yangian-invariant S-matrices preserve the sets of rapidities. This
feature is often used as a standard assumption on S-matrices in literature which we
confirmed for these specific Yangian-invariant S-matrices. Furthermore, we found
that the S-matrices only depend on relative rapidities, i.e. they correspond to models
with (quasi-)boost invariance. We were able to understand this feature on the basis
of the Yangian constraints. We verified that the three-particle S-matrices factorize
into three two-particle S-matrices and satisfy the qYBE as consistency condition.

In the case of the dynamic representations of Y [su(1|1)] we were not able to
obtain all results we were looking for due to limitations of computational power. In
particular, unlike for the two-particle scattering we were not able to confirm that the
Yangian constraints restrict three-particle scattering processes in such a way that
the rapidities are conserved. Therefore, we assumed that the set of rapidities is con-
served, i.e. we looked for solutions that permute the Hilbert spaces of the particles.
We found this S-matrix and verified consistent factorization. In contrast to this, we
were able to show that the dynamic representation of the Yangian corresponding
to Y [su(2|2)nR2] implies conservation of rapidities in two- and three-particle scat-
tering processes. Thus, although Y [su(2|2) nR2] might appear more involved than
Y [su(1|1)] at first glance, the higher amount of symmetry makes this Yangian more
accessible in the analysis. Furthermore, the Yangian constraints fix the two-particle
S-matrix up to an overall factor and the result satisfies the qYBE. Unfortunately,
we were not able to analyse the three-particle S-matrix analytically but calculated
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it numerically. Although several numerical values for the parameters of the theory
and the particles lead always to the same result, i.e. an S-matrix that is determined
up to an overall factor and factorizes consistently into three two-particle S-matrices,
an analytic analysis is essential for an indisputable result.

The typical number of terms from the commutators of the general ansatz for the
three-particle S-matrix and the Y [su(2|2) n R2]-generators is O(103) up to O(104).
The calculation of a single commutator takes about 30 hours when parallelizing it
on 4 kernels. In order to circumvent these complications that ultimately led to a
numerical analysis, it could be interesting to investigate the algebra su(2|2) n R2

with respect to its representation theory. Doing so, one might directly come up
with an ansatz for S that only contains level-0 invariants. This might give more
compact constraints on the prefactors of the S-matrices and thus could facilitate
their analysis. In fact, we did that in the discussion of su(n) using the symmetric
group and Young tableaux, respectively. And indeed, in [43] the authors mention a
possibility to construct projection operators on the irreducible representations via
a supersymmetric Young tableaux construction. Another approach is the construc-
tion of Casimir operators. This is done in [14] for the 2→2 Y [su(1|1)]-invariant
S-matrix. Unfortunately, there is no non-vanishing Killing form for su(2|2) n R2,
see [44], such that it is not straightforward to construct Casimirs. Nevertheless, one
might circumvent this difficulty by using the exceptional algebra D(2, 1; ε) that was
discussed in [44].

Interestingly, the resulting S-matrices in the dynamic representations of Y [su(1|1)]
and Y [su(2|2)nR2] do not only depend on relative rapidities. Thus, the correspond-
ing models are not invariant under the usual Lorentz (quasi-)boost. In [45] a new
boost symmetry of the S-matrices of N = 4 SYM was found. It could be interesting
to investigate whether the corresponding generator explains this specific dependence
on the rapidities and to understand how it is related to the Yangian generators.

In our discussion of the Yangian constraints we always assumed the conservation
of the particle number in a scattering process. This is a characteristic feature of
integrable models and it would be interesting to check whether it can be understood
from Yangian symmetry. In order to do so, one has to analyse the constraints

(∆min−1J)Smin→mout(u1,...,min
; v1,...,mout)

− Smin→mout(u1,...,min
; v1,...,mout)(∆mout−1J) = 0, (8.1)

where J collectively denotes both the level-0 and level-1 Yangian generators. min is
the number of incoming and mout the number of outgoing particles. Assuming that
crossing symmetry holds, one might also transfer the 3→3 S-matrix results to the
S-matrix for the scattering process with two incoming and four outgoing particles.
Used recursively this might constrain all m → n S-matrices with m 6= n.



Appendix A

Classical Integrability

In this chapter we briefly develop important concepts of classical integrability which
motivate the notion of integrability for quantum spin chains. We start by introducing
the definition of Liouville integrability for Hamiltonian systems in section A.1 and
then move on by reformulating classical integrability in terms of Lax pairs in section
A.2. We do so in close analogy to [15], [26] and [46–48].

A.1 Liouville Integrability
Let us introduce Liouville integrability for classical mechanical systems. Its presence
is a note-worthy property of a model since it implies solvability of the system’s
dynamics on the basis of the Hamiltonian, i.e. without investigating the equations
of motion. We begin by discussing the notation of a Hamiltonian system. Its motion
in d dimensions is described by a trajectory (p(t), q(t)) in 2d-dimensional phase space
M spanned by the canonical coordinates

(pi, qi), i = 1, 2, ..., d (A.1)

with momenta pi and position variables qi. The time-evolution (p(t), q(t)) is governed
by the system’s Hamiltonian H and Hamilton’s equations of motion

ṗi = −∂H
∂qi

q̇i = ∂H

∂pi
. (A.2)

We focus on systems whose Hamiltonian is not explicitly time-dependent, i.e.
H = H(p, q). Take as an example the one-dimensional harmonic oscillator. It is
defined by the Hamiltonian

H(p, q) = 1
2

(
p2 + ω2q2

)
(A.3)

which gives rise to the equations of motion

ṗ = −ω2q q̇ = p. (A.4)

