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Abstract

In this thesis we investigate quantum aspects of the Green-Schwarz superstring in var-

ious AdS backgrounds relevant for the AdS/CFT correspondence, providing several

examples of perturbative computations in the corresponding integrable sigma-models.

We start by reviewing in details the construction of the type IIB superstring action in

AdS5 ⇥ S5 background defined as a supercoset sigma model, pointing out the limits of

this procedure for backgrounds – such as AdS4⇥CP3and AdS3⇥S3⇥M4 – interesting

in lower-dimensional examples of the gauge/gravity duality. For the AdS4 ⇥ CP3case

we give a thorough derivation of an alternative action, based on the double-dimensional

reduction of eleven-dimensional super-membranes in AdS4 ⇥ S7.

We then consider the light-cone gauge fixed AdS5⇥S5 and AdS3⇥S3⇥M4 Lagrangians

in an expansion about the BMN vacuum. In this setup a particularly interesting object is

the S-matrix for the scattering of worldsheet excitations in the decompactification limit.

To evaluate its elements e�ciently, inspired by the four-dimensional case we develop a

unitarity-based method for general (relativistic and not) massive two-dimensional field

theories. The outcome is a very compact formula yielding the cut-constructible part

of any one-loop two-dimensional S-matrix in terms of the tree-level one. We apply the

method to the perturbative calculation of worldsheet S-matrices in AdS5 ⇥ S5 and (via

a partially o↵-shell extension of the method) in AdS3 ⇥ S3 ⇥M4.

We also analyze the AdS light-cone gauge fixed string in AdS4⇥CP3expanded around a

“null cusp” vacuum. The free energy of this model is related to the cusp anomalous di-

mension of N = 6 Chern-Simons-Matter (ABJM) theory and, indirectly, to a non-trivial

e↵ective coupling h(�) entering all integrability-based calculations in AdS4/CFT3. We

calculate corrections to the superstring partition function of the model, thus deriving

the cusp anomalous dimension of ABJM theory at strong coupling up to two-loop order

and giving support to a recent conjecture for the exact form of h(�). Finally, we calcu-

late at one-loop the dispersion relation of excitations about the GKP vacuum. Results

are in general agreement with the predictions from integrability, up to some expected

discrepancies on which we comment.

Our successful application of unitarity-cut techniques on several examples supports

the conjecture that S-matrices of two-dimensional integrable field theories are cut-

constructible. Furthermore, our results provide valuable data in support of the quantum

consistency of the string actions - often debated due to possible issues with cancella-

tion of UV divergences and the lack of manifest power-counting renormalizability - and

furnish non-trivial stringent tests for the quantum integrability of the analyzed models.



Kurzfassung

In dieser Arbeit untersuchen wir Quanten-Aspekte des Green-Schwarz Superstrings in

verschiedenen AdS-Hintergründen, die für die AdS/CFT Korrespondenz von Bedeu-

tung sind, und geben einige Beispiele für perturbative Rechnungen in den entsprechen-

den integrablen Sigma-Modellen. Wir beginnen mit einer detaillierten Darstellung der

Konstruktion der Wirkung des Typ-IIB-Superstrings auf dem AdS5 ⇥ S5-Hintergrund,

die durch eine Supercoset-Sigma-Modell definiert wird, und zeigen die Grenzen dieser

Herangehensweise für Hintergründe – wie zum Beispiel AdS4⇥CP3 und AdS3⇥S3⇥M4

– auf, die in niedrig-dimensionalen Beispielen der Eich/Gravitations-Dualität von Inter-

esse sind. Im Falle des AdS4 ⇥ CP3-Hintergrunds geben wir eine sorgfältige Herleitung

einer alternativen Wirkung an, welche auf einer doppelten dimensionalen Reduktion von

elfdimensionalen Super-Membranen auf AdS4 ⇥ S7 beruht.

Daraufhin betrachten wir die Lichtkegel-eichfixierten Lagrangedichten auf AdS5⇥S5 und

AdS3⇥S3⇥M4 in einer Entwicklung um das BMN-Vakuum. In diesem Zusammenhang

ist die S-Matrix für die Streuung von Weltflächen-Anregungen im Dekompaktifizierungs-

Limes von besonderem Interesse. Um ihre Elemente e�zient auszuwerten, entwickeln wir

– inspiriert durch den vierdimensionalen Fall – eine auf Unitarität basierende Methode

für allgemeine, d.h. sowohl relativistische als auch nicht-relativistische, massive, zwei-

dimensionale Feldtheorien. Das Ergebnis ist eine sehr kompakte Formel, die den cut-

konstruierbaren Anteil jeder zweidimensionalen S-Matrix auf Einschleifen-Ebene durch

ihren Wert auf Baumgraphen-Niveau ausdrückt. Wir wenden diese Methode auf die per-

turbative Berechnung von Weltflächen-S-Matrizen in AdS5 ⇥ S5 und (vermittels einer

teilweisen Fortsetzung der Methode ins “o↵-shell”-Regime) in AdS3 ⇥ S3 ⇥M4 an.

Weiterhin betrachten wir den AdS-Lichtkegel eichfixierten String in AdS4⇥CP3 in einer

Entwicklung um das “null-cusp”-Vakuum. Die freie Energie dieses Modells hängt zusam-

men mit der anomalen Cusp-Dimension der N = 6 Chern-Simons-Materie (ABJM)

Theorie und indirekt auch mit einer nicht-trivialen e↵ektiven Kopplung h(�), die in

allen auf Integrabilität basierenden Rechnungen in AdS4/CFT3 auftritt. Wir berechnen

Korrekturen zur Zustandssumme des Superstring-Modells und leiten somit die anomale

Cusp-Dimension der ABJM-Theorie bei starker Kopplung bis zur Zweischleifen-Ordnung

her, wobei wir eine kürzlich vorgebrachte Vermutung über die exakte Form von h(�)

belegen. Schließlich berechnen wir auf Einschleifen-Ebene die Dispersionsrelation von

Anregungen um das GKP-Vakuum. Unsere Ergebnisse stimmen abgesehen von einigen

erwarteten Abweichungen, auf die wir eingehen, mit den Vorhersagen aus der Anwen-

dung der Integrabilität überein.

Unsere erfolgreiche Anwendung von auf Unitarität basierenden Cut-Techniken auf ver-

schiedene Beispiele stützt die Vermutung, dass die S-Matrizen zweidimensionaler, inte-

grabler Feldtheorien cut-konstruierbar sind. Weiterhin liefern unsere Ergebnisse wertvolle



Daten, die die Konsistenz der String-Wirkung auf Quanten-Niveau belegen – diese ist

aufgrund möglicher Probleme bezüglich der gegenseitigen Aufhebung von UV-Divergenzen

und des Fehlens eines auf Dimensionsanalyse basierenden Arguments für die Renormier-

barkeit oft Gegenstand von Diskussionen – und stellen nicht-triviale stringente Tests der

Quanten-Integrabilität der untersuchten Modelle dar.
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Chapter 1

Introduction

Soon after the proposal of the AdS/CFT correspondence [1, 2] the construction of super-

string theory for various AdS backgrounds became an urgent and challenging question.

For the prototypical instance of the duality, stating the equivalence of type II B super-

string theory in AdS5 ⇥ S5 background and four-dimensional N = 4 Super Yang Mills

(SYM) theory, this problem was solved in [3], where the authors – inspired by the flat

space case [4] – exploited the maximal supersymmetry of the background to construct

the superstring action as a supercoset non-linear sigma model. The convenience of this

formulation became even more manifest when it turned out to encode the classical in-

tegrability of the model [5]. Hints of the presence of an integrable structure were first

observed on the gauge theory side looking at the structure of the one-loop dilatation

operator in the planar limit [6]. The latter is realized for a SU(N) gauge theory taking

N ! 1 with the ’t Hooft coupling � = g2N kept fixed [7]. The AdS/CFT dictionary

provides a map between the two gauge theories parameters {�, N} and the string theory

ones {T, gs}, where T is the string tension, appearing as an overall factor in the Polyakov

action and gs is the string coupling, entering the genus expansion for target space string

interaction. The planar limit is then translated into the gs ! 0 limit and we are left with

one single parameter, the ’t Hooft coupling � or equivalently the string tension T . The

precise relation between � and T depends on the specific example of AdS/CFT one is to

consider, however as a general rule the two coupling are related by a monotonic function

which maps large values of � to large values of the string tension, or equivalently small

values of ↵0. This statement can be reformulated saying that AdS/CFT is a strong/weak

duality, i.e. the natural superstring perturbative expansion (↵0 ! 0, � ! 1) explores

a regime which is not accessible to the standard perturbative gauge theory (� ! 0).

The discovery of an integrable structure and the assumption of its all-loop validity have

therefore o↵ered a valuable tool for testing the conjecture and solving the model exactly.

1



Chapter 1. Introduction 2

1.1 Integrability in AdS/CFT

The first hints of an integrable structure in the context of AdS/CFT emerged in the

study of the one-loop anomalous dimension of scalar operators in N = 4 SYM [6]. In

that case Minahan and Zarembo observed that the planar one-loop dilatation operator in

the SO(6) sector is isomorphic to the Hamiltonian of a SO(6) integrable spin chain and

it can be diagonalized using the (coordinate [8] or algebraic [9]) Bethe Ansatz technique.

This observation was then extended to the full one-loop dilatation operator and to higher

loops for some sectors [10, 11, 12, 13]. At the same time the worldsheet sigma model on

AdS5 ⇥ S5 background supported by a self-dual Ramond-Ramond (RR) five-form flux

was observed to be classically integrable by constructing explicitly a Lax pair [5].

Motivated by encouraging indications coming from both sides of the duality [14, 15],

integrability was assumed to be preserved at the quantum level, allowing to formulate

an all-loop Asymptotic Bethe Ansatz (ABA) [16, 17, 18], whose solution would provide

the exact anomalous dimension of any long single-trace local gauge-invariant operator in

N = 4 SYM. Equivalently, on the string theory side an exact S-matrix for the worldsheet

excitations of the superstring in light-cone gauge was extrapolated using the o↵-shell

symmetry algebra [19], and shown to be equivalent to the gauge theory one [20].

The ABA solves the spectral problem for the case of very long operators (or very long

strings); the non-trivial generalization of this setting to include finite-size corrections

has been achieved by the introduction of the Thermodynamic Bethe Ansatz (TBA) (or

equivalently the “Y-system”) [21, 22, 23, 24, 25, 26], which then has evolved into the

successful technique of the quantum spectral curve [27].

Significant progresses in our understanding of the correspondence were also achieved by

the discovery of integrable structures for other examples of AdS/CFT. Integrability for

the AdS4/CFT3 model relating type II A superstring theory in AdS4 ⇥ CP3 1 with the

three-dimensional N = 6 super Chern-Simons theory proposed by Aharony, Bergman,

Ja↵eris and Maldacena (ABJM) [28] was pointed out soon after the original ABJM

paper [29] and already in [30] Gromov and Vieira proposed an all-loop ABA. Further

indications of the validity of such a Bethe Ansatz came from the analysis of the string

sigma model in the supercoset description [31, 32](on which we comment further in

the following) and from the exact S-matrix obtained in [33] postulating the o↵-shell

symmetry later derived by [34]. The surprising result of all this analysis is that the

integrable structure underlying the AdS4/CFT3 system is basically the same as the one

describing AdS5/CFT4, and the di↵erence resides in an interpolating function of the

coupling h(�) which we will extensively study in the following. Using this similarity

1Supported by RR four-form flux through AdS4 and RR two-form flux through a CP1 in CP3.
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between the two models significant progresses were made towards the solution of the

spectral problem [35, 36, 37, 38].

The use of integrability techniques for the AdS3/CFT2 system is more recent (for a

review see [39]) and was initiated in [40] by studying the classical integrability of the su-

perstring action in AdS3⇥S3⇥M4 backgrounds supported by RR flux (see section 2.5 for

a detailed discussion). Further indications were then collected in [41, 42]. Interestingly,

integrability turned out to be present also when the background is supported by a mix

of Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) fluxes [43]. All

these elements came from an analysis of the string theory side of the duality since in this

case, despite some recent progresses [44, 45], it is not clear how integrability plays a role

on the gauge theory side. The main peculiarity of these models, compared to the higher

dimensional relatives, is the presence in the string spectrum of massless modes, whose

treatment in two dimensions can be rather tricky. For this reason the first works on the

subject focused on the massive subsector of the AdS3⇥S3⇥T 4 and AdS3⇥S3⇥S3⇥S1,

both supported by pure RR flux [46, 47, 48, 49, 50] and mixed flux [51, 52]. Massless

modes were then included in the integrable description [53, 54, 55, 56], although the

perturbative interpretation for large string tension remains, to our knowledge, an open

problem.

We conclude this section with a remark. Along the way that leads to an exact solution of

the AdS/CFT system via integrability, one has to make a series of assumptions, whose

correctness can be tested only by internal consistency and comparison with perturbative

results (or, when available, finite coupling predictions obtained by di↵erent techniques).

That is why the development of new techniques to improve our computational e�ciency

at the perturbative level on both sides of the correspondence is highly desirable. This

thesis is devoted to this kind of investigation for large values of the ’t Hooft coupling.

In this regime quantum string corrections are in general non-trivial to calculate, in con-

nection with issues of potential UV divergences and the lack of manifest power-counting

renormalizability of the string action when expanded around a particular background,

but have the additional important role of establishing the quantum consistency of the

proposed string actions.

1.2 Superstring theory for AdS backgrounds

String theory can be seen as a non-linear sigma model mapping the two-dimensional

worldsheet to an arbitrary target space. The dimension of the latter is arbitrary as long

as one considers the classical theory, but it’s fixed by consistency after quantization. For

superstring theory the cancellation of quantum anomalies fixes the spacetime dimension
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to d = 10 (for a review we refer to classical textbooks [57, 58, 59, 60]). Since in gen-

eral AdS backgrounds are supported by RR fluxes, the Neveu-Schwarz Ramond (NSR)

approach [61, 62] is not applicable in a straightforward way. On the other hand, the back-

grounds we are mostly interested in are chosen in order to preserve a certain amount of

spacetime supersymmetries and therefore the Green Schwarz (GS) approach [63], which

automatically ensures supersymmetry in target space, seems to be more adequate in this

context.

As mentioned above, the construction of the GS superstring for the AdS5 ⇥ S5 back-

ground was carried out in [3] using a sigma model on a supercoset target space. This

construction is tied to the high (super)symmetry of the background. Indeed, AdS5⇥S5

supported by RR 5-form flux, together with its two limits pp-wave and flat space pre-

serves all the 32 supercharges of type IIB supergravity [64]. In the coset construction,

this is translated into a superstring action with 32 fermionic degrees of freedom and all

the necessary physical properties one is to expect from a GS action. Among those, a

relevant one is -symmetry, a local fermionic symmetry which constitutes a distinguish-

ing feature of the GS superstring and allows to halve the fermionic degrees of freedom

obtaining the expected 16 real fermions.

When trying to apply the same procedure to the case of AdS4⇥CP3 [32, 31] one realizes

that the output is noticeably di↵erent, in that the number of fermionic degrees of freedom

in the coset construction equals the number of preserved supercharges of the background,

in this case 24 [65]. The puzzle is solved by noticing that the resulting action can be

interpreted as a partially gauge fixed GS action where the residual -symmetry freedom

allows to eliminate only 8 fermionic degrees of freedom. A further complication comes

into the game if one is to consider string configurations lying only in the AdS4 part of the

space [32]. For these “singular” configurations the coset approach has to be discarded

and one has to rely on the full superstring action derived as a double dimensional

reduction of a supermembrane action in eleven dimensions [66, 67, 68]. In section 2.4

we analyze this issue in some details.

A similar situation is encountered when studying GS superstring in AdS3 ⇥ S3 ⇥ T 4

background. In that case the coset approach [40] yields an action with fully fixed -

symmetry gauge and, unfortunately, that gauge turns out not to be compatible with

any of the possible bosonic light-cone gauges one may fix. Additionally, unlike the

higher dimensional case there is no known way to write down the full GS action for such

backgrounds and the only possible strategy is to expand the general expression for GS

string on curved backgrounds in higher powers of the fields [41, 69, 70, 71, 72].
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1.3 The BMN vacuum

The AdS/CFT duality establishes a correspondence between the anomalous dimension

of local gauge-invariant operators in a CFT and the energy of string states in AdS

backgrounds. The simplest operators one can choose in the gauge theory are chains of

scalar operators of the form

O = Tr{
L times

z }| {

ZZZ...ZZZ} , (1.1)

where Z is one of the three complex scalars in N = 4 SYM. This operator has various

nice features (see also the very nice review [73]). First of all it is a superconformal chiral

primary, as one can argue noticing that the dimension � equals the R-charge J

� = J = L . (1.2)

Moreover the same condition (1.2) implies that such operator is annihilated by half of

the supercharges of the superconformal algebra, i.e. it is a BPS operator. The most

relevant consequence of this fact is that the BPS requirement imposes the condition (1.2)

for any value of the coupling, implying that the dimension � is protected from quantum

corrections. Due to these particular properties this state seems to be very convenient to

be considered as a vacuum state.

Figure 1.1: The classical solution associated to the BMN vacuum is simply a point-like
string rotating on a circle in S5. Courtesy of [74]

.

The name of BMN vacuum goes back to the paper by Berenstein, Maldacena and Nastase

(BMN) [75], where a precise connection was established between a class of operators in

the gauge theory (BMN operators) and the spectrum of superstring theory on a pp-wave

background [76, 77, 78, 79]. The operator (1.1) is the simplest possible BMN operator

and it is associated to the vacuum state in the string theory spectrum. Even without

restricting to the pp-wave limit, it is interesting to understand which classical string

configuration is associated to the operator (1.1). In particular, the AdS/CFT dictionary
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translates equation (1.2) to the requirement E = J , where in this case E is the target

space energy (conjugated to the time variable t in AdS) and J is an angular momentum

in S5. Therefore the simplest classical solution we can think about is a point-like string

rotating on a circle in S5 (see figure 1.1)

t =
⌧

2
, � =

⌧

2
, (1.3)

where � is an angle coordinate in S5 and the factor 1
2 is introduced for future convenience.

Equation (1.3) clearly implies x+ = t+� = ⌧ and suggests the perturbative quantization

of the string in light-cone gauge [80]. It turns out there is a precise connection between

the light-cone gauge excitations of the string and the possible impurities one can insert

in the operator (1.1).

1.4 Spin-chain vs. worldsheet excitations

The main observation of [6] was that operators like (1.1) can be paralleled to the vacuum

state of a spin chain whose excited states are constructed by insertion of other funda-

mental fields of the theory inside the operator (1.1). This assumption was motivated

by the crucial observation that the one-loop dilatation operator has the structure of the

Hamiltonian of an integrable spin chain. In the SU(2) sector, i.e. the one featuring

only the complex excitations Z and X, the picture is rather clear since it maps to the

familiar one-dimensional SU(2) spin-chain

O = Tr{ZZZZXZZZ}  !

#
""

""
"

"" (1.4)

and the dilatation operator has simply the structure of the Hamiltonian for an XXX

Heisenberg spin-chain.

The problem is then reduced to the diagonalization of such a Hamiltonian, a task which

becomes increasingly di�cult when adding additional excitations and considering higher

orders in the perturbative expansion of the dilatation operator. Nevertheless Hans Bethe,

back in 1931, developed a powerful technique whose range of application is much wider

than he would probably have imagined [8] (see also the review [9]). The idea is to

consider the perturbations of the spin chain vacuum (insertion of fundamental fields in

the gauge theory picture) as fundamental excitations (called magnons) with their own
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wave-functions and dispersion relations. When a magnon moves along the chain it se-

quentially scatters with its neighbour and for every scattering one has a scattering phase

which modifies the magnon wave function. Assuming periodic boundary conditions, the

consistency of the whole construction imposes that a magnon moving around the whole

chain and scattering through all the other excitations should reproduce the initial state

when coming back to the initial site. This consistency condition imposes a set of al-

gebraic equations commonly known as Bethe equations, whose main ingredient is the

S-matrix for the scattering of magnons.

