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Chapter 1
Introduction

Motivation
For quite some time the Standard Model of particle physics has been an incredibly suc-
cessful description of nature. It has accurately predicted a vast number of observables
in scattering processes and has even led to the prediction of new fundamental particles,
like the top quark [1] and the Higgs boson [2, 3]. But in spite of all those successes,
the Standard Model still has some serious problems.

For one, it is known from astrophysical obervations [4] that only about 5% of the
energy content of the universe is made up of Standard Model matter. A vast major-
ity of all existing matter seems to actually be Dark Matter which only interacts very
weakly with the fields of the Standard Model. This means that the Standard Model is
at least incomplete.
Another problem is the question of naturalness embodied in the hierarchy problem [5].
Roughly speaking it asks the question: Why is the Higgs boson so light? One would
assume that the mass of the Higgs boson (and any other scalar particle) would receive
corrections from all fields it couples to. This means that if there are heavy degrees of
freedom that have been integrated out of the Standard Model, those should contribute
to the Higgs mass. An unnaturally fine-tuned cancellation is needed in order to end
up with a Higgs mass of the order of 100 GeV, as in the Standard Model.
In the past, both of those problems were adressed by Supersymmetry [6] - a fermionic
spacetime symmetry which among other important results leads to the prediction of a
superpartner for every fundamental field. The contributions to the Higgs mass correc-
tion of pairs of superpartners cancel. One therefore says that Supersymmetry protects
the Higgs mass from corrections and allows the hierarchy of the Standard Model with-
out massive fine-tuning.

As pointed out by e.g. Meissner and Nikolai [7], it is also possible to protect the Higgs
mass using classical Conformal Symmetry, or rather scale invariance. They observed
that the only term in the Standard Model Lagrangian that breaks scale invariance is
the Higgs mass term. This is also the term that creates the hierarchy problem. Hence,
by removing it and enforcing scale invariance on the classical level, one avoids the
problem alltogether. However, the Higgs mass term also plays an important role in the
breaking of the Electroweak symmetry and is crucial to the functionality of the Stan-
dard Model. Their suggestion is therefore to use the Coleman-Weinberg-mechanism
[8], which creates a symmetry breaking effective potential and generates a mass scale
from quantum corrections. This idea has led to the development of many variations
on the general idea - a classically scale-invariant extension of the Standard Model
[9, 10, 11, 12, 13, 14]. There is one feature that they all have in common, namely the
introduction of an additional scalar field.
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As already realised by Coleman and Weinberg, consistency of the perturbative expan-
sion used to study the effective potential requires a hierarchy of couplings. It is not
possible for the quantum corrections of a single interaction to break classical scale in-
variance. One needs to have at least two interactions that appear at different orders
of perturbation theory, such that the quantum corrections of one coupling are of the
same order of magnitude as the classical effects of the other.

This hierarchy of couplings is not obeyed in the analysis of [7] and by imposing it,
the results are rendered invalid. Therefore, this simplest scale-invariant extension of a
single chargeless scalar is unfit to describe an SM-like reality. While this problem is
fixed in other, more complicated extensions of the Standard Model, it is not clear what
extensions are crucial. Especially in light of the lack of direct evidence for additional
particles, it is worthwhile to find this minimal extension.
In this thesis, our aim is therefore to find the minimal perturbatively consistent scale-
invariant quantum field theory that allows an embedding of the Standard Model in the
sense, that all experimental evidence for the Standard Model can be accomodated.
We especially show that the simplest imaginable extension of a single scalar field as
studied in [7] is not sufficient and must at least be accompanied by a gauge interaction.

Outline
This first chapter gives a motivation for the subject of the thesis and a general out-
line.
In the second chapter, we briefly summarize some basic features of Quantum Field
Theories and the formalism of the effective action. We review the way the Coleman-
Weinberg mechanism generates vacuum expectation values in classically scale-invariant
field theories. We then go on to describe the field content and the interactions of the
Standard Model Lagrangian as far as they are relevant to our discussion.
In the third chapter, we study classically scale-invariant extensions of the Stan-
dard Model with the aim of describing the minimal extension whose effective potential
posesses a minimum for Standard Model parameters. We argue that the Standard
Model extended by a single scalar field which only couples to the Higgs field has no
stable minimum that fits with experimental data. We therefore introduce a gauge field
coupled to this scalar to stabilize the effective potential. While this seems to lead to
a locally stable theory, the model still suffers from a similar vacuum instability as the
Standard Model. This can for example be solved by an additional ‘dormant’ scalar
field which does not develop a vacuum expectation value.
Finally, the fourth chapter gives a summary of our findings and concludes with an
outlook on possible future investigations.



Chapter 2
Theoretical Background

To provide the appropriate setting for the main developments of this thesis, this second
chapter will give a brief description of the theoretical background.

After some words on notational conventions we will give a very rough introduction
to quantum field theory. We point out the places in which the vacuum state of the
theory comes into play. Introducing the formalism of the effective action, we relate the
vacuum state to the minimum of the effective potential. We then describe how to arrive
at an approximation for this effective potential at the first order of perturbation theory.

Using this effective potential we demonstrate how the Coleman-Weinberg mechanism
[8] generates scales in classically scale-invariant theories from quantum corrections. We
point out that in order to arrive at a result that is perturbatively consistent and gauge-
invariant order by order in perturbation theory [15], we need to assume a hierarchy
of couplings in which scalar self-couplings appear at higher loop orders than gauge
couplings

λ ∼ e4. (2.1)

We then briefly describe the process of renormalization and how to improve effective
potentials using the renormalization group equations.

Finally, we describe all relevant parts of the Standard Model Lagrangian. We ar-
gue that for the mass generation via the Higgs mechanism it is not crucial how the
Higgs field acquires a vacuum expectation value, as long as it gets one.
This might allow an embedding of the Standard Model in a scale-invariant theory in
which the vacuum expectation value of the Higgs field is induced by the Coleman-
Weinberg mechanism. While there is a multitude of models in which this is accom-
plished, we want to find the simplest of those models.

The following introduction is based on [16, 17, 18].

2.1 Conventions
We will mostly work in natural units, where

~ = 1, c = 1 (2.2)

such that all dimensionful quantities are going to be expressed solely in units of energy.
We will talk a lot about fields on spacetime, which we often denote as φ(x), where

x = (t, ~x) (2.3)

4
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is a coordinate vector in 4-dimensional spacetime. When we adress single coordinates
we use greek letters from the middle of the alphabet (µ, ν, ...) as superscript. Indices
of vectors are pulled up and down by the ‘mostly minus’ Minkowski metric

xµ = ηµνx
ν (2.4)

where

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.5)

In the formula (2.4) and all throughout the thesis, the Einstein summation convention
implies that indices that appear twice are automatically summed.
Derivatives with respect to a space time coordinate are given by

∂µ = ∂

∂xµ
, � = ∂µ∂

µ. (2.6)

2.2 Short introduction to Quantum Field
Theory

2.2.1 Classical Field Theory
The usual path to a Quantum Field Theory starts at a Classical Field Theory that is
then quantised. Classical Field Theories are dynamical systems with infinitely many
degrees of freedom. For a field in spacetime, those degrees of freedom are labeled by
the continuous spacetime coordinates xµ.
To give a compact description of a field theories’ dynamics, one usually writes down
an action functional

S[φ] =
∫

d4x L(φ(x), ∂µφ(x)) (2.7)

which assigns a real number to every field configuration φ(x). The function L is called
the Lagrangian of the system and is generally given by the difference between the
kinetic and the potential energy

L = Lkinetic − V [φ]. (2.8)

The equation of motion for the field φ is then derived by imposing the principle of
stationary action: the physical evolution of a classical field is such, that the action of
the system is stationary under variations of the field.

0 = ∂S[φ]
∂φ(x) := lim

ε→0

S[φ+ εδ]− S[φ]
ε

(2.9)

where δ is the Dirac delta function.
Combining (2.7) and (2.9) we find the equation of motion for the classical field, derived
from the Lagrangian

0 = ∂L
∂φ(x) − ∂µ

∂L
∂(∂µφ(x)) . (2.10)
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In the same way we can talk about theories involving multiple fields or fields with
additional discrete indices, e.g. vector fields. (2.9) simply generalizes to give one
equation of motion per field.
To give a full definition of a dynamical system of a set classical fields, it is therefore
sufficient to write down a Lagrangian L that contains all the fields and describes their
interaction.

2.2.2 Quantisation and particles
Similar to going from Classical to Quantum Mechanics, where position and momentum
of a point particle change their physical interpretation drastically, the quantum fields
in a Quantum Field Theory are very different from classical fields.
In a Classical Field Theory, the state of a physical system is sufficiently described by
giving the function φ(x), similar to how a classical point particle can be described by
its trajectory x(t). In the corresponding quantum theory on the other hand, the state
of a system is described by an abstract vector in a Hilbert space

|ψ(t)〉 ∈ Hψ. (2.11)

Its time evolution is given by the Schroedinger equation

i
∂|ψ(t)〉
∂t

= H(t)|ψ(t)〉, (2.12)

where H is the Hamiltonian of the system, a linear hermitian operator that describes
the time development. It has the formal solution

|ψ(t)〉 = U(t, t0)|ψ(t0)〉 (2.13)

with the time evolution operator

U(t, t0) = T
[
e
i
∫ t
t0
H(t′)dt′

]
. (2.14)

T is the time ordering operator, that orders operator products according to

T [A(t1)B(t2)] =
{
A(t1)B(t2) t1 > t2
B(t2)A(t1) t1 < t2

. (2.15)

An important object to connect this mathematical framework to experiments is the
probability amplitude. Every observable is represented by a hermitian operator A on
the Hilbert space, whose eigenvalues ai are the possible values for a measurement. The
probability to find one of those eigenvalues when measuring A is given by

p(A = ai) = |〈ai|ψ(t)〉|2. (2.16)

The eigenstates of every operator A span the whole Hilbert space.
So far this seems somewhat unconnected to what we said about classical fields, but it
is not: Given a Lagrangian L of a field theory, we define the Hamiltonian density H
by

H(φ(x), π(x)) = φ̇(x)π(x)− L(φ(x), ∂µφ(x)) (2.17)
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which is related to the Hamiltonian by

H(t) =
∫

d3x H(φ(x), π(x)) (2.18)

with the so called conjugate field

π(x) = ∂L
∂φ̇(x)

. (2.19)

In Classical Field Theories that are invariant under translations in time, H is the
conserved energy of the system. In a step that is called canonical quantisation we now
lift the fields to operator valued functions acting on the Hilbert space, which obey the
canonical commutator relations

[φ(t, ~x), φ(t, ~y)] = 0, [π(t, ~x), π(t, ~y)] = 0
[φ(t, ~x), π(t, ~y)] = iδ(~x− ~y). (2.20)

All observables are functions of the fields and conjugate fields. To make things more
concrete, let us look at on particular example: the quantum field theory of a free scalar
boson. It is described by the Lagrangian

L = ∂µφ(x)∂µφ(x)−m2φ(x)2 (2.21)

and its classical equation of motion is the Klein-Gordon-equation(
∂µ∂

µ +m2
)
φ(x) = 0. (2.22)

This equation is quickly solved using a Fourier decomposition. The general solution
reads

φ(x) =
∫ d3~k

(2π)3
√

2ω~k

(
a(~k)e−i(ω~kt−~k·~x) + a†(~k)ei(ω~kt−~k·~x)

)
(2.23)

where the a(~k) and a†(~k) are arbitrary coefficient functions connected by complex
conjugation and

ω~k =
√
m2 + ~k2 (2.24)

to satisfy the equation of motion. After quantisation the a(~k) and a†(~k) become oper-
ators as well, obeying

[a(~k), a(~k′)] = 0, [a†(~k), a†(~k′)] = 0
[a(~k), a†(~k′)] = (2π)3δ(~k − ~k′). (2.25)

From those ladder operators we can construct the so called number operator

N =
∫ d3~k

(2π)3a
†(~k)a(~k), (2.26)

whose eigenvalues can be shown to be the natural numbers. As already mentioned,
every possible state can be decomposed in eigenstates of this operator.
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The eigenvectors of the number operator can actually be explicitly constructed. Given
the vacuum state |0〉 which is annihilated by all a(~k)

a(~k)|0〉 = 0 (2.27)

we can construct the states

|~k1, ..., ~kn〉 = a†(~k1)...a†(~kn)|0〉 (2.28)

which satisfy

N |~k1, ..., ~kn〉 = n|~k1, ..., ~kn〉. (2.29)

If we construct the Hamiltonian of this theory then we find

H =
∫ d3~k

(2π)3ω~k a
†(~k)a(~k), H|~k1, ..., ~kn〉 = (ω~k1

+ ...+ ω~kn)|~k1, ..., ~kn〉. (2.30)

In a sense this is the only reason why one says that a quantum field theory describes
particles - because we can construct the entire Hilbert space of possible states from
a basis which contains discrete excitations, all carrying their own portion of energy.
Looking at (2.24) we recognize that this theory describes relativistic particles of mass
m.

We have only shown this explicitly for the free scalar theory but the above calcu-
lation completely generalizes to other free theories. The main statement is: in free
theories, there are states with definite numbers of particles, and because the Hamilto-
nian commutes with the number operator those numbers stay the same over time.
To construct these states we needed to start from a vacuum state |0〉, which is clearly
seen from (2.30) to be the state with the minimal energy. We also see that we find the
mass of a scalar particle by taking the second derivative of the potential with respect
to the corresponding field

m2 = d2V

dφ2 . (2.31)

2.2.3 Interactions and scattering
As soon as we introduce interactions, this changes drastically. An interaction is un-
derstood to be a non-linearity in the classical field equation which couples different
Fourier modes. This corresponds to terms in the Lagrangian which are powers of the
field of a higher order than two.
While you can still follow the same construction as before and define a number oper-
ator, this operator will not commute with the Hamiltonian anymore - the number of
particles can therefore change over time. This makes it essentially impossible to solve
the field equations analytically in general cases.