This set of equations can be solved by

p(t) = A cos(ωt) +B sin(ωt) q(t) = B
ω

cos(ωt)− A
ω

sin(ωt) (A.5)

with constants A and B which can be fixed by imposing initial conditions. We
will show in the following that this solvability can be predicted by examining the
system’s Hamiltonian (A.3).
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The equations of motion (A.2) imply that the time derivative Ḟ of any observable
F = F (p, q) is given by

Ḟ = {H,F} (A.6)

where we introduced the Poisson brackets

{f, g} =
d∑
i=1

(
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
. (A.7)

Such a function F is called a conserved quantity (or first integral) if its Poisson
bracket with the Hamiltonian vanishes, i.e. {H,F} = 0. In particular, the Hamil-
tonian is conserved and the motion takes place on a hypersurface E = H(p, q) in
M . This can be easily exemplified by the harmonic oscillator (A.3). Without loss
of generality we choose A = 0 and the system evolves on the hypersurface

(p(t), q(t)) = B
ω

(ω sin(ωt), cos(ωt)) (A.8)

which satisfies E = H(p, q) with E = B2.
A system’s dynamics is even more constrained if there exist further first integrals

that are independent, i.e. their corresponding gradient vectors are linearly indepen-
dent. A system is called Liouville integrable if it possesses d independent conserved
quantities Fi = Fi(p, q), i = 1, ..., d that are in involution, which means they Poisson
commute

{Fi, Fj} = 0 ∀ i, j ∈ {1, ..., d}. (A.9)

One can show that for such a system the motion is restricted to a d-dimensional
hypersurface Fi = Fi(p, q), i = 1, ..., d, in phase space that is diffeomorphic to a
d-dimensional torus.

By this definition every one-dimensional system with time-independent Hamilto-
nian is integrable since one can always choose the Hamiltonian itself as the conserved
quantity F1. In particular, the previously discussed harmonic oscillator is integrable
and the dynamics (A.8) takes place on a one-dimensional torus, i.e. an ellipse. A
slightly more involved system is the d-dimensional harmonic oscillator

H = 1
2

d∑
i=1

(
p2
i + ω2

i q
2
i

)
. (A.10)

Choosing Fi = p2
i +ω2

i q
2
i for i = 1, ..., d one can easily prove integrability by confirm-

ing their conservation ({H,Fi} = 0 ∀ i), the involution property ({Fi, Fj} = 0 ∀ i, j)
and their independence (~∇Fi · ~∇Fj = 0 ∀ i 6= j).

The Liouville theorem establishes that Liouville integrability of classical systems
results in the solvability of its equations of motion. There even exists a procedure
known as solution by quadrature that enables us to find the solution of each inte-
grable system by solving a couple of algebraic equations and integrals. Therefore
Liouville integrability is a powerful concept enabling us to obtain a deeper under-
standing of the solvability of a large family of physical systems.
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A.2 Lax Pairs and R-Matrices
We will now introduce another approach to classical integrability that is not based
on the system’s Hamiltonian but on its Lax pair (L,M). This object consists of two
time-dependent matrices L and M that allow us to rewrite the equations of motion
as the Lax equation

L̇ = [L,M ] (A.11)

with commutator [., .]. Let us illustrate this with the help of the one-dimensional
harmonic oscillator. Alternatively to (A.3) we may define this model via the Lax
pair

L =
(
p ωq
ωq −p

)
M =

(
0 1

2ω
−1

2ω 0

)
(A.12)

which gives rise to the equations of motion (A.2) by the Lax equation. In general,
it might not be easy to find the Lax pair of a physical model. Nevertheless, every
integrable system admits one which can be proven by its construction via the so-
called action-angle variables. Unfortunately, this procedure is of no real practical
use since we first have to solve the system’s dynamics before obtaining the Lax pair.

We will now discuss how to transfer the criteria of Liouville integrability to a
physical system defined by a Lax pair. The central objects in the previous discussion
of integrability were conserved quantities. They can be constructed by tracing over
powers of L

fk = trLk k ∈ N. (A.13)

These fk are constant due to the equations of motion and the cyclicity of the trace

ḟk = ktr
(
[L,M ]Lk−1

)
≡ 0. (A.14)

In order to show that a given Lax pair defines an integrable system, we need to
show that we can obtain d conserved quantities fk that are in involution. First let
us suppose L is a diagonalizable square matrix of size D, i.e.

L = AΛA−1 with Λ = diag(l1, l2, ..., lD) (A.15)

where the ln, n = 1, ..., D, are the eigenvalues of L and A is an invertible matrix.
As a result we obtain for the first integrals in (A.13)

fk = trΛk =
D∑
n=1

lkn (A.16)

and we realize that the eigenvalues of L are conserved quantities. For a Liouville
integrable system d out of these D quantities are independent. For the previously
discussed harmonic oscillator (A.12) we obtain the Hamiltonian (A.3) as first integral

f2 = 2(p2 + ω2q2) = 4H. (A.17)

Further fk either vanish or linearly depend on f2.
Now let us find out whether the eigenvalues of L are in involution. In order to

do so, an analogue of the Poisson brackets for matrices is needed. For this purpose,
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we decompose L into its entries Lij being functions on phase space and the basis
Eij of some matrix algebra g containing the Lax pair with (Eij)kl = δikδjl

L = LijEij. (A.18)

Elements defined on the double tensor product g⊗ g are denoted as

X1 := X ⊗ I = X ijEij ⊗ I X2 := I⊗X = X ij I⊗ Eij
X12 := X ij,kl Eij ⊗ Ekl X21 := P12 X12 P12 = X ij,kl Ekl ⊗ Eij (A.19)

with the D×D identity matrix I and the permutation operator P12 = P−1
12 on spaces

1 and 2. Now we can define the Poisson bracket {L1, L2} of matrices via the usual
Poisson brackets of its entries