Considering the full field content of N = 4 SYM, the vacuum (1.1) in the L!1 limit2

(so called asymptotic region) can be excited by 8 bosonic and 8 fermionic fundamental

magnons3 which transform under a centrally extended psu(2|2)� psu(2|2) algebra [85].

This symmetry su�ces to fix completely the form of the magnons dispersion relation [13,

16]

!(p) =

r

1 + 4h(�)2 sin2
p

2
(1.5)

and of the S-matrix up to an overall factor (see section 1.5). In (1.5) h(�) is a function

of the ’t Hooft coupling which acts as an e↵ective coupling for every integrability-based

calculation and in general is not fixed by symmetries. In the case of N = 4 SYM the

simple relation h(�) =
p
�

2⇡ has been first suggested by various weak and strong coupling

arguments [86, 87, 88, 89, 90, 91, 92](see also [93]) and then proven by comparing two

computations of the Bremsstrahlung function by TBA and by supersymmetric localiza-

tion [94, 95, 96]. The same is not true for lower dimensional examples of AdS/CFT .

For the AdS4/CFT3 system, for instance, the computation of h(�) at finite coupling is

an open and challenging problem and a conjecture has been recently proposed in [97],

supported by various weak and strong coupling perturbative results [98, 99, 100, 101,

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117], the latest

of which is reviewed in section 4.5.

A symmetry pattern similar to the one we described for the spin chain excitations over

the BMN vacuum has been found in the study of the light-cone gauge fixed superstring

action [80]. In this case, the counterparts of the 8 + 8 fundamental magnons are the 8

bosonic and 8 fermionic worldsheet excitations characterizing a general light-cone gauge

fixed string. They all have the same mass and transform under psu(2|2)� psu(2|2). As
any worldsheet action for closed string, the light-cone gauge fixed action is defined on a

cylinder and this prevents the definition of asymptotic states. To be able to define the

2While the one-loop dilatation operator is isomorphic to a Hamiltonian with only nearest-neighbour
interaction, higher order corrections involve long-range interactions which, in the finite L case, can wrap
around the chain [81].

3A very convenient way to represent generic single trace operators of N = 4 SYM is in terms of
excitations of di↵erent oscillators, using bosonic and fermionic magnon-creation operators [82, 83, 84]
(see also [85, 73])
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scattering among worldsheet excitations and compare them with the spin-chain picture,

one decompactifies the worldsheet and relaxes the level matching condition [118, 119,

120]. As a consequence, in this unphysical setup the algebra gets centrally extended and

the parallel with the spin chain picture works perfectly [19] as one can check, for instance,

via a perturbative (or exact) study of the worldsheet S-matrix [121, 91, 122, 123, 124, 19].

1.5 Exact worldsheet S-matrices

The light-cone gauge fixed sigma model in the decompactification limit is classically

integrable and enjoys a centrally extended psu(2|2) � psu(2|2) algebra. The presence

of integrability at the quantum level is much harder to establish. The complicated

non-polynomial form of the Hamiltonian prevents a canonical quantization, and in the

process of perturbative quantization the definition of the quantum model seems to be

related to the possibility of finding a symmetry-preserving regulator for the UV and IR

divergences arising in higher order computations. Therefore one can follow two di↵erent

approaches. Either one assumes that integrability is preserved at the quantum level

and extracts finite coupling results, or one sticks to the perturbative quantization and

performs some checks of quantum integrability pushing the calculation to higher orders

in perturbation theory. In this thesis we follow the latter option (see section 3.2), however

let us briefly describe the successes of the former.

The exact S-matrix for the N = 4 SYM spin chain, up to an overall phase, has been

determined in [16] using the residual global symmetry algebra of an infinitely long spin-

chain. In [20] a parallel analysis was carried out using the Zamolodchikov-Faddeev

algebra for the worldsheet excitations. The result was an exact S-matrix physically

equivalent to that of [16], although related by a non-local transformation of the basis

state 4. We refer to the S-matrix in [16] as the spin-chain frame and to the one in [20]

as the string frame.

The undetermined overall factor, often called dressing factor, has been object of a long

debate (for a review see [125]). The idea of exploiting a non-relativistic generalization

of the crossing symmetry was put forward in [126]. The strong coupling leading order

of the phase appeared in [15], while a method for determining the next-to-leading order

was proposed in [127] and then applied in [128, 129]. A final all-order proposal was

made in [18] and it passed all the tests performed so far. In [130] the same expression

was shown to constitute a minimal solution to the crossing functional equation of [126].

It is worthwhile mentioning that in all this process of derivation of the dressing phase,

4An important implication of this fact is that, while the S-matrix of [20] satisfies the standard YB
equation, that of [16] satisfies a twisted version of it.
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perturbative data both from the string and gauge theory sides have been crucially im-

portant [131, 132, 133, 134, 135, 136, 137, 138, 18].

The determination of the dressing phase is even subtler in the case of AdS3 ⇥ S3 ⇥M4

backgrounds, where M4 = T 4 or M4 = S3 ⇥ S1. Also in this case the worldsheet S-

matrix can be fixed by symmetries and integrability [47, 48, 49, 50, 51, 52], however much

less is known about the corresponding dressing phases. Thus far there is only an all-

loop conjecture (supported by semiclassical one-loop computations in [139, 140, 141]5)

for the phases in the AdS3 ⇥ S3 ⇥ T 4 case supported by RR flux [50]. There is also a

semiclassical one-loop computation of the phases in the AdS3⇥S3⇥S3⇥S1 case in [142]

and one by unitarity methods [141] which we will review in section 3.4. As far as the

mixed flux case is concerned the only available results come from the simultaneous and

independent calculations of [143, 141] then confirmed by [144]. For the latter two cases

however an all-order proposal is still lacking.

1.6 Perturbative scattering and unitarity methods

The perturbative study of the two-body S-matrix for the world-sheet sigma-model (for

a review, see [145, 74]) was initiated in [121] 6, where the full tree-level result was first

derived. As for the one-loop [91] and two-loop [122] scattering, computations have been

carried out firstly in the simpler near-flat-space limit [147], where interactions are at

most quartic in the fields. These studies have also explicitly shown some consequences

of the integrability of the model, such as the factorization of the many-body S-matrix

and the absence of particle production in the scattering processes [148].

The first one-loop result for the full sigma model was obtained by unitarity methods [149]

in [123] shortly followed by one- and two-loop calculations for the logarithmic part

of the S-matrix [124]. Finally, the standard Feynman diagram computation appeared

in [150]. Perturbative results on the worldsheet S-matrix for strings in AdS4 ⇥CP3 and

AdS3 ⇥ S3 ⇥M4 backgrounds are available in [151, 70, 124, 141, 150, 144]. One of the

aims of this thesis is to review the power and the limits of the application of unitarity

methods to such processes.

Unitarity techniques have been successfully applied to the computation of scattering

amplitudes in four-dimensional gauge theories up to very high orders in perturbation

5The semiclassical one-loop computation [140] is not in complete agreement with the others. While
the logarithmic terms match, the rational terms in [140] and [139, 141] are di↵erent and the latter agree
with the expansion of the exact result proposed in [50]. The precise reason for the disagreement is
currently unclear.

6Earlier work on related models with truncated field content appeared in [119, 146].
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Figure 1.2: The s-channel cut for a one- and two-loop example

theory [149, 152, 153, 154, 155, 156]7. The textbook strategy to compute loop-level

scattering amplitudes consists in writing down all the possible Feynman diagrams and

perform the tensor integral reduction on every single integral. This leads to express the

result as a linear combination of scalar master integrals8. This process turns out to be

quite laborious and it soon exceeds the computational power even of our modern best

computers. The unitarity methods provide a short-cut for this reduction procedure. The

basic idea is that most of the structure of the l-loop amplitude can be recovered by the

knowledge of the (l � 1)-loop one. This is done in some particular kinematical channel

by studying the discontinuities of the amplitude, which are known to be related by the

Cutkosky rules [161] to some product of lower-order amplitudes. For a one- and two-loop

example this is shown pictorially in figure 1.2. The discontinuity in a particular channel

is related to an imaginary part in the amplitude, given in general by some multi-valued

function, such as logarithms, polylogarithms or generalized polylogs, of the kinematical

variables. In the following, we will refer to all these possible dependences collectively

as the “logarithmic part of the amplitude”. The latter constitutes that part of the

amplitude which can be unambiguously reconstructed by the unitarity methods and it

is also known as the cut-constructible part.

In [123, 124, 141] unitarity techniques were applied to the worldsheet scattering in two

dimensions. On the one hand, since the one-loop basis of scalar integrals in two di-

mensions consists only of bubbles and tadpoles, the computations are simpler than in

higher dimensions. Indeed, for a two-particle cut the loop momenta are frozen to specific

values and due to the constraining two-dimensional kinematics the integral degenerates

to a sum over discrete solutions of the on-shell conditions. This is reminiscent of the

framework of generalized unitarity in the four-dimensional case when quadruple cuts

7See also [157, 158, 159] for some three-dimensional applications.
8A basis of master integrals valid for any possible process is known, at present, only at one loop [160].
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(maximal cuts [162]) are used. There, the quadruple-cut integral is completely localized

by the four delta-functions of the cut propagators, and it reduces to a product of four

tree-level amplitudes. On the other hand, the two-dimensional constrained kinematics

yields as a drawback the presence of some ill-defined cut, whose interpretation is quite

subtle and involves an order of limits problem.

One of the intriguing consequences of this analysis is the observation that this approach

is particularly powerful when applied to integrable field theories. In [123, 141] it was

observed that the full (including rational terms) one-loop S-matrices for a number of

integrable theories (including worldsheet scattering in AdS5⇥S5 and AdS3⇥S3⇥M4) are

completely cut-constructible (up to possible finite shifts in the coupling). Furthermore,

as the unitarity construction reduces the one-loop computation to scalar bubble integrals,

which are finite in two dimensions, issues of regularization are bypassed. All these issues

are widely discussed in section 3.3.

1.7 GKP vacuum

The BMN vacuum discussed in section 1.3 is certainly not the only possible choice. In

particular we recall that the non-compact group PSU(2, 2|4) is rank six and therefore

any operator will have a sextuplet of charges usually chosen as (�, S1, S2; J1, J2, J3),

where � is the scaling dimension, S1 and S2 the two SO(1, 3) Lorentz spins and Ja

are the SO(6) R-charges. From the string theory point of view, the first three charges

are associated to AdS5 and the last three are angular momenta on S5. The BMN

vacuum was chosen to have large R-charge J (one can choose any of the three) and large

dimension �. The Gubser-Klebanov-Polyakov (GKP) [163] vacuum can be seen as the

SO(1, 3) analogue of the BMN vacuum, i.e. one considers a twist-two operator with

large spin S and large dimension � of the kind [163] 9

OS = Tr{Z
S times

z }| {

D+...D+ Z}+ ... , (1.6)

where D+ is the covariant light-cone derivative carrying one unit of dimension and one

unit of spin, and the dots indicate that the form of the operator is renormalized.

At strong coupling the GKP vacuum is described by the classical solution parametrizing

a folded string rotating around its center of mass in AdS3 ⇢ AdS5 [131, 163]. At

generic values of the spin, it corresponds to a complicated solution to the classical string

equations [131] and thus represents itself an intricate background for the semiclassical

9The operator twist, defined as the bare scaling dimension minus the Lorentz spin, is the number of
complex scalars Z in (1.6)
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Figure 1.3: The spinning folded string in the large spin limit. AdS3 is represented as
a filled cylinder and the black circle is the boundary. The time direction is orthogonal
to the paper. In the large spin limit the string stretches up to the boundary of AdS3.

expansion of the string sigma model. In the large spin limit, the string gets long with

a proper length 2 logS and it stretches up to the boundary for S !1 (see figure 1.3).

The energy is then uniformly distributed and leads to the logarithmic scaling [163, 164]

E � S ⇠ f(�) logS , (1.7)

where the function f(�) assumes the immediate interpretation of the energy per unit of

length.

(a) (b) (c)

�� S ⇠ 2 + f(�) logS hW i ⇠
✓

L

✏

◆f(�) log(p·�)

log
A

A(0)
=

2 f(�)

✏2
+O(

1

✏
)

Figure 1.4: Three possible situations where the cusp anomalous plays a distinctive
role: (a) the anomalous dimension of twist-two operators at large spin; (b) the UV
divergence generated a Wilson line with sharp angles; (c) the IR divergence of gluon

scattering amplitudes.

The same logarithmic scaling emerges naturally at all loops in the gauge theory pic-

ture [165, 166] where the function f(�) is identified with twice the cusp anomalous
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dimension [167, 168, 169]. The latter is an ubiquitous function in gauge theories and

it emerges in many di↵erent contexts, three of which are particularly relevant and are

summarized in figure 1.4. Remarkably, in the context of N = 4 SYM the integrability-

based BES equation [18] allows in principle to compute f(�) to any desired order in

both regimes.

At strong coupling, the relation between the scaling dimension of twist-two operators

and the expectation value of cusped Wilson lines is translated into the equivalence of

the correspondent classical solutions [170], i.e. the folded spinning string and a minimal

surface ending on a null cusp respectively [171]. Perturbative computations about these

two vacua allowed to compute the cusp anomalous dimension at strong coupling up to

two loops [131, 172, 170, 173, 174, 175, 176].

The AdS4/CFT3 correspondence o↵ers another setting where to study analogous prob-

lems [177]. The main di↵erence with respect to N = 4 SYM resides in the absence

of a closed subsector with derivatives and scalar fields only. The simplest set of op-

erators dual to the spinning string solution is built out of bifundamental matter fields

(Y 1, 1
+), (Y

†
4 , 

†
4+) and light-cone covariant derivatives D+. To identify the GKP vac-

uum one has to look for the state with the lowest possible twist. In this case it is

provided by a twist-one 10 operator containing two bifundamental matter fields and a

large number S of covariant derivatives.

The corresponding spinning string solution has been extensively studied up to one loop

in sigma-model perturbation theory [105, 104, 106, 107, 116]. This corresponds to the

computation of the strong coupling cusp anomaly of ABJM theory, predicted from in-

tegrability [30] to be the same as for N = 4 SYM up to the presence of the e↵ective

coupling h(�). Therefore the comparison of the two results yields the strong coupling

expansion of the interpolating function. The two-loop correction to h(�) was first com-

puted in [117] and will be extensively reviewed in section 4.5.

1.8 GKP excitations

Paralleling the case of BMN, one may wonder how to excite the GKP vacuum. An

immediate generalization of (1.4) would be to construct a one-particle state of the form

Tr{ZD+...D+�D+...D+Z} , (1.8)

where � is a generic local operator of N = 4 SYM. Under renormalization this operator

mixes with similar operators di↵ering for the relative number of covariant derivatives on

10Notice that both scalar fields and fermions in three dimensions have twist 1/2.
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the left and on the right side of �. This is interpreted as the operator � propagating in

the background of covariant derivatives, and carrying some momentum p quantized by

the condition of the operator having definite scaling dimension �. The main di↵erence

with respect to the BMN case is that, since the vacuum here has a complicated struc-

ture with non-trivial mixing, it would be di�cult to deal with it outside the realm of

integrability.

Pushing further the analogy with the BMN picture we can ask what are the (lightest)

elementary excitations. For the BMN case, they are those that make the minimal contri-

bution to the BMN energy �� J . For the GKP operators, the energy11 is proportional

to � � S and therefore, by definition, the elementary excitations are those with the

minimal twist. They are also known as light-cone operators [178, 179, 180] and are the

building blocks of the quasi-partonic operators [181]. The pattern of elementary excita-

tions is then composed of 6 (real) scalar fields in the 6 of su(4) ⇠= so(6), 4/4 twist-one

components of left/right Weyl spinors in the 4/4̄, and 2 twist-one components of gluon

field strength tensor in the 1. The leading order energy of all these excitations at weak

coupling is simply given by their mass, i.e. their twist, and equals 1.

The mapping with the strong coupling side is not completely straightforward, since the

semiclassical analysis of the GKP string shows that the elementary worldsheet excita-

tions are 5 massless bosons for rotations in S5, 2 mass-
p
2 bosons for rotations of AdS3

in AdS5, 1 mass-2 boson for the transverse fluctuation in AdS3, and finally 8 mass-1

fermions. These states are relativistic for �!1, but their dispersion relation receives

quantum corrections leading to highly non-trivial dispersion relations at finite coupling.

The latter were derived for all the excitations in [182] using integrability, and a precise,

though subtle, interpolation between strong and weak coupling became possible. We

review the details of these relations in chapter 4.

A similar, though somehow complementary, picture emerges in the study of the elemen-

tary excitations about the GKP vacuum in the AdS4/CFT3 case. At weak coupling the

lowest lying excitations are the twist-1/2 matter fields which transform in the 4 and 4̄

representations of su(4). They are accompanied by twist-one fermions in the 6 and a

twist-one excitation, neutral under su(4), corresponding to the transverse component of

the gauge field [177].

On the string theory side one finds a bosonic spectrum composed of 3 complex massless

bosons for rotations in CP3, 1 mass-
p
2 boson for the direction in AdS4 outside AdS3

and 1 mass-2 boson for the transverse fluctuation in AdS3. The 8 fermionic degrees of

11One should be careful here to avoid confusion between the target space energy E of the string and
the energy ! of the states. The former is the variable conjugated to the time direction in AdS and is
mapped to the dimension of the operator in the gauge theory, the latter is an eigenvalue of the worldsheet
hamiltonian and is mapped to the energy of the magnons in the spin chain picture.
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freedom appear as 6 mass-1 and 2 massless fermions. The exact dispersion relations for

these excitations was found in [177] and despite the qualitative di↵erence with respect

to N = 4 SYM, the similarity of the two integrable models predicts closely related

dispersion relations for the excitations in the two theories. The precise connection is

investigated further in chapter 4.

Plan of the thesis

In chapter 2 we review the construction of superstring theory for AdS5 ⇥ S5, AdS4 ⇥
CP3and AdS3⇥S3⇥M4 pointing out the advantages and the limits of the coset approach.

In chapter 3 we discuss the near-BMN expansion of the light-cone gauge fixed sigma

model in AdS5⇥S5 and compute the worldsheet S-matrix perturbatively up to the one-

loop approximation. To perform the one-loop computation we introduce the unitarity

methods, which we then apply to the study of worldsheet scattering in AdS3⇥S3⇥M4

theories.

In chapter 4 we perform two perturbative computations in the context of AdS4 ⇥ CP3.

First we compute the two-loop correction to the cusp anomalous dimension providing

support for a recent conjecture for the interpolating function h(�), secondly we compute

the quantum dispersion relation for excitations on top of the GKP vacuum, finding

agreement with the the Bethe Ansatz predictions up to some known discrepancies on

which we comment.

Finally in chapter 5 we summarize our results and propose some future related directions.

We collect in four appendices some technical details of the derivations.





Chapter 2

The supercoset sigma model

This chapter is devoted to the construction of a superstring action in various AdS back-

grounds. The main example is surely AdS5⇥S5, which is a maximally symmetric space

and can be described as the coset SO(2,4)⇥SO(6)
SO(1,4)⇥SO(5) . It was realized in [64] that, together

with flat space, the AdS5 ⇥ S5 background supported by RR flux preserves all the su-

persymmetries of type IIB supergravity. Therefore, it is a maximally supersymmetric

background and the introduction of fermionic degrees of freedom in string theory can

be achieved through the replacement of the bosonic group SO(2, 4)⇥SO(6) with its su-

persymmetric extension SU(2, 2|4). Other backgrounds that are particularly interesting

for their integrable properties are the ones relevant for lower dimensional examples of

AdS/CFT . Here we will be mostly concerned with AdS4 ⇥ CP3 and AdS3 ⇥ S3 ⇥M4.