To still be able to calculate any prediction of the theory at all, one looks at scat-
tering experiments. Assuming that the interaction is only happening in some finite
time interval [t, t′], we prepare states with definite particle content before this interval
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Figure 2.1: Diagrammatic representation of the connected four-point function in a
scalar φ4 theory.

and measure the particle content after it. Then, we take the limit to an infinite interval
in order to recover the full interacting theory. This means that we are interested in the
following matrix element of the S-matrix

Sif = 〈f |U(∞,−∞)|i〉, (2.32)

with the time evolution operator U and the initial and final states |i〉 and |f〉. With
the Lehmann-Schimanski-Zimmermann reduction formula, we can relate the elements
of this S-matrix to a rather simple set of expectation values

Γ(p1, ..., pn) =
∫ n∏

i=1
d4xie

ipi·xi〈Ω|T (φ(x1)...φ(xn))|Ω〉, (2.33)

the so called momentum space n-point functions, where |Ω〉 is the vacuum of the
interacting theory. It is very important for the construction of this formula that |Ω〉 is
the eigenstate of the interacting Hamiltonian with the lowest energy. With some effort
one can show, that those n-point functions can be calculated using the path integral.
Starting from the vacuum-to-vacuum amplitude, given by

〈Ω|Ω〉 =
∫

[Dφ] ei
∫
d4x L(φ(x),∂µφ(x)) (2.34)

all of the position space n-point functions can be derived from the generating functional

Z[J ] =
∫

[Dφ]ei
∫
d4x (L(φ(x),∂µφ(x))+J(x)φ(x)) (2.35)

by repeated differentiation

〈Ω|T (φ(x1)...φ(xn))|Ω〉 = −in

Z[0]
∂nZ[J ]

∂J(x1)...∂J(xn)

∣∣∣∣∣
J=0

. (2.36)

The integral in the above expressions is a formal integral over all possible field con-
figurations φ(x). In the case of a free theory it can be calculated exactly, but for an
interacting theory, one needs to use the approach of perturbation theory. By assum-
ing that the interaction is only a small correction to the free theory, one can expand
the corresponding term in the path integral and calculate the n-point function in the
interacting theory as a series in n-point functions of the free theory. Often the terms
of the perturbation series are visualised using Feynman diagrams, as in figure 2.1.
Every line in a diagram represents a free-field two point function, called the propaga-
tor. It is essentially the inverse of the differential operator that forms the equation of
motion. Every vertex contributes one power of the coupling constant that describes
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the strength of the interaction.
Let us for a moment restore ~ to the expression of Z[J ]. It then reads

Z[J ] =
∫

[Dφ]e i~
∫
d4x(L(φ(x),∂µφ(x))−J(x)φ(x)) (2.37)

This effectively rescales all coupling constants by 1
~ and all propagators by ~. It can

then be proven inductively, that the overall power p of ~ related to a diagram in the
expansion of the n-point function is given by

p = n+ L− 1, (2.38)

where L is the number of internal loops within the diagram. This shows that in the
classical limit where ~ → 0, the dominant contribution to any n-point function is
always coming from the diagrams without any loops, the tree level diagrams.

2.3 The effective action
This opens an interesting possibility: imagine we had an effective action ΓS, that
contained already at tree level all information of a full interacting quantum field theory
described by an action S. This effective action ΓS would define a quantum field theory,
whose classical limit is completely equivalent to the original theory. Of course, one
way to construct this effective action is by matching all results from the quantum field
theory. We define

ΓS[φ] =
∞∑
n=0

1
n!

∫
d4x1...d4xn Γ(x1, ..., xn)φ(x1)...φ(xn) (2.39)

with the n-point functions of the original theory. Clearly, the first term in a pertur-
bative expansion of the path integral involving ΓS for any n-point function will be
Γ(x1, ..., xn) dressed with some external propagators.
But this definition is not of much use: we still have to do the full perturbative calcula-
tion to find the n-point functions of the original theory. Luckily, there is an alternative
way.
Starting from the generating function of all connected diagrams

W [J ] = −i lnZ[J ] (2.40)

we define its Legendre transform

Γ[φ] = W [Jφ]−
∫

d4x φ(x)Jφ(x). (2.41)

Here, Jφ(x) is defined by

∂W

∂J(x)

∣∣∣∣∣
J=Jφ

= φ(x). (2.42)

Formulating the generating functional for the theory described by this Γ[φ] and taking
its classical limit yields

lim
~→0

(−i~)
∫

[Dφ]e
i
~(Γ[φ]+

∫
d4x J(x)φ(x)) =

(
Γ[φJ ] +

∫
d4xJ(x)φJ(x)

)∣∣∣∣
∂Γ
∂φ

(φJ )−J=0

= W [J ] (2.43)
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where we made use of the stationary phase approximation and recognized the right-
hand side as the inverse Legendre transformation, bringing us back to the generation
function of connected diagrams.
To summarize: the above calculation showed us, that the classical limit of the gen-
erating function constructed from Γ is equal to the generating function of connected
diagrams constructed from S.
We can use this effective action Γ to find the vacuum of the interacting theory. As
we said above, the vacuum should be the state with minimal energy and we have to
make sure that our theory is expanded around the true vacuum state. Also, to preserve
Lorentz invariance, the vacuum field configuration should be translationally invariant.
We therefore expand the effective action around a constant field according to

Γ[φ] =
∫

d4x
(
−Veff(φ(x)) + 1

2(∂µφ(x))2Z(φ(x)) + ...
)
. (2.44)

In terms of those functions, the classical equation of motion (2.10) reads

0 = V ′eff(φ(x)) + 1
2Z
′(φ(x))(∂µφ(x))2 + ∂µ∂

µφ(x)Z(φ(x)) + ... (2.45)

Obviously, a constant solution φ(x) = φ to this equation must obey
0 = V ′eff(φ). (2.46)

In a classical field theory with a Lagrangian of the form
L = ∂µφ∂

µφ− V (φ). (2.47)
the constant field configuration with minimal energy will be the one that minimizes
V (φ). Since Γ[φ] describes a classical field theory that is equivalent to the full quantum
field theory described by S, we are therefore led to the conclusion, that we need to
find the absolute minimum of Veff(φ) in order to find the true vacuum state of the
original quantum field theory. Veff is therefore called the effective potential, including
all radiative corrections of the quantum field theory.

2.3.1 Towards the one-loop effective potential
To calculate the effective potential let us look at (2.43) again. If we calculate the
connected one-point function in the presence of a source J(x) according to

〈Ω|φ(x)|Ω〉J = ∂W [J ]
∂J(x)

=
∫

d4y

 ∂Γ[φ]
∂φ(y)

∂φ(y)
∂J(x)

∣∣∣∣∣
∂Γ
∂φ

(φJ (y))+J(y)=0
+ J(y)∂φJ(y)

∂J(x)

+ φJ(x)

= φJ(x), (2.48)
we see that it is just the solution to the classical field equation derived from Γ[φ] in
the presence of J(x).
Rewriting (2.43) to

eiΓ[φJ ] =
∫

[Dφ]eiS[φ]+i
∫
d4x(J(x)(φ(x)−φJ (x))

∣∣∣∣
φJ=〈Ω|φ|Ω〉J

=
∫

[Dφ]eiS[φ+φJ ]+i
∫
d4x(J(x)φ(x))

∣∣∣∣
〈φ〉J=0

(2.49)
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tells us how to find the effective action. The above integral is the vacuum to vacuum
amplitude of the action S[φ+ φJ ] in the presence of a source that cancels all contribu-
tions to the one-point function. Of course this means, that the only surviving diagrams
contributing to (2.49) are the ones, that don’t factorize into one-point functions, i.e.
the 1PI diagrams. Those are the diagrams that stay connected when you cut only a
single leg.
We therefore write

eiΓ[φ̂] =
∫
1PI

[Dφ]ei
∫
d4x S[φ+φ̂]. (2.50)

We can treat φ̂ in (2.50) as just another type of field which only appears as an exter-
nal leg in any diagram. On the other hand, since we calculate a vacuum-to-vacuum
amplitude, φ only appears as internal legs.

Figure 2.2: Graphical representation of the effective action Γ[φ̂] in massive φ4 the-
ory. The ellipses stand for higher loop orders (vertically) and higher n-point functions
(horizontally). All external lines are powers of φ̂.

As can be seen from figure 2.2, the effective action contains not only contributions
at all loop-orders but from all n-point functions. Thus, even at the one-loop level we
would need to sum an infinite number of diagrams. It becomes very complicated to
organize those diagrams efficiently, especially when dealing with multiple fields and
different types of interaction vertices. Fortunately, there is a way to calculate the ef-
fective potential without any use of diagrams.

To do so, we choose a constant classical field φ̂(x) = φ̂. The left hand side of (2.50)
then becomes

eiΓ[φ̂] = eiV4Veff(φ̂) (2.51)

with the spacetime volume V4. Technically this volume is infinite, but we can work in
finite volume for now and take the limit later.
We expand the action on the right hand side of (2.50) around the constant background
field

S[φ+ φ̂] = S[φ̂] + S ′[φ̂]φ+ 1
2S
′′[φ̂]φ2 + 1

3!S
′′′[φ̂]φ3 + ... . (2.52)
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So far everything has been exact, but to actually calculate the effective potential in
an interacting theory, we will have to use perturbation theory. In the one-loop ap-
proximation, it is clear that only the term with two internal quantum fields from the
above expansion will contribute. All the other terms with more powers of the quantum
field can not appear in a diagram with only one loop. Also, the term involving only
one quantum field does not contribute because all diagrams that incorporate it will be
one-particle-reducible.
Thus,

e−iV4Veff(φ̂)
∣∣∣
1-loop

=
∫
1PI

[Dφ]ei
∫
d4x(−V [φ̂]− 1

2φ(x)Σ(φ̂)φ(x)) (2.53)

where

Σ(φ̂) = − ∂2L
∂φ2

∣∣∣∣∣
φ=φ̂

. (2.54)

2.3.2 Performing the Gaussian integral
Before we give the result for the above path integral, let’s go back a simpler integral
of the same kind:

I =
∫ (

n∏
i=1

dxi
)
e−

1
2
∑n

i,j=1 xiSijxj (2.55)

with a positive-definite real symmetric n × n-matrix S. This integral is easily solved
by a basis transformation that diagonalizes S:

I =
∫ (

n∏
i=1

dyi
)
e

1
2
∑n

i=1 siy
2
i =

n∏
i=1

(∫
dyi e

1
2 siy

2
i

)

=
√

(2π)n

s1s2...sn
=

√√√√ (2π)n
det(S) . (2.56)

In analogy to this finite dimensional result we therefore write down the path integral
version of it

I =
∫

[Dφ]e− 1
2

∫
d4xd4y φ(x)M(x,y)φ(y)

= C√
DetM

(2.57)

with some infinite constant C and the determinant in the function space that M acts
on. Using the identity

lnDet A = Tr lnA (2.58)
we can find the logarithm of the above expression to be

ln I = −1
2

∫
d4x〈x| lnM |x〉

= −1
2

∫
d4x

∫
d4p〈x|p〉〈p| lnM(p)|x〉

= −1
2

∫
d4x

∫ d4p

(2π)4 lnM(p)

= −V4

2

∫ d4p

(2π)4 lnM(p) (2.59)



14

where it made sense to calculate the trace by inserting the completeness relation in
the momentum basis, since M will in general contain spacetime derivatives, which act
trivial in momentum space.
Plugging this into the formula (2.53) we arrive at the final expression for the effective
potential to one-loop order

Veff(φ) = V (φ)− i

2

∫ d4p

(2π)4 log det Σ(φ) (2.60)

which we already generalized to the case of more than one quantum field, where Σ is
the matrix given by

Σ(φ)ij = − ∂2L
∂φi∂φj

. (2.61)

As promised, the dependence on the spacetime volume has cancelled. (2.60) is the
main formula we are going to use in chapter 3 to calculate the effective potentials for
different models.
The momentum integrals we need to solve are generally of the form

I(m) =
∫ d4p

(2π)4 ln
(

1− m2

p2

)
. (2.62)

Since they are divergent, we use the Dimensional Regularization procedure, which
treats the integral as an analytic function of the number of spacetime dimensions
D = 4− ε. The divergence then appears as a pole in 1

ε
in the result

I(m) = µε
∫ dDp

(2π)D ln
(

1− m2

p2

)

= − im4

16π2
1
ε

+ i

64π2 2m4
(

ln m2

4πµ2e−γE
− 3

2

)
. (2.63)

Once we have found an approximation for the effective potential, we apply our argu-
ments that physical particles are excitations around the state with minimal energy.
Thus, we minimize the effective potential and find the effective masses of physical
particles to be

m2 = d2Veff
dφ2

∣∣∣∣∣
φ=〈φ〉

, (2.64)

analogous to (2.31), where 〈φ〉 is the position of the minimum.

2.3.3 The Coleman-Weinberg effective potential
Let us apply the formalism of the effective potential to a simple example.
We consider the theory of a massless scalar with a quartic interaction, described by
the Lagrangian

L = ∂µφ∂
µφ− λ

4φ
4. (2.65)
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Obviously, the classical potential V (φ) = λφ4 has only the trivial minimum at φ = 0.
It seems, as if we expanded the theory around the right vacuum.
But to be sure, we need to calculate the effective potential and find its minima. It is

Σ = �+ 3λφ̂2, (2.66)

which we substitute in the formula for the effective potential

Veff(φ̂) = λφ̂4 − i

2

∫ d4p

(2π)4 log
1− 3λφ̂2

p2


= λφ̂4 − 1

32π2
9λ2φ̂4

ε
+ 1

64π2 9λ2φ̂4

ln 3λφ̂2

4πµ2e−γE
− 3

2

 , (2.67)

where we substracted an infinite constant to bring the p2 to the denominator. After
applying the renormalization condition

1
3!
d4Veff

dφ̂4

∣∣∣∣∣
φ̂=M

= λR (2.68)

we arrive at

Veff(φ̂) = λRφ̂
4 + 1

64π2 9λ2
Rφ̂

4
(

ln φ2

M2 −
25
6

)
. (2.69)

While this expression looks like it might lead to a minimum away from φ̂ = 0 because
the logarithm becomes negative for small field values, this minimum was argued to
be spurious by Coleman and Weinberg [8], when they first studied this model. To
understand why this is the case one has to know, that higher orders of perturbation
theory will not only introduce higher powers of the coupling constant but also of the
combination λR ln φ2

M2 . Thus, in order to have a well behaved perturbation theory, not
only λR must be small but also λR ln φ2

M2 . Let us therefore assume we had renormalized
the model exactly at the position of the minimum, i.e. M = 〈φ〉. Then, to be consistent
we would need to have

0 = dVeff
dφ̂

∣∣∣∣∣
φ̂=〈φ〉

(2.70)

leading to

λR = 33
16π2λ

2
R. (2.71)

In order to arrive at a non-trivial theory we would therefore need to assume that λR
is from the same order of magnitude or even smaller than λ2

R. Obviously, this implies
that at the minimum of the effective potential perturbation theory is invalid. But since
we used perturbation theory to arrive at this result, the whole argument is flawed.
Of course this doesn’t mean that the theory is entirely inconsistent. In fact, a more
thorough investigation using the tools of the renormalization group shows that the
model simply retains the classical minimum at φ = 0 and does not acquire a radiation
induced vacuum expectation value.
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However, Coleman and Weinberg suggested a way to consistently generate a non-trivial
vacuum: by adding a gauge interaction with coupling constant e and by assuming that
this gauge interaction is much stronger than the scalar self-interaction, we can restore
the validity of perturbation theory.
Since we do a very similar calculation in the main part of the thesis, we just want
to cite the result. In the theory with an additional gauge interaction, the effective
potential becomes

Veff(φ̂) = λRφ̂
4 + 1

64π2

(
3e4

R + 9λ2
R

)
φ̂4

ln φ̂2

〈φ〉2
− 25

6

 (2.72)

and the consistency condition reads

λR = 11
64π2

(
e4
R + 3λ2

R

)
. (2.73)

Obviously, the problem can be avoided by assuming

λR = 11
64π2 e

4
R. (2.74)

Then the terms of order λ2
R will only appear at higher orders in perturbation theory and

there is indeed a minimum of the effective potential that is perturbatively consistent.
This minimum sets the scale for the effective masses of both the scalar and the gauge
boson.
Restoring the explicit power of ~, (2.74) reads

λR = 11~
64π2 e

4
R. (2.75)

In other words, the hierarchy of couplings implies, that the scalar interaction itself
takes the form of a quantum correction to the classical theory which contains no self-
interaction.
It was also pointed out by Andreassen, Frost and Schwartz [15] that this hierarchy
assumption is necessary to achieve a result which is gauge invariant at every order of
perturbation theory.