{L1, L2} := {Lij, Lkl} Eij ⊗ Ekl. (A.20)

It can be proven (see e.g. [1]) that the eigenvalues lk of the Lax matrix L are in
involution iff there exists a matrix r12 ∈ g⊗ g on phase-space such that

{L1, L2} = [r12, L1]− [r21, L2]. (A.21)

In the case of the harmonic oscillator one finds that the matrix

r12 = 1
q

(
0 1
0 0

)
⊗
(

0 0
1 0

)
− 1
q

(
0 0
1 0

)
⊗
(

0 1
0 0

)
(A.22)

satisfies (A.21) with Lax matrix L given in (A.12).
This so-called r-matrix has to obey a constraint arising from the usual Jacobi

identity for the Poisson bracket {{L1, L2}, L3} = {{Lij, Lkl }, Lmn } E
j
i ⊗ El

k ⊗ En
m. A

lot of integrable systems allow for an r-matrix that is constant and antisymmetric
r12 = −r21. Then this constraint reduces to the classical Yang-Baxter equation
(cYBE)

[r12, r13] + [r12, r23] + [r13, r23] = 0. (A.23)

Thus for an integrable system defined by a Lax pair there must exist d linearly
independent eigenvalues of L and an r-matrix obeying (A.21) and the cYBE (A.23)
for the constant and antisymmetric case.



Appendix B

The Algebraic Bethe Ansatz

We will now discuss a variation of the Coordinate Bethe Ansatz using the framework
of the Lax operator introduced in 2.3. We will not investigate it in detail but sketch
some results with the help of [15] and [16]. The central idea in this approach is
that we can simultaneously find the spectrum of all the conserved quantities by
diagonalizing the transfer matrix. We start by considering the monodromy Ta(λ)
as a 2× 2-matrix in auxiliary space

Ta(λ) =
(
A(λ) B(λ)
C(λ) D(λ)

)
. (B.1)

Examining the operators A, B, C and D in detail and looking at their commutation
relations imposed by the RTT-relation suggests to define the reference state by

C(λ) |0〉 = 0 (B.2)

and the excited m-magnon states by

|λ1, λ2, ..., λm〉 = B(λ1)B(λ2)...B(λm) |0〉 . (B.3)

Acting with the transfer matrix t(λ) = A(λ) + D(λ) on these states and using
commutation relations between the operators in (B.1) obtained from (2.54), we find
that the states (B.3) are indeed the eigenstates of t(λ) with eigenvalues1

Λ(λ) = (−i)N(λ+ i
2)N

∏
j

λ− λj − i
λ− λj

+ (−i)N(λ− i
2)N

∏
j

λ− λj + i

λ− λj
(B.4)

if the λ’s satisfy the relation(
λj + i

2
λj − i

2

)N
=

m∏
k=1
k 6=j

λj − λk + i

λj − λk − i
(B.5)

which corresponds to the Bethe equations (2.35). Let us compare the results for
the momentum operator and Hamiltonian of the Coordinate and Algebraic Bethe
Ansatz. The momentum can be found by using (2.47) and inserting the eigenvalue
of the transfer matrix

k =
∑
j

kj =
∑
j

(
−i ln

λj + i
2

λj − i
2

)
. (B.6)

1See e.g. [15] for a proof.
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Comparing this result with (2.24) we find that the Bethe root λj corresponds to the
rapidity uj. The energy computed using (2.51)

E = 1
2

m∑
j=1

1
λ2
j + 1

4
(B.7)

is in agreement with the previous result.



Appendix C

The Yangian Coproducts on
Length 3 for Y [su(1|1)] and
Y [su(2|2) nR2]

Here we list the coproduct structure for the Yangian generators of Y [su(1|1)] and
Y [su(2|2) n R2] on length 3. It can be obtained from the coproducts on length 2
given in sections 6.1 and 7.1 by considering all fermionic gradings (−1)F and the
braiding factor U . For Y [su(1|1)] we obtain

∆2C = C⊗ 1⊗ 1 + 1⊗ C⊗ 1 + 1⊗ 1⊗ C,

∆2B = B⊗ 1⊗ 1 + 1⊗B⊗ 1 + 1⊗ 1⊗B,

∆2Q = Q⊗ 1⊗ 1 + (−1)F ⊗Q⊗ 1 + (−1)F ⊗ (−1)F ⊗Q,

∆2S = S⊗ 1⊗ 1 + (−1)F ⊗S⊗ 1 + (−1)F ⊗ (−1)F ⊗S (C.1)

and

∆2Ĉ = Ĉ⊗ 1⊗ 1 + 1⊗ Ĉ⊗ 1 + 1⊗ 1⊗ Ĉ,

∆2B̂ = B̂⊗ 1⊗ 1 + 1⊗ B̂⊗ 1 + 1⊗ 1⊗B

− (−1)FS⊗Q⊗ 1− (−1)FS⊗ (−1)F ⊗Q− 1⊗ (−1)FS⊗Q

− (−1)FQ⊗S⊗ 1− (−1)FQ⊗ (−1)F ⊗S− 1⊗ (−1)FQ⊗S,

∆2Q̂ = Q̂⊗ 1⊗ 1 + (−1)F ⊗ Q̂⊗ 1 + (−1)F ⊗ (−1)F ⊗ Q̂

+ 1
2Q⊗ C⊗ 1 + 1

2Q⊗ 1⊗ C + 1
2(−1)F ⊗Q⊗ C

− 1
2(−1)FC⊗Q⊗ 1− 1

2(−1)FC⊗ (−1)F ⊗Q− 1
2(−1)F ⊗ (−1)FC⊗Q,

∆2Ŝ = Ŝ⊗ 1⊗ 1 + (−1)F ⊗ Ŝ⊗ 1 + (−1)F ⊗ (−1)F ⊗ Ŝ

− 1
2S⊗ C⊗ 1− 1

2S⊗ 1⊗ C− 1
2(−1)F ⊗S⊗ C

+ 1
2(−1)FC⊗S⊗ 1 + 1

2(−1)FC⊗ (−1)F ⊗S + 1
2(−1)F ⊗ (−1)FC⊗S.