In these cases interpreting the corresponding GS type II action as a coset sigma-model

is not completely straightforward. We will then discuss various subtleties arising in this

approach and the way to overcome them.

2.1 Z4 grading and supercoset action

Consider a homogeneous space which can be expressed as a coset G/H, where G is the

group of isometries of the space and H is the stabilizer subgroup. One can formulate

GS superstring theory considering the supersymmetric extension G̃ of the group G and

taking the supercoset G̃/H as the target space for the sigma model. This was first

realized for flat space in [4] and then applied to AdS5 ⇥ S5 in [3]. In the following we

will specify this general construction to various examples of AdS backgrounds. However,

let us first restrict to a particular class of supergroups. Consider the superalgebra G

associated to the supergroup G̃ and an automorphism ⌦ such that the superalgebra G,

17
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as a vector space, can be decomposed into a direct sum of graded subspaces

G = G(0) �G(1) �G(2) �G(3) , (2.1)

with

G(k) =
n

A 2 G, ⌦(A) = ikA
o

. (2.2)

If such an automorphism exists, the superalgebra inherits a Z4 grading which turns

out to be a crucial property of the model. By definition of grading, it is clear that

[G(k),G(l)] ⇢ G(l+k), which implies that G(0) is a subalgebra. We will explicitly see that

in all the examples of interest here the subalgebra G(0) will coincide with the subalgebra

H associated to the subgroup H. Additionally, since G is a superalgebra, it contains

already a Z2 grading separating bosonic from fermionic variables. Under this grading

G(0) and G(2) are bosonic, whereas G(1) and G(3) are fermionic.

Given this fairly general structure, we want to find an action for the two-dimensional

sigma-model on G̃/H. This is most conveniently expressed in terms of the left-invariant

Cartan form

A = g�1dg 2 G , (2.3)

where g(�↵) 2 G̃ is a coset representative, function of the worldsheet coordinates �↵,↵ =

1, 2. The current A has the following property

• Z4 decomposition

A = A(0) +A(1) +A(2) +A(3). (2.4)

• Invariance under global left transformation g ! hg with h 2 G̃.

• Definite variation under local right transformation g(�↵) ! g(�↵)h(�↵) with

h(�↵) 2 H (and therefore h�1dh 2 G(0))

A(1,2,3) ! h�1A(1,2,3)h , A(0) ! h�1A(0)h� h�1dh . (2.5)

• Vanishing curvature: dA�A ^A = 0 .

In this notation the action of the supercoset sigma model with Z4 grading reads

S = �T

2

Z

d2�L , L =
h

�↵� Str
⇣

A(2)
↵ A(2)

�

⌘

+  ✏↵� Str
⇣

A(1)
↵ A(3)

�

⌘i

, (2.6)

where T is the string tension, �↵� =
p�gg↵� is the Weyl invariant combination of the

worldsheet metric with det � = �1 and ✏↵� is defined with ✏01 = 1. The structure is, as
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usual, a sum of a “kinetic” term1 and a WZ term whose coe�cient  will be the subject of

a further discussion in section 2.2. It may not be obvious that the second term is actually

a WZ term when comparing it, for instance, to the sigma-model action on a group

manifold, where it appears in the usual non-local fashion [183]. Indeed one can think

of that term as coming from the integration over a three-cycle of the closed three-form

⇥3 = Str
�

A(2) ^A(3) ^A(3) �A(2) ^A(1) ^A(1)
�

. Nevertheless, the flatness condition

of A ensures that actually ⇥3 is not only closed, but also exact ⇥3 =
1
2d

�

A(1) ^A(3)
�

.

A few comments about the action (2.6) are in order. First of all, one can show that the

action is fixed uniquely by some well-motivated physical constraints like reproducing the

Polyakov action for the G/H background when the fermions are switched o↵, reducing

to Green-Schwarz string in the flat space limit and having global G̃ invariance. This last

constraint is guaranteed by the fact that the action depends only on A, which is invariant

under the (left) action of the group G̃. Notice also that, despite the action depends on

the group element g, being a function of A(1), A(2) and A(3) only, it is invariant under

right multiplication by an element of H. As a consequence, the action actually depends

only on a coset element in G̃/H rather than a group element in G̃. The last necessary

requirement to fix the form of the action is the presence of a local fermionic symmetry

known as -symmetry. Since this feature is crucial for the integrable properties of the

theory, we discuss it in some detail in the next section.

2.2 -symmetry and integrability

The Green-Schwarz superstring in flat space enjoys a local fermionic symmetry which

goes under the name of -symmetry. In this section we will discuss the presence of this

symmetry in the supercoset sigma model (2.6) and its relation with the parameter 

there. We will also show that the presence of -symmetry and Z4 grading 2 constitute

a su�cient condition for the classical integrability of the model.

Let us consider the action of a group element e" 2 G̃ with " 2 G and let us assume

that " is a fermionic variable, i.e. " = "(1) + "(3). The infinitesimal variation of the four

1Here the quotes are a reminder of the fact that we call kinetic the term which comes from �↵�A
(2)
↵ A

(2)
�

and contains the kinetic terms, but also many interactions for the presence of fermions and of a non-trivial
target space metric.

2The relevance of a Z4-automorphism of G in the construction of the coset sigma-model in this context
was first understood in [184].
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components of the current A read

�"A
(1) = �d"(1) + [A(0), "(1)] + [A(2), "(3)] ,

�"A
(3) = �d"(3) + [A(2), "(1)] + [A(0), "(3)] ,

�"A
(2) = [A(1), "(1)] + [A(3), "(3)] ,

�"A
(0) = [A(3), "(1)] + [A(1), "(3)] . (2.7)

Using these expressions and the flatness condition for A, one can easily extract the

variation of the Lagrangian density

�"L = ��↵� Str
⇣

A(2)
↵ A(2)

�

⌘

� 4 Str
⇣

P↵�
+

h

A(1)
� , A(2)

↵

i

"(1) + P↵�
�

h

A(3)
� , A(2)

↵

i

"(3)
⌘

, (2.8)

where we introduced the notation

P↵�
± =

1

2
(�↵� ±  ✏↵�) . (2.9)

The crucial point here is that for  = ±1 the tensors P↵�
± become orthogonal projectors

P↵�
± P±

�
� = P↵�

± , P↵�
± P⌥

�
� = 0 , (2.10)

and this turns out to be a necessary requirement for the invariance under -symmetry.

Notice also that the relation P↵�
± A(2)

⌥,� = 0 implies

A±,⌧ = ��
⌧� ⌥ 
�⌧⌧

A±,� . (2.11)

In equation (2.8) we left the variation of the worldsheet metric undetermined so that

we can fix it to our convenience once we manage to factor out a Str
⇣

A(2)
↵ A(2)

�

⌘

in the

second term. In order to do this, one can change the parametrization for the -symmetry

transformations such that the second term in (2.8) contains Str
⇣

A(2)
↵ A(2)

�

⌘

. Since this

change of parametrization is di↵erent for di↵erent supergroups, we discuss it on a case

by case basis in the following sections. Here we anticipate that all the backgrounds we

are concerned with in this review enjoy k-symmetry, provided we set  = ±1 in the

Lagrangian (2.6).

In the rest of the section we will briefly comment on the importance of this additional

fermionic symmetry for the classical integrability of the theory. The literature on inte-

grable two-dimensional quantum field theories is extremely vast and we refer the reader

to the books [185, 186]. Here we only state some facts about the classical integrability

of a two-dimensional model, and show that a supercoset sigma model with Z4 grading

meets the conditions for being classically integrable. Quantum field theories have an
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infinite number of degrees of freedom and therefore, to solve a model exactly, one would

need an infinite tower of conserved charges. It turns out that in some two-dimensional

quantum field theories this can be achieved. In particular, one can show that the ex-

istence of a one-parameter family of connections L↵(�↵, z) with vanishing curvature is

equivalent to the presence of an infinite tower of conserved charges. The parameter z is

called spectral parameter, and the connection L↵ usually goes under the name of Lax

connection (or Lax pair). The zero curvature condition

@↵L� � @�L↵ � [L↵, L� ] = 0 (2.12)

should be fulfilled for any value of the spectral parameter z. Of course the statement is

true only at the classical level, since there is no general property preventing the quantum

corrections from breaking some of the infinite symmetries of the problem. The quantum

integrability of the string sigma models will be discussed in full details in the following

chapters, since testing it is one of the main purposes of this work.

The upshot of the previous discussion is that an explicit expression for the Lax connection

would constitute a su�cient condition for the classical integrability of a physical system.

For the supercoset sigma model, given the Z4 decomposition (2.4), the Lax connection

is given by

L↵ = A(0)
↵ +

1

2

✓

z2 +
1

z2

◆

A(2)
↵ �

1

2

✓

z2 � 1

z2

◆

�↵�✏
��A(2)

� + zA(1)
↵ +

1

z
A(3)
↵ . (2.13)

The zero curvature condition would impose  = ±1. In order to prove that the curva-

ture is actually vanishing, one has to compute the curvature of L↵, separate the four Z4

components and check that they vanish separately once the equations of motion are im-

posed. In other terms, one can say that the equations of motion of the supercoset sigma

model are reformulated as zero curvature conditions for the Lax connection, implying

their integrability. We now move to the specific analysis of some AdS backgrounds.

2.3 Superstring theory in AdS5 ⇥ S5

The action for the superstring theory in AdS5⇥S5 was first written down in [3] using the

aforementioned coset approach with target space SU(2,2|4)
SO(1,4)⇥SO(5)

3. However, the action

(2.6) is still very abstract and its physical properties are not apparent. In order to

3 Here we follow the original work [3] where the group of superisometries of AdS5⇥S5 was taken to be
SU(2, 2|4) and not PSU(2, 2|4). The di↵erence resides in the fact that the identity is actually a matrix
of the algebra su(2, 2|4) and the bosonic subalgebra of su(2, 2|4) is e↵ectively su(2, 2)�su(4)�u(1). This
additional u(1) can be seen as a gauge freedom which we use to set the A(2) part of the decomposition
(2.4) to be traceless [145].
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bring the action to a more familiar form, let us add some more information about the

supergroup we are dealing with. The superalgebra su(2, 2|4) can be represented by 8⇥8

supermatrices

M =

 

m ✓

⌘ n

!

, (2.14)

where m and n are bosonic 4⇥ 4 matrices, whereas ✓ and ⌘ are fermionic. The matrix

M has to satisfy

StrM = 0 , M = M? , (2.15)

where the supertrace is defined in the usual way as StrM = Trm�Trn and M? is given

by M? = �HM †H�1. The matrix H is a diagonal matrix

H =

 

⌃ 0

0 14

!

, ⌃ =

 

12 0

0 �12

!

, (2.16)

which carries information about the signature of the target space. The automorphism

⌦ introduced in (2.2) in this specific case reads

⌦(M) = �KM stK�1, M st =

 

mt �⌘t

✓t nt

!

, K =

 

K 0

0 K

!

, (2.17)

with the matrix K given in terms of 2⇥ 2 blocks as

K =

 

✏ 0

0 ✏

!

✏ =

 

0 1

�1 0

!

(2.18)

Looking at the projection M (0) in the Z4 decomposition

M (0) =
1

2

 

m�KmtK�1 0

0 n�KntK�1

!

, (2.19)

one finds that it is an element of the subalgebra so(4, 1) � so(5), as we anticipated in

section 2.1. We can also introduce the block matrix K̃ = diag(K,�K) and express in

a compact form the Z4 projections of an arbitrary matrix M . Given the separation in

terms of

M = Meven +Modd, Meven =

 

m 0

0 n

!

, Modd =

 

0 ✓

⌘ 0

!

, (2.20)
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we can project the supermatrix using

M (0) =
1

2
(Meven �KM t

evenK), M (2) =
1

2
(Meven +KM t

evenK), (2.21)

M (1) =
1

2
(Modd � iK̃M t

oddK), M (3) =
1

2
(Modd + iK̃M t

oddK). (2.22)

To give an explicit expression for the Lagrangian (2.6) in terms of the coset degrees of

freedom, it is necessary to choose an embedding of the coset element in the supergroup

SU(2, 2|4). There are of course many basis of generators one can use to describe the

algebra su(2, 2|4), and consequently many di↵erent coset representative one can choose

to represent the group element g in (2.3). They are all related by non-linear field

redefinitions and the convenience of the choice is linked to the quantization approach

one is to follow. In this review we focus on two possible choices that are important for

our discussion.

2.3.1 Two possible light-cone gauge fixings

Unlike flat space, theAdS5⇥S5 background admits two inequivalent sets of null geodesics.

Either the geodesic wraps a big circle of S5 or it lies entirely in AdS5. Both possibilities,

as far as the bosonic coordinates are concerned, are particular instances of the general

GGRT formulation [187], based on writing the Nambu action in the first order form

and fixing the di↵eomorphisms by the two conditions – on one coordinate and on one

canonical momentum

x+ = ⌧ , p+ = const. (2.23)

The whole di↵erence resides in the choice of the coordinates defining x+.

In the former case [188, 189, 190, 191, 192, 80, 19], which we label as uniform light-cone

gauge4, we introduce the coordinate � parameterizing a circle on S5 and consequently

x+S5 = t+ � (2.24)

where t is the time coordinate in AdS5. In fact, in chapter 3 we will consider a gener-

alization of (2.24), where a residual gauge freedom, parametrized by a parameter a, is

left unfixed. Nevertheless no significant conceptual di↵erence is introduced by such a

modification.
4Let us stress that, strictly speaking, both gauges are uniform, in that the momentum is distributed

uniformly along the string. Nevertheless, although this terminology may be quite misleading, it is now
widespread in the literature and we will stick to it hereafter.
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The latter case [193, 194], usually referred to as AdS light-cone gauge, is better described

in Poincaré parametrization

ds2AdS5
=

dxµdxµ + dz2

z2
, (2.25)

with µ = 0, ..., 3, so that

x+AdS5
=

x3 + x0p
2

. (2.26)

In section 2.3.3 we analyze a suitable coset representative for this gauge choice, which

will then be exploited in chapter 4.

2.3.2 Coset representative for uniform light-cone gauge

A convenient coset representative for the uniform light-cone gauge needs to have nice

transformation properties under translations along the t and � directions parameterizing

the time in AdS and the big circle on the sphere.

In section 2.1 we learned that local PSU(2, 2|4) transformations act through left multi-

plication on the group element g. Here we would like to find a coset representative such

that fermions are neutral under the action of translations along t and �. Therefore, let

us consider the following coset element

g(t,�, yi, zi,�) = ⇤(t,�)g(�)g(yi, zi) , (2.27)

with yi and zi parameterizing the remaining 8 coordinates of AdS5 and S5 respectively.

The fermions are incorporated in the element g(�), where � is a generic Grassmann

odd algebra element whose parametrization is presented in (A.9). The bosonic group

elements ⇤(t,�) and g(yi, zi) are given naturally in terms of exponentials of linear com-

binations of generators. We consider the bosonic subalgebra su(2, 2) � su(4) generated

by {�0,�i,�i0,�ij} � {�̃A, �̃AB}, with i, j = 1, ..., 4 and A,B = 1, ..., 5 (commutation

relations and supermatrix representations are provided in appendix A). In this context,

�0 generates translations along t and �̃5 along �. The matrix ⇤(t,�) is then given by

⇤(t,�) = et�
0+��̃5

. (2.28)

The explicit supermatrix representation of the two generators given in (A.8) shows that

�0 and �̃5 are chosen to be diagonal, so that ⇤(t1 + t2,�1 +�2) = ⇤(t1,�1)⇤(t2,�2). As

a consequence, the action of a translation t ! t + a and � ! � + b can be identified

with a left multiplication by ⇤(a, b)

⇤(a, b)⇤(t,�)g(�)g(yi, zi) = ⇤(t+ a,�+ b)g(�)g(yi, zi) , (2.29)
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and clearly both g(�) and g(yi, zi) are una↵ected by this transformation. Therefore, we

achieved our goal of having a coset representative with neutral fermions under t and �

translation and we get, as a bonus, that also the other bosonic degrees of freedom are

neutral.

Let us now describe in more details the structure of the coset representatives g(�) and

g(yi, zi). The latter is expressed naturally using the generators introduced above

g(yi, zi) = ezi�
i+yi�̃i ⌘ eX X ⌘ zi�

i + yi�̃
i =

 

1
2zi�

i 0

0 i
2yi�

i

!

. (2.30)

In principle one could follow the same procedure for fermions, taking the generic odd

element of the superalgebra (A.9) and exponentiating it. However, the choice

g(�) = �+
p

1 + �2 (2.31)

turns out to be more convenient. One may wonder whether (2.31) is obviously an element

of PSU(2, 2|4). To see this one should note that (�+
p

1 + �2)? = ��
p

1 + �2, which

implies that g(�) is pseudounitary. Note also that the standard exponential form is

achieved with the change of variable �! sinh�.

2.3.2.1 -symmetry

Before using the coset representative (2.27) to build the Cartan form, let us constrain its

form further using  symmetry. We start from equation (2.8) and perform the following

change of variables

"(1) = A(2),↵
� (1)↵ + (1)↵ A(2),↵

� , (2.32)

"(2) = A(2),↵
+ (3)↵ + (3)↵ A(2),↵

+ , (2.33)

where (1,3)↵ are new independent parameters of the -symmetry transformation and

A(2),↵
± stands for P↵�

± A(2)
� . After some algebra, whose details can be found in [145], one

finds that the necessary variation of the worldsheet metric in equation (2.8) is

��↵� =
1

2
Tr

⇣h

(1),↵, A(1),�
+

i

+
h

(3),↵, A(3),�
�

i⌘

. (2.34)

Therefore, we showed that the supercoset action in AdS5⇥S5 enjoys a non-trivial local

fermionic symmetry, provided the parameter  in the action (2.6) is set to ±1. The next

question one would like to answer is how many degrees of freedom can be gauged away

using this symmetry. We will show that the 32 real degrees of freedom one starts from

(in the matrix (A.9) there are sixteen complex fermions ✓ij) can be reduced to 16. Of
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course this has to be done in a way which is compatible with the imposed bosonic gauge.

To see how this works for the uniform light-cone gauge, let us consider, without loss of

generality, a Cartan form given only by5

A(2) = At�
0 +A��̃

5 . (2.35)

The Virasoro constraint Str(A(2)
↵ A(2)

� ) = 0 in this case imposes At = ±A� and using

equations (2.32) and (2.11) we can write the parameter "(1) as

"(1) = A(2),⌧
� { + {A(2),⌧

� , { = (1)⌧ �
�⌧⌧

�⌧� ⌥ 
(1)
� . (2.36)

Picking the solution At = A� we find the structure

"(1) = 2iAt

 

0 "

�"†⌃ 0

!

, (2.37)

where the matrix " is given in terms of the entries of {

" =

0

B

B

B

B

B

@

{11 {12 0 0

{21 {22 0 0

0 0 �{33 �{34

0 0 �{43 �{44

1

C

C

C

C

C

A

. (2.38)

This equation shows that "(1) depends on 8 independent complex bosonic coordinates.

However, the fact that it belongs to the homogeneous component G(1) reduces such

coordinates by a half, leading to 8 independent real fermionic parameters. A similar

analysis shows that also "(3) depends on 8 free parameters, yielding a total of 16 fermionic

degrees of freedom that can be gauged away fixing -symmetry. The matrix structure

of (2.38) also shows that a generic odd matrix of psu(2, 2|4), like (A.9), can be brought

to the form

� =

 

0 ⇥

�⇥†⌃ 0

!