When one applies this mechanism to the Standard Model, as we will do in chapter
2, it turns out that In this thesis we want to apply this general idea to the Standard
Model: to consistently generate a minimum of an effective potential by radiative cor-
rections we need to assume a hierarchy of couplings, such that quantum effects from
one interaction can be from the same order of magnitude as the tree level contributions
from another.

2.4 Renormalization improvement
As we have seen in section 2.3.3, the effective potential seems to be infinite when
calculated naively. This is no peculiarity of the effective potential but happens in
many calculations within Quantum Field Theories. We already anticipated the way
out of this when doing the calculation. It turns out that all infinities vanish when
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predictions are expressed in terms of measurable quantities only.
This especially excludes the coupling constants as they appear in the Lagrangian.
They will only ever appear in predictions including all radiative corrections, so if those
corrections are infinite and the results of the measurements are not, then the initial so
called naked coupling constants must absorb the infinities. The formal process of this
absorbtion is called renormalization.
The renormalized perturbation theory is an approach in which the Lagrangian of some
theory is split into a part that depends only on measurable, renormalized quantities
and the counterterm Lagrangian, which absorbs the appearing infinities. To make this
more clear we will very roughly scetch the renormalization procedure using the example
of the scalar φ4 theory given by the ‘bare’ Lagrangian

L0 = 1
2∂µφ0∂

µφ0 −
1
2m

2
0φ

2
0 −

λ0

4 φ
4
0 (2.76)

which we decompose as described above

L0 = L+ δL (2.77)

with the renormalized Lagrangian

L = 1
2∂µφ∂

µφ− 1
2m

2φ2 − λ

4φ
4 (2.78)

and the counterterm Lagrangian

δL = 1
2δφ∂µφ∂

µφ− 1
2δmφ

2 − δλ
4 φ

4 (2.79)

where δφ, δm and δλ are chosen in such a way as to cancel all divergences order by order
in perturbative calculations using L0. There is a certain freedom in those definitions,
because the δi are allowed to contain finite terms as well. Different choices for the
counter terms are called different renormalization schemes.
If it is possible to cancel all divergences using only a finite amount of counterterms,
the corresponding theory is said to be renormalizable.

As we have already seen above, regularization procedures that are used to localize the
divergences always introduce a scale, usually called µ. It turns out that the perturbative
series is most accurate when the inherent scales of the problem that is discussed, e.g.
the mass or momentum scales, are close to this renormalization scale µ. But because
this scale was artificially introduced during the regularization, the naked parameters
can actually not depend on it and that allows us to find out how the renormalized
parameters of the model change for different choices of µ.
Since the careless introduction of scales can actually break the classical scale depen-
dence explicitly [5], we will always use Dimensional Regularization. There, the renor-
malization scale is only introduced with an evanescent exponent that vanishes in the
limit D → 4.

The functions that describe the changes of the coupling constants under changes of
the renormalization scale are called the beta functions

βλ = µ
dλ
dµ. (2.80)
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Those beta functions allow us to study models for a wide range of scales, even if we
only give experimental input at a single scale. We will use them in chapter 3 to study
the global stability of local minima of effective potentials.
Since the beta functions for the Standard Model are known to very high order in per-
turbation theory, we will actually not completely derive any of them for our studies.
But because we will make generous use of counterterms to arrive at certain renormal-
ization conditions in chapter 3, let us study the scheme dependence of beta functions.

The most commonly used renormalization scheme is the MS-scheme, in which the
counterterms are used to cancel only the divergent terms as well as the very often ap-
pearing combination ln 4π−γE with the Euler-Mascheroni constant γE. Let us consider
the case in which we start from the MS-scheme for the above scalar φ4 theory and add
an additional finite counter term δ′

4 φ
4. Then, starting from the assumption that λ0 is

independent from the renormalization scale, we find

0 = µ
dλ0

dµ = µ
d
dµ (µελ+ δMS + δ′) , (2.81)

where we multiplied the renormalized coupling with an additional factor of µε, as is usu-
ally done in Dimensional Regularization. δMS is a combination of the MS counterterms,
which only has a divergent part, i.e.

δMS = 1
ε
z∞. (2.82)

We can then further evaluate (2.81)

0 = εµελ+ βλ

(
µε + 1

ε

dz∞
dλ + ∂δ′

∂λ

)
+ ∂δ′

∂ lnµ. (2.83)

We can solve this at lowest order and take the limit ε→ 0, leading to

βλ = dz∞
dλ −

∂δ′

∂ lnµ. (2.84)

Therefore, at least at the one-loop level, there only appears a scheme dependence in the
beta functions if we add counterterms with an explicit dependence on the renormaliza-
tion scale. Let us consider the case in which we substract a term with an additional
scale µ′ by taking δ′ = b ln µ2

µ′2 . Then, to keep the unrenormalized coupling independent
of both of those scales,

µ
dλ
dµ = βMS

λ − b

µ′
dλ
dµ′ = b (2.85)

and thus the renormalized couplings become functions of two scales λ = λ(µ, µ′). We
will use this technique of introducing another scale when discussing models containing
two scalar fields with different vacuum expectation values in chapter 3.
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2.5 The Standard Model
Now that we know the general framework we will work in, let us take a look at the
Standard Model of particle physics.
We are going to write down the Lagrangian that describes the Standard Model and
then shortly explain every term that appears in it

L = Lgauge + Lfermions + LHiggs − V (H). (2.86)

2.6 The gauge sector

2.6.1 Gauge invariance
The concept of gauge symmetries has proven extremely fruitful in the study of Quan-
tum Field Theories because it constrains the possible interactions and guarantees the
renormalizability of the theory.
Starting from a theory with a global symmetry, say the theory of a complex scalar

L = ∂µφ
∗∂µφ−m2φ∗φ (2.87)

we see that this model has a global symmetry of the form

φ(x)→ eiαφ(x). (2.88)

If we gauge this symmetry, that means, if we allow a different transformation at every
position and time, then the above Lagrangian won’t be invariant anymore. This is
because the derivative of φ does not transform in a nice way:

∂µφ(x)→ ∂µ
(
eiα(x)φ(x)

)
= eiα(x) (∂µ + i∂µα(x))φ(x). (2.89)

This behaviour can be cured by introducing a gauge field that transforms in a special
way under a gauge transformation

Aµ(x)→ Aµ(x) + 1
e
∂µα(x). (2.90)

If we then define the covariant derivative

Dµφ(x) = (∂µ − ieAµ(x))φ(x), (2.91)

we see that it transforms nicely under gauge transformations

Dµφ(x)→ (Dµ − i∂µα(x))eiα(x)φ(x)
= eiα(x)Dµφ(x). (2.92)

This makes the Lagrangian

L = (Dµφ)∗Dµφ−m2φ∗φ (2.93)
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invariant under gauge transformations.
So far the gauge field is non-dynamic. We need to add a term involving its derivatives
to the Lagrangian but it should be gauge invariant if we do not want to spoil the
symmetry we just imposed. Clearly the term ∂µA

ν is not gauge invariant and neither
is its square. Luckily, there is an easy combination that is gauge invariant

[Dµ,Dν ]φ(x) = ie (∂µAν − ∂νAµ)φ(x)
=: ieFµνφ(x). (2.94)

Since we know that

[D′µ,D′ν ]φ′(x) = eiα(x)[Dµ,Dν ]φ(x) (2.95)

and because Fµν is no operator anymore we immediately see that

F ′µν = Fµν . (2.96)

Of course this can also be quickly calculated. We can therefore easily form a term that
is both Lorentz and gauge invariant and add it to the Lagrangian

LsQED = −1
4FµνF

µν + (Dµφ)∗Dµφ−m2φ∗φ. (2.97)

2.6.2 Non-Abelian gauge symmetry
The model we discussed in the previous section is the simplest case of a gauge invariant
theory. It is part of a more general set of theories. While one can in principle study
gauge theories with symmetry transformations forming arbitrary Lie groups, we will
focus on the case of SU(N), which is the most important one for the Standard Model.
Looking at the Lagrangian of N scalar fields of the same mass

L = (∂µφi)∗∂µφi −m2φ∗iφi, (2.98)

we see that it is not only invariant under the transformation from the previous section
for any field separately, but also under a bigger class of transformations.
Indeed,

φi → Uijφj (2.99)

leaves the Lagrangian invariant if U is a unitary matrix that obeys

U † = U−1. (2.100)

One says that (2.98) possesses a global SU(N) symmetry. To gauge this symmetry, we
write the transformation matrix in terms of N2 − 1 hermitian generators T a as

U = exp(iαaT a). (2.101)

In the fundamental representation of SU(N), those generators are N × N -matrices.
They form an algebra

[T a, T b] = ifabcT
c (2.102)



21

with some structur constants fabc that depend on the symmetry group and the basis
of generators.
In the same way as before we allow spacetime dependent coefficients α(x) and can then
form gauge covariant derivatives

(Dµ)ijφj = (1∂µ − igAµ)ijφj (2.103)

where we had to introduce a generator-valued gauge field Aµ = AaµT
a. We can find

the transformation law for the Aaµ by demanding a simple transformation law for the
gauge covariant derivative

(Dµ)ij φj(x)→
(
D′µ
)
ij
φ′j(x)

!= Uij (Dµ)jk φk(x). (2.104)

A quick calculation shows that this implies

A′µ = UAµU
−1 − i

g
(∂µU)U−1. (2.105)

As above we can form an object that transforms much nicer than Aµ by calculating
the commutator of two covariant derivatives

[Dµ,Dν ]ijφj = −ig (∂µAν − ∂νAµ − ig[Aµ,Aν ])ij
=: (F µν)ijφj, (2.106)

with the non-abelian field strength F µν = F a
µνT

a.
This object now transforms as

F µν → UF µνU
−1 (2.107)

and therefore we can add tr(F µνF
µν) as a gauge invariant kinetic term to the La-

grangian. One usually uses the freedom in choosing a basis of generators to normalize
them according to

tr T aT b = 1
2δab. (2.108)

With this choice, the full gauge invariant Lagrangian can be written as

L = −1
4F

a
µνF

aµν + ((Dµ)ijφj)∗(Dµ)ikφk −m2φ∗iφi. (2.109)

While we used different letters for the gauge field and the related field strength in this
section, we will use the same letter for both in the following sections. The presence of
one or two Lorentz indices will be sufficient to tell them apart.
It is important to notice, that mass terms for the gauge fields of the form m2AµAµ can
not be added to the Lagrangian, since they break the gauge symmetry. To explain why
we still observe massive gauge bosons in nature, we need the Higgs mechanism which
is going to be presented in section 2.7.1 on the scalar sector of the Standard Model.
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2.6.3 Gauge group of the Standard Model
In the last section we have seen how to construct gauge invariant Lagrangians, by
promoting ordinary derivatives to gauge covariant derivatives.
A physical model can therefore be characterised by listing its gauge symmetries as well
as the matter content that transform under some representations of those symmetries.
The Standard Model has the gauge group SU(3) × SU(2)L × U(1)Y and all matter
fields transform in fundamental or trivial representations of those groups. They only
differ in their charge, coupling them to the gauge fields with differing strength.
The kinetic terms for the gauge sector of the Standard Model thus read

Lgauge = −1
4G

a
µνG

aµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν (2.110)

with an 8-component gluon field Ga
µν related to SU(3)-symmetry, a 3-component W-

Boson field W a
µν related to the SU(2)L-symmetry and the one-component U(1)Y B-

boson field Bµν .
In the later sections we will mostly neglect the influence of the gluons, since we are
interested in the one-loop effective potential of the Higgs boson, which does not couple
to the gluon field. The influence of the strong interaction will only be reflected by a
factor of three when summing over the degrees of freedom of fermions, due to there
being three different color charges.

2.7 The scalar sector
The Standard Model contains one scalar field, the Higgs field. It transforms in the
fundamental representation of SU(2) and U(1)Y and trivially under SU(3). Since the
fundamental representation of SU(2) is two dimensional, this means that the Higgs
field is a complex doublet, containing 4 real fields,

H = 1√
2

(
φ1 + iψ1
φ2 + iψ2

)
. (2.111)

The Standard Model Higgs field also has a negative mass squared and a quartic inter-
action term. All together the Lagrangian reads

Lscalar − V [H] = (DµH)†DµH + µ2H†H − λ(H†H)2 (2.112)

where the covariant derivative acting on H is given by

DµH = (∂µ − ig2W
a
µ τ

a − ig1

2 Bµ)H. (2.113)

The τa are the generators of SU(2),

τa = σa

2

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 i
−i 0

)
, σ1 =

(
1 0
0 −1

)
. (2.114)
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2.7.1 The Higgs mechanism
Looking at the potential of the scalar sector

V (H) = µ2H†H − λ(H†H)2, (2.115)

we realize that H = 0 is actually not the minimum and therefore does not correspond
to the vacuum. We have argued repeatedly that it is important to expand a quantum
field theory around the true vacuum. We therefore need to minimize the potential of
this sector and expand the physical Higgs field as excitations around this vacuum.
V (H) has a degenerate set of minima given by

H†H = µ2

2λ. (2.116)

Once we have chosen a minimum, all other minima can be reached by SU(2)× U(1)-
transformations. We can therefore choose the minimum to be real and in the second
component, as is usually done. Expanded around this minimum the Higgs field then
reads

H = e
2i
v
πaτa 1√

2

(
0

v + h

)
, (2.117)

where v = µ√
λ
. The excitations around this minimum take the form of scalar fields h

and πa, where h is a gauge singlet while the Goldstone bosons πa transform according
to

πa → πa − v

2α(x). (2.118)

We can therefore pick a gauge in which πa = 0. This is called the unitary gauge.
If one substitutes the expansion around the minimum into the kinetic terms in the
Lagrangian, a lengthy calculation gives

Lgauge + Lscalar =1
2∂µh∂

µh− 1
4G

a
µνG

aµν − 1
4FµνF

µν − 1
4ZµνZ

µν

− 1
2
(
∂µW

+
ν − ∂νW+

µ

) (
∂µW

−
ν − ∂νW−

µ

)
− 1

2m
2
hh

2 + 1
2m

2
ZZµZ

µ +m2
WW

+
µ W

−
µ + (interactions) (2.119)

with

Zµ = cos θWW 3
µ − sin θWBµ, Aµ = sin θWW 3

µ + cos θWBµ

W±
µ = 1√

2
(W 1

µ ± iW 2
µ)2 (2.120)

as well as

mh =
√

2λv, mW = g2

2 v, mZ =

√
g2

1 + g2
2

2 v (2.121)

and tan θW = g1
g2
. As we can see, by expanding the Higgs field around its true vacuum

and thereby breaking gauge symmetry explicitly, we have generated mass terms for
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some linear combinations of gauge bosons and for the physical Higgs field h. One
symmetry stays unbroken, namely the U(1)-symmetry of the upper component of the
Higgs doublet. The corresponding massless gauge boson is the photon.
While the Higgs mechanism is a simple way to generate masses for the gauge bosons,
we see that it can be easily modified: it doesn’t matter how the Higgs doublet acquires
a non-zero vacuum expectation value. As soon as we have a reason to expand it in the
way we did above, we will automatically generate masses for the gauge bosons.