(C.2)

The analogous results for the Yangian corresponding to su(2|2) nR2 are

∆2C = C⊗ 1⊗ 1 + 1⊗ C⊗ 1 + 1⊗ 1⊗ C,

∆2P = P⊗ 1⊗ 1 + U+2 ⊗P⊗ 1 + U+2 ⊗ U+2 ⊗P,

∆2K = K⊗ 1⊗ 1 + U−2 ⊗ K⊗ 1 + U−2 ⊗ U−2 ⊗ K,
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∆2Ra
b = Ra

b ⊗ 1⊗ 1 + 1⊗Ra
b ⊗ 1 + 1⊗ 1⊗Ra

b ,

∆2Lαβ = Lαβ ⊗ 1⊗ 1 + 1⊗ Lαβ ⊗ 1 + 1⊗ 1⊗ Lαβ ,

∆2Qα
b = Qα

b ⊗ 1⊗ 1 + U+1
F ⊗Qα

b ⊗ 1 + U+1
F ⊗ U+1

F ⊗Qα
b ,

∆2Sa
β = Sa

β ⊗ 1⊗ 1 + U−1
F ⊗Sa

β ⊗ 1 + U−1
F ⊗ U−1

F ⊗Sa
β. (C.3)

and

∆2Ĉ =Ĉ⊗ 1⊗ 1 + 1⊗ Ĉ⊗ 1 + 1⊗ 1⊗ Ĉ

+ 1
2P U

−2 ⊗ K⊗ 1 + 1
2P U

−2 ⊗ U−2 ⊗ K + 1
2 ⊗P U−2 ⊗ K

− 1
2K U

+2 ⊗P⊗ 1− 1
2K U

+2 ⊗ U+2 ⊗P− 1
2 ⊗ K U+2 ⊗P,

∆2P̂ =P̂⊗ 1⊗ 1 + U+2 ⊗ P̂⊗ 1 + U+2 ⊗ U+2 ⊗ P̂

− C U+2 ⊗P⊗ 1− C U+2 ⊗ U+2 ⊗P− 1⊗ C U+2 ⊗P

+ P⊗ C⊗ 1 + P⊗ 1⊗ C + U+2 ⊗P⊗ C,

∆2K̂ =K̂⊗ 1⊗ 1 + U−2 ⊗ K̂⊗ 1 + U−2 ⊗ U−2 ⊗ K̂

+ C U−2 ⊗ K⊗ 1 + C U−2 ⊗ U−2 ⊗ K + U−2 ⊗ C U−2 ⊗ K

− K⊗ C⊗ 1− K⊗ 1⊗ C− U−2 ⊗ K⊗ C,

∆2R̂a
b =R̂a

b ⊗ 1⊗ 1 + 1⊗ R̂a
b ⊗ 1 + 1⊗ 1⊗ R̂a

b

+ 1
2R

a
c ⊗Rc

b ⊗ 1 + 1
2R

a
c ⊗ 1⊗Rc

b + 1
2 ⊗Ra

c ⊗Rc
b

− 1
2R

c
b ⊗Ra

c ⊗ 1− 1
2R

c
b ⊗ 1⊗Ra

c − 1
2 ⊗Rc

b ⊗Ra
c

− 1
2S

a
γ U+1

F ⊗Qγ
b ⊗ 1− 1

2S
a
γ U+1

F ⊗ U+1
F ⊗Qγ

b − 1
2 ⊗Sa

γ U+1
F ⊗Qγ

b

− 1
2Q

γ
b U−1

F ⊗Sa
γ ⊗ 1− 1

2Q
γ
b U−1

F ⊗ U−1
F ⊗Sa

γ − 1
2 ⊗Qγ

b U−1
F ⊗Sa

γ

+ 1
4δ
a
b Sd

γ U+1
F ⊗Qγ

d ⊗ 1 + 1
4δ
a
b Sd

γ U+1
F ⊗ U+1

F ⊗Qγ
d + 1

4δ
a
b ⊗Sd

γ U+1
F ⊗Qγ

d

+ 1
4δ
a
b Qγ

d U−1
F ⊗Sd

γ ⊗ 1 + 1
4δ
a
b Qγ

d U−1
F ⊗ U−1

F ⊗Sd
γ + 1

4δ
a
b ⊗Qγ

d U−1
F ⊗Sd

γ,

∆2L̂αβ =L̂αβ ⊗ 1⊗ 1 + 1⊗ L̂αβ ⊗ 1 + 1⊗ 1⊗ L̂αβ

− 1
2L

α
γ ⊗ Lγβ ⊗ 1− 1

2L
α
γ ⊗ 1⊗ Lγβ − 1

2 ⊗ Lαγ ⊗ Lγβ

+ 1
2L

γ
β ⊗ Lαγ ⊗ 1 + 1

2L
γ
β ⊗ 1⊗ Lαγ + 1

2 ⊗ Lγβ ⊗ Lαγ

+ 1
2Q

α
c U−1

F ⊗Sc
β ⊗ 1 + 1

2Q
α
c U−1

F ⊗ U−1
F ⊗Sc

β + 1
2 ⊗Qα

c U−1
F ⊗Sc

β

+ 1
2S

c
β U+1

F ⊗Qα
c ⊗ 1 + 1

2S
c
β U+1

F ⊗ U+1
F ⊗Qα

c + 1
2 ⊗Sc

β U+1
F ⊗Qα

c

− 1
4δ
α
β Qδ

c U−1
F ⊗Sc

δ ⊗ 1− 1
4δ
α
β Qδ

c U−1
F ⊗ U−1

F ⊗Sc
δ − 1

4δ
α
β ⊗Qδ

c U−1
F ⊗Sc

δ

− 1
4δ
α
β Sc

δ U+1
F ⊗Qδ

c ⊗ 1− 1
4δ
α
β Sc

δ U+1
F ⊗ U+1

F ⊗Qδ
c − 1

4δ
α
β ⊗Sc

δ U+1
F ⊗Qδ

c,

∆2Q̂α
b =Q̂α

b ⊗ 1⊗ 1 + U+1
F ⊗ Q̂α

b ⊗ 1 + U+1
F ⊗ U+1

F ⊗ Q̂α
b

− 1
2L

α
γ U+1

F ⊗Qγ