, ⇥ =

0

B

B

B

B

B

@

0 0 ✓13 ✓14

0 0 ✓23 ✓24

✓31 ✓32 0 0

✓41 ✓42 0 0

1

C

C

C

C

C

A

. (2.39)

5Of course in general the Cartan form is a combination of all the psu(2, 2|4) generators, but for
the purpose of finding a fermion structure compatible with the light-cone gauge fixing it is enough to
consider this simplified combination.



Chapter 2. The supercoset sigma model 27

2.3.2.2 Cartan form

Given all the ingredients to build the coset representative (2.27), it is straightforward

to compute the current (2.3). Let us start from the bosonic part. Setting � to zero,

we expect to recover the standard Polyakov lagrangian for some parametrization of

AdS5 ⇥ S5. In this case, using (2.27), (2.28) and (2.30) we find

Lbos = �↵�
�

�Gtt @↵t @�t+G�� @↵�@��+Gzz @↵z
i @�zi +Gyy @↵y

i @�yi
�

, (2.40)

with

Gtt =

 

1 + z2

4

1� z2
4

!2

, G�� =

 

1� y2

4

1 + y2

4

!2

, Gzz =
1

�

1� z2
4

�2 , Gyy =
1

�

1� y2

4

�2 .

(2.41)

For future convenience, let us also introduce the “light-cone” coordinates

x+ = a�+ (1� a) t , x� = �� t , (2.42)

where a is a parameter whose meaning will become clearer in the uniform light-cone

gauge discussion in chapter 3. For the moment let us point out that a = 1
2 corresponds

to the standard light-cone gauge parametrization. In this new system of coordinates the

-symmetry fixed current (2.3) reads

A = Aeven +Aodd (2.43)

Aeven = �g�1(yi, zi)


i

2

✓

dx+ +

✓

1

2
� a

◆

dx�
◆

⌃+(1 + 2�2) +
i

4
dx�⌃�

�

g(yi, zi)

� g�1(yi, zi)
h

p

1 + �2d
p

1 + �2 � �d�
i

g(yi, zi)� g�1(yi, zi)dg(yi, zi) , (2.44)

Aodd = �g�1(yi, zi)


i

✓

dx+ +

✓

1

2
� a

◆

dx�
◆

⌃+�
p

1 + �2

�

g(yi, zi)

+ g�1(yi, zi)
h

p

1 + �2d�� �d
p

1 + �2
i

g(yi, zi) , (2.45)

where the 8⇥ 8 matrices ⌃+ and ⌃� are defined in terms of the ⌃ matrix (2.16)

⌃+ =

 

⌃ 0

0 ⌃

!

, ⌃� =

 

�⌃ 0

0 ⌃

!

. (2.46)

Equations (2.44) and (2.45) clearly show that the expression of the current drastically

simplifies in the limit a = 1
2 . Indeed, in this case the odd part of the Cartan form does

not depend on the light-cone coordinate x� and this constitutes a dramatic simplification

in the gauge fixing procedure, as we will see in chapter 3. Let us now analyze in some

details which bosonic symmetries are still linearly realized after the choice (2.27).
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2.3.2.3 SU(2)4 parametrization

Although very convenient for the light-cone gauge fixing, the parametrization (2.27)

does not allow the linear realization of the whole bosonic subgroup of PSU(2, 2|4). In

this section we will derive the maximal bosonic subgroup which acts linearly on the

dynamical fields yi, zi and �. This subgroup will coincide with the manifest bosonic

symmetry of the light-cone gauge fixed string Lagrangian.

A group theory analysis of the su(2, 2)� su(4) algebra (see commutation relations (A.7)

and comments below) shows that the centralizer of the u(1) isometries, associated to

shifts of t and �, coincides with

so(4)� so(4) = su(2)� su(2)� su(2)� su(2) , (2.47)

where the first so(4) ⇢ so(1, 4) ⇢ so(2, 4), whereas the second so(4) ⇢ so(5) ⇢ so(6). As

a consequence, if G is an element of the subgroup associated to the algebra (2.47), we

have G�1⇤(t,�)G = ⇤(t,�) and consequently

Gg(t,�, yi, zi,�) = ⇤(t,�)(Gg(�)G�1)(Gg(yi, zi)G
�1)G . (2.48)

In this formula we recognize the last G as a compensating element of the coset denom-

inator SO(1, 4) ⇥ SO(5). Therefore, under the action of G both the bosons and the

fermions undergo a linear transformation

�! G�G�1 , X ! GXG�1 , (2.49)

and it is natural to ask whether we can introduce a parametrization of the physical

degrees of freedom such that this SU(2)4 invariance becomes manifest. Let us first use

the supermatrix representation (A.8) to see explicitly that the elements X and � can be

represented in terms of 2⇥ 2 matrices as follows

X =

0

B

B

B

B

B

@

0 Z 0 0

Z† 0 0 0

0 0 0 iY

0 0 iY † 0

1

C

C

C

C

C

A

, � =

0

B

B

B

B

B

@

0 0 0 ⇥1

0 0 ⇥†
2 0

0 ⇥2 0 0

�⇥†
1 0 0 0

1

C

C

C

C

C

A

, (2.50)

where the second equation is just another way to express (2.39) and the matrices Z and

Y are

Z =
1

2

 

z3 � iz4 �z1 + iz2

z1 + iz2 z3 + iz4

!

, Y =
1

2

 

y3 � iy4 �y1 + iy2

y1 + iy2 y3 + iy4

!

. (2.51)
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These matrices satisfy the following reality conditions

Z† = ✏Zt✏�1, Y † = ✏Y t✏�1 , (2.52)

where ✏ is defined in (2.18). To find the action of G on the components Y, Z,⇥1 and

⇥2, one should realize that the two SO(4) factors in (2.47) are generated by �ij and �̃ij

(see (A.8)) with i, j = 1, ..., 4. Therefore the supermatrix representation of G assumes

the form

G =

0

B

B

B

B

B

@

g1 0 0 0

0 g2 0 0

0 0 g3 0

0 0 0 g4

1

C

C

C

C

C

A

, (2.53)

with gi 2 SU(2). Simple matrix multiplication yields

GXG�1 =

0

B

B

B

B

B

@

0 g1Zg�12 0 0

g2Z†g�11 0 0 0

0 0 0 ig3Y g�14

0 0 ig4Y †g�13 0

1

C

C

C

C

C

A

, (2.54)

G�G�1 =

0

B

B

B

B

B

@

0 0 0 g1⇥1g
�1
4

0 0 g2⇥
†
2g
�1
3 0

0 g3⇥2g
�1
2 0 0

�g4⇥†
1g
�1
1 0 0 0

1

C

C

C

C

C

A

. (2.55)

If we now consider, e.g., the matrix Y and we multiply it by ✏ on the right we find that

Y ✏! g3Y g�14 ✏ = g3Y ✏g
t
4 , (2.56)

where we used the equality g�14 = ✏gt4✏
�1, which provides the equivalence of an ir-

rep of SU(2) and its complex conjugate (stated di↵erently there is no antifundamental

representation for SU(2)). Therefore, the matrix Y ✏ transforms in the bifundamental

representation of the third and the fourth SU(2) in (2.47). Associating an index a = 1, 2

to the fundamental representation of g3 and ȧ = 1̇, 2̇ to the fundamental representation

of g4, we can rewrite equation (2.56) as

Y 0aȧ = g3
a
b g4

ȧ
ḃ Y

bḃ , (2.57)



Chapter 2. The supercoset sigma model 30

where Y aȧ are the entries of the matrix Y ✏. This implies that the matrix Y in these

new variables assumes the form

Y =

 

Y 12̇ �Y 11̇

Y 22̇ �Y 21̇

!

. (2.58)

A parallel argument can be applied to the matrix Z introducing an index ↵ = 3, 4 and

↵̇ = 3̇, 4̇ for the first two copies of SU(2) in (2.47). Finally, using the reality condition

(2.52), the supermatrix X in terms of these new degrees of freedom reads

X =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 Z34̇ �Z33̇ 0 0 0 0

0 0 Z44̇ �Z43̇ 0 0 0 0

�Z43̇ Z33̇ 0 0 0 0 0 0

�Z44̇ Z34̇ 0 0 0 0 0 0

0 0 0 0 0 0 iY 12̇ �iY 11̇

0 0 0 0 0 0 iY 22̇ �iY 21̇

0 0 0 0 �iY 21̇ iY 11̇ 0 0

0 0 0 0 �iY 22̇ iY 12̇ 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (2.59)

It is not di�cult to carry out the same argument for the fermions, in light of the fact

that ⇥1 in (2.55) is related to the bifundamental of g1 and g4, whereas ⇥2 is transformed

by g2 and g3. It is then natural to parametrize ⇥1 by the entries ⌘↵ȧ and ⇥2 by ✓a↵̇.

The new parametrization for � is therefore

� =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 ⌘32̇ �⌘31̇

0 0 0 0 0 0 ⌘42̇ �⌘41̇

0 0 0 0 ✓†
14̇

✓†
24̇

0 0

0 0 0 0 �✓†
13̇
�✓†

23̇
0 0

0 0 ✓14̇ �✓13̇ 0 0 0 0

0 0 ✓24̇ �✓23̇ 0 0 0 0

�⌘†
32̇
�⌘†

42̇
0 0 0 0 0 0

⌘†
31̇

⌘†
41̇

0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

, (2.60)

where, by definition, ✓†a↵̇ and ⌘†↵ȧ are understood as complex conjugate of ✓a↵̇ and ⌘↵ȧ,

respectively,

(✓a↵̇)⇤ ⌘ ✓†a↵̇ , (⌘↵ȧ)⇤ ⌘ ⌘†↵ȧ . (2.61)

To sum up, we have shown that, after choosing a coset representative particularly suit-

able for the uniform light-cone gauge fixing, the bosonic subgroup which acts linearly on

the physical degrees of freedom is constituted by four di↵erent copies of SU(2). Hence,
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we parametrize those degrees of freedom by a convenient double index notation

Z↵↵̇ , Y aȧ , ✓a↵̇ , ⌘a↵̇ , (2.62)

pointing out the bifundamental transformation properties under SU(2). This will be

our starting point in chapter 3 for deriving a superstring action in uniform light-cone

gauge.

2.3.3 Coset representative for AdS light-cone gauge

In order to describe a useful choice of coset representative for the AdS light-cone gauge,

we use the Poincaré parametrization (2.25) and we introduce the light-cone coordinates6

x± =
x3 ± x0p

2
, x =

�x2 + i x1p
2

, x̄ =
�x2 � i x1p

2
. (2.63)

In this context, the set of bosonic generators which is more appropriate is such that the

bosonic subalgebra so(4, 2) ⇠ su(2, 2) is interpreted as the conformal group in four space-

time dimensions. Therefore, we introduce the set of bosonic generators {Jµ⌫ , Pµ,Kµ, D},
where Pµ and Jµ⌫ describe the four-dimensional Poincaré group, Kµ denote conformal

boosts and D is the dilatation generator. In the light-cone coordinates (2.63) the set of

su(2, 2) generators can be rewritten as

{J+�, J+x, J+x̄Jxx̄, P±, P, P̄ ,K±,K, K̄,D} . (2.64)

In order to complete the list of generators of the full psu(2, 2|4) superalgebra , we intro-

duce also fifteen su(4) generators J i
j and a set of 32 supercharges {Q±i, Q±

i , S
±i, S±

i },
which are diagonal under the action of D, J+� and Jxx̄ (see (A.18), (A.19),(A.20)).

The full set of commutation relations is given in appendix A, where we also provide a

supermatrix representation of this basis.

In order to choose a convenient coset representative for PSU(2,2|4)
SO(1,4)⇥SO(5) , we can exploit the

fact that in Poincaré coordinates the relation between the isometries of AdS5 and the

conformal group in four dimensions is apparent. Indeed Pµ are the generators associated

to translations of the xµ coordinates and D generates translations of �, with z = e�.

Therefore, a natural choice for the coset representative of SO(2,4)
SO(1,4) is

gSO(2,4)
SO(1,4)

= g(x)g(�) = ex
µPµe�D . (2.65)

6The unnatural choice of coordinates is chosen to facilitate the comparison with the existing literature
(see for instance [195].)
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In a similar way we can project the SU(4) generators using SO(5) matrices (A.1) and

write down a coset representative of SO(6)
SO(5) as

gSO(6)
SO(5)

= g(y) = ey
i
jJ

j
i , yij =

i

2
yA(�

A)ij , (2.66)

with A = 1, ..., 5. The inclusion of the fermions is implemented by adding a generic

element of the odd part of the algebra, as represented by (A.33).

We can finally write down the expression of the full PSU(2,2|4)
SO(1,4)⇥SO(5) coset representative

g = g(x, ✓) g(⌘) g(y) g(�) , g(x, ✓) = ex
µPµ+✓·Q , g(⌘) = e⌘·S , (2.67)

with ✓ · Q = ✓�i Q
+ i + ✓� iQ+

i + (+ $ �) and ⌘ · S = ⌘�i S
+ i + ⌘� iS+

i + (+ $ �).
Given this coset element, it is a straightforward (though long) exercise to derive the left-

invariant Cartan form (2.3). However, as we did for the uniform light-cone gauge, we

fix the -symmetry gauge before deriving the Cartan form. The standard prescription

to fix -symmetry in light-cone gauge is to impose �+✓I = 0. One can show that, in

the light-cone basis we introduced in (2.64), this is equivalent to setting to zero all the

fermions which has positive charges under J+�. Therefore, from (A.19) we conclude

that the -symmetry gauge fixing simply amounts to

✓+i = ✓+ i = 0 , ⌘+i = ⌘+ i = 0 . (2.68)

To simplify the notation we also set ✓�i = ✓i, ⌘
�
i = ⌘i and similarly for upper indices.

Let us point out that fermions here are assumed to be complex and the procedure of

raising and lowering indices is equivalent to take the complex conjugate, therefore

⌘i = ⌘†i , ✓i = ✓†i . (2.69)

Fermions with (upper)lower indices change in the (anti-)fundamental representation of

SU(4).
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The -symmetry gauge fixing simplifies the expression of a generic odd element of the

algebra to

✓iQ
+ i + ✓iQ+

i + ⌘iS
+ i + ⌘iS+

i = 2
1
4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 0 0 0 0

0 0 0 0 ⌘1 ⌘2 ⌘3 ⌘4

0 0 0 0 ✓1 ✓2 ✓3 ✓4

0 0 0 0 0 0 0 0

✓1 0 0 ⌘1 0 0 0 0

✓2 0 0 ⌘2 0 0 0 0

✓3 0 0 ⌘3 0 0 0 0

✓4 0 0 ⌘4 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (2.70)

The -symmetry fixed Cartan form assumes then the general form

A = g�1dg = A(0) +A(2) +A(1) +A(3) , (2.71)

A(0) +A(2) = Aµ
PPµ +Aµ

KKµ +ADD +
1

2
Aµ⌫

J Jµ⌫ +Aj
iJ

i
j ,

A(1) +A(3) = AQ
+
i Q
� i +AQ

�
i Q

+ i +AQ
+ iQ�i +AQ

� iQ+
i

+AS
+
i S
� i +AS

�
i S

+ i +AS
+ iS�i +AS

� iS+
i .

The coe�cients of this linear combination were first derived in [193] and here we pro-

vide explicit expressions only for the ones that are relevant for the construction of the

Lagrangian (see equations (2.83) and (2.84)). The bosonic contributions are

A+
P = e�dx+ A�P = e�



dx� +
1

2
i ✓id✓

i � 1

2
i ✓id✓i

�

AP = e�dx ĀP = e�dx̄ ,

(2.72)

A+
K = 0 A�K =

1

2
e��

⇥

�(⌘̃2)2dx+ + i ⌘̃id⌘̃i + i ⌘̃id⌘̃
i
⇤

AK = 0 ĀK = 0 ,

(2.73)

AD = d� Ai
j = (dUU�1)ij + 2 i ⌘̃i⌘̃jdx

+ . (2.74)

The non-vanishing supercharge coe�cients read

AQ
�
i = e

�
2 (d̃✓i +

p
2 ⌘̃idx̄) , AQ

� i = e
�
2 (d̃✓i +

p
2 ⌘̃idx) , (2.75)

AQ
+
i = i

p
2 e

�
2 ⌘̃idx

+ , AQ
+ i = �i

p
2 e

�
2 ⌘̃idx+ , (2.76)

AS
�
i = e�

�
2 (d̃⌘i + i ⌘̃2⌘̃idx

+) , AS
� i = e�

�
2 (d̃⌘i � i ⌘̃2⌘̃idx+) , (2.77)

where we introduced the notation

⌘̃i = U i
j✓

j , ⌘̃i = ⌘j(U
†)j i , (2.78)
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and similarly for ✓. The tilde on the di↵erential sign indicates that the rotation is

performed after the derivative (d̃✓i = U i
jd✓

j). Notice that ⌘̃2 = ⌘̃i⌘̃i = ⌘2 and ⌘̃id̃⌘i =

⌘id⌘i. To better understand the meaning of this rotation, let us consider one of the

various terms that can appear in the construction of the Cartan current (2.3)

g�1(y)⌘iS+
i g(y) = ⌘ie�y

k
j [J

j
k,•]S+

i (2.79)

= ⌘i(S+
i � ykj [J

j
k, S

+
i ] +

1

2
ykjy

m
n[J

n
m, [J j

k, S
+
i ]] + ...) . (2.80)

Since S+
i is an eigenvector under the adjoint action of Jk

l (see equation (A.21)), this

expression can be recast into the form

g�1(y)⌘iS+
i g(y) = ⌘i(ey)j iS

+
j ⌘ U j

i⌘
iS+

j , (2.81)

which provides a definition for the matrix U appearing in (2.74) and (2.78). Using the

definition of yij in (2.66), the matrix U can be also expressed as

U i
j = cos

|y|
2
�ij + i (�A)ijnA sin

|y|
2

, (2.82)

with nA = yA
|y| and |y| =

p

yAyA.

Using equations (2.21) and (2.22) one can find the supermatrix representations of the

Z4 projections of A. Taking products and supertraces one obtains

Str(A(2)A(2)) = ADAD + 2 (AK +AP )(ĀK + ĀP ) + 2 (A�K +A�P )(A
+
K +A+

P ) +AAAA,

(2.83)

Str(A(1)A(3)) = i
p
2Cij(AQ

+ iAQ
� j +AS

+ iAS
� j) + i

p
2Cij(AQ

+
i AQ

�
j +AS

+
i AS

�
j ).