2.8 The fermionic sector

2.8.1 Constructing a fermion Lagrangian
The last piece of the Standard Model Lagrangian is made up of the fermionic sector.
A group-theoretic investigation of the Lorentz group, the group of spacetime transfor-
mations1

xµ = Λµ
νx

ν =
(
e−iωαβL

αβ
)µ

νx
ν (2.122)

shows, that all of its irreducible representations can be counted according to (j1, j2),
where j1,2 = 0, 1

2 , 1, ... .
While the scalar field and the gauge field fall in the (0, 0) or (1

2 ,
1
2) representation

respectively, we need two more representations to describe the entire Standard Model.
We define the left- and righthanded Weyl spinors, which are two-component objects
transforming under Lorentz transformations according to

ψL,R → e−iωµνS
µν
L,RψL,R (2.123)

with generators

SijL,R = 1
2ε

ijkσk,

S0k
L,R = ∓ i2σ

k. (2.124)

The σi are given in (2.114). Because the boost generators S0k are anti-hermitian, it is
clear that combinations like ψ†LψL are not Lorentz invariant. One way to define a mass
term nevertheless is to combine a left- and a righthanded Weyl spinor to form a Dirac
spinor

ψ =
(
ψL
ψR

)
, ψ̄ =

(
ψ†R ψ†L

)
. (2.125)

This allows for the Lorentz invariant mass term

mψ̄ψ = m
(
ψ†RψL + ψ†LψR

)
. (2.126)

1The Lorentz group is generated by the

(Lαβ)µ
ν = i(ηαµδβ

ν − ηβµδα
ν )

and ωαβ = −ωβα are a set of parameters describing the transformation.
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A kinetic term can be found by realising that ψ†L,RσµψL,R and ψ†L,Rσ̄µψL,R with

σµ = (1, ~σ), σ̄µ(1,−~σ) (2.127)

transform like vectors. Thus, a proper hermitian kinetic term for the Weyl spinors is
ψ†Riσ

µ∂µψR or ψ†Liσ̄µ∂µψL respectively and the Lagrangian for the Dirac spinor can be
written as

L = ψ̄ (iγµ∂µ −m)ψ, (2.128)

with the gamma matrices

γµ =
(

0 σµ

σ̄µ 0

)
. (2.129)

Oftentimes, left and right handed Weyl spinors are written as projections of four-
component spinors with only two non-vanishing components, such that

ψL = PLψ, ψR = PRψ (2.130)

where

PL =
(
1 0
0 0

)
, PR =

(
0 0
0 1

)
. (2.131)

Thus, even though Weyl spinors have only two non-vanishing components, they are
sometimes used as four-component objects.

2.8.2 Gauge interaction of fermions
Similar to the scalar theory in section 2.6.1, the theory described by the action (2.128)
has a global symmetry

ψ → eiαψ. (2.132)

We can again turn this into a gauge invariant theory by introducing the covariant
derivative

Dµ = ∂µ − ieAµ. (2.133)

By adding a kinetic term we arrive at the Lagrangian of Quantum Electrodynamics

L = −1
4F

µνFµν + ψ̄(iγµDµ −m)ψ. (2.134)

Again we can also look at models with multiple spinor fields transforming in some
representation of SU(N). For those theories the gauge invariant Lagrangian is

L = −1
4F

aµνF a
µν + ψ̄i (iγµDµ −m)ij ψj (2.135)

with covariant derivative

Dµ = ∂µ − ieAaµta, (2.136)

where the ta are the generators of the gauge group corresponding to the representation
the ψi transform under.
It is also possible to couple left- or righthanded Weyl fermions to gauge fields using the
covariant derivative.
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2.8.3 Fermions in the Standard Model
An interesting thing about the Standard Model is that while it contains both left-
and righthanded fermions, only the lefthanded ones transform non-trivially under the
SU(2)L symmetry. The kinetic term for the fermions reads

Lkinetic =L̄iγµ(∂µ − ig2W
a
µ τ

a + i

2g1Bµ)Li + Q̄iiγµ(∂µ − ig2W
a
µ τ

a − i

6g1Bµ)Qi

+ ēiRiγ
µ(∂µ + ig1Bµ)eiR + ūiRiγ

µ(∂µ − i
2
3g1Bµ)uiR + d̄iRiγ

µ(∂µ + i

3g1Bµ)diR
(2.137)

where Li and Qi are the left-handed lepton and quark doublets respectively,

Li =
{(

eL
νe,L

)
,

(
µL
νµ,L

)
,

(
τL
ντ,L

)}

Qi =
{(

uL
dL

)
,

(
cL
sL

)
,

(
tL
bL

)}
, (2.138)

whereas eiR, uiR and diR contain the corresponding righthanded components. In the
Standard Model, there are no righthanded neutrinos.
It is clear, that the SU(2)L symmetry forbids the Dirac mass terms we mentioned above,
since a combination like e†LeR + e†ReL simply is not gauge invariant. The solution for
this is again to use the Higgs mechanism. Clearly, the combination

LYukawa = −yeL̄HeR + h.c. (2.139)

will be gauge invariant, since both L and H transform as doublets under SU(2) and
also the hypercharges related to U(1)Y add up in an appropriate way. The h.c. denotes
the hermitean conjugate, which is needed to arrive at a real Lagrangian.
After expanding the theory around the true vacuum, the above interaction between
the Higgs field and the fermions induces the effective mass term

Lmass = −me(ēLeR + ēLeR), (2.140)

whereme = ye√
2v. We see again, that by expanding the Higgs field around the minimum

of its potential and thereby breaking gauge invariance, we were able to generate effective
mass terms which were formerly forbidden by the gauge symmetry.
While the full mass term of the Standard Model allows for mixing between the flavour
eigenstates we wrote down above, we will only be interested in the biggest term in our
calculations: the term for the top quark.

2.8.4 Path integral for fermions
When calculating the effective potential for theories involving fermions, we will also
need to perform path integrals over fermionic fields. It follows from the spin-statistic-
theorem that fermionic fields can not be described by ordinary commuting numbers.
Instead one has to use anti-commuting Grassmann numbers

θ1θ2 = −θ2θ1, θ2
i = 0. (2.141)
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For those, integration is defined by

0 =
∫

dθ, 1 =
∫

dθ θ. (2.142)

These rules can be used to perform the Gaussian integral∫
dθ̄dθe−θ̄Aθ =

∫
dθ̄dθ(1− θ̄Aθ)

= A (2.143)

and generalized to a multi-dimensional integral one finds∫ ∏
i

(
dθ̄idθi

)
e−θ̄iAijθj = detA. (2.144)

for a hermitian matrix A. In calculating the effective potential we encounter integrals
of the form

I =
∫

[Dψ̄Dψ] ei
∫
d4xψ̄(x)(iγµ∂µ−m)ψ(x) = Det(−iγµ∂µ +m). (2.145)

To calculate the determinant in the infinite dimensional vector space of functions,
we again take the logarithm of this expression and calculate the appearing trace in
momentum space

ln I =
∫ d4p

(2π)4 tr (ln (γµpµ +m)) , (2.146)

where tr() is the trace in the 4-dimensional space the γµ act on. By expanding the
logarithm into an infinite sum, we can further evaluate this integral

ln I = 1
2

∫ d4p

(2π)4 tr (ln(γµpµ +m) + ln(−γνpν +m))

= 2
∫ d4p

(2π)4 ln (m2 − p2), (2.147)

where we used the fact that the integration is symmetric under p→ −p as well as the
identities

γµpµγ
νpν = p2, tr γµ = 0, tr 1 = 4. (2.148)

Up to an infinite constant which is independent from m this integral is now equal to
(2.63).

2.9 Experimental input
Now that we have described all parts of the Standard Model, we will give some nu-
merical values to the appearing parameters. We will need those when we look for
scale-invariant models that allow an embedding of the Standard Model.
The vacuum expectation value of the Higgs field is known from measurements of the
Fermi constant [19], which describes the interaction strength in the effective theory of
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the weak interaction where the Higgs field has been integrated out. Its numerical value
is [20]

v = (246.21965± 0.00006) GeV. (2.149)

The most precise measurement of the Higgs mass is [21]

mh = (125.1± 0.3) GeV. (2.150)

We will also need the coupling constants of the electroweak interaction and the Yukawa
coupling of the top quark. They depend on the scale at which predictions are made
and since we will be looking at the minimum of the effective potential at the scale
of the Higgs vacuum expectation value, we took the values from Butazzo et. al. [22]
evaluated at 246.22 GeV:

g1(v) = 0.3590± 0.0005
g2(v) = 0.64596± 0.0002
g3(v) = 1.14200± 0.003
yt(v) = 0.918± 0.006 (2.151)

with the electroweak couplings g1 and g2, the strong coupling g3 and the top Yukawa
coupling yt.
It is important to realize that the quartic coupling of the Higgs field is so far not
measured and can only be inferred from the values of mh and v in the Standard Model.

2.10 Scale-invariant extensions of the Stan-
dard Model

As can be seen from the above discussion, there is only one independent dimensionful
parameter in the Standard Model. Clearly, if we set the Higgs mass parameter µ to
zero, v and mh will vanish as well.
This makes the Standard Model classically scale-invariant, i.e. its action becomes
invariant under transformations of the form

x→ Λx
H → Λ−1H

Aµ → Λ−1Aµ

ψ → Λ− 3
2ψ (2.152)

where Aµ and ψ stand for all gauge fields and fermions respectively. If we alterna-
tively impose this transformation as a classical symmetry, then the Higgs mass term
is forbidden. Clearly, without this term there is also no spontanous breaking of gauge
symmetry and therefore no effective mass terms for gauge bosons nor fermions at the
classical level.
We saw in the section on the Coleman-Weinberg mechanism, that such a classically
scale-invariant model can acquire an explicit scale dependence as soon as quantum
effects are turned on, thereby inducing a vacuum expectation value for the Higgs field
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and triggering Electroweak symmetry breaking. In the next chapter, we want to study
this scalefree Standard Model and extensions of it by additional massless fields which
keep the classical scale invariance intact and look for the simplest model which allows
for a minimum which fits with the experimental values of the couplings from section
2.9.



Chapter 3
Calculation of Effective Potentials in
Various Theories

In chapter 2 we described the general method how to calculate the effective potential
of a quantum field theory in order to find the true vacuum state. We will now apply
this formalism to five different models and discuss the results.
First, we briefly and informally study a model of two massive scalars to convince our-
selves of the appearence of the hierarchy problem. To resolve this problem we then turn
to scalefree theories involving only massless particle. We try to find a scalefree model
that consistently implies a vacuum state with the general properties of the standard
model that are known from experiments.

It has been known for a long time that a scalefree version of the Standard Model itself
without any further modifications has no stable vacuum because of the influence of the
heavy fermions. To develop the formalism we nevertheless study two models which we
call the Scalefree Electroweak Theory, containing only the Electroweak Gauge bosons
and the Higgs boson, and the Scalefree Standard Model, which additionally contains
the top quark. We neglect influences of the other quarks and since we work entirely at
one-loop level and the Higgs has no color charge, we can neglect all contributions to
the effective potential that come from the strong interaction. They will be of higher
loop order.

After realising that the effective potentials of those models do not have stable minima
which fit with experimental data, we start to extend the Standard Model by additional
fields. First we look at the Conformal Standard Model as suggested by Meissner and
Nikolai [7], which adds a new massless scalar field to the Standard Model that is not
charged under any of the gauge interactions. We find that after imposing the hierarchy
of couplings which is necessary for consistency of the perturbative series, this model
also does not allow for a stable vacuum which resembles the Standard Model.
We then propose the Minimal Conformal Standard Model to be an extension of this
Conformal Standard Model which includes a new U(1) gauge symmetry under which
the new scalar is charged. We show that this model allows for a minimum of the
effective potential that resembles the Standard Model. To study if this minimum is
also the global minimum of the effective potential, we use the renormalization group
equations to evolve the coupling constants up to the Planck scale. We find that this
model inherits the vacuum instability of the Standard Model.

To make sure that this is not a general problem of scale-invariant theories, we extend
our model by one further massless ‘dormant’ scalar, which doesn’t acquire a vacuum
expectation value and can therefore have couplings that don’t obey any hierarchy. This
allows for a stabilisation of the minimum of the effective potential.

30
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We perform all calculations using Dimensional Regularisation and first results are al-
ways given in the MS-renormalization scheme until we apply further renormalization
conditions.