b ⊗ 1− 1

2L
α
γ U+1

F ⊗ U+1
F ⊗Qγ

b − 1
2U

+1
F ⊗ Lαγ U+1

F ⊗Qγ
b

+ 1
2Q

γ
b ⊗ Lαγ ⊗ 1 + 1

2Q
γ
b ⊗ 1⊗ Lαγ + 1

2U
+1
F ⊗Qγ

b ⊗ Lαγ

− 1
2R

c
b U+1

F ⊗Qα
c ⊗ 1− 1

2R
c
b U+1

F ⊗ U+1
F ⊗Qα

c − 1
2U

+1
F ⊗Rc

b U+1
F ⊗Qα

c

+ 1
2Q

α
c ⊗Rc

b ⊗ 1 + 1
2Q

α
c ⊗ 1⊗Rc

b + 1
2U

+1
F ⊗Qα

c ⊗Rc
b

− 1
2C U

+1
F ⊗Qα

b ⊗ 1− 1
2C U

+1
F ⊗ U+1

F ⊗Qα
b − 1

2U
+1
F ⊗ C U+1

F ⊗Qα
b

+ 1
2Q

α
b ⊗ C⊗ 1 + 1

2Q
α
b ⊗ 1⊗ C + 1

2U
+1
F ⊗Qα

b ⊗ C

+ 1
2ε
αγεbd

(
P U−1

F ⊗Sd
γ ⊗ 1 + P U−1

F ⊗ U−1
F ⊗Sd

γ + U+1
F ⊗P U−1

F ⊗Sd
γ

)
− 1

2ε
αγεbd

(
Sd
γ U+2 ⊗P⊗ 1 + Sd

γ U+2 ⊗ U+2 ⊗P + U+1
F ⊗Sd

γ U+2 ⊗P
)
,
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∆2Ŝa
β =Ŝa

β ⊗ 1⊗ 1 + U−1
F ⊗ Ŝa

β ⊗ 1 + U−1
F ⊗ U−1

F ⊗ Ŝa
β

+ 1
2R

a
c U−1

F ⊗Sc
β ⊗ 1 + 1

2R
a
c U−1

F ⊗ U−1
F ⊗Sc

β + 1
2U
−1
F ⊗Ra

c U−1
F ⊗Sc

β

− 1
2S

c
β ⊗Ra

c ⊗ 1− 1
2S

c
β ⊗ 1⊗Ra

c − 1
2U
−1
F ⊗Sc

β ⊗Ra
c

+ 1
2L

γ
β U−1

F ⊗Sa
γ ⊗ 1 + 1

2L
γ
β U−1

F ⊗ U−1
F ⊗Sa

γ + 1
2U
−1
F ⊗ Lγβ U−1

F ⊗Sa
γ

− 1
2S

a
γ ⊗ Lγβ ⊗ 1− 1

2S
a
γ ⊗ 1⊗ Lγβ − 1

2U
−1
F ⊗Sa

γ ⊗ Lγβ

+ 1
2C U

−1
F ⊗Sa

β ⊗ 1 + 1
2C U

−1
F ⊗ U−1

F ⊗Sa
β + 1

2U
−1
F ⊗ C U−1

F ⊗Sa
β

− 1
2S

a
β ⊗ C⊗ 1− 1

2S
a
β ⊗ 1⊗ C− 1

2U
−1
F ⊗Sa

β ⊗ C

− 1
2ε
acεβδ

(
K U+1

F ⊗Qδ
c ⊗ 1 + K U+1

F ⊗ U+1
F ⊗Qδ

c + U−1
F ⊗ K U+1

F ⊗Qδ
c

)
+ 1

2ε
acεβδ

(
Qδ
c U−2 ⊗ K⊗ 1 + Qδ

c U−2 ⊗ U−2 ⊗ K + U−1
F ⊗Qδ

c U−2 ⊗ K
)
.

(C.4)
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Appendix D

Implementation in Mathematica

In this appendix we give a brief insight into one possibility to implement and analyse
the Yangian constraints (4.18) and (4.19) on S-matrices in the symbolic computa-
tion program Mathematica. We do so by showing small segments of the complete
code. These shall demonstrate the general procedure when carrying out such an
analysis. The discussion focuses on the Yangian corresponding to su(n) since its im-
plementation is less subtle than for Y [su(1|1)] and Y [su(2|2)] because it only allows
for a single type of particles. Nevertheless, we also show important aspects in the
implementation of Yangians corresponding to Lie superalgebras.