(2.84)

Here Cij is a charge conjugation matrix and its explicit expression is provided by the

equality Cij = ⇢6ij with the matrix ⇢6 given in (A.2). The matrix AA in (2.84) is

determined by the decomposition

Ai
j =

i

2
AA(�

A)ij +
1

4
AAB(�

AB)ij , �AB =
1

2
[�A, �B] , (2.85)

separating the SO(5) contribution from the SO(6)
SO(5) one. In this context AA assumes

the geometrical interpretation of the supervielbein of S5, i.e. the standard bosonic S5

vielbein suitably covariantized due to the presence of fermions. Using the expression

given in (2.74) for Ai
j and projecting with a gamma matrix, one finds

AA
↵ = eA↵ � @↵x+⌘̃i(�A)ij ⌘̃j , eA↵ = � i

2
Tr(�A@↵UU�1) . (2.86)
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Here eA↵ is the bosonic S5 vielbein

eA↵eA� = GAB@↵y
A@�y

B , GAB =
sin |y|
|y| (�AB � nAnB) + nAnB . (2.87)

We finally have at our disposal all the ingredients to build the Lagrangian (2.6). We

consider the “kinetic” and the Wess-Zumino part separately. The former reads

Lkin = �↵� Str
⇣

A(2)
↵ A(2)

�

⌘

= �↵�
⇣

@↵�@��+ 2 e2�@↵x@�x̄+ 2 e2�@↵x
+@�x

� +AA
↵AA�

� i @↵x
+(⌘̃i@̃�⌘i + ⌘̃i@̃�⌘

i + e2�✓̃i@̃�✓i + e2�✓̃i@̃�✓
i)� @↵x+@�x+(⌘̃2)2

⌘

. (2.88)

In the first line we clearly recognize the Polyakov action for a bosonic string in AdS5⇥S5,

with AdS5 in Poincaré coordinates (2.25) and S5 parametrized by (2.87). An appealing

feature of this Lagrangian is that it is quartic in fermions. This is a consequence of

this particular  symmetry gauge fixing, and in chapter 4 we will see that this property

simplifies higher-order computations in pertubation theory. The Wess Zumino term is

even simpler

LWZ = ✏↵� Str
⇣

A(1)
↵ A(3)

�

⌘

= 2 ✏↵�@↵x
+e�⌘̃iC

ij(@̃�✓j + i
p
2⌘̃j@�x) + h.c. . (2.89)

Another nice property of this Lagrangian is that x� appears only in the kinetic term

@↵x+@�x�. In chapter 4 we will see how this drastically simplifies the gauge fixing

procedure. In order to have a convenient sign in front of the fermionic kinetic terms and

to deal with fermions with the same scaling dimensions, we apply the transformations

xa ! �xa , ⌘̃i ! e�⌘̃i , ⌘̃i ! e�⌘̃i . (2.90)

The new Lagrangian is

Lkin = �↵�
⇣

@↵�@��+ 2 e2�@↵x@�x̄+ 2 e2�@↵x
+@�x

� +AA
↵AA� (2.91)

+ i e2�@↵x
+(⌘̃i@̃�⌘i + ⌘̃i@̃�⌘

i + ✓̃i@̃�✓i + ✓̃i@̃�✓
i)� @↵x+@�x+e4�(⌘̃2)2

⌘

,

LWZ = �2 ✏↵�@↵x+e2�⌘̃iCij(@̃�✓j � i e�
p
2⌘̃j@�x) + h.c. . (2.92)

Arguably, the one feature of this Lagrangian that is slightly tedious is the matrix U

rotating all the fermionic degrees of freedom. It turns out there are di↵erent ways

to reabsorb that rotation. Here we focus on two strategies, both developed in [193].

The first one consists in eliminating the rotation introducing a covariant derivative for

fermions and we call it the Wess-Zumino (WZ) parametrization. The second one is a

nice change of variables after which the Lagrangian looks even simpler and, for a reason
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that will be clear in the following, we call it the “4+6” parametrization. The reason why

we analyze also the former, whose Lagrangian is slightly more involved, is that in the

lower dimensional example of superstring theory in AdS4 ⇥ CP3 (see section (2.4)) the

second strategy does not seem to be applicable and therefore it will be useful to make a

comparison with the first one.

2.3.3.1 WZ parametrization

The aim of this section is to perform a transformation on the fermions appearing in

(2.91) and (2.92), such that the rotation by the U matrix are reabsorbed in covariant

derivatives. This is easily achieved by the following transformation

⌘i ! ⌘jU
j
i , ⌘i ! (U †)ij⌘

j , ✓i ! ✓jU
j
i , ✓i ! (U †)ij✓

j . (2.93)

The rotation (2.93) clearly eliminates the matrix U from all the terms where the fermions

are not derived. Terms involving derivatives of fermions have the following transforma-

tion property

d̃⌘i ⌘ U i
jd⌘

j ! d⌘i � (dUU�1)ij⌘
j ⌘ D⌘i , (2.94)

and similarly for fermions with lower indices. Introducing the notation ⌦i
j = (dUU�1)ij

it is easy to verify that, by construction, ⌦ is a connection with vanishing curvature. To

sum up we have

D⌘i = d⌘i � ⌦i
j⌘

j , D⌘i = d⌘i + ⌘j⌦
j
i , d⌦� ⌦ ^ ⌦ = 0 , (2.95)

and similarly for ✓. Using equation (2.86) we can express also the S5 vielbein in terms

of ⌦ as

eA = � i

2
Tr(�A⌦) . (2.96)

This is nothing else than a projection of the matrix ⌦, which in general admits the

decomposition

⌦i
j =

i

2
eA(�

A)ij +
1

4
!AB(�

AB)ij , (2.97)

where !AB is the spin connection in our parametrization of S5. Therefore, D assumes a

precise geometrical interpretation as the covariant derivative of a spinor on S5. Notice

that the whole dependence on U has now been reabsorbed and the Lagrangian depends

only on ⌦, which carries all the information about the S5 background. The explicit form

of ⌦ is

⌦ =
i

2
�A



yA
yBdyB
|y|2

✓

1� sin |y|
|y|

◆

+ dyA
sin |y|
|y|

�

�1

4
�AB



(yAdyB � yBdyA)
1� cos |y|

|y|2
�

,

(2.98)
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and the final form of the Lagrangian is

L = LB + L(2)
F + L(4)

F , (2.99)

where the bosonic component is simply the Polyakov lagrangian in our parametrization

of AdS5 ⇥ S5

LB = �↵�
⇣

2 e2�(@↵x
+@�x

� + @↵x@�x̄) + @↵�@��+GAB(y)@↵y
A@�y

B
⌘

. (2.100)

Notice that, as expected, the bosonic Lagrangian depends only on the vielbein of S5.

The dependence on the spin connection enters, through ⌦, in the fermionic interactions.

The quadratic part of the fermion action reads

L(2)
F = e2�@↵x

+
h

�↵�
⇣

i ⌘iD�⌘i + i ✓iD�✓i + eA� ⌘i(�A)
i
j⌘

j
⌘

�2 ✏↵�⌘iCij

⇣

D�✓
j � i
p
2e�⌘j@�x

⌘

+ h.c.
i

. (2.101)

Finally the quartic fermionic term depends only on ⌘

L(4)
F = �e4��↵�@↵x+@�x+



�

⌘2
�2 �

⇣

⌘i(�A)
i
j⌘

j
⌘2
�

. (2.102)

This Lagrangian, although still complicated by the presence of the connection ⌦, has

the privilege of having a clear geometric interpretation. As we mentioned, a similar

construction can be carried out also in the AdS4 ⇥ CP3 case (see section 2.4.2.3).

2.3.3.2 4+6 parametrization

The choice of a light-cone gauge involving only coordinates in the AdS part of the space

suggests that the sphere is una↵ected by this procedure and all the SU(4) generators

simply commute with the generators of translations in the x+ and x� directions. We

therefore expect our Lagrangian to have an explicitly realized SO(6) symmetry, which

is clearly not there in (2.91) and (2.92). It turns out that it is possible to find a change

of variables which brings this Lagrangian to an explicitly SO(6) invariant form. The

idea is to use the coordinate �, together with the five yA coordinates, to build a SO(6)

vector

zA = e�� sin |y|nA , z6 = e�� cos |y| , |z|2 = zMzM = e�2� , (2.103)
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with M = 1, ..., 6. The metric in the new coordinates looks extremely simple and has

the standard 4+6 form from which we borrowed the name for the parametrization

ds2 =
dxµdxµ + dzMdzM

|z|2 . (2.104)

To perform the change of variable in the fermionic Lagrangian, it is useful to introduce

the SO(6) matrices ⇢Mij . As usual, they carry two indices changing in the fundamental

and one in the vector representation of SU(4) ⇠ SO(6). We also indicate by (⇢M )ij

the hermitian conjugate of ⇢Mij . Therefore vectorial indices are raised and lowered by a

six-dimensional identity matrix and there is no di↵erence between ⇢M and ⇢M . On the

other hand, raising or lowering fundamental indices always implies some kind of complex

conjugation as we have already observed for the fermions in (2.69). The commutator of

two ⇢ matrices is abbreviated as

(⇢MN )ij =
1

2

h

(⇢M )il⇢Nlj � (⇢N )il⇢Mlj

i

. (2.105)

Explicit expressions of all the matrices and additional relations among them are spelled

out in appendix A.

The mapping between SO(5) gamma matrices and ⇢ matrices is provided by

(�A)ij = i(⇢A)il(⇢6)lj , Cij = ⇢6ij , (2.106)

as one can easily check looking at the explicit expressions or checking the defining prop-

erties. It is interesting to note, using (2.82), that

(U †)ij(�
A)jkU

k
l = i nM (⇢MA)il � i

1

1 + n6
zAnM (⇢M6)il , e��U i

jCikU
k
l = ⇢Mjl zM ,

(2.107)

where we introduced the notation nM = zM
|z| . Combining the first identity with the

kinetic terms of the bosons, one notices a very powerful cancellation of all the terms

that are not explicitly SO(6) invariant. We can therefore rewrite the kinetic lagrangian

(2.91) as

Lkin =
�↵�

|z|2


2 @↵x
+@�x

� + 2 @↵x@�x̄+D↵z
MD�zM

+ i @↵x
+
�

⌘i@�⌘i + ⌘i@�⌘
i + ✓i@�✓i + ✓i@�✓

i
�

� @↵x+@�x+

|z|2 (⌘2)2
�

, (2.108)

where the covariant derivative simply acts as follows

D↵z
M = @↵z

M + i ⌘i(⇢
MN )ij⌘

j zN
|z|2@↵x

+ . (2.109)
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The Lagrangian (2.108) is explicitly SO(6) invariant, however it has the unpleasant

feature of containing inverse powers of |z|, preventing us from expanding around the

trivial vacuum where all the fields are set to zero. This is a common feature in integrable

systems such as the O(N) sigma model [196]. In that case the Lagrangian has explicit

O(N) invariance. Nevertheless, in order to perform a perturbative computation, one has

to pick a vacuum which breaks the symmetry to O(N � 1). In that case the symmetry

is restored non-perturbatively and we expect something similar to happen also for the

string theory model.

The second identity in (2.107) allows to rewrite the WZ term (2.92) in the explicitly

SO(6) invariant form

LWZ = � 2

|z|3 ✏
↵�@↵x

+zM⌘
i⇢Mij

✓

@�✓
j � i

|z|
p
2⌘j@�x

◆

+ h.c. . (2.110)

Notice that the dependence of the Lagrangian on the matrices U has been completely

reabsorbed by the identities (2.107). This Lagrangian will be the starting point for some

of the applications discussed in chapter 4.

2.4 Superstring theory in AdS4 ⇥ CP3

The importance of constructing superstring theory for various examples of AdS/CFT

has been widely emphasized in the introduction of this review. Nevertheless, the con-

struction of a Lagrangian for a superstring moving in AdS4 ⇥ CP3 is not as straight-

forward as the higher dimensional counterpart, analyzed in section 2.3. At first sight

this may seem counterintuitive, since in section 2.1 we described a general procedure to

build an action for any supercoset target space and the coset SO(2,3)⇥SU(4)
SO(1,3)⇥U(3) , describing

AdS4⇥CP3, allows for a supersymmetric extension to OSp(2,2|6)
SO(1,3)⇥U(3)

7. This possibility was

explored in [31, 32] and the resulting action can be interpreted as a partially gauge-fixed

type IIA Green Schwarz action, where the -symmetry gauge-fixing sets to zero eight

fermionic modes corresponding to the eight broken supersymmetries [67, 68]. Indeed, un-

like AdS5⇥S5, the AdS4⇥CP3 background preserves only 24 of the 32 supersymmetries

of type IIA supergravity.

Therefore, it looks like, up to this apparently irrelevant di↵erence, we have a way to

derive an action for the new background. However, as first argued in [32] and later

clarified in [67], this action is not suitable to describe the dynamics of a string lying

solely in the AdS4 part 8 of the AdS4 ⇥ CP3superspace. In this case four of the eight

7Remember that SO(2, 3) ⇠ USp(2, 2) and in our notation OSp(2, 2|6) has bosonic subgroup
USp(2, 2)⇥ SO(6).

8The same is true when the string forms a worldsheet instanton by wrapping a CP1 cycle in CP3 [197].
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modes set to zero are in fact dynamical fermionic degrees of freedom of the super-

string. Any action willing to capture the semiclassical dynamics on these classical string

configurations should contain these physical fermions, and should therefore be found

via another, sensible -symmetry gauge-fixing of the full action. This has been done

in [198, 199] 9, starting from the D = 11 membrane action [66] based on the supercoset

OSp(8|4)/ (SO(7)⇥ SO(1, 3)), performing double dimensional reduction and choosing a

-symmetry light-cone gauge. The output is an action, at most quartic in the fermions,

which is the AdS4 ⇥ CP3counterpart of the gauge-fixed action of section 2.3.

Here we will be mostly interested in this second version of the action. Therefore, after

quickly sketching the main features of the coset construction, we will review in some

details the derivation of the action of [198, 199].

2.4.1 The coset approach

The Lie algebra osp(2, 2|6) can be realized by 10⇥ 10 matrices of the form

M =

 

m ✓

⌘ n

!

, (2.111)

wherem and n are Grassmann even 4⇥4 and 6⇥6 matrices respectively. The Grassmann

odd matrix ✓ is 4⇥6 while ⌘ is 6⇥4. In order to belong to osp(2, 2|6), M has to satisfy two

conditions. The first one singles out the complex algebra osp(4|6) through the constraint

M st

 

C4 0

0 16

!

+

 

C4 0

0 16

!

M = 0 , (2.112)

where C4 is a charge conjugation matrix, which can be chosen to be real skew symmetric

and satisfying C2
4 = �14. M st indicates the supertrasposition introduced in (2.17). If

we restrict equation (2.112) to the bosonic matrices, we notice that the condition is

translated into

mt = C4mC4 , nt = �n , (2.113)

which tells us that the bosonic subalgebra is sp(4,C)� so(6,C). We can also pick a real

section of that imposing

M †

 

⌃ 0

0 �16

!

+

 

⌃ 0

0 �16

!

M = 0 , (2.114)

9See also [68].
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where ⌃ was defined in (2.16). This last equation defines the algebra osp(2, 2|6) as a

real section of osp(4|6). As a consequence of (2.112) and (2.114), we have the following

relations among the fermionic components

⌘ = �✓tC4 , ✓⇤ = i�3✓ . (2.115)

Following the same lines of equation (2.17) we can write down explicitly the automor-

phism ⌦ introduced in (2.2) as

⌦(M) = �KM stK�1, K =

 

K4 0

0 �K6

!

, (2.116)

and, similarly to (2.18), the matrices K4 and K6 can be chosen to be

K4 =

 

✏ 0

0 ✏

!

, K6 =

0

B

B

@

✏ 0 0

0 ✏ 0

0 0 ✏

1

C

C

A

. (2.117)

Since the structure of the automorphism ⌦ is exactly the same as in (2.17), we can just

use formulae (2.21) and (2.22) to find the Z4 projections of the supermatrix M and build

all the ingredients for the superstring action.

This is the point where we would need to introduce a parametrization of the coset repre-

sentative of OSP (2,2|6)
SO(1,3)⇥U(3) and write down the explicit form of the Lagrangian. However,

as we mentioned in chapter 4, we will be interested in classical string configurations lying

entirely in the AdS part of the space and this description cannot be employed in that

particular case. Therefore, instead of focusing on deriving a closed-form Lagrangian, we

would rather study the properties of -symmetry in the coset description and analyze

why this description is not suitable for the configurations we are interested in.

2.4.1.1 -symmetry

As we have already done for AdS5 ⇥ S5 we start from equation (2.8), which holds for a

general supercoset sigma model, and we look for a change of parametrization which is

particularly suitable for the supergroup we are dealing with. In this case one finds that

the convenient change of variables is provided by

"(1) = A(2)
↵,�A

(2)
�,�

↵� + ↵�A(2)
↵,�A

(2)
�,� +A(2)

↵,�
↵�A(2)

�,� �
1

8
str(⌃A(2)

↵,�A
(2)
�,�)

↵� , (2.118)

where ↵� is the -symmetry parameter which is assumed to be independent on the

dynamical fields of the model. A similar change of variable can be performed also for
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the "(3) parameter introducing a new parameter {↵� . After some algebra, whose details

can be found in [32], one can find the following variation for the worldsheet metric

��↵� =
1

2
str

⇣

⌃A(2)
�,�[

↵� , A(1),�
+ ]

⌘

+
1

2
str

⇣

⌃A(2)
�,+[{

↵� , A(3),�
� ]

⌘

, (2.119)

We stress once again that in our derivation of -symmetry we used the fact that P↵�±

are orthogonal projectors and, therefore, we required ± 1.

To understand how many fermionic degrees of freedom we can fix using -symmetry,

we follow a procedure similar to the AdS5 ⇥ S5 case and without loss of generality we

consider a current of the form

A(2) = i At�
t +A6T

6 , (2.120)

where t is the time direction in AdS and T 6 is the generator of translation in one of the

CP3 directions. As in AdS5⇥S5 the Virasoro contraint demands At = ±A6 and, picking

the first solution, we can use equations (2.11) and (2.118) to write down the form of "(1)

as

"(1) = x2
 

0 "

�"tC4 0

!

, (2.121)

where " is the following matrix

" =

0

B

B

B

B

B

@

0 0 i(i13 � 16) i(i14 � 15) i14 � 15 i13 � 16
0 0 i(i23 � 26) i(i24 � 26) i24 � 25 i23 � 26
0 0 �i(�i33 � 36) �i(�i34 � 35) �i34 � 35 �i33 � 36
0 0 �i(�i43 � 46) �i(�i44 � 45) �i44 � 45 �i43 � 46

1

C

C

C

C

C

A

and ij are the entries of the matrix . As we see, the matrix " depends on 8 independent

complex fermionic parameters (e.g. the last two columns). The reality condition (2.115)

for " reduces this number by half. Finally, "(1) must belong to the component A(1) which

further reduces the number of fermions by half. As a result, "(1) depends on four real

fermionic parameters. A similar analysis applies to "(3). Thus, in total "(1) and "(3)

depend on 8 real fermions and these are those degrees of freedom which can be gauged

away by -symmetry. The gauge-fixed coset model will therefore involve 16 physical

fermions only.

It should be noted that the considerations above are applicable to a generic case, where

string motion occurs in both AdS4 and CP3 spaces. There is however a singular situ-

ation, when string moves in the AdS space only. One can show that for this case the

transformation (2.118) vanishes and only 12 fermionic equations (out of 24) are inde-

pendent. This suggests that -symmetry in this singular situation becomes capable of



Chapter 2. The supercoset sigma model 43

gauging away 12 over 24 fermions. The singular nature of the corresponding bosonic

background shows up in the fact that, as soon as fluctuations along CP3 directions are

switched on, the rank of -symmetry gets reduced to 8 [32]. We therefore conclude that

singular backgrounds cannot be quantized semi-classically within the coset sigma-model.

Since in this review we are interested in a classical string configuration which lies entirely

in AdS (see chapter 4), we need to develop an alternative approach which includes this

configuration. This is the aim of the following sections.