3.1 Massive Two-Scalar Model
As mentioned in the introduction, every field interacting with the Higgs gives correc-
tions to the Higgs mass. To see this explicitly in a simple case, we are investigating a
model that contains only two massive scalar fields interacting with each other1.
The Lagrangian for this model is

L(φ1, φ2) = Lkin(φ1, φ2)− V (φ1, φ2),

Lkin(φ1, φ2) = 1
2∂µφ1∂

µφ1 + 1
2∂µφ2∂

µφ2,

V (φ1, φ2) = 1
2m

2
1φ

2
1 + 1

2m
2
2φ

2
2 + λ1

4 φ
4
1 + λ12

2 φ2
1φ

2
2 + λ2

4 φ
4
2. (3.1)

We restrict ourselves to renormalizable interactions and also enforce the discrete sym-
metry φi → −φi.
We now calculate the one-loop effective potential, using the functional method outlined
in chapter 2. To do this, we expand the quantum fields around homogenous classical
field values φ̂i and keep only the terms up to quadratic order in the remaining quantum
fluctuations. Let us also assume, that λ2 is so big, that only φ1 can aquire a vacuum
expectation value.
In momentum space this leads to

L1−loop(φ̂1 + φ1, φ2) = −V (φ̂1, 0)− 1
2
∑
i,j

φiΣij(φ̂1, φ̂2 = 0)φj, (3.2)

where the matrix Σij is given by

(Σij) =
(
−p2 +m2

1 + 3λ1φ̂
2
1 0

0 −p2 +m2
2 + λ12φ̂

2
1

)
. (3.3)

The effective potential then reads

Veff(φ1) =V (φ1, 0)− i

2

∫ d4p

(2π)4 ln detM

=V (φ1, 0) + M4
1

32π2

(
ln M

2
1

µ2 −
3
2

)
+ M4

2
32π2

(
ln M

2
2

µ2 −
3
2

)
+ (divergent), (3.4)

with the mass scales

M2
1 =

(
m2

1 + 3λ1φ
2
1

)
M2

2 =
(
m2

2 + 3λ12φ
2
1

)
. (3.5)

1We will use some strong assumptions in order to quickly arrive at analytical results, but we have
checked the model with less restrictions numerically and find agreeing results.
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We also dropped the hats over the classical field values to simplify the notation. Even
in this simple case it is non-trivial to find the exact minimum of the effective potential
but luckily it is not necessary for the discussion at hand. We just want to note that
the term containing M4

2 involves the combination − 3λ12
16π2m

2
2φ

2
1.

If we assume m2 to be big enough (and λ1 to be small enough while also choosing
µ = m2) for this term to be the dominant contribution, the effective potential up to
slowly varying or constant terms roughly reads

Veff(φ1) ≈ λ1

4 φ
4
1 + m1

2 φ2
1 −

3λ12

16π2m
2
2φ

2
1 (3.6)

having its minimum at λ1v
2 = 3λ12

8π2 m
2
2 −m2

1 with a mass for the physical Higgs boson
of

m2
h = d2Veff

dφ2
1

∣∣∣∣∣
φ1→v

= 3λ12

4π2 m
2
2 − 2m2

1. (3.7)

Now we see, that for mH to be many magnitues smaller than m2, m1 needs to be finely
tuned in order to differ only by a tiny fraction from the first term. This is considered
highly unnatural and is the basis of the hierarchy problem.
A similar calculation can also be performed for heavy fermions or vector bosons, leading
to the same general result: in a theory with heavy degrees of freedom but light scalar
bosons coupled to them, an unnatural amount of fine-tuning is needed.
Of course it is possible that the contributions of different heavy fields cancel out to
result in a light scalar-boson, but in the absence of a (weakly broken) symmetry this
case is also considered unnatural. Supersymmetry provides exactly this: it ensures
that the competing contributions from fermions and bosons cancel out exactly and
therefore resolves the hierarchy problem.
As already mentioned in the introduction we want to take another route to solve the
problem: by enforcing classical scale invariance, all explicit mass terms are forbidden.
As we will see this allows the emergence of a hierarchy of scales without fine-tuned
cancellations. Our aim in the following sections will therefore be to find a classically
scale-invariant model, that incorporates the Standard Model and is perturbatively
consistent.

3.2 Scalefree Electroweak Theory
Before we try to incorporate the entire Standard Model, let us start with the Scalefree
Electroweak Theory (SFET) which is composed of the Electroweak gauge theory and
a massless Higgs doublet. Since the quadratic term of the Higgs potential is the only
explicit scale in the SM, this renders the model scale-invariant.
This model was also discussed by Coleman and Weinberg. While we will see that its
predictions are inaccurate due to the neglection of fermionic contributions to the effec-
tive potential, it has some historical relevance and will help us develop the formalism
to investigate the full Standard Model and its extensions.
The SFET is described by the Lagrangian

L = Lkin + Lgf + Lghost − V (H) (3.8)
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where Lkin, Lgf and Lghost are the typical kinetic terms involving the gauge fields
W1,2,3, B and the minimally coupled complex scalar doublet H, the gauge fixing and
the ghost Lagrangian of the Electroweak Theory and

V (H) = λ(H†H)2 (3.9)

is the Higgs potential without the quadratic term.
To be able to apply the functional method from chapter 2, we expand the complex
Higgs doublet according to

H = 1√
2

(
φ1 + iψ1

φ̂2 + φ2 + iψ2

)
(3.10)

with a real classical field φ̂2 and real quantum fields φi, ψi. By using this expansion
we directly break the Electroweak symmetry but it can be easily restored by replacing

1√
2 φ̂2 → |Ĥ| in the final result. Using the above expansion the momentum space

Lagrangian reads up to quadratic order in quantum fields

L1-loop(φ1, ψ1, φ2 + φ̂2, ψ2) = −V (φ̂2)− 1
2ΦTΣΦ. (3.11)

Here, Φ denotes the vector formed by all quantum fields

Φ =
(
W1,µ W2,µ W3,µ Bµ φ1 φ2 ψ1 ψ2

)T
(3.12)

and Σ is the matrix with components

Σij = − ∂L
∂Φi∂Φj

∣∣∣∣∣
Φ=Φ̂

, (3.13)

which is written in block form as

Σ =
(

∆µν Mν

M †
ν D

)
. (3.14)

The entries of M are themselves matrices

∆µν =


∆(W )
µν − 1

4g
2
2φ̂

2
2ηµν 0 0 0

0 ∆(W )
µν − 1

4g
2
2φ̂

2
2ηµν 0 0

0 0 ∆(W )
µν − 1

4g
2
2φ̂

2
2ηµν

g1g2
4 φ̂2

2ηµν
0 0 g1g2

4 φ̂2
2ηµν ∆(B)

µν − 1
4g

2
2φ̂

2
2ηµν



Mµ =


0 i

2g2φ̂2pµ 0 0
0 0 0 0

i
2g2φ̂2pµ 0 0 0

0 0 − i
2g2φ̂2pµ

i
2g1φ̂2pµ



D =


−p2 + λφ̂2

2 0 0 0
0 −p2 + 3λφ̂2

2 0 0
0 0 −p2 + λφ̂2

2 0
0 0 0 −p2 + λφ̂2

2

 (3.15)
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and

∆(α)
µν = p2ηµν −

(
1− 1

ξα

)
pµpν . (3.16)

We find the effective potential using (2.60)

Veff(φ2) =V (φ2)− i

2

∫ d4p

(2π)4 ln det Σ

giving the result

Veff(φ2) = λ

4φ
4
2 + 1

64π2

∑
i

nim
4
i

(
ln m

2
i

µ2 − ai
)
. (3.17)

The mi are the effective masses of the different fields of the model, represented by the
eigenvalues of the mass matrix M at zero momentum. They are given by

m2
A = g2

2
4 φ

2
2

m2
B = (g2

1 + g2
2)

4 φ2
2

m2
C = 3λφ2

2

m2
D± = 1

2

(
λ±

√
λ(λ− g2

2ξW )
)
φ2

2

m2
E± = 1

2

(
λ±

√
λ(λ− g2

1ξB + g2
2ξW )

)
φ2

2. (3.18)

The ni count the degrees of freedom belonging to the respective effective mass and the
bi are different for scalar and vector bosons. They are given by

nA = 6, nB = 3,
nC = 1 = nE, nD = 2,

bA = 5
6 = bB,

bC = 3
2 = bD = bE. (3.19)

By an appropriate choice of counterterms in the original Lagrangian and by choosing
the Landau gauge ξW = ξB = 0 we can bring the effective potential to the form

Veff(φ2) = λ

4φ
4
2 + 1

64π2

(3
8g

4
2 + 3

16(g2
1 + g2

2)2 + 12λ2
)
φ4

2

(
ln φ

2
2
µ2 −

25
6

)
. (3.20)

This corresponds to an on-shell renormalization scheme, in which

d2Veff
dφ2

2

∣∣∣∣∣
φ2=0

= 0

1
3!

d4Veff
dφ4

2

∣∣∣∣∣
φ2=µ

= λ (3.21)



35

Higher order corrections to the effective potential are not only an expansion in the
coupling constants but also in log φ2

2
µ2 . This means that our approximation loses accuracy

if µ and φ2 are too different.
Since we are interested in the extremum of the effective potential and since µ is so far
an arbitrary scale, we can choose µ to be exactly the position of the extremum 〈φ2〉.
Enforcing the consistency condition

dVeff
dφ2

∣∣∣∣∣
φ=〈φ2〉

= 0 (3.22)

leads to a condition that the couplings must obey

λ = 11
256π2

(
g4

1 + 2g2
1g

2
2 + 3g4

2 + 64λ2
)
. (3.23)

Clearly, if λ were of the same order of magnitude as λ2 or even smaller, perturbation
theory would be highly inaccurate. Therefore, in order to arrive at a result that can
be trusted, we need to assume

λ = O(g4
1, g

4
2). (3.24)

This means that we can neglect the term proportional to λ2 and arrive at

λ = 11
256π2

(
g4

1 + 2g2
1g

2
2 + 3g4

2

)
. (3.25)

Plugging this back into the effective potential, it takes the compact form

Veff(φ2) = 3
1024π2

(
g4

1 + 2g2
1g

2
2 + 3g4

2

)
φ4

2

(
log φ2

2
〈φ2〉2

− 1
2

)

= 3
64π2

(
2m4

W +m4
Z

) φ4
2

〈φ2〉4

(
log φ2

2
〈φ2〉2

− 1
2

)
(3.26)

where we recognized the masses of the gauge bosons mW and mZ , as explained in
section 2.6.1.
While the position of the minimum itself is a free parameter in this model, we can
predict relationships between effective masses. The effective mass of the Higgs particle
is given by

m2
h = dVeff

dφ2
2

∣∣∣∣∣
φ2=〈φ2〉

= 3
8π2

(
2m4

W +m4
Z

) 1
〈φ2〉2

= 3g2
2

32π2
2m4

W +m4
Z

m2
W

. (3.27)

Substituting the experimental values of the W and Z boson masses we arrive at

mh = 9.7 GeV. (3.28)

Comparing this result to the experimental value of the Higgs mass [21]

mexp
h = (125.1± 0.3) GeV (3.29)
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shows a big discrepancy. This is no surprise: we neglected contributions of the fermions
and since the top quark acquires the biggest effective mass from the Higgs mechanism
it also gives the strongest contribution to the Higgs mass.
Nevertheless, this calculation was worth doing - it gave us a general idea how to find
estimations for the effective Higgs mass. There will be only slight modifications to the
above calculation necessary when dealing with more realistic models.

Let us recapitulate what we have been doing. We first calculated the effective po-
tential of an interacting theory in the loop expansion. We renormalized the theory at
the exact position of the minimum, making renormalization improvement unnecessary,
since it will only effect the result significantly at field values away from the renormal-
ization scale. We then forced this scale to actually be the minimum of the potential,
leading to a condition relating the couplings at that scale.
Looking at this condition (3.23), there are only two self-consistent ways of solving it:
we can assume either λ ∼ λ2, rendering perturbation theory invalid, or λ ∼ g4

i . The
second choice corresponds to a resorting of perturbation theory. Instead of the typical
loop expansion we perform an expansion in powers of the gauge couplings - even though
the λ2 contribution comes from a one-loop diagram, it is still much smaller than the
e4 contributions and can therefore be neglected.
After imposing this hierarchy on the couplings, we were able to express the Higgs mass
predicted by this model in terms of the masses of the electroweak gauge bosons. We
will perform the calculations in more complicated models in exactly the same way.

3.3 Scalefree Standard Model
As mentioned in the previous section, we can not neglect the influence of fermionic
fields in a realistic model. Since all fermions give identical contributions to the effec-
tive potential that differ only in their respective Yukawa coupling, we can collect the
influences of all fermions in a single effective Yukawa interaction. Since the top Yukawa
coupling is by far the biggest, this effective Yukawa coupling can be reasonably well
approximated by the coupling of the top.
The Lagrangian that we will use to study the properties of the Scalefree Standard
Model is therefore given by

LSFSM = LSFET + iQ̄3γµ∂µQ
3 + it̄Rγ

µ∂µtR + ib̄Rγ
µ∂µbR − yt(Q̄3H̃tR + h.c), (3.30)

where LSFET is the Lagrangian of the Scalefree Electroweak Theory discussed in the
last section and following the conventions from chapter 2

Q3 =
(
tL
bL

)
(3.31)

and H̃ = iσ2H
∗. It makes no difference if we include couplings of the top quark to

the gauge bosons, since they will not influence the effective potential in the one-loop
approximation.
After expanding the Higgs field around its vacuum expectation value the relevant con-
tribution from the top quark is

L1-loop, top = − yt√
2
φ̂2ψ̄tψt (3.32)
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with

ψt =
(
tL
tR

)
. (3.33)

Since the quark fields are Grassmann valued, the Gaussian integral will give not an
inverse determinant, as argued in section 2.8.4, but the determinant itself, leading to
the contribution

Veff, top(φ2) = − 3y4
t

64π2φ
4
2

(
ln φ

2
2
µ2 −

3
2

)
. (3.34)

The factor of three comes from the fact that there are three colors of quarks, coupling
them to the strong interaction.
The rest of the effective potential stays the same as in (3.20). Again we choose µ to be
the position of the extremum of the effective potential, in order to achieve the optimal
behaviour of the perturbation series. The consistency condition (3.22) now reads

λ = 11
256π2 (g4

1 + 2g2
1g

2
2 + 3g4

2 − 16y4
t + 64λ2). (3.35)

With the same argument as in the section above we enforce a hierarchy of couplings
in order to arrive at a result can be trusted perturbatively. The effective potential is
then given by

Veff(φ2) = 3
64π2

(
2m4

W +m4
Z − 4m4

t

) φ4
2

〈φ2〉4

(
ln φ2

2
〈φ2〉2

− 1
2

)
. (3.36)

From this we can extract the effective mass of the Higgs boson and substitute experi-
mental values for the couplings to arrive at

m2
h = d2Veff

dφ2
2

∣∣∣∣∣
φ2=〈φ2〉

= 3
8π2

(
2m4

W +m4
Z − 4m4

t

) 1
〈φ2〉2

= 3g2
2

32π2
2m4

W +m4
Z − 4m4

t

m2
W

≈ −1300GeV2. (3.37)