D.1 Generators and Commutators
Generators of su(n)

We begin by introducing a notation for the fundamental representation of the gen-
erators Ra

b of su(n). We translate their bra-ket notation given in equation (5.4) via
defining a Mathematica-function called R[..] with

R[a_,b_][c_]:=Sub[{a},{b}]-1/n KD[a,b] Sub[{c},{c}];. (D.1)

Note that Mathematica does not have any function implemented that is called Sub
such that it leaves the above Subs unevaluated. The first argument of Sub corre-
sponds to the ket | 〉 and the second argument to the bra 〈 | of the operator in
bra-ket notation. The indices a and b in R correspond to the free indices of Ra

b , c
is a summation index. For the generators of su(n), the indices a,b and c may take
the values 1,2,..,n with n being the degree of su(n). The function KD[..] is the
Kronecker-Delta which evaluates to the Mathematica-implemented Kronecker-Delta
when inserting integers

KD[a_Integer,b_Integer]:=KroneckerDelta[a,b];. (D.2)

Note that we do not include the rapidities u inside the Subs in contrast to the
bra-ket notation we used in the chapters 5-7. They only occur explicitly in the
implementation of coproducts of level-1 generators in the evaluation representation.
Furthermore for the dynamic representations of Y [su(1|1)] and Y [su(2|2) n R2],
we record the rapidity-dependence of the representation parameters and braiding
factors.
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Multiplication and Commutators

As a next step towards the implementation of Yangian constraints, we build a
Mathematica-routine that multiplies operators such as (D.1). Note that in bra-ket
notation a multiplication of two operators |a, b〉 〈c, d| and |k, l〉 〈m,n| is simply

|a, b〉 〈c, d| |k, l〉 〈m,n| = δc,kδd,l |a, b〉 〈m, l| . (D.3)

Such an operation can be implemented into Mathematica via Multiply[..] with

Multiply[AA_,BB_]:=Expand[AA/.A_Sub:>(BB/.B_Sub:>Multiply12[A,B])];
Multiply12[A_Sub,B_Sub]:=KDs[B[[1]],A[[2]]]Sub[A[[1]],B[[2]]];
KDs[C_,D_]:=Product[KD[C[[i]],D[[i]]],{i,1,Length[C]}]; . (D.4)

This routine can multiply linear combinations of operators. Commutators are im-
plemented as

Commute[A_,B_]:=Multiply[A,B]-Multiply[B,A]; . (D.5)

As a first test we verify that the generators (D.1) for n = 2 span the Lie algebra
su(2). We explicitly check the relations (5.10) via

In[1]:= Commute[R[1,1][c],R[2,1][d]//UseKD
-R[2,1][c]

Out[1]= -Sub[{2},{1}]
Out[2]= -Sub[{2},{1}]

In[3]:= Commute[R[1,1][c],R[1,2][d]]//UseKD
+R[1,2][c]

Out[3]= Sub[{1},{2}]
Out[4]= Sub[{1},{2}]

In[5]:= Commute[R[2,1][c],R[1,2][d]]
-2R[1,1][c]/.n->2//SumOverIndices[2]

Out[5]= -Sub[{1},{1}]+Sub[{2},{2}]
Out[6]= -Sub[{1},{1}]+Sub[{2},{2}] (D.6)

and find that they are satisfied. UseKD[..] is a self-implemented routine that
simplifies terms by using the rules of Kronecker-Deltas, e.g.

In[7]:= KD[c,1] Sub[{2},{c}]//UseKD
Out[7]= Sub[{2},{1}]. (D.7)

SumOverIndices[m] is a method that sums over 1,...,m for all indices that occur
twice in an expression.

Fermionic Generators

In chapters 6 and 7 we analyse algebras including bosons and fermions in their
fundamental representation. One can use Latin indices for bosons and Greek indices



89

for fermions to distinguish between both types of particles. Then the fermionic su(2)
generator Lαβ can be implemented analogously to (D.1) via

L[α_,β_][δ_]:=Sub[{α},{β}]-1/2 KD[α,β] Sub[{δ},{δ}];. (D.8)

Calculating the commutator of the operators in (D.1) and (D.8) using the routine
(D.5) yields terms including Kronecker-Deltas of bosonic and fermionic indices, e.g.
KD[α,b]. The routine EraseKD[..]

EraseKD[f_]:=f/.KD[a_,b_]:>If[LetterType[a]!=LetterType[b],0,KD[a,b]];
LetterType[a_]:=Module[{s},

s=ToString[a];
If[MemberQ[Union[Alphabet["English"],

ToUpperCase[Alphabet["English"]]],s],1,
If[MemberQ[Union[Alphabet["Greek"],

ToUpperCase[Alphabet["Greek"]]],s],2,0]]];
SetAttributes[LetterType,Listable]; (D.9)

evaluates them to zero. Doing so, it checks what types of indices the Kronecker-
Delta KD[..] contains by using the function LetterType[..]. If these types match,
EraseKD[..] returns the original KD[..] and otherwise puts it to zero. The method
LetterType returns 1 for bosonic indices and 2 for fermionic ones, e.g.

In[8]:= LetterType[{a,B,α,∆}]
Out[8]= {1,1,2,2}. (D.10)

Thus we can check [Ra
b ,L

α
β ] = 0 by running

In[9]:= Commute[R[a,b][c],L[α,β][γ]]//EraseKD
Out[9]= 0. (D.11)

In this framework one can also implement central charges and supersymmetry gen-
erators such as Qα

a from (7.4) which is given by

Q[α_,a_][d_,δ]_]:=Ca Sub[{α},{a}]+Cb Eps[α,δ] Eps[a,d] Sub[{d},{δ}].
(D.12)

Here the constants Ca, Cb denote the coefficients a, b in the representation of Qα
a .

Eps[a,b] corresponds to the epsilon symbol εab.