2.4.2 String action from double dimensional reduction

As we mentioned, the Lagrangian obtained via the coset construction can be interpreted

as the full Green-Schwarz type IIA superstring Lagrangian in AdS4 ⇥ CP3, after the

-symmetry gauge has been partially fixed setting to zero the fermionic coordinates

associated to the broken supersymmetries. Nevertheless, the action of GS superstring

in curved background is known only up to quartic order in the fields and one may

wonder whether there is a way of building the full Lagrangian for type IIA superstring

on AdS4 ⇥ CP3 with full -symmetry freedom (i.e. with the usual 32 fermionic degrees

of freedom of the GS superstring). It turns out this can be done exploiting the fact

that S7 is a U(1) Hopf fibration over CP3, and therefore the AdS4 ⇥ CP3 solution of

the bosonic equations of type IIA supergravity [200] is directly related to the Freund–

Rubin AdS4 ⇥ S7 solution of the bosonic D = 11 supergravity equations of motion

by reducing along the U(1)–fiber direction of the S7 [65, 201]. Extending the Kaluza-

Klein reduction to superspace is much more subtle. Nonetheless it was done in [67, 68],

where the complete action for type IIA superstring in AdS4 ⇥ CP3 was written down.

It describes all possible superstring motions and allows a wider choice of -symmetry

gauges compared to the supercoset action. About the integrability of this string non-

coset model, the standard analysis of section 2.2- which applies to the supercoset action

- is not possible here. The classical integrability of strings generically moving in the full

AdS4 ⇥ CP3superspace has been however shown by constructing a Lax connection with

zero curvature up to quadratic order in the fermions [202] 10. In [198] a -symmetry

gauge particularly suitable for the AdS light-cone gauge fixing was introduced. In the

following we summarize the construction of [198].

2.4.2.1 The membrane action in AdS4 ⇥ S7

Actions for the M2-brane and the M5-brane in the AdS4 ⇥ S7 and AdS7 ⇥ S4 super-

backgrounds respectively were derived in [203, 66, 204, 205]. Similarly to the case of

10A study of classical integrability (prior to gauge-fixing) for general motion of the string in several
backgrounds of interest for the AdS/CFT correspondence is in [72].
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AdS5⇥S5 in ten dimensions, AdS4⇥S7 and AdS7⇥S4 are maximally supersymmetric

backgrounds in eleven dimensions. Thus one can exploit a coset construction similar

to the one described in section 2.1 to build the geometric ingredients entering the su-

permembrane action. AdS4 ⇥ S7 can be described as a coset SO(2,3)
SO(1,3) ⇥

SO(8)
SO(7) and the

supersymmetric extension with 32 superspace directions is given by OSp(4|8)
SO(1,3)⇥SO(7) . As a

starting point, one can choose a set of generators for the algebra osp(4|8) of the form

{Mµ⌫ ,Mµ, VIJ , V8I , QA0}, with µ, ⌫ = 0, ..., 3; I, J = 1, ..., 7 and A0 = 1, ..., 32. The set

of bosonic generators {Mµ⌫ ,Mµ} span the subalgebra sp(4) ⇠ so(2, 3) and, since Mµ⌫

alone generate so(1, 3), the generators Mµ are associated to the coset degrees of freedom
SO(2,3)
SO(1,3) . In a similar way VIJ are generators of so(7) and, together with V8I , they gen-

erate so(8). All the fermionic generators are encoded in QA0 . In this basis the Cartan

form reads

A = g�1dg = !µ⌫Mµ⌫ + EµMµ + ⌦IJVIJ + ⌦8IV8I + FA0
QA0 . (2.122)

The geometric interpretation of the coe�cients is the usual one, i.e. Eµ and ⌦8I ⌘ EI

are the supervielbeine of AdS4 and S7 respectively. In this setup, the M2-brane action

in the AdS4 ⇥ S7 background reads

S = �
Z

V

d3⇠
q

�g(3) + SWZ . (2.123)

Here g(3) is the determinant of the induced world-volume metric

g(3)
↵̂�̂

= Eµ
↵̂Eµ �̂ + EI

↵̂EI �̂ , ↵̂, �̂ = 0, 1, 2; (2.124)

with the components of the Cartan form defined by A = A↵̂d⇠↵̂. The Wess-Zumino

(WZ) term

SWZ =
1

4

Z

M4

H(4) (2.125)

is the integral of the closed 4-form

H(4) =
i

2
FA0 ^ (�µ̂⌫̂)A0B

0
FB0 ^ Eµ̂ ^ E⌫̂ + "µ⌫⇢�E

µ ^ E⌫ ^ E⇢ ^ E� (2.126)

over the 4-dimensional auxiliary hypersurface M4, whose boundary coincides with the

supermembrane world volume V . In (2.126) we introduced the eleven dimensional vector

Eµ̂ = (Eµ, EI) and the matrix �µ̂⌫̂ , commutator of two SO(1, 10) gamma matrices. The

coe�cient of the WZ term is fixed by requiring -symmetry invariance (see [198] for

details).

In the following we will be interesting in performing a double dimensional reduction and
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fixing an AdS light-cone gauge on the superstring action. Both these tasks are best

achieved in a di↵erent basis of generators with respect to the one we just introduced.

As far as the light-cone gauge is concerned, we learned in section 2.3.3 that a convenient

basis is provided by the interpretation of SO(2, d) as the superconformal group in d

dimension. Therefore the set of bosonic generators for sp(4) is exactly the same as in

section 2.3.3, but with one dimension less. Introducing light-cone coordinates

x± = x2 ± x0 , (2.127)

one ends up with

{J+�, J+x, P±, P,K±,K,D} , (2.128)

where P generates translations along the coordinate x1, which hereafter we simply la-

bel as x. The metric of the AdS part of the space is naturally expressed in Poincaré

coordinates

ds2AdS4
= R2

AdS
dxmdxm + dz2

z2
, (2.129)

with m = 0, 1, 2 (or equivalently m = +,�, 1), and the AdS components of the Cartan

form (2.122) are rearranged as (see appendix A)

!µ⌫Mµ⌫ + EµMµ = !mnJmn +�D + !mPm + cmKm . (2.130)

Working out the transformation of the first term in the induced metric (2.124) one

obtains

g(3),AdS

↵̂�̂
d⇠↵̂d⇠�̂ =

1

4
(!m + cm)(!m + cm) +�2 . (2.131)

Notice the analogy between this equation and the first three terms in equation (2.83).

The 32 supercharges can also be organized in a convenient light-cone representation

{Q±i, Q±
i , S

±i, S±
i }, as in section 2.3.3. These supercharges clearly describe a N = 8

superspace in three dimensions. However, the dimensional reduction preserves only

N = 6 supersymmetry. For this reason, it is convenient to split the index i = 1, .., 4 of

the supercharges as Q±
i = (Q±

a , Q
±
4 ) and similarly for the antifundamental index. Now

a = 1, ..., 3 is an index in the (anti)fundamental of SU(3), which is the symmetry we

expect to be explicitly realized in the superstring action for AdS4 ⇥ CP3.

Unlike the AdS5⇥S5 case, the treatment of the S7 part of the space is quite involved due

to the dimensional reduction. Indeed, one needs to find a basis of generators which makes

the Hopf fibration structure of S7 manifest. First of all it is convenient to introduce a
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so(6)� so(2) ⇠ su(4)� u(1) basis

⌦IJV IJ + ⌦8IV 8I = ⌦MNVMN + ⌦78V78 + ⌦8MV8M + 2⌦7MV7M , M,N = 1, ..., 6 .

(2.132)

Here VMN and V78 are generators of so(6) and so(2) respectively and the remaining

generators are associated to the coset directions SO(8)
SO(2)⇥SO(6) . Using the ⇢ matrices

(A.2), one can convert all the SO(6) vector indices in SU(4) (anti)fundamental ones.

The detailed procedure is spelled out in appendix A. The final result is

⌦8IV 8I + 2⌦7IV 7I = ⌦aT
a + ⌦aTa + ⌦̃aT̃

a + ⌦̃aT̃a ,

⌦IJV IJ + ⌦78V 78 = ⌦a
bVb

a + ⌦b
bVa

a + ⌦a
4V4

a + ⌦4
aVa

4 + hH . (2.133)

The relations between the coe�cients of (2.132) and (2.133) are given in appendix A.

Here we just resume the role of the generators on the r.h.s. of (2.133). The 1-form

h in (2.133) corresponds to the fiber direction of CP3 ⇥ U(1). The 8 generators Vb
a

span a su(3) algebra, which is enhanced to u(3) when V a
a is included. Including also

the 6 generators T a and Ta, the full set of 15 generators {T a, Ta, Vb
a, V a

a } span the

su(4) algebra. Finally, the remaining 12 generators {Va
4, V4

a, T̃a, T̃ a} are associated

to the coset SO(8)
SU(4)⇥U(1) . The relation between these coe�cients and those given in

(2.122) is quite involved and, to understand which degrees of freedom are relevant for

the construction of the Lagrangian, one has to transform the original vielbeine to the

new ones in (2.133) (see appendix A for details). The result of this change of coordinates

is quite simple and yields the new induced metric

g(3),S
7

↵̂�̂
d⇠↵̂d⇠�̂ = ⌦8I0⌦8I0 = (h+ ⌦a

a)2 + (⌦a + ⌦̃a)(⌦
a + ⌦̃a) . (2.134)

The aim of the following discussion is to find the explicit expressions for these super-

vielbeine using a specific coset representative for OSp(4|8)
SO(1,3)⇥SO(7)

There is always some degree of arbitrariness in the choice of the coset representative.

The idea here is to use a dressed version of the coset representative for OSp(4|6)
SO(1,3)⇥U(3) ,

adding the fiber direction y to parametrize S7 and the superspace directions associated

to the broken supersymmetries. As we have already experimented in section 2.3.3, it

is convenient to fix the -symmetry before deriving the current. Following the same

strategy as for AdS5 ⇥ S5, we set to zero all the fermionic directions with negative11

charge under the J+� generator. This implies

✓�i = ✓� i = 0 , ⌘�i = ⌘� i = 0 . (2.135)

11For AdS5 ⇥ S5 we chose the positively charged fermions, however here we switch convention to be
consistent with the literature.
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We also set ✓+i ⌘ ✓i and ✓+ i ⌘ ✓i, and similarly for ⌘. The -symmetry gauge fixed

coset representative will be given by

g = g(x, ✓a) g(⌘a) g(z) g(�) g(y) g(✓4) g(⌘4) , (2.136)

where the first four factors are the precise analogue of the higher dimensional counterpart

(2.67)

g(x, ✓a) = ex
mPm+✓aQ�

a +✓aQ� a
, g(⌘) = e⌘aS

� a+⌘aS�
a , g(z) = ez

aTa+zaTa
, g(�) = e�D,

(2.137)

while the last three factors read

g(y) = eyH , g(✓4) = e✓
4Q�

4 +✓4Q� 4
, g(⌘4) = e⌘

4S�
4 +⌘4S� 4

. (2.138)

The position of the coordinate y, on the left of the supercharges associated to broken

supersymmetries, allows to have no dependence on y in the vielbein. This is necessary

to perform the dimensional reduction, as we will point out in the following. Before that,

let us compute the relevant components of the Cartan form.

In general the current A can be decomposed as

A = g�1dg = AAdS4 +AS7 +Aferm , (2.139)

AAdS4 = !mnJmn +�D + !mPm + cmKm , (2.140)

AS7 = ⌦aT
a + ⌦aTa + ⌦̃aT̃

a + ⌦̃aT̃a

+ ⌦a
bVb

a + ⌦b
bVa

a + ⌦a
4V4

a + ⌦4
aVa

4 + hH , (2.141)

Aferm = !�i Q
+ i + !�iQ+

i + !+
i Q
� i + !+iQ�i

+ ��i S
+ i + ��iS+

i + �+
i S
� i + �+iS�i . (2.142)

We stress that in the last line we grouped the di↵erent contributions in a SU(4) notation,

but in the following we will always deal with the !a and !4 separately. We report here

only the components that are relevant for the construction of the induced metrics (2.131)

and (2.134). We start from the S7 components

⌦a = dz̄a
sin |z|
|z| + z̄a

sin |z|(1� cos |z|)
2|z|3 (dzcz̄c � zcdz̄c) + z̄a

✓

1

|z| �
sin |z|
|z|2

◆

d|z|, (2.143)

⌦a = dza
sin |z|
|z| + za

sin |z|(1� cos |z|)
2|z|3 (zcdz̄c � dzcz̄c) + za

✓

1

|z| �
sin |z|
|z|2

◆

d|z| ,

(2.144)

where |z|2 ⌘ za z̄a. From the decomposition (2.141) and the interpretation of T a as coset
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generators of SU(4)
U(3) , it is clear that ⌦a inherits the geometrical interpretation of vielbein

of CP3. Indeed

ds2CP3 = ⌦a⌦
a = gab dz

a dzb + gab dz̄a dz̄b + 2 g b
a dza dz̄b , (2.145)

with

gab =
1

4|z|4
�

|z|2 � sin2 |z|+ sin4 |z|
�

z̄a z̄b ,

g b
a =

sin2 |z|
2|z|2 �ba +

1

4|z|4
�

|z|2 � sin2 |z|� sin4 |z|
�

z̄a z
b , (2.146)

and gab is simply obtained by gab replacing z with z̄. The other relevant components for

(2.134) read

⌦̃a = "abc⌘̂
b⌘̂cdx+ � 2e�'⌘̂a⌘4dx

+ , ⌦̃a = �"abc⌘̂b⌘̂cdx+ + 2e�'⌘̂a⌘4dx+ , (2.147)

h = dy � e�2'⌘4⌘
4dx+, ⌦ a

a = i
sin2 |z|
|z|2 (dza z̄a � za dza) , (2.148)

where we introduced the notation

⌘̂a = Ta
b⌘b + Tab⌘

b, ⌘̂a = T a
b⌘

b + T ab⌘b , (2.149)

in the same spirit of (2.78). The origin of the matrix T is the same as the matrix U

in (2.78), with the important di↵erence of containing non-diagonal terms12. Indeed, the

definition of T is

Tâ
b̂ =

 

Ta
b Tab

T ab T b
a

!

= exp

 

0 i ✏acbzc

�i ✏acbz̄c 0

!

, (2.150)

with the hatted index defined such that zâ = (za, za). Using the properties of the matrix

in the exponent, one can find an explicit expression of T as

Tâ
b̂ =

0

@

�ba cos |z|+ z̄a zb
1�cos |z|

|z|2 i "acb zc
sin |z|
|z|

�i "acb z̄c sin |z|
|z| �ab cos |z|+ za z̄b

1�cos |z|
|z|2

1

A . (2.151)

It is worthwhile noticing that the vielbeine are independent of y. As we will see, this is

an essential property for performing the dimensional reduction and it is a consequence

of our choice of the coset representative.

12Here non-diagonal means that the rotation of ⌘a involves also the complex conjugate ⌘a.
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This feature is present also in the AdS components, although in this case we notice the

appearance of a non-trivial dependence on dy

!� = e�2'(dx� + i d✓a✓
a � i ✓ad✓

a) + i d✓4✓
4 � i ✓4d✓

4 � 4✓4✓
4dy , (2.152)

!+ = e�2'dx+ , !1 = e�2'dx ,

c� = e2'(i d⌘a⌘
a � i ⌘ad⌘

a) + i d⌘4⌘
4 � i ⌘4d⌘

4 � 4⌘4⌘
4dy , (2.153)

c+ = 0 , c1 = 0, (2.154)

� = d' . (2.155)

In the fermionic components of the Cartan form associated to the unbroken supersym-

metries there is no dependence on y. The non-vanishing components are

!+
a = e�'(d̂✓a + dx ⌘̂a), !+a = e�'(d̂✓a + dx ⌘̂a), (2.156)

!�a = e�'dx+⌘̂a, !�a = e�'dx+⌘̂a, (2.157)

�+
a = e'd̂⌘a , �+a = e'd̂⌘a . (2.158)

On the other hand, the coe�cients of the generators associated to the broken supersym-

metries exhibit an explicit dependence on dy

!+
4 = d✓4 + d'✓4 + e�2'dx ⌘4 + 2i✓4 dy, !+4 = d✓4 + d'✓4 + e�2'dx ⌘4 � 2i✓4 dy,

(2.159)

!�4 = e�2'dx+⌘4, !�4 = e�2'dx+⌘4, (2.160)

�+
4 = d⌘4 � d'⌘4 + 2i⌘4 dy , �+4 = d⌘4 � d'⌘4 � 2i⌘4 dy . (2.161)

We have now collected all the necessary ingredients to build the supermembrane action

in eleven dimensions and we can move to the description of the dimensional reduction

procedure.

2.4.2.2 Dimensional reduction

Dimensional reduction of the D = 11 supermembrane action to the D = 10 Type IIA

superstring was described for general superbackground in [206]. One crucial requirement

for being able to perform such a reduction is that the first 10 components of the bosonic

supervielbeine are independent of both y and dy, while the eleventh component should

appear in the Kaluza-Klein Ansatz form

E11 = �(dy +A) , (2.162)
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where � is related to the dilaton and A is the RR 1-form potential. However we noticed

that, for the case at hand, this requirement is not satisfied since the bosonic vielbeine

!m and cm in (2.155) depend explicitly on dy. To remove this dependence one has to

perform a local Lorentz rotation in the tangent space

Eµ̂ ! Lµ̂
⌫̂E

⌫̂ , FA0 ! LA0
B0FB0

, Lµ̂
⌫̂ 2 SO(1, 10), LA0

B0 2 Spin(1, 10) , (2.163)

where Eµ̂ and FA0
are the bosonic and fermionic components of the supervielbeine

entering (2.126). We should stress that such a transformation is not part of the isometry

of the AdS4⇥S7 solution and should be regarded as an appropriate choice of a di↵erent

supervielbein basis of OSp(8|4)
SO(7)⇥SO(1,3) , which has the Kaluza–Klein form compatible with

the Hopf fibration. In our case, since the CP3 vielbein components do not contain

any contribution proportional to dy, the necessary frame rotation L involves only the

directions tangent to AdS4 and the one tangent to the U(1)-fiber direction on S7

 

Êµ

Ê11

!

= L

 

Eµ

⌦78

!

, (2.164)

where Eµ is defined in (2.122) and, when translated to light-cone coordinates, is given

by

Eµ =
�

1
2(!

m + cm),�
�

. (2.165)

The entries of the matrix L

L =

 

Lµ
⌫ Lµ

7

L7
µ L7

7

!

2 SO(1, 4) (2.166)

are fixed by the requirement that the transformed vielbein Êµ does not depend on dy

Lµ
⌫ = �µ⌫ �

1

2
Eµ

yEy⌫ , Lµ
7 = �Eµ

y , L7
µ = Eyµ, L7

7 = 1, (2.167)

where

Eµ
y = 2⇥(1, 0,�1, 0) (2.168)

is a light-like vector, expressed in terms of ⇥ = ✓4✓4 + ⌘4⌘4. The corresponding Lorentz

rotation acting on the supervielbein fermionic components is generated by the matrix

LA0
B0 = �A

0
B0 � 1

2
Eyµ(�

µ)A
0
C0(�11)C

0
B0 , (2.169)

where �µ and �11 are SO(1, 10) gamma-matrices. One can split the eleven dimensional

spinor indices in 4d and 7d spinor indices and then, using the identity FA0
QA0 = Aferm

with Aferm defined in (2.142), one can find the action of L on the fermionic components



Chapter 2. The supercoset sigma model 51

! and � in (2.142).