Since we find a negative value for the Higgs mass squared, this extremum of the effective
potential is actually not a minimum but a maximum. While this field value would solve
the classical equation of motion derived from the effective action, the solution would
be unstable and not represent the vacuum solution, which is defined to be the absolute
minimum of the effective potential.
This renders the scalefree Standard Model unfit to describe the real world. It does
not however mean that this model is entirely inconsistent - of course it is possible to
arrange for a set of mass values in which the extremum we found above is actually
a minimum. But those mass values do not fit with the ones that are known from
experiments. Alternatively one could start with the Standard Model couplings and an
arbitrary scalar coupling λ at the scale of the Higgs vacuum and evolve them using the
renormalization group equation until (3.35) is
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3.4 The Conformal Standard Model
In this section we are going to apply the developed formalism to the Conformal Stan-
dard Model as it was suggested by Meissner and Nicolai [7]. The model is described
by the following Lagrangian

LCSM = Lkin + LYuk − V (H,S) (3.38)

with kinetic terms for the SM fields as well as one new complex scalar S that does not
participate in the SM gauge interactions, Yukawa couplings of the SM fermions to the
Higgs field H and a scalar potential

V (H,S) = λ1(H†H)2 + λ12(H†H)(S†S) + λ2(S†S)4. (3.39)

While there are no explicit mass scales in this model, the portal coupling between the
Higgs field and the new scalar can still act as a mass term for the Higgs and trigger
the electroweak symmetry breaking, should S develop a vacuum expectation value.
We simply adapt the formalism developed in chapter 2 to the situation of two scalar
fields by expanding both of them around classical fields

H = 1√
2

(
φ1 + iψ1

φ̂2 + φ2 + iψ2

)
S = 1√

2
(
Ŝ1 + S1 + iS2

)
. (3.40)

The Lagrangian containing all one-loop terms is then given by

L1-loop = −λ1

4 φ̂
4
2 −

λ12

4 φ̂2
2Ŝ

2
1 −

λ2

4 Ŝ
4
1 −

1
2ΦT

 D Mµ P

M †
µ ∆̄µν 0

P † 0 DS


︸ ︷︷ ︸

=:Σ

Φ− yt√
2
φ̂2ψ̄tψt,

(3.41)

where

D =


�+ λ1φ̂

2
2 + λ12

2 Ŝ
2
1 0 0 0

0 �+ 3λ1φ̂
2
2 + λ12

2 Ŝ
2
1 0 0

0 0 �+ λ1φ̂
2
2 + λ12

2 Ŝ
2
1 0

0 0 0 �+ λ1φ̂
2
2 + λ12

2 Ŝ
2
1

 ,

Mµ =


0 −1

2g2φ̂2∂µ 0 0
0 0 0 0

−1
2g2φ̂2∂µ 0 0 0

0 0 1
2g2φ̂2∂µ −1

2g1φ̂2∂µ

 , P =


0 0

λ12φ̂2Ŝ1 0
0 0
0 0

 ,

∆̄µν =


∆W
µν

g2
2
4 φ̂

2
2gµν 0 0 0

0 ∆W
µν −

g2
2
4 φ̂

2
2gµν 0 0

0 0 ∆W
µν −

g2
2
4 φ̂

2
2gµν

g1g2
4 φ̂2

2gµν

0 0 g1g2
4 φ̂2

2gµν ∆B
µν −

g2
1
4 φ̂

2
2gµν

 ,

DS =
(
�+ 3λ2Ŝ

2
1 + λ12

2 φ̂
2
2 0

0 �+ λ2Ŝ
2
1 + λ12

2 φ̂
2
2

)
(3.42)
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with

∆(α)
µν = −

(
gµν�−

(
1− 1

ξα

)
∂µ∂ν

)
(3.43)

and the vector built of all quantum fields

Φ =
(
φa ψb W i

µ Bµ Sc
)
. (3.44)

We now construct the effective potential from the determinant of Σ and find the one-
loop contribution to be

Veff,1-loop − Vdivergent = 1
64π2

(
6m4

A

(
ln m

2
A

µ2 −
5
6

)
+ 3m4

B

(
ln m

2
B

µ2 −
5
6

)

+m4
C+

(
ln m

2
C+
µ2 −

3
2

)
+m4

C−

(
ln m

2
C−
µ2 −

3
2

)

+ 2m4
D+

(
ln m

2
D+
µ2 −

3
2

)
+ 2m4

D−

(
ln m

2
D−
µ2 −

3
2

)

+ m4
E+

(
ln m

2
E+
µ2 −

3
2

)
+m4

E−

(
ln m

2
E−
µ2 −

3
2

)

+ m4
F

(
ln m

2
F

µ2 −
3
2

)
− 3m4

T

(
ln m

2
T

µ2 −
3
2

))
(3.45)

where

m2
A = 1

4g
2
2φ

2, m2
B = 1

4(g2
1 + g2

2)φ2,

m2
C± = 1

4

(
(6λ1 + λ12)φ2 + (6λ2 + λ12)S2 ±

√
((6λ1 − λ12)φ2 − (6λ2 − λ12)S2)2 + 4λ2

12φ
2S2

)
,

m2
D± = 1

4

(
2λ1φ

2 + λ12S
2 ±

√
(2λ1φ2 + λ12S2) (2λ1φ2 + λ12S2 − ξWg2

2φ
2)
)
,

m2
E± = 1

4

(
2λ1φ

2 + λ12S
2 ±

√
(2λ1φ2 + λ12S2) (2λ1φ2 + λ12S2 − (ξBg2

1 + ξWg2
2)φ2)

)
,

m2
F = 1

4
(
2λ2S

2 + λ12φ
2
)
, m2

T = y2
t

2 φ
2. (3.46)

If we would follow the strategy that was developed in the previous sections, we would
now use counterterms in order to fulfill the on-shell renormalization conditions

0 = ∂2Veff
∂φ2

∣∣∣∣∣
φ=0,S=0

= ∂2Veff
∂S2

∣∣∣∣∣
φ=0,S=0

λ1 = 1
3!
∂4Veff
∂φ4

∣∣∣∣∣
φ=〈φ〉,S=〈S〉

λ2 = 1
3!
∂4Veff
∂S4

∣∣∣∣∣
φ=〈φ〉,S=〈S〉

λ12 = ∂4Veff
∂φ2S2

∣∣∣∣∣
φ=〈φ〉,S=〈S〉

(3.47)
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but this is not possible due to the complicated structure of the effective potential. We
would need to bring it in a form like

Veff = V +
∑
i

cim
4
i

(
log m

2
i

m̂2
i

− bi
)

(3.48)

where the m̂i are equal to the field-dependent mi evaluated at the actual minimum

m̂i = mi|φ=〈φ〉,S=〈S〉 , (3.49)

so that all the logarithmic contributions cancel at the location of the minimum.
This is impossible because of the terms involving square roots, namely m2

C±, m2
D± and

m2
E±, which are not available as counterterms. This fact does not spoil the renormal-

izability of the theory, since all of those square roots cancel in the divergent piece of
the effective potential

εVdivergent = − 1
64π2

(
6m4

A + 3m4
B +m4

C+ +m4
C− + 2m4

D+

+2m4
D− +m4

E+ +m4
E− +m4

F − 4m4
t

)
(3.50)

but it stops us from proceeding in the usual way.

3.4.1 Imposing the hierarchy of couplings
There is a way out of this: instead of deriving that the hierarchy λ ∼ g4 is the
only consistent choice to solve a consistency condition like (3.23) we just impose the
hierarchy by hand2.
This means that inspired by the previous sections, we assume that all scalar couplings
are similar in size to the fourth power of the gauge couplings

λi ∼ g4
j . (3.51)

This greatly simplifies the effective potential, leaving only the following terms

Veff(φ, S) = λ1

4 φ
4 + λ12

4 φ2S2 + λ2

4 S
4 + 3

64π2

(
2m4

W +m4
Z − 4m4

t

) φ4

〈φ〉4

(
ln φ2

〈φ〉2
− 25

6

)
(3.52)

in the on-shell renormalization scheme defined by (3.47). Since all diagrams involving
internal S fields have effectively been pushed to higher loop order, there are only
logarithmic corrections involving the Higgs field.
To make sure that (〈φ〉, 〈S〉) is actually the minimum of the effective potential, we
demand

0 =
(
∂Veff
∂φ
∂Veff
∂S

)∣∣∣∣∣
φ=〈φ〉, S=〈S〉

(3.53)

2An alternative way of arriving at the hierarchy is to compare the size of the different terms
appearing in the effective potential. For the terms that involve squares of scalar couplings to be of
the same order of magnitude as the tree level potential, the corresponding logarithm would need to be
of the order of 1

λ , which is outside of the perturbative regime. Therefore, the quantum contributions
that influence the position of the vacuum must come from the gauge couplings. This argument is
much more vague though.
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leading to

λ1〈φ〉4 + λ12

2 〈φ〉
2〈S〉2 = 11

16π2

(
2m4

W +m4
Z − 4m4

t

)
λ12

2 〈φ〉
2〈S〉2 + λ2〈S〉4 = 0. (3.54)

Since this model involves three scalar couplings, it has more freedom than the previous
models. We can use the equations (3.54) to constrain two scalar couplings only. We
choose to fix λ12 and λ2 and write the effective potential as

Veff(φ, S) =λ1

4 〈φ〉
4
(
φ2

〈φ〉2
− S2

〈S〉2

)2

+ 3
64π2

(
2m4

W +m4
Z − 4m4

t

)
×

×

 φ4

〈φ〉4

(
ln φ2

〈φ〉2
− 1

2

)
− 11

3

(
φ2

〈φ〉2
− S2

〈S〉2

)2
 . (3.55)

Now that we have two scalar fields with identical quantum numbers, the mass eigen-
states will in general contain some mixing of the fields. We have to diagonalize the
mass matrix

M =
 ∂2

∂φ2
∂2

∂φ∂S
∂2

∂φ∂S
∂2

∂S2

 Veff|φ=〈φ〉,S=〈S〉 . (3.56)

It reads explicitly

M =
 −8

3m
2
0 + 2λ1〈φ〉2 11

3 m
2
0
〈φ〉
〈S〉 − 2λ1

〈φ〉3
〈S〉

11
3 m

2
0
〈φ〉
〈S〉 − 2λ1

〈φ〉3
〈S〉 −

11
3 m

2
0
〈φ〉2
〈S〉2 + 2λ1

〈φ〉4
〈S〉2

 (3.57)

where m2
0 is the mass squared of the Higgs boson in the scalefree Standard Model

m2
0 = 3

8π2

(
2m4

W +m4
Z − 4m4

t

) 1
〈φ〉2

(3.58)

which we have found to be negative after the SM values for the gauge boson and fermion
masses are substituted.
From this matrix we can derive the formulae for the mass eigenvalues

m2
1/2 = −4

3m
2
0

(
1 + 11

8
〈φ〉2

〈S〉2

)
+ λ1〈φ〉2

(
1 + 〈φ〉

2

〈S〉2

)

±

√√√√(4
3m

2
0

(
1 + 11

8
〈φ〉2
〈S〉2

)
− λ1〈φ〉2

(
1 + 〈φ〉

2

〈S〉2

))2

+m2
0
〈φ〉2
〈S〉2

(11
3 m

2
0 − 2λ1〈φ〉2

)
.

(3.59)

We want to show that as soon as we substitute the SM mass values, one or both of
those eigenvalues become negative, indicating again, that the extremum of the effective
potential would be a maximum and not a minimum. This can be proven without doing
any numerical calculations.
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First, let’s consider the case in which λ1 is bigger than zero. Looking at the determinant
of the mass matrix

m2
1m

2
2 = detM = m2

0
〈φ〉2

〈S〉2
(
−11

3 m
2
0 + 2〈φ〉2λ1

)
(3.60)

we see that it is negative when λ1 is positive, sincem2
0 is negative in the SM. This means,

that one of the eigenvalues has to be negative in this case, rendering the extremum a
saddle point.
Clearly, the determinant is going to turn positive if

λ1〈φ〉2 <
11
6 m

2
0. (3.61)

If we check the trace of the mass matrix for this case, we find

m2
1 +m2

2 = tr M = −4
3m

2
0

(
1 + 11

8
〈φ〉2

〈S〉2

)
+ λ1〈φ〉2

(
1 + 〈φ〉

2

〈S〉2

)

< −4
3m

2
0 + 11

6 m
2
0 = m2

0 (3.62)

implying again that at least one of the eigenvalues must be negative, since m2
0 is

negative. This completes the proof that independently of the sign of λ1, at least one
of the mass eigenvalues will be negative, implying that the effective potential will be
unstable in the corresponding direction. Again, this model can not predict the vacuum
state of the Standard Model consistently.
When doing a higher order calculation, one could simply absorb the corrections into
the value of m2

0.

3.4.2 Comments on the Conformal Standard Model
When Meissner and Nicolai studied this model they reported on a set of values that
leads to a minimum of the one-loop effective potential which seems to be similar to the
Standard Model vacuum [7]. However, they did not enforce the hierarchy of couplings
and their result is therefore not viable once higher orders of perturbation theory are
considered. This is also reflected by the large logarithms that appear in their numerical
solution. They found a minimum for

ln 〈φ〉
2

µ2 ≈ −24, λ1 = 3.4, (3.63)

placing the combination λ ln 〈φ〉
2

µ2 far outside of the perturbative range. We take this as
further evidence that it makes sense to impose the hierarchy of couplings even though
we can not strictly prove that it has to hold, as in the previous models.

We also want to comment on the possibility of different hierarchies. We have sim-
ply taken all scalar couplings to be surpressed against the gauge couplings. Clearly, λ1
and λ2 can’t be too big because this would resemble the original case that Coleman
and Weinberg discussed in which there are no radiatively generated expectation values.
Nevertheless, we could imagine a case in which there is a hierarchy according to

λ1,2 ∼ λ2
12. (3.64)
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Notice though that λ12 must necessarily be negative in order to induce the negative
mass-squared term for the Higgs boson. This would again push all minima of the effec-
tive potential out of the perturbative regime, since we had to balance terms according
to

λ12 ∼ g4
i ln φ

2

µ2 . (3.65)

Thus, for both λ12 ∼ gi and λ12 ∼ g2
i we could only find minima at field values which

lead to large logarithms. This leads us to believe that the only consistent choice is the
one where all scalar couplings are supressed compared to the gauge couplings.