D.2 Coproducts of Generators
The coproducts of level-0 and level-1 generators are crucial for the constraints (4.18)
and (4.19). Let us show the procedure of implementing these by exemplary looking
at the Y [su(2|2)]-coproduct ∆Ra

b given in (C.3). In Mathematica we define it via
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the function DR[..] as

DR[a_,b_][c_,d_,δ_]:=
Tensorproduct[R[a,b][c],One[d,δ]+

Tensorproduct[One[d,δ],R[a,b][c]]//Expand;
One[a_,α_]:=Sub[{a},{a}]+Sub[{α},{α}];
Tensorproduct[A_,B_]:=

A/.Sub[a__]:>
(B/.Sub[b__]:>Tensorproduct12[Sub[a],Sub[b]]);

Tensorproduct12[Sub[a__],Sub[b__]]:=
Sub[Join[{a}[[1]],{b}[[1]]],Join[{a}[[2]],{b}[[2]]]];. (D.13)

The indices a and b in DR[..] are the free indices of ∆Ra
b , the indices c,d,δ are

summation indices. The function One[..] corresponds to the identity operator in
(7.16). The routine Tensorproduct[..] builds the tensor product of two linear
combinations of operators, e.g.

In[10]:= Tensorproduct[Sub[{a},{a}],Sub[{b},{b}]]
Out[10]= Sub[{a,b},{a,b}]. (D.14)

For the supersymmetric generators of Y [su(2|2)] one has to consider the fermionic
braiding UF , see e.g. ∆Qα

a in (C.3). This operator can be implemented into this
Mathematica-code by defining the coproduct DQ[..] of Qα

a as

DQ[α_,a_][c_,γ_,d_,δ_]:=
Tensorproduct[Q[α,a][c,γ],Onef[d,δ]]+

U Tensorproduct[Onef[c,γ],Q[α,a][d,δ]]//Expand;
Onef[a_,α_]:=Sub[{a},{a}]-Sub[{α},{α}];. (D.15)

It includes the eigenvalue U of U and Onef[..] corresponding to (−1)F . Note that
here the coefficients Ca and Cb and the braiding factor U are treated as constants. For
the dynamic representation of Y [su(2|2)] one has to make these rapidity-dependent,
e.g. by writing Ca[u].

D.3 Yangian Constraints
We proceed with the implementation of the Yangian constraints (4.18) and (4.19).

Yangian Constraints for Y [su(n)]

We first discuss the general procedure for the Yangian corresponding to su(n). As
motivated in section 5.2, the level-0 constraint implies that the S-matrix is a linear
combination of permutation operators. We obtain it via L0Invariant[..]

L0Invariant[m_][a_,l_]:=
Array[l,m!].Table[Sub[Permutations[Array[a,m]][[i]],Array[a,m]],

{i,1,m!}]. (D.16)
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The index m denotes the length of the operators, the a’s are the summation indices
and the l’s the coefficients in the linear combination. Let us examine the first two
operators obtained from this function. The invariant operator of length m=1 is

In[11]:= L0Invariant[1][a,l]
Out[11]= l[1]Sub[{a[1]},{a[1]}]. (D.17)

This operator corresponds to (5.21) and acts on a one-particle state without changing
its type and rapidity. For m=2 we get

In[12]:= L0Invariant[2][a,l]
Out[12]= l[1]Sub[{a[1],a[2]},{a[1],a[2]}]+

l[2]Sub[{a[2],a[1]},{a[1],a[2]}] (D.18)

which again contains the identity and furthermore the permutation of the two
excitation types. It corresponds to the operator in (5.25). Using the routine
L0Invariant[..] for m=3 yields the Mathematica expression corresponding to (5.28).

Implementing the coproduct (5.15) of the level-1 generators R̂a
b is straightforward

when using the method Tensorproduct. Multiplying this coproduct with the su(n)-
invariant operator in (D.16) in the form (5.19) using Multiply gives the level-1
constraint. For different values of a and b this constraint yields a set of equations that
restricts the coefficients l[i] in the linear combinations from above and the outgoing
rapidities v[i]. Denoting the outgoing rapidities of a two-particle scattering process
by v[1] and v[2] and the incoming rapidities by u[1] and u[2], the constraints
on the two-particle S-matrix are solved by

Out[13]= {{l[2]->0,v[1]->u[1],v[2]->u[1]},
{l[2]->-2l[1](u[1]-u[2]),v[1]->u[2],v[2]->u[1]}}. (D.19)

These two solutions correspond to the solutions in (5.30) and (5.31). Similarly, we
obtain a set of six solutions for the three-particle S-matrix that are depicted in Table
5.2.

Yangian Constraints for Y [su(1|1)] and Y [su(2|2)]

We now turn to the Yangian constraints corresponding to Lie superalgebras. We
calculate the ansatz for the S-matrix that satisfies the level-0 constraints by writing
down all possible operators in the theory. Then we demand a vanishing commutator
with the generators of the Lie superalgebra. Take as an example the su(1|1)-invariant
operator. We make an ansatz using the function Ansatz[...]

Ansatz[m_]:=Module[{a1,a2},
a1=((Sub@@@Tuples[Partition[

Riffle[Flatten@ToExpression@
StringSplit[Alphabet["English"][[1;;2m]],","],

Flatten@ToExpression@StringSplit[
Alphabet["Greek"][[1;;2m]],","]],2]])/.