After the Lorentz transformation, the bosonic components of the D = 11 supervielbein

in the light-cone basis equal

Ê� =
1

2
e�2'dx� + !̂ � 2e�2'⇥2dx+ + 4⇥(⌦a

a � e�2'⌘4⌘
4dx+), (2.170)

Ê+ =
1

2
e�2'dx+, Ê1 =

1

2
e�2'dx, Ê3 = �d', Ê11 = dy +A , (2.171)

where

!̂ = ie�2'(d✓a✓
a � ✓ad✓a) + i(d✓4✓

4 � ✓4d✓4) + ie2'(d⌘a⌘
a � ⌘ad⌘a) + i(d⌘4⌘

4 � ⌘4d⌘4),

A = ⌦a
a � e�2'⌘4⌘

4dx+ � e�2'⇥dx+ . (2.172)

We notice that the new vielbein Ê11 contains all the dependence on dy and has the

required form (2.162) with � = 1. Therefore, identifying the direction y with the world-

volume compact direction we obtain

Z

V

d3⇠
q

�g(3) !
Z

⌃

d⌧d�
q

�g(2), (2.173)

or alternatively in the Polyakov form

Skin = �1

2

Z

�↵�
⇣

g(2),AdS4

↵� + g(2),CP3

↵�

⌘

, (2.174)

where g(2) stands for the induced worldsheet metric. Explicitly

g(2),AdS
↵� = Ê+

↵ Ê
�
� + Ê1

↵Ê
1
� + Ê3

↵Ê
3
� =

1

4
e�4'(@↵x

+@�x
� + @↵x@�x) + @↵'@�' (2.175)

+
1

2
e�2'@↵x

+(!̂� + 4⇥⌦�a
a)� 2e�4'⇥2@↵x

+@�x
+ ,

g(2),CP3

↵� = (⌦a + ⌦̃a)↵(⌦
a + ⌦̃a)� (2.176)

=
h

⌦a↵ + @↵x
+("abc⌘̂

b⌘̂c � 2e�'⌘̂a⌘4)
i h

⌦a
� � @�x+("abc⌘̂b⌘̂c + 2e�'⌘̂a⌘4)

i

,

where the vielbein ⌦a
↵ are defined in the natural way ⌦a = ⌦a

↵ d�
↵ with �↵ = (⌧,�).

As far as the fermionic components of the supervielbeine are concerned, let us separate

them as

FA0
= fA0

+ dyFA0
y , (2.177)

where the second term contains the whole dependence on dy. After Lorentz rotation the

transformed fermionic vielbeine assume the form

(LF )A
0
= EA0

+�A0
(dy+A) EA0

= (Lf)A
0�(LFy)

A0
A, �A0

= (LFy)
A0
, (2.178)
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where EA0
are the D = 10 supervielbein fermionic components and �A0

is the dilatino

superfield. With the fermionic components organized in this way, the dimensional re-

duction of the WZ term implies

Z

M4

H(4) !
Z

M3

H(3), (2.179)

where H(3) is the NS-NS 3-form

H(3) =
i

4
(EA0

�µ̂⌫̂
A0B

0
�B0 ^ Êµ̂^ Ê⌫̂ +EA0

�µ̂ 11
A0B

0 ^EB0 ^ Êµ̂)� ✏µ⌫�Êµ^ Ê⌫ ^ ÊL�7.

(2.180)

This is a closed 3-form which can be expressed locally as the di↵erential of a 2-form.

Nevertheless it is not always easy to find a general expression for this 2-form. In our

case the e↵ect of the Lorentz rotation a↵ects only the � components (2.158) and (2.161)

(L�)+a = e'd̂⌘a + 2 i e�'⇥ ⌘̂adx
+ (L�)+,a = e'd̂⌘a � 2 i e�'⇥ ⌘̂adx+, (2.181)

(L�)+4 = d⌘4 � d'⌘4 + 2 i e�2'⇥ ⌘4dx
+, (L�)+,4 = d⌘4 � d'⌘4 + 2 i e�2'⇥ ⌘4dx+,

(2.182)

and the 3-form can be expressed as the total di↵erential of the rather lengthy 2-form

B(2) =
1

2
e�4'⇥ dx ^ dx+ +

1

4
e�2'(d✓4⌘

4 � d⌘4✓
4 + ⌘4d✓

4 � ✓4d⌘4) ^ dx+

+ ie�2'⇥̃ dx+ ^ ⌦a
a + ie�'⌘̂a✓4dx

+ ^ ⌦a + ie�'⌘̂a✓4dx+ ^ ⌦a

+ e�2'⌘̂a⌘̂
adx ^ dx+ +

1

2
e�2'(⌘̂ad̂✓

a + d̂✓a⌘̂
a) ^ dx+ , (2.183)

where we defined ⇥̃ = ✓4⌘4 � ⌘4✓4. We can now put all the terms together and, after

the following rescaling

✓a !
p
2 ✓a , ✓4 !

p
2 e�'✓4 , ⌘a !

p
2 e�2'⌘a , ⌘4 !

p
2 e�'⌘4 , (2.184)

and similar ones for the complex conjugates, we get the -symmetry light-cone gauge

fixed action for the superstring in AdS4 ⇥ CP3 background

S = �T

2

Z

d⌧ d�L (2.185)

L = �↵�
h

e�4'
@↵x+@�x� + @↵x@�x

4
+ @↵'@�'+ ⌦a

↵⌦a�

+e�4'@↵x
+
�

$� + h� + e�4'B @�x
+
�

i

+✏↵�2 e�4'@↵x
+
�

!� � `� + e�2'C @�x
�

,
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where T is the string tension and the following quantities

$↵ = i
�

@↵✓a✓
a � ✓a@↵✓a + @↵✓4✓

4 � ✓4@↵✓4 + @↵⌘a⌘
a � ⌘a@↵⌘a + @↵⌘4⌘

4 � ⌘4@↵⌘4
�

,

!↵ = ⌘̂a@̂↵✓
a + @̂↵✓a⌘̂

a +
1

2

�

@↵✓4⌘
4 � @↵⌘4✓4 + ⌘4@↵✓

4 � ✓4@↵⌘4
�

,

B = 8
h

(⌘̂a⌘̂
a)2 + "abc⌘̂

a⌘̂b⌘̂c⌘4 + "abc⌘̂a⌘̂b⌘̂c⌘4 + 2⌘4⌘
4
�

⌘̂a⌘̂
a � ✓4✓4

�

i

,

C = 2 ⌘̂a⌘̂
a + ✓4✓

4 + ⌘4⌘
4 ,

h� = 2
h

⌦a
�"abc⌘̂

b⌘̂c � ⌦a�"
abc⌘̂b⌘̂c + 2

�

⌦a� ⌘̂
a⌘4 � ⌦a

� ⌘̂a⌘4
�

+ 2
�

✓4✓
4 + ⌘4⌘

4
�

⌦ a
a �

i

,

`� = 2 i
⇥

⌦a� ⌘̂
a✓4 + ⌦a

� ⌘̂a✓4 +
�

✓4⌘
4 � ⌘4✓4

�

⌦ a
a �

⇤

(2.186)

include fermions up to the fourth power. It is clear from (2.186) that, despite the result

has the same structure as (2.91) and (2.92), the expressions are definitely more involved

due to the non maximally supersymmetric background. To facilitate the comparison

with AdS5 and to eliminate the tedious rotations (2.149), we introduce the Wess Zumino

parametrization as we did in section 2.3.3.1 for AdS5 ⇥ S5.

2.4.2.3 WZ parametrization

We first introduce a collective index for upper and lower indices so that

⌘â =

 

⌘a

⌘a

!

. (2.187)

In this notation the action of the matrix T on the fermions (2.149) can be rewritten as

⌘̂â = Tâ
b̂⌘b̂ , (2.188)

where the matrix Tâ
b̂ is given in (2.151). We also introduce the shorthand notation

@i⌘a⌘
a � ⌘a@i⌘a = �⌘â@i⌘â , (2.189)

where ⌘â = (⌘a, ⌘a). In (2.93) a recipe for eliminating the rotation of the fermions was

given. This generates additional terms coming from derivatives that can be reabsorbed

into a covariant derivative. In particular, we apply the transformation

⌘â !
�

T�1
�b̂
â
⌘b̂ . (2.190)

In contrast with the AdS5⇥S5 case the matrix T is not block diagonal, therefore one has

⌘â@i⌘â = ⌘̂â@̂i⌘â, where it is crucial to use hatted indices. This transformation removes
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all the hats from fermions, at the price of introducing the covariant derivative

D = d� ⌦ , (2.191)

where ⌦ ⌘ ⌦â
b̂ = dTâ

ĉ (T�1)ĉ
b̂
and d⌦� ⌦ ^ ⌦ = 0. More explicitly13,

⌦â
b̂ = i

 

1
2(⌦

b
a � �ba⌦ c

c ) ✏acb⌦c

�✏acb⌦c �1
2(⌦

a
b � �ab⌦ c

c )

!

, (2.192)

where the components ⌦a
b already appeared in (2.133) and they read

⌦ b
a = 2 i

(1� cos |z|)
|z|2 (z̄adz

b � dz̄az
b)� iz̄az

b (1� cos |z|)2
|z|4 (dzcz̄c � zcdz̄c), (2.193)

On the other hand the components ⌦a and ⌦a are simply the CP3 vielbeine (2.143) and

(2.144).

We can also decompose the matrix ⌦ in order to separate the contributions from the

vielbein and from the spin connection14

⌦â
b̂ = ⌦ĉ(Eĉ)â

b̂ + ⌦c
d(J

d
c )â

b̂
, (2.194)

with15

(Eĉ)â
b̂ = i

 

0 ✏acb

�✏acb 0

!

, (Jd
c )â

b̂
=

i

2

 

�da�
b
c � �ba�dc 0

0 ��db �ac + �ab �
d
c

!

. (2.196)

This decomposition provides a way to project out the spin connection and find the exact

relation between the vielbein ⌦â and the matrix ⌦

⌦ĉ =
1

2
Tr(Eĉ⌦) . (2.197)

13 The matrix ⌦ was already introduced in [207], however there it was defined as ⌦â
b̂ = iTâ

ĉdT�1
ĉ
b̂
=

�idTâ
ĉT�1

ĉ
b̂
, di↵ering from ours by a factor of i. To make contact with the expressions of [207] we add

such a factor in formula (2.192).
14A similar procedure was applied in (2.97), where in that case the decomposition is expressed in

terms of the SO(5) �-matrices.
15Let us stress that the meaning of the first term of equation (2.194) in matrix form is the following

⌦ĉ(Eĉ)â
b̂ =

✓
⌦c(Ec)a

b + ⌦c(E
c)a

b ⌦c(Ec)ab + ⌦c(E
c)ab

⌦c(Ec)
ab + ⌦c(E

c)ab ⌦c(Ec)
a
b + ⌦c(E

c)ab

◆
(2.195)

and the explicit expression of (Eĉ)â
b̂ shows that the only non-vanishing elements are (Ec)ab and (Ec)ab.



Chapter 2. The supercoset sigma model 55

After having introduced all the necessary ingredients, we are ready to rewrite the La-

grangian in a form which resembles the AdS5 ⇥ S5 case. We separate it into

L = LB + L(2)
F + L(4)

F , (2.198)

where the bosonic contribution is simply given by the standard bosonic sigma model

with AdS4 ⇥ CP3 as target space

LB = �↵�


e�4'

4

�

@↵x
+@�x

� + @↵x
1@�x

1
�

+ @↵'@�'+ ⌦a
↵⌦a�

�

. (2.199)

Notice that ⌦â
↵⌦â� = 2⌦a

↵⌦a� for the symmetry of the worldsheet metric. The

quadratic part in the fermion fields can be expressed as

L(2)
F = �e�4'@↵x+

h

i�↵�
�

⌘âD�⌘â + ✓âD�✓â � 2⌦ĉ
� ⌘Eĉ⌘

�

(2.200)

+2✏↵�⌘âCâb̂

�

D�✓
b̂ + e�2'⌘b̂@�x)

+i�↵�
�

⌘4@�⌘4 + ✓4@�✓4 � 4 i ⌘a⌦
a
�⌘4 + 2 i⌦ a

a j⇥� h.c.
�

+ ✏↵�
�

⌘4@�✓4 � ✓4@�⌘4 + 4 i ⌘a⌦
a
�✓4 + 2 i⌦ a

a j⇥̃� e�2'⇥@�x+ h.c.
�

i

where we have introduced the charge conjugation matrix C,

Câb̂ =

 

0 �ba

��ba 0

!

. (2.201)

The first two lines of the Lagrangian (2.200) closely resembles expression (2.101), that is

the AdS5⇥S5 Lagrangian in Wess-Zumino type parametrization. This is the part of the

Lagrangian that does not contain the fermions ⌘4 and ✓4, which emerge when obtaining

the AdS4 ⇥ CP3action from dimensional reduction.

The last term of the superstring Lagrangian is quartic in fermions

L(4)
F = 4 e�8'�↵�@↵x

+@�x
+[(⌘a⌘

a)2 + 2 "abc⌘a⌘b⌘c⌘4 + 2⌘4⌘
4⌘a⌘

a �⇥2 + h.c.] . (2.202)

As discussed for the quadratic part, the first terms clearly reminds the expression for

AdS5⇥S5 (equation (2.102)), whereas the others contain the non-trivial interactions of

⌘4 and ✓4.

2.5 Superstring theory in AdS3 ⇥ S3 ⇥M 4

The last example of AdS/CFT we are going to analyze in this thesis is the AdS3/CFT2

one. We focus on supergravity backgrounds preserving 16 real supercharges, i.e. AdS3⇥
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S3⇥T 4 and AdS3⇥S3⇥S3⇥S1. The two models are not entirely independent. Indeed

the second can be seen as a deformation of the first, where the deformation parameter ↵

is introduced by the following triangle equality imposed by the supergravity equations

of motion
1

R2
+

+
1

R2
�

=
1

R2
. (2.203)

This is a relation among the radii of the two spheres (R+ and R�) and the radius of

AdS (R). We can re-express this relation as

R2

R2
+

= ↵ ,
R2

R2
�

= 1� ↵ . (2.204)

Hence the superstring action on this background will be a function of ↵. The same

triangle equality arises in the invariant bilinear form of the exceptional Lie superalgebra

d(2, 1;↵) [208, 209] and not just by chance; indeed, the super-isometries of the AdS3 ⇥
S3⇥S3 background form two copies of d(2, 1;↵) [210]. In the limit ↵! 0 (or equivalently

↵! 1) one of the two spheres assumes the same radius of AdS3 and the other one blows

up into a plane. Up to compactifying this plane to a T 3, this limit is equivalent to

considering AdS3 ⇥ S3 ⇥ T 4. In this case the algebra of superisometries of AdS3 ⇥ S3

consists of two copies of psu(1, 1|2) and this hints at a similarity with the AdS5 ⇥ S5

example. On the other hand, in the limit ↵! 1
2 the exceptional superalgebra d(2, 1;↵)

coincides with the classical osp(4|2), superalgebra hinting to similarities with the AdS4⇥
CP3 case. We will comment further on those similarities in chapter 3.

As we mentioned in chapter 1, the AdS4 ⇥ S3 ⇥ T 4 background, as well as other AdS3

backgrounds, support both NSNS and RR fluxes. The NSNS flux theory admits a NSR

description and it can be formulated as a supersymmetric extension of the SL(2)⇥SU(2)

WZW model. It is then solvable by representation theory of chiral algebras [211, 212,

213, 214, 215, 216]. On the other hand, this path is not viable in presence of RR flux.

Nevertheless, the GS formulation for pure RR flux [217, 218, 219, 220] can be deformed by

the introduction of a parameter q [217], interpolating between pure RR and pure NSNS.

The corresponding supergravity background is the near-horizon limit of the mixed NS5-

NS1+D5-D1 solution and it is invariant under S-duality transformation. The latter

transforms NSNS into RR flux, so that if the coe�cients of the NSNS and RR fluxes

are chosen as q and q0, respectively, then they enter symmetrically into the supergravity

equations, e.g., as q2 + q02 = 1 (we set the curvature radius to R2
AdS3

= R2
S3 = 1).

Nevertheless the free (i.e. no target space interaction) superstring theory is not invariant

under S-duality and should thus depend non-trivially on the parameter q. In particular

we assume 0 < q < 1, with q = 0 corresponding to pure RR flux and q = 1 to pure

NSNS flux.
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The GS formulation for pure RR and mixed flux has received a lot of attention in the

last years because of its integrable properties [40, 41, 42, 43]. As it happens for the

AdS4 ⇥ CP3 superstring, the coset formulation [40, 43] su↵ers from a serious drawback.

Indeed, the action obtained by the supercoset construction contains only 16 fermionic

degrees of freedom and can be interpreted as a -symmetry gauge-fixed version of the

full GS superstring Lagrangian [40, 69]. As discussed for the AdS4⇥CP3 case in section

2.4, this -symmetry gauge fixing may be uncompatible with some particular string

configurations. Compared to AdS4 ⇥ CP3, however, there is no known way to obtain

the full superstring theory action, and the path that has been followed so far consists in

expanding the GS action for curved backgrounds in higher powers of fermions [41, 69,

70, 71, 72].

In the following, we will sketch the coset formulation of AdS3 with the aim of proving

classical integrability in the particular -symmetry gauge fixing implied by the construc-

tion. This -symmetry gauge is not compatible with any light-cone gauge fixing. Since

this is the main requirement to be able to expand the action around the BMN vacuum,

the starting point for any perturbative computation is the expansion of the general GS

superstring action for curved backgrounds supported by RR flux.

2.5.1 The coset approach

One important feature of the AdS3 backgrounds is that the group of isometries of AdS3

is the conformal group in two dimensions. The latter is a two-fold tensor product, with

two factors acting independently on the left and right movers. The cosets appropriate for

the AdS3/CFT2 correspondence are thus of the form H⇥H
H0

. If H is a supergroup, such

a coset will naturally have a Z4 structure. Indeed, one can define a Z4 automorphism

on g = h� h by combining the fermion parity with the permutation of the two factors:

⌦ =

 

0 1

(�1)F 0

!

, (2.205)

where the supermatrix is acting on a superalgebra element (X1, X2), with X1 in the first

copy of h and X2 in the second one. This map squares to (�1)F and its forth power

is the identity: ⌦4 = 1. Given this particular structure, one can define the two Cartan

forms

AL,R = g�1L,RdgL,R , (2.206)
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where gL is an element of the first H factor and gR of the second one. The Z4 grading

of the Cartan current is simply

A(0) =
1

2
(Aeven

L +Aeven
R ) , A(2) =

1

2
(Aeven

L �Aeven
R ) , (2.207)

A(1) =
1

2
(Aodd

L +Aodd
L ) , A(3) =

1

2
(Aodd

L �Aodd
R ) . (2.208)

Notice also that the invariant subspace of ⌦ is the diagonal bosonic subalgebra. Thus,

for any superalgebra H, one can construct a Z4 invariant coset sigma-model with the

global H⇥H symmetry. The denominator of the coset is the diagonal bosonic subgroup.

The bosonic part of the action is the sigma-model with target space Hbos ⇥Hbos/Hdiag

isomorphic to Hbos. Thus constructed sigma-model will be automatically integrable, as

we showed in section 2.2.

This general construction naturally applies also to AdS3 ⇥ S3 ⇥ T 4 and AdS3 ⇥ S3 ⇥
S3 ⇥ S1. In the former case H = PSU(1, 1|2) while in the latter H = D(2, 1;↵).