3.5 The ’Minimal’ Conformal Standard Model
In this section we will show that there is actually a modification of the Standard Model
with the desired properties: a classically scale-invariant model, whose effective poten-
tial has a minimum that allows for effective masses which fit with observations.
Since this is in a sense the simplest version of such a model, we will call it the Minimal
Conformal Standard Model (MCSM).
Numerical investigations of the CSM from the previous section for some general choices
of the parameters λ1 and 〈S〉 show that the direction in field space that corresponds
to the physical S-field is generally going to be unstable.
We can improve this behaviour by adding a positive contribution to the effective po-
tential, which can be achieved by an additional gauge field that only couples to S.
Since the Lagrangian of the CSM is already invariant under a global U(1)-symmetry,
acting according to

S → eiαS, (3.66)

it makes sense to gauge this symmetry in order to arrive at a minimal amount of new
fields. Accordingly, the full Lagrangian for this model is given by

LMCSM = Lkinetic + LYukawa − V (H,S)

Lkinetic =− 1
4

∑
F∈{Wa,B,D}

tr (FµνF µν) + (DµH)†DµH

+ (DµS)†DµS +
∑

ψ∈{Q,L,eR,νR,uR,dR}
iψ̄iγµDµψi

LYukawa = Y d
ijQ̄

iHdjR + Y u
ij Q̄

iH̃ujR + Y e
ijL

iHejR

V (H,S) = λ1
(
H†H

)2
+ λ12

(
H†H

) (
S†S

)
+ λ2

(
S†S

)2
(3.67)

with the same conventions as in chapter 2. Again, terms involving the strong interaction
have been left out, as they only appear at higher loop levels.
The covariant derivative couples S to the new gauge field Dµ according to

DµS = (∂µ + igDDµ)S, (3.68)

inducing cubic and quartic interactions. Because the new gauge field does not interact
directly with the fields of the Standard Model we call it a ‘dark’ photon.
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3.5.1 Minimizing the effective potential
As usual we expand the scalar fields around classical field values and arrive at the
Lagrangian containing only terms relevant to one loop

L1-loop = −λ1

4 φ̂
4
2 −

λ12

4 φ̂2
2Ŝ

2 − λ2

4 Ŝ
4 − 1

2ΦTΣΦ− yt√
2
φ̂2ψ̄tψt, (3.69)

where Φ is the vector formed from all bosonic quantum fields

Φ =
(
φa ψa W a

µ Bµ Sa Dµ

)T
. (3.70)

Here, Σ is the matrix

Σ =


DH Mν P 0
M †

µ ∆̄H
µν 0 0

P † 0 DS Nν

0 0 N †µ ∆̄D
µν

 (3.71)

with

DH =


�+ λ1φ̂

2
2 + λ12

2 Ŝ
2
1 0 0 0

0 �+ 3λ1φ̂
2
2 + λ12

2 Ŝ
2
1 0 0

0 0 �+ λ1φ̂
2
2 + λ12

2 Ŝ
2
1 0

0 0 0 �+ λ1φ̂
2
2 + λ12

2 Ŝ
2
1

 ,

Mµ =


0 −1

2g2φ̂2∂µ 0 0
0 0 0 0

−1
2g2φ̂2∂µ 0 0 0

0 0 1
2g2φ̂2∂µ −1

2g1φ̂2∂µ

 , P =


0 0

λ12φ̂2Ŝ1 0
0 0
0 0

 ,

∆̄H
µν =


∆W
µν −

g2
2
4 φ̂

2
2gµν 0 0 0

0 ∆W
µν −

g2
2
4 φ̂

2
2gµν 0 0

0 0 ∆W
µν −

g2
2
4 φ̂

2
2gµν

g1g2
4 φ̂2

2gµν

0 0 g1g2
4 φ̂2

2gµν ∆B
µν −

g2
1
4 φ̂

2
2gµν

 ,

DS =
(
�+ 3λ2Ŝ

2
1 + λ12

2 φ̂
2
2 0

0 �+ λ2Ŝ
2
1 + λ12

2 φ̂
2
2

)
, Nµ =

(
0

−gDŜ2
1∂µ

)
∆̄D
µν = ∆D

µν − g2
DŜ

2
1gµν (3.72)

where ∆(α)
µν is defined by (3.43). Calculating the determinant of this 26 × 26 matrix,

we find the effective potential

Veff(φ, S) = λ1

4 φ
4 + λ12

4 φ2S2 + λ2

4 S
4 + 1

64π2

∑
i

cim
4
i

(
ln m

2
i

µ2 + bi

)
(3.73)
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with

m2
A = g2

2
4 φ

2, m2
B = (g2

1 + g2
2)

4 φ2, m2
C = g2

DS
2,

m2
E± = 1

4

(
(6λ1 + λ12)φ2 + (6λ2 + λ12)S2 ±

√
((6λ1 − λ12)φ2 − (6λ2 − λ12)S2)2 + 4λ2

12φ
2S2

)
m2
F± = 1

4

(
2λ2S

2 + λ12φ
2 ±

√
(2λ2S2 + λ12φ2)2 − ξD (4λ2g2

DS
4 + 2λ12g2

Dφ
2S2)

)
,

m2
G± = 1

4

(
2λ1φ

2 + λ12S
2 ±

√
(2λ1φ2 + λ12S2)2 − (ξBg2

1 + ξWg2
2) (4λ1φ4 + 2λ12φ2S2)

)
,

m2
I± = 1

4

(
2λ1φ

2 + λ12S
2 ±

√
(2λ1φ2 + λ12S2)2 − ξWg2

2 (4λ1φ4 + 2λ12φ2S2)
)
,

m2
T = y2

t

2 φ
2. (3.74)

as well as

cA = 6, cB = 3, cC = 3

cE = cF = cG = 1 = 1
2cI , cT = −12

bA = bB = bC = −5
6

bE = bF = bG = bI = bT = −3
2 . (3.75)

As usual we have also dropped the hats and indices of the classical fields φ and S for
legibility.
Submitting this effective potential to the same hierarchy of couplings

λi ∼ g4
j (3.76)

where the scalar couplings are repressed compared to the gauge couplings, many terms
drop out and we are left only with the gauge boson contributions. After using counter
terms in order to enforce the renormalization conditions given in (3.47), the effective
potential reads

Veff(φ, S) = λ1

4 φ
4 + λ12φ

2S2 + λ2

4 S
4 + 3

64π2m
4
D

S4

〈S〉4

(
ln S2

〈S〉2
− 25

6

)
3

64π2

(
2m4

W +m4
Z − 4m4

t

) φ4

〈φ〉4

(
ln φ2

〈φ〉2
− 25

6

)
. (3.77)

Notice that we had to use a counter term of the form

δ′2S
4 = 3

64π2 g
4
D ln µ2

µ′2
(3.78)

to be able to choose scales for both logarithms independently. As discussed in section
2.4, this is going to introduce a second set of beta functions.
Clearly, the term containing radiative corrections by the dark photon with mass mD

gives a positive contribution to the effective mass of the dark scalar S and can therefore
potentially turn the saddle point of the Conformal Standard Model into a proper
minimum.
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To investigate if this is actually the case, we again calculate the consistency condition
for (〈φ〉, 〈S〉) to be the minimum of the effective potential

0 = dVeff
dφ

∣∣∣∣∣
φ=〈φ〉,S=〈S〉

0 = dVeff
dS

∣∣∣∣∣
φ=〈φ〉,S=〈S〉

(3.79)

leading to

λ1〈φ〉4 + λ12

2 〈φ〉
2〈S〉2 = 11

16π2

(
2m4

W +m4
Z − 4m4

t

)
λ12

2 〈φ〉
2〈S〉2 + λ2〈S〉4 = 11

16π2m
4
D. (3.80)

Solving those conditions for λ12 and λ2 and substituting those solutions in the effective
potentials gives

Veff(φ, S) = λ1

4 〈φ〉
4
(
φ2

〈φ〉2
− S2

〈S〉2

)2

+ 3
64π2m

4
D
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(
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〈φ〉2
− 1

2

)
− 11

3

(
φ2

〈φ〉2
− S2

〈S〉2

)2


(3.81)

and the mass matrix for the scalar sector reads

M2 =
 −8

3m
2
0 + 2λ1〈φ〉2

(
11
3 m

2
0 − 2λ1〈φ〉

)
〈φ〉
〈S〉(

11
3 m

2
0 − 2λ1〈φ〉

)
〈φ〉
〈S〉

3g2
D

32π2m
2
D +

(
−11

3 m
2
0 + 2λ1〈φ〉2

)
〈φ〉2
〈S〉2

 (3.82)

with eigenvalues
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. (3.83)

While this is a rather long formula, we can quickly see one important detail: in the
limit of a large mass for the dark photon, we can expand the square root and the mass
eigenvalues take the form

m2
h = −8

3m
2
0 + 2λ1〈φ〉2,

m2
S = 3g2

D

32π2m
2
D. (3.84)

This clearly shows that as advertised, there is no finetuning problem because in this
limit the heavy degrees of freedom in the dark sector do not contribute to the mass of
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the Higgs boson.
Note that (3.83) contains three independently adjustable parameters, λ1, gD and mD.
m0 and 〈φ〉 are fixed by measurements, while 〈S〉 is not independent from gD and mD.
There is one additional experimental constraint: one mass should be equal to the
measured Higgs mass [21]

mh = 125.09 GeV. (3.85)

Because we will not learn much from looking at the analytical expression, we will
analyze the situation further using a numerical parameter study.

3.5.2 Numerical study of the mass eigenvalues
We want to study the mass eigenvalues of the two scalar fields in the Minimal Confor-
mal Standard Model numerically. The values are given in (3.83) and depend on three
parameters: the scalar quartic coupling of the Higgs field λ1, the gauge coupling of the
dark photon gD and its mass mD. We plot the mass eigenvalues for different choices of
the couplings λ1 and gD as functions of mD.
In order to not disturb the hierarchy of couplings we used to calculate the effective
potential in the previous subsection, we will let gD vary from 0.5 to 0.7 and λ1 from
0.05 to 0.15.

Looking at figure 3.1, the first thing that catches the eye is that there are wide ranges
of mD in which one of the masses does not change very strongly. We will call those
the plateau areas. The heigth of those plateaus depends solely on λ1 and is hardly in-
fluenced by gD. While m1 is bounded from above by the plateau, m2 is bounded from
below. It is very interesting that the mass eigenstates seem to change their identity at
the point where they nearly meet. This idea will be corroborated once we look at the
mixing angle between mass and interaction eigenstates.
The next observation is the fact that the dark photon mass mD can not be arbitrarily
small: there is a minimum mass of about 230 GeV. For lower masses, the effective mass
squared of the dark scalar turns negative, rendering the extremum of the effective po-
tential a saddle point. The limit in which mD goes to zero is equivalent to the limit in
which gD goes to zero, effectively removing the gauge coupling again. This just leads
back to the Conformal Standard Model discussed in the previous section, for which we
showed that there is no minimum resembling the Standard Model.

We also see that for big parts of the parameter space, one of the two mass eigen-
values is mostly independent from the scalar coupling λ1 while the other is mostly
independent from the dark photon mass mD. As will be seen when we look at the mix-
ing angle of the two scalar fields, as long as the eigenvalues are not too close, the field
whose mass varies with mD is mostly the dark scalar, while the other field is mostly
the Higgs field.
It is clear that independently of the value of λ1, there is always a value for mD which
sets one of the two masses to the measured Higgs mass. If the plateau is higher than
the Higgs mass, m1 will necessarily pass mh on its way there. Conversely, for a plateau
below the Higgs mass, m2 will at one point be equal to mh. We will come back to this
observation at the end of this section.
As can be seen from figure 3.1, there is also a particular value of λ1 ≈ 0.09, where the
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Figure 3.1: Mass Eigenvalues of the Minimal Conformal Standard Model depending
on the dark photon mass for dark gauge coupling gD = 0.6 (big graphic) as well as for
varying values of gD ∈ {0.5, 0.6, 0.7} and varying values of the quartic Higgs coupling
λ1 ∈ {0.05, 0.1, 0.15}.
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plateau lies very close to 125 GeV. In this case there is a wide range of possible values
for the other mass, both lighter and heavier than the Higgs boson.

From figure 3.1a-c we learn two things. Firstly, neither the minimum mass of the
dark photon nor the value at the plateaus vary much with the gauge coupling gD. And
secondly, what does vary is the slope of the curve corresponding to the dark scalar
and therefore the region of maximal mixture between the two fields which is given by
the point at which the curves of the two eigenstates are closest to each other. This
near-intersection point’s position is influenced both by gD, as it sets the slope of the
dark scalar curve, as well as λ1, because it influences the height of the plateau.

Since the mass matrix is not diagonal in the basis of φ and S, there is also some
mixing between those interaction eigenstates to form the mass eigenstates. We can
explicitly write this as (

ϕ1
ϕ2

)
=
(

cosα − sinα
sinα cosα

)(
φ
S

)
, (3.86)
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where ϕi is the field corresponding to the eigenvalue mi. When we want to know how
closely a mass eigenstate resembles one of the interaction eigenstates, it makes sense to
look at the corresponding coefficient squared. This is the weight with which interaction
eigenstate decay channels contribute to cross sections and decay widths of the mass
eigenstates. We therefore give a parametric plot of (m1, cos2 α) and (m2, sin2 α) as
functions of mD ∈ [220, 4000] GeV in figure 3.2. This shows, depending on the mass
eigenvalue, how closely the respective particle looks like a Higgs particle in experiments.

Figure 3.2: Parametric plot of the squared projection amplitude of the mass eigenstates
on the Higgs-like interaction eigenstate for an exemplary choice of parameters λ1 = 0.1,
gD = 0.6. The arrows indicate the direction of increasing mD.
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The graphic is not completely intuitive. It is best to compare it to figure 3.1. To
make figure 3.2 easier to understand we have depicted the direction of increasing mD

on the parametric curves with arrows. The curves start for mD = 220 GeV; the curve
for m1 starts at 0 GeV, while the curve for m2 starts at 130 GeV. Then, with increasing
mD, m1 starts to increase as well, while m2 stays at the plateau. As m1 approaches 130
GeV, m2 begins to increase. Finally m1 plateaus at 130 GeV and m2 increases without
bounds.
As can be seen from the graphic, there is minimal mixing in the plateau areas where
one of the mass eigenvalues stays at around 130 GeV. The mass eigenstate with the
plateau mass is nearly identical to the Standard Model Higgs boson.
On the other hand there appears maximal mixing at the position where the two eigen-
masses are closest and the fields change their identity. Up to the value of the plateau
mass, this description is completely general for arbitrary λ1 and gD.
To summarize this discussion on mixing: the eigenstate that behaves most like the
Standard Model Higgs with respect to interactions is the one with mass around the
plateau. Only in the region where both masses are close to the plateau, there exists
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considerable mixing between the interaction eigenstates.