Sub[a__]:>Sub[Partition[{a},n]])/.Sub[{a__}]:>Sub[a];
a2=Array[l,Length[a1]];
a1.a2] (D.20)
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which evaluates to

In[14]:= Ansatz[1]
Out[14]= l[1]Sub[{a},{b}]+l[2]Sub[{a},{β}]+l[3]Sub[{α},{b}]+

l[4]Sub[{α},{β}] (D.21)

for m=1. The l’s are the coefficients in the linear combination. Note that one could
also use a single variable for the boson φ in the fundamental representation and a
single variable for the fermion ψ. Nevertheless, the code for Y [su(1|1)] serves as
the basis of the implementation of the constraints from Y [su(2|2)]. Therefore, we
implemented it more generally and set all bosonic indices to a and all fermionic
indices to α in the end. Commuting Ansatz[2] and Ansatz[3] with the generators
of Y [su(1|1)], exploiting that there is only a single boson and a single fermion in
the theory and demanding that the results vanish, gives constraints on the l’s and
rapidities. The results of this analysis are the Y [su(1|1)]-invariant operators that
we discussed in chapter 6.

For the su(2|2)-invariants this procedure is more involved since both bosonic and
fermionic indices may take two values. Inserting for bosonic indices a=1,2 and for
fermionic indices α=3,4 and analysing the constraints, gives operators containing
all values 1,2,3,4. To obtain a closed form as in (7.21), one has to make a general
ansatz only containing indices and compare both by summing over the indices in
the ansatz. The results of this analysis for the level-0 constraints with Ra

b and
Lαβ at length 2 can be found in (7.21). This operator gets further constrained by
the remaining generators of Y [su(2|2)] and Y [su(2|2) n R2], respectively. Let us
illustrate this for the constraint [∆Ĉ, S12] = 0 in the undynamic representation.
First, we define a routine DCH[..] that corresponds to the coproduct of Ĉ given in
(7.17)

DCH[a_,b_,α_,β_]:=I(u[1]C+ u[2]C)Tensorproduct[One[a,α],One[b,β]];.
(D.22)

Then, we calculate both terms in the commutator [∆Ĉ, S12] via

S12DCH=
(Multiply[S120[a,b,α,β],DCH[c,d,γ,δ]]//UseKD)/.

{u[1]->v[1],u[2]->v[2]};

DCHS12=
Multiply[DCH[a,b,α,β],S120[c,d,γ,δ]]//UseKD;. (D.23)

The function S120[..] corresponds to the su(2|2)-invariant operator (7.21) with
(7.22) that has two degrees of freedom A12 and H12 which we call A12 and H12
here. The u[1],u[2] and v[1],v[2] denote the rapidities of the two particles in
the incoming and outgoing state, respectively. Note that this example corresponds
to a calculation in the undynamic representation, i.e. the eigenvalue C of C does
not depend on the rapidity (we write C instead of C[u[1]] etc.). Manipulating the
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results via

In[15]:= ComSCH=(S12DCH-DCHS12)//Expand//SumOverIndices;

In[16]:= ComSCHlist=(List@@(ComSCH//Collect[#,_Sub]&))/._Sub->1;

In[17]:= Solve[Flatten[{ComSCHlist==0,A12!=0,H12!=0,C!=0}]]
Out[17]= {{v[2]->u[1]+u[2]-v[1]}} (D.24)

gives the constraint in (7.23). Here we sum over all indices in S12DCH-DCHS12 using
the function SumOverIndices[..]. Afterwards we collect the terms involving the
same Subs and make a list of their prefactors. One can analyse the constraints
from the remaining generators of Y [su(2|2)] in a similar manner. The results of this
analysis are discussed in chapter 7.

D.4 Quantum Yang-Baxter Equation and Factor-
ization of the S-Matrix

In order to verify consistent factorization one has to build the operators S12 and S23
in (5.45) that only act on the first two and the last two particles in a three-particle
state, respectively. Let us demonstrate how to do this for the Y [su(n)]-invariant
two-particle S-matrix. The result of the above analysis for the two-particle S-matrix
is given in Table 5.1 and we defined it in Mathematica via

In[18]:= S12[a,u[1]-u[2]]
Out[18]= l[2] Sub[{a[2],a[1]},{a[1],a[2]}]-

(l[2] Sub[{a[1],a[2]},{a[1],a[2]}])/(2(u[1]-u[2])). (D.25)

It contains two summation indices a[1],a[2], an overall factor l[2] and the ra-
pidity difference u[1]-u[2]. The method S12on3[..] enlarges this operator to an
operator of length 3 as

S12on3[n_,a_,u_]:=
Module[{b,c},

S12[b,u]/.Sub[x_,y_]:>Sub[Insert[x,c,n],Insert[y,c,n]]//
Relabel[a,{},#]&]. (D.26)

The index n denotes the position of the particle that is not scattered, a is the
summation index and u the relative rapidity. The method Relabel[..] looks for
summation indices and renames them to its first argument. Thus one can simplify
terms such as

In[19]:= Sub[{a},{a}]-Sub[{b},{b}]//Relabel[{x},{},#]&
Out[19]= 0. (D.27)

The second argument in Relabel[..] is reserved for indices that shall not be
relabeled. Using this routine we can build the left and right hand side of the qYBE
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via

S23S12S23:=
(Multiply[Multiply[S12on3[1,a,u[2]-u[3]],

S12on3[3,b,u[1]-u[3]]],S12on3[1,c,u[1]-u[2]]]//UseKD;
S12S23S12:=

(Multiply[Multiply[S12on3[3,a,u[1]-u[2]],
S12on3[1,b,u[1]-u[3]]],S12on3[3,c,u[2]-u[3]]]//UseKD; (D.28)

and verify the qYBE

In[20]:= S23S12S23-S12S23S12//Relabel[{x},{},#]&
//Collect[#,_Sub,Simplify]&

Out[20]= 0. (D.29)

In order to confirm factorization of the three-particle S-matrix S123 we subtract one
side of the qYBE as

In[21]:= S123-S12S23S12//Relabel[{x},{},#]&
//Collect[#,_Sub,Simplify]&

Out[21]= 0. (D.30)
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