Now we can go back to matching one of the two mass values to the Higgs mass.
We argued that it is possible for arbitrary λ1 and gD to find a value for mD such that
one of the mass eigenvalues is equal to 125 GeV. But from the above discussion of the
mixing angle we see that this can not work if the value is not close to the plateau, since
this will make the corresponding eigenstate predominantly consist of the dark scalar.
The only possibility to let the field with mass equal to 125 GeV resemble the Standard
Model Higgs experimentally is by letting it be the mass eigenstate at the plateau. This
gives us a prediction for the Higgs quartic coupling: If mS < mH we find

λ1 = (0.089± 0.006) (3.87)

where the uncertainty mostly comes from the fact that the plateau left from the meeting
of the curves is not as flat as it looks like. It was estimated by varying λ1 such that the
curve of the mass eigenvalues is maximally or minimally 125 GeV respectively. The
uncertainty of the experimental mass values for the gauge bosons and the top quark
has no significant influence.
For mS > mH the plateau is much flatter and a little bit higher and we find

λ1 = (0.094± 0.004). (3.88)

Both of those values differ significantly from the Standard Model quartic coupling,
given by [19]

λ1 = m2
h

2v2 = 0.1292± 0.0006, (3.89)

indicating a way to experimentally distinguish this model from the Standard Model.

3.5.3 RGE Improvement and vacuum stability in
the MCSM

Now that we have found a consistent way to embed the Standard Model in a scale-
invariant theory with a local minimum of the effective potential, it remains the question
if this minimum is also global. If we plug arbitrary field values into the formula for
the effective potential (3.77), we will have to deal with large logarithms, rendering
perturbation theory invalid.
The way out of this is the use of the renormalization group. For regularizing a quantum
field theory one always has to introduce an arbitrary renormalization scale µ. Physical
predictions should be independent of that scale and this is reflected in the renormal-
ization group equations (RGE), that describe how the parameters of the theory change
under changes of µ. We adapt the one-scale beta functions from [23], only modified by
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the additional gauge contribution [24] and adapted to our normalization3
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with (b1, b2, b3, bD) = (41/6,−19/6,−7, 1/3) and t = lnµ. After enforcing the hierarchy
of couplings and when considering our argument (2.85) regarding the scale-dependent
counter term (3.78), we find two sets of beta functions
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with the same bi and t as above, as well as

16π2dλ2

ds = 6g4
D (3.92)

with s = lnµ′ and all other beta functions vanishing at the one-loop level.
The criterion that is usually used to probe the stability of the electroweak vacuum is the
sign of the quartic couplings λ1 and λ2 [25]. As argued in [23], an additional criterion
for stability in the case of λ12 < 0 is λ1 >

λ2
12

4λ2
but those criteria do not differ significantly

in the present analysis because of the smallness of λ12. As usual we will only look for
the evolution of the couplings up to the Planck scale MPl = 1.22× 1019 GeV, since we
can’t neglect contributions coming from quantum gravity at higher scales.
Because the system of differential equations (3.90) is highly non-linear, we solve it
numerically and discuss the solutions below. There is one thing we can already gain
from the equations alone: since the dark sector beta functions are completely decoupled
from the Standard Model beta functions, the stability behaviour of the Standrad Model
sector won’t depend on the initial conditionts of the dark sector. We choose gD = 0.5
at the minimum of the effective potential and mD = 1 TeV. For all the other couplings
we take initial values that are equal to the SM-values evaluated at µ = 246 GeV, as
given in section 2.9.
As we can see from figure 3.4, the model becomes unstable at around 107 GeV. In a
way we have inherited this problem from the Standard Model. The instability of the
Standard Model vacuum has been studied to great accuracy [25]. There, it was found
that the Standard Model allows a stable vacuum at the 2-loop level only for

mh > (129.4± 1.8) GeV. (3.93)
3Our λ2 differs from the convention used in [24] by a factor of 4.
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Figure 3.3: Running couplings in the Conformal Standard Model with initial parame-
ters gD = 0.5, mD = 1 TeV, λ = 0.09.

To find a stability bound for our model, we increase the initial condition for the scalar
coupling λ1 until it stays positive all the way up to the Planck scale.
We find that the scalar coupling remains positive if we tune the initial value higher
than λ > (0.110±0.003), with the uncertainty coming mostly from the mass of the top
quark. If we go back to our analysis of the Higgs mass with this value for the coupling,
we find a stability bound of

mh > (134± 2) GeV. (3.94)
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Figure 3.4: Running scalar coupling λ1 in the Conformal Standard Model with initial
parameters gD = 0.5, mD = 1 TeV, λ = 0.11.

Clearly, our stability bound fits even worse with the experimental value of the Stan-
dard Model, which is related to the fact, that the scalar coupling in this scale-invariant
model is predicted to have a smaller value for the same value of the Higgs mass. This
makes it become negative even faster than in the Standard Model.
In general, additional scalar particles can help cure the Standard Model instability be-
cause they give positive contributions to the beta function for the Higgs self-coupling
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[23]. But since our use of a multiscale perturbation theory decoupled the beta functions
of the dark sector and the Standard Model, this does not happen here.

In order to arrive at an estimation of the theoretical error of the mass bound, we
also evaluated the couplings with the full two-loop beta functions of the Standard
Model [22] which reduced the mass bound by about 4 GeV. Of course, using the beta
functions for our model in the next order of perturbation theory might change this a
little bit, but the order of magnitude will be similar.

3.5.4 Comment on multiscale renormalization
We have inserted the second renormalization scale by hand, simply by introducing a
counter term depending on it.
There is also a method in which the second scale already appears in the renormalized
Lagrangian [26]. This method actually introduces one scale per coupling constant but
it turns out that those scales don’t track the appearing logarithms in natural ways. In
an improved scheme [27] the scales are assigned to the kinetic terms. This produces
an effective potential of the same general form as (3.77). While at higher orders of
perturbation theory all three methods introduce logarithms of the form ln µ2

µ′2 to the
beta functions, it was argued in [27] that it is always possible to improve the beta
functions in a way that resums those logarithms. Since we work entirely at one-loop
we don’t encounter this problem.
Nevertheless this is something, that should be kept in mind for higher loop order
calculations, since then there might arise additional complications with this two-scale
approach.

3.6 The ‘Next-To-Minimal’ Conformal Stan-
dard Model

We have seen in the previous section that we were able to find a scale-invariant model
that resembled the Standard Model and was at least metastable by adding a complex
scalar field interacting with a dark photon. We found that while we were able to turn
the saddle point of the effective potential into a true minimum, the model turned out
to have another minimum at high fields value, similar to the Standard Model itself.

While one could argue that we set out to solve the hierarchy problem and not the
stability of the Standard Model and should not be too disturbed that we did not solve
two problems at once, the situation is at least a bit unsettling: inspired by Meissner
and Nikolai we argued that the hierarchy problem can be solved by enforcing classical
scale invariance and to fix the instability of the Standard Model, the usual argument
is to call the instability scale the ‘scale of new physics’ [28]. However, the physical
vacuum does not seem to be unstable and if our theory predicts it to be, then there
should rather be some heavy degrees of freedom which do not influence the physics at
the scales we are probing it but which change the behaviour of the model at the insta-
bility scale in order to render it stable. This is obviously at odds with our assumption
of classical scale invariance. If the only way to get rid of the instability were the in-
troduction of massive degrees of freedom, they would explicitly break scale invariance
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and we could not use it anymore to forbid the bare mass term of the Higgs boson.

Luckily there is a way out of this, again by adding a new field: a so called ‘dor-
mant’ scalar singlet which couples to the Higgs boson but does not acquire a vacuum
expectation value. As we mentioned in section 2.3.3., this scalar field does not need
to obey the hierarchy constraint and can therefore give a sizeable contribution to the
beta function of the Higgs coupling.
The Lagrangian of this "Next-To-Minimal" Conformal Standard Model reads

LNMCSM = LMCSM + 1
2∂µU∂

µU

+ λ13

2 (H†H)U2 + λ3

4 U
4 (3.95)

and to calculate the effective potential, we expand the scalar fields H and S as in
(3.40). Since we want to have scalar couplings λ13 and λ3 of sizes comparable to the
gauge couplings, we do not expand U around a non-zero classical field. The one-loop
Lagrangian is the same as in (3.41) with one extra term

L1-loop, NMCSM − L1-loop, MCSM = 1
2U

(
�+ λ13

2 φ̂2
2

)
U. (3.96)

After applying the hierarchy argument to the couplings λ1, λ12 and λ2, we arrive at
the effective potential
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with m2
U = λ13

2 〈φ〉
2. For perturbative values of λ13, i.e. values that do not lead to

Landau poles below the Planck scale, this additional contribution does not significantly
change our discussion of the mass eigenvalues, so we do not need to repeat it. Our aim
was to stabilize the electroweak vacuum and therefore we solve the beta functions for
this model, which are identical to the ones given in (3.90), up to

16π2dλ1

dt = (...) + 1
2λ

2
13 (3.98)

16π2dλ13

dt = 4λ2
13 + 12λ1λ13 −

3
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2 + g2
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)
λ13 + 6y2

t λ13 + 6λ3λ13 (3.99)

16π2dλ3

dt = 2λ2
13 + 18λ2

3. (3.100)

We have studied the evolution of the coupling constants for a range of initial param-
eters λ13 ∈ [0.38, 0.6] and λ3 ∈ [0, 0.2], while still fixing all other parameters to agree
with Standard Model measurements. Our criterion for stability is again the sign of the
quartic couplings.

As can be seen from figure 3.5, that is indeed a part of the parameter space in which
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Figure 3.5: Parameter study of the vacuum stability of the Next-To-Minimal Conformal
Standard Model. The viable region is the region in which neiter instabilities nor Landau
poles appear below the Planck scale.

neither instabilities nor Landau poles appear below the Planck scale.
The allowed range of parameters translates to a range of masses for the scalar U

110 GeV . mU . 130 GeV. (3.101)

For those values, this model containing both a scalar S with gauged U(1)′-symmetry
and a dormant scalar U is able to accomodate a stable SM-like vacuum.

Interaction terms in the Lagrangian that break the Z2-symmetry U → −U like ε3U3

or ε1(H†H)U are forbidden by classical scale invariance because the εi would introduce
explicit scales. Combined with the fact that U does not acquire a vacuum expecta-
tion value, this makes U a stable particle. It can only annihilate and produce Standard
Model particles via the Higgs portal, making it a viable candidate for cold dark matter.



Chapter 4
Conclusion

One suggestion how to fix the hierarchy problem, which extensions of the Standard
Model might face, is to impose classical scale invariance [7]. The vacuum expectation
value of the Higgs field might then be generated radiatively by the Coleman-Weinberg
mechanism [8]. As was argued by Coleman and Weinberg as well as Andreassen, Frost
and Schwartz [15], it is necessary to enforce a hierarchy of couplings to allow for a per-
turbatively consistent generation of vacuum expectation values at the quantum level.
We have applied this idea of a hierarchy between gauge and scalar couplings to a set of
classically scale-invariant theories in order to find a model which resembles the Stan-
dard Model. As we have pointed out, this does not work in a scalefree Standard Model
without any additional fields since the heavy top quark has a destabilizing effect on the
vacuum. Our aim was therefore to find the minimal scalefree extension of the Standard
Model for which there actually is a vacuum state which resembles the Standard Model
vacuum.

We showed that the so called Conformal Standard Model, which is an extension of
the Standard Model by one ’dark’ scalar field is not able to accomodate the Standard
Model vacuum. The corresponding extremum of the effective potential is necessarily
unstable in the direction of the dark scalar, when one enforces the hierarchy of cou-
plings.
By introducing an additional gauge symmetry under which only the dark scalar trans-
forms we were able to locally stabilize the model, such that its effective potential
possesses a minimum which fits the Standard Model vacuum. The only necessary
condition for this was a lower bound for the mass of the new gauge boson

mD > 220 GeV. (4.1)

Apart from this we found minima for a wide range of masses for the dark scalar. Since
we observed a mixing between the Higgs boson and the dark scalar, a signature of our
model would be a clone of the Higgs resonance at the mass of the dark scalar [7].
Because of the mixing between the Higgs and the dark scalar, both the dark photon
and scalar will be unstable, though depending on the size of the mixing angle they
might have very long lifetimes.

The minimum of the effective potential turned out to be only a local minimum, when
we investigated the model further using the renormalization group equations. Simi-
larly to the Standard Model, our ’Minimal Conformal Standard Model’ develops an
additional minimum at very high field values - this suggests, that it is again only an
incomplete model which has to be modified.
To make sure that this is not at odds with our assumption of classical scale invariance,
we finally showed that there is a further extension by a dormant scalar which allows for
a range of parameters that stabilize the Standard Model vacuum. As such, the model
could stay without any modifications all the way up to the Planck scale.

56
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Table 4.1: Comparison of the models we discussed. The abbreviations mean:
HP: Is the hierarchy problem avoided?
EP: Does the effective potential have a minimum that resembles the Standard Model?
VS: Is this minimum the stable vacuum state of the model?
DM: Is there a stable dark matter candidate?

Model Particle content HP EP VS DM

SM
Strong and Electroweak gauge bosons
3 Generations of Quarks and Leptons

Higgs boson with negative mass squared
7 3 7 7

SFSM SM without Higgs mass term 3 7 - 7

CSM SFSM + scalar singlet 3 7 - 7

MCSM CSM + dark photon 3 3 7 7

NMCSM MCSM + dormant scalar 3 3 3 3

This ’Next-To-Minimal Conformal Standard Model’ only works for a quite narrow mass
region for the dormant scalar

110 . mU . 130. (4.2)

It is very interesting that the dormant scalar is stable and can therefore be considered
a candidate for cold dark matter.

In table 4.1, we summarized the models we discussed as well as their main features and
problems.

Especially the stability considerations using running couplings might be improved by
allowing additional interactions between the dark sector and the Standard Model. In
[29], a variation of our model including right-handed neutrinos is discussed. In order
to cancel all gauge-anomalies it is then necessary to identify the new gauge symmetry
with a mixture of the Standard Model U(1)Y and a new U(1)B−L symmetry. Another
possible extension might be to look at bigger gauge groups. In [30] a similar model
with a dark SU(2) gauge group was studied. Both of those modifications also lead to
globally stable minima of the effective potential. Since we were looking for the mini-
mally extended model we did not study those additional complexities in this thesis.
However, this is the reason why we called the final model the Next-to-Minimal Con-
formal Standard Model. We believe that the dark scalar field with a gauge interaction
is necessary to arrive at a vacuum state that resembles the Standard Model, while the
dormant scalar is only one possible way to stabilize the state.

The next step to check the viability of our model and any extensions of it is to inves-
tigate their phenomenology more thoroughly. It is necessary to calculate production
rates, lifetimes and cross sections and compare them to experimental data.
Furthermore, it would be interesting to see if our arguments hold up at higher loop or-
der. Especially the multi-scale renormalization theory will not stay decoupled at higher
orders and would be worth studying. We have already seen that the two-loop Standard
Model beta functions decrease the stability bound for the Higgs mass. It would there-
fore be possible that already the Minimal Conformal Standard Model becomes stable,
once higher order corrections are included.
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