To be precise, the supergroup PSU(1, 1|2) describes only the AdS3 ⇥ S3 part of the

background and the additional abelian factors associated to T 4 needs to be added in by

hand. A similar argument applies to the last S1 in AdS3 ⇥ S3 ⇥ S3 ⇥ S1. Therefore

the question arises as to whether and how the sigma model obtained this way is related

to the GS action for superstrings in this backgrounds. In [40] it was proven that the

action obtained via the coset sigma model for AdS3 ⇥ S3 ⇥ S3 ⇥ S1 is equivalent to

GS superstring in some particular -symmetry gauge. This is equivalent to prove that

there exists a -symmetry gauge that decouples the S1 direction from the other degrees

of freedom. A similar mechanism works for AdS3 ⇥ S3 ⇥ T 4, i.e. the coset action on

AdS3 ⇥ S3, when supplemented with four free bosons, in fact describes ten-dimensional

Type IIB GS strings on AdS3 ⇥ S3 ⇥ T 4 in a suitable (fully fixed) kappa-symmetry

gauge. This may appear puzzling at first, since the six-dimensional coset action for
PSU(1,1|2)⇥PSU(1,1|2)

SL(2,R)⇥SU(2) [218, 219, 220] has only 8 physical fermions, a factor of two short of

the 16 fermions required in ten dimensions. However, the extra T 4 factor in the action

changes the number of physical degrees of freedom in the coset sector. Indeed the four

bosons of T 4 do interact with the coset fermions through the 2d metric coupling or, in

the conformal gauge, through the Virasoro constraints. The addition of the extra free

bosons modifies the Virasoro constraints for the model such that the kappa-symmetry of

the six-dimensional action is not a symmetry of the ten-dimensional action. As a result

the coset + T 4 model has 16 physical fermions, more than just the coset.
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The extension of this construction to the mixed flux case involves the addition of a WZ

term to the coset action, due to the presence of a B-field

S =
1

2

Z

M
Str(A(2) ^ ⇤A(2) +

p

1� q2A(1) ^A(3)) (2.209)

+ q

Z

B
Str(

2

3
A(2) ^A(2) ^A(2) +A(3) ^A(1) ^A(2) +A(1) ^A(3) ^A(2)) , (2.210)

where the first line is just another way to rewrite (2.6) with  =
p

1� q2. The coe�-

cient of the new WZ term is fixed by requiring -symmetry, classical integrability and

conformal invariance [197].





Chapter 3

Near-BMN string and worldsheet

scattering

The light-cone gauge fixed worldsheet sigma model is a two-dimensional quantum field

theory with interactions vertices involving an arbitrary number of fields. The quadratic

Lagrangian is that of the light-cone gauge fixed string theory in a plane-wave Ramond-

Ramond background. The latter, together with flat space and AdS5⇥S5, constitutes the

set of all the maximally supersymmetric backgrounds for type IIB superstring. Moreover,

it was shown in [76, 77] that the parallel-plane (pp) wave background can be obtained

as a limit of AdS5 ⇥ S5, when considering the geometry seen by a point-like string

(i.e. a particle) moving very fast along S5. It is clear that such a motion can be very

conveniently described in light-cone gauge. Indeed, considering an angular coordinate �

on the sphere and the AdS time t, we can describe the trajectory of a light-like particle

as t = � = ⌧/2, which is clearly very well suited for the light-cone gauge condition

x+ = t+ � = ⌧ . (3.1)

As a consequence the light-cone gauge fixed superstring action describes the quantum

fluctuations around this classical solution, and in pp-wave background is simply given

by a free worldsheet theory with eight massive bosons and eight massive fermions [78].

This free Lagrangian can be easily quantized and the spectrum is known exactly [79].

The precise relation with the corresponding operators in N = 4 SYM was found by

Berenstein, Maldacena and Nastase (BMN) in [75]. The expansion of the ligth-cone

gauge fixed superstring action in higher powers of the fields can be seen as a perturbation

of the pp-wave background and it is often referred to as near-BMN expansion.

In the following, we will briefly sketch the procedure of uniform light-cone gauge fixing

(see also section 2.3.2) and expand the corresponding action up to quartic order. This

61
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action describes a closed superstring and therefore it is defined on a worldsheet with one

compact direction. In principle this would prevent us from defining any kind of scattering

among the worldsheet quantum fluctuations. Nevertheless, one can formally define a

decompactification limit such that the radius of the compactified direction becomes

very large and massive, asymptotic states with arbitrary momentum arise. This limit,

though yielding a non-physical string action, is very important for the comparison with

integrability since it allows for a proper definition of the scattering matrix. In section

3.1.4 we will describe this limit and relax the Virasoro condition in order to deal with

non-vanishing worldsheet momenta.

In this setup the asymptotic states are well defined and a natural observable is the S-

matrix for the worldsheet excitations [122]. This S-matrix is clearly not a physical object,

since we gave up the level-matching condition and we took the decompactification limit.

Nonetheless, it still contains all the information about the spectrum of the theory, due

to the expected integrability properties. Indeed the S-matrix is the main building block

of the Bethe Ansatz (either asymptotic or thermodynamic) whose solution yield the

Hamiltonian eigenstates, i.e. the spectrum of the full superstring theory. It turns out

that the symmetry of the AdS5 ⇥ S5 background is large enough to fix completely the

structure of the S-matrix up to an overall factor which contains most of the dynamical

information about the scattering process. In this chapter we follow a di↵erent strategy

and we study the S-matrix perturbatively, first reviewing the tree-level calculation and

then introducing the so-called unitarity techniques, which dramatically simplify the one-

loop computation.

In section 3.4 we apply the same technique to the worldsheet scattering in AdS3⇥S3⇥
M4, where an additional obstacle for the standard Feynman diagram technique comes

from the computational di�culty in expanding the GS superstring action beyond quartic

order. We will see that the only ingredient for a one-loop computation by unitarity is

the tree-level S-matrix and this provides a drastic simplification for theories with many

interactions, such as the string sigma models on curved backgrounds.

3.1 Uniform light-cone gauge fixing

The construction of the action in uniform light-cone gauge is slightly involved and here

we only describe the main steps of the procedure. We first focus on the bosonic part

and subsequently we report the results for the fermionic Lagrangian, whose explicit

derivation can be found in [80, 145].
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3.1.1 Bosonic strings in light-cone gauge

Let us start from the bosonic part of the superstring action in AdS5⇥S5 (2.40). Consider

the momenta canonically conjugated to the coordinates Xm̂ = {t,�, yi, zi},1

pm̂ =
�S

�Ẋm̂
= �T �0�@�X n̂Gm̂n̂ , Ẋm̂ ⌘ @0Xm̂ , (3.2)

and rewrite the string action (2.40) in the first-order form

S =

Z

d�d⌧

✓

pm̂Ẋm̂ +
�01

�00
C1 +

1

2T �00
C2

◆

, (3.3)

where C1 and C2 represent the two Virasoro constraints

C1 = pm̂X́m̂ , C2 = Gm̂n̂pm̂pn̂ + T 2 X́m̂X́ n̂Gm̂n̂ , X́m̂ ⌘ @1Xm̂ , (3.4)

which need to be solved after the gauge fixing.

To impose a uniform gauge we introduce the “light-cone” coordinates and momenta

x� = � � t , x+ = (1� a) t + a� , (3.5)

p� = p� + pt , p+ = (1� a)p� � a pt , (3.6)

where the parameter a is a residual gauge freedom which parametrizes the most general

uniform gauge such that the light-cone momentum p� is equal to p� + pt. To better

understand the role of a let us introduce the conserved charges

E = �
Z

d� pt , J =

Z

d� p� , (3.7)

which are related to the light-cone momenta by2

P� =

Z

d� p� = J � E , P+ =

Z

d� p+ = (1� a) J + aE . (3.8)

The second relation relates the momentum P+ to some combination of E and J . We can

observe that there are three natural choices for the value of the parameter a. If a = 0

we have the temporal gauge t = ⌧ , P+ = J , if a = 1
2 , we obtain the usual light-cone

gauge x+ = 1
2(t + �) = ⌧ , P+ = 1

2(E + J), while for a = 1 the uniform gauge reduces

to x+ = � = ⌧ , P+ = E, where the angle variable � is identified with the world-sheet

time ⌧ , and the energy E is distributed uniformly along the string.

1Notice that the same procedure cannot be straightforwardly extended to the full superstring case
due to the contributions to the momenta pm̂ coming from the WZ term.

2Here P+ and P� are not to be confused with the translation generators introduced in (2.64).
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In general we can consider the variable x+ in (3.5) and impose x+ = ⌧ . Nevertheless,

one has to take into account that the light-cone direction � is compact and the closed

string may have a non-trivial winding in that direction. In particular, for �i < � < �f ,

the condition

�(�f )� �(�i) = 2⇡m (3.9)

has to hold. Consequently a consistent gauge choice is

x+ = ⌧ + am� , p+ = 1 , (3.10)

where the winding (with m labeling the winding number) correctly vanishes in the

temporal gauge. The second condition in (3.10) states that the light-cone momentum

is distributed uniformly along the string, and this explains the word “uniform” in the

name of the gauge. Our particular gauge choice fixes the value of the total momentum

P+ in (3.8) as

P+ = |�f � �i| . (3.11)

To find the gauge fixed action one can solve the Virasoro constraint for x� and p�, such

that the action assumes the form

S =

Z

d�d⌧
⇣

pîẋ
î � H

⌘

, H = �p�(pî, x
î, x́ î) , (3.12)

where the vector xî = (yi, zi). It is worth noticing that the whole dependence on P+

is contained in the integration bounds on �. In other words the theory is defined on a

cylinder of circumference P+.

For simplicity let us now restrict to the m = 0 case, so that invariance under translations

in the � direction implies that the total worldsheet momentum of the string

pws = �
Z

P+
2

�P+
2

d� pîx́
î (3.13)

is conserved. Furthermore, a closed string should satisfy the level-matching condition,

which for m = 0 imposes

�x� =

Z

P+
2

�P+
2

d� x́� = 0. (3.14)

When this condition is combined with the solution of the Virasoro constraint C1 = 0,

one finds that

�x� =

Z

P+
2

�P+
2

d� x́� = �
Z

P+
2

�P+
2

d� pîx́
î = pws, (3.15)
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which implies that the physical string states have vanishing worldsheet momentum

�x� = pws = 0 , m = 0 . (3.16)

Nevertheless, it is worth remembering that a proper quantization of superstring in light-

cone gauge requires considering all states with periodic target space coordinates and

imposing the level-matching condition only at the very end. Hence, before imposing the

level matching condition, the string states are not physical and in a uniform light-cone

gauge the target spacetime image is an open string with end points moving in unison

so that �x� remains constant (this is because pws = �x� is conserved). Moreover, in

general, string configurations which violate the level-matching condition may depend on

a. We will see this gauge dependence appearing explicitly in the main object we study

in this chapter, i.e. the S-matrix for the scattering of worldsheet excitations.

Solving the second Virasoro condition C2 = 0 for the action (2.40), we can find the

explicit expression for the Hamiltonian density H

H =

r

G��Gtt

⇣

1 + ((a� 1)2G�� � a2Gtt)Hx + T 2 ((a� 1)2G�� � a2Gtt)
2 x́2�

⌘

(a� 1)2G�� � a2Gtt

+
(a� 1)G�� � aGtt

(a� 1)2G�� � a2Gtt
, (3.17)

where Hx depends only on the transverse coordinates

Hx = Gîĵpîpĵ + g2 x́îx́ĵ Gîĵ . (3.18)

Let us stress that, using the relation

H =

Z

P+
2

�P+
2

d�H = �P� = E � J , (3.19)

one can relate the worldsheet Hamiltonian to the target space energy (notice that E

appears also on the l.h.s. of (3.19) through the dependence on P+), and therefore

the knowledge of the spectrum of H would give an algebraic equation for E. This

is particularly relevant in the context of the AdS/CFT correspondence since it would

yield the anomalous dimension of all the single-trace local gauge invariant operators of

the CFT. Unfortunately this cannot be achieved because the Hamiltonian, even without

fermions, has a complicated non-polynomial dependence and it is not suitable for a direct

canonical quantization. The best we can do is to quantize the theory perturbatively

around some particular vacuum. Before doing that, let us include the fermionic part of

the action.
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3.1.2 Full superstring action

As we mentioned, the inclusion of the fermions in the previous construction is not

completely straightforward due to the non-trivial interaction between the bosonic and

fermionic fields. Here we simply state some intermediate results of the involved deriva-

tion (for details see [80, 145]). We start from the currents derived in (2.44) and (2.45)

and we conveniently fix a = 1
2 . In order to extract the conjugated momenta, it is useful

to introduce a Lie-algebra valued auxiliary field ⇧, and rewrite the superstring action

(2.6) in the form

S =

Z

d⌧d�



� Str

✓

⇧A(2)
0 + 

T

2
✏↵�A(1)

↵ A(3)
�

◆

� �01

�00
C1 +

1

2T�00
C2

�

, (3.20)

where the Virasoro contraints in this case are

C1 = Str ⇧A(2)
1 = 0 , (3.21)

C2 = Str
⇣

⇧2 + g2(A(2)
1 )2

⌘

= 0 . (3.22)

In this way, one can easily express the Lagrangian in first-order formalism and impose

the condition (3.10). Afterwards, one has to solve the Virasoro constraint and replace

the solutions in the Lagrangian. Here we omit the full derivation and we only quote the

final result in first-order formalism as

S =

Z

d⌧d�Lgf , Lgf = Lkin �H . (3.23)

The kinetic term Lkin depends on the time derivatives of the physical fields, and deter-

mines the Poisson structure of the theory. It can be cast in the form

Lkin = pîẋ
î � i

2
Str (⌃+�@⌧�) +

1

2
gĵ⇧î Str

⇣h

⌃ĵ ,⌃î

i

B⌧
⌘

(3.24)

� i
g

2
(G2

+ �G2
�) Str

�

F⌧KF st
� K

�

+ i
g

2
GîGĵ Str

⇣

⌃ĵF⌧⌃îKF st
� K

⌘

,

where we use the following decompositions

g(x) = g+18 + g�⌥+ gî⌃î , g(x)2 = G+18 +G�⌥+Gî⌃î ,

⇧ =
i

2
⇧+⌃++

i

4
⇧�⌃� +

1

2
⇧î⌃î +⇧1i18 , (3.25)

with the 8⇥ 8 matrices ⌥ and ⌃î = (⌃i, ⌃̃i) defined by

⌥ =

 

14 0

0 �14

!

, ⌃i =

 

�i 0

0 0

!

, ⌃̃i =

 

0 0

0 i�i

!

, (3.26)
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and ⌃± given in (2.46). The functions B↵ and F↵ refer to the even and odd components

of g�1(�) @↵g(�)

g�1(�)@↵g(�) = B↵ + F↵ , (3.27)

B↵ = �1

2
�@↵�+

1

2
@↵��+

1

2

p

1 + �2@↵
p

1 + �2 � 1

2
@↵
p

1 + �2
p

1 + �2 ,

F↵ =
p

1 + �2@↵�� �@↵
p

1 + �2 .

The Hamiltonian density H reads

H = � i

2
Str

�

⇧⌃+g(x)(1 + 2�2)g(x)
�

� T
2
(G2

+ �G2
�) Str

⇣

⌃+�
p

1 + �2KF st
� K

⌘

� T
2
GîGĵ Str

⇣

⌃+⌃ĵ�
p

1 + �2⌃îKF st
� K

⌘

. (3.28)

This form of the action is still very implicit and not particularly suitable for explicit

computations. We now move to the perturbative quantization of this action around the

BMN vacuum.

3.1.3 Near-BMN action

The BMN limit is defined by

T !1 , P+ !1 , T/P+ fixed. (3.29)

The near-BMN expansion is then obtained considering subleading corrections in the large

T limit. Detailed expressions of the expanded action in first-order formalism are given

in [80, 145]. Here we only mention that, in order to obtain a canonical kinetic term, one

has to perform a non-linear field redefinition of the fermionic fields � 7! �+ �(p, x,�).

In [121] the action was converted to second-order formalism and, after rescaling X !
p
P+X, � !

q

P+

2 �, � ! 1
2T � and fixing  = 1, the action up to quartic order in the

fields can be expressed as

S = T

1
Z

�1

d⌧

P+
4T
Z

�P+
4T

d� (L2 + L4 + ...) , (3.30)
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with

L2 = Str

✓

1

4
ẊẊ � 1

4
X́X́ � 1

4
XX � i

2
⌃+��̇�

1

2
⌃+��́

\ � 1

2
��

◆

,

L4 =
1

8
Str⌃+⌃�XX Str X́X́

+
1

8
Str��́��́+

1

8
Str���́�́+

1

16
Str[�, �́][�\, �́\] +

1

4
Str��́\��́\

� 1

8
Str⌃+⌃�XX Str �́�́+

1

4
Str[X, X́][�, �́] + StrX�́X�́

+
i

8
Str[X, Ẋ][�\, �́]� i

8
Str[X, Ẋ][�, �́\] ,

(3.31)

where the matrices X and � are given in (2.59) and (2.60), ⌃± appeared already in (2.46)

and the charge conjugation ()\ is defined in terms of the matrices K and K̃ introduced

in section 2.3 as

X\ ⌘ KXtK , �\ ⌘ K̃�tK . (3.32)

Notice that the action depends on the string tension only through an overall factor. The

fixed ratio T
P+

appears in the integration bounds of �, which is a compactified worldsheet

direction of circumference P+

2T . This clearly constitutes an obstacle for the definition of

worldsheet asymptotic states. In the next section we describe in detail how to relax this

restriction.

3.1.4 Decompactification limit and level-matching condition

The boundaries of the integral over � in equation (3.30) are �P+

4T and P+

4T . Since we are

studying a closed string, the fields X and � are periodic in the coordinate � and this

does not allow for a straightforward definition of the asymptotic states. Nevertheless, the

whole dependence on P+ is contained in the integration bounds and we can circumvent

this di�culty taking the limit P+ ! 1. In this limit we are left with an interacting

theory on the plane, whose asymptotic states are eight massive bosons and eight massive

fermions. Their interaction appears not to be Lorentz invariant, but their S-matrix is

well defined and one can compute it perturbatively.

Actually, it turns out one can do better than that. Using the symmetries of the theory

in the BMN vacuum (SU(2|2)2) one can fix the dispersion relation of the excitations and

the two-body S-matrix for any value of the string tension up to an overall phase [16].

Moreover, the theory is believed to be integrable at the quantum level, which would

imply that higher point S-matrices are fully determined by the 2 ! 2 one. We will

discuss thoroughly these issues in section 3.2.
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On a decompactified worldsheet we can also give up the level-matching condition and, ac-

cording to (3.16), this allows us to consider particles with arbitrary worldsheet momenta,

i.e. unphysical configurations that do not correspond to closed strings. As a result the

world-sheet S-matrix, as well as other quantities, acquires a mild gauge dependence.

3.1.5 Quadratic action and quantization

In the decompactification limit it is straightforward to quantize the theory perturba-

tively for large values of the string tension. The quadratic Lagrangian in terms of the

elementary excitations reads

L2 =
1
2 ẎaȧẎ

aȧ � 1
2 ÝaȧÝ

aȧ � 1
2YaȧY

aȧ

+1
2 Ż↵↵̇Ż

↵↵̇ � 1
2 Ź↵↵̇Ź

↵↵̇ � 1
2Z↵↵̇Z

↵↵̇

+i ⌘†↵ȧ⌘̇
↵ȧ + 1

2

⇣

⌘†↵ȧ⌘́†↵ȧ � ⌘↵ȧ⌘́↵ȧ
⌘

� ⌘†↵ȧ⌘↵ȧ

+i ✓†a↵̇✓̇
a↵̇ + 1

2

⇣

✓†a↵̇✓́†a↵̇ � ✓a↵̇✓́a↵̇
⌘

� ✓†a↵̇✓a↵̇ ,

(3.33)

where we lower and raise the indices by using the ✏-tensor

Yaȧ = ✏ab✏ȧḃY
bḃ , ⌘↵ȧ = ✏↵�✏ȧḃ⌘

�ḃ , ⌘†↵ȧ = ✏↵�✏ȧḃ⌘†
�ḃ

, (3.34)

and similar formulae for Z↵↵̇ , ✓a↵̇ , ✓†a↵̇. The expression (3.33) is clearly a free rela-

tivistic action describing eight bosons and eight fermions of mass 1. The corresponding

free equations of motion can be solved by the mode decomposition

Yaȧ(⌧,�) =

Z

dp

2⇡

1p
2e

⇣

aaȧ(p) e
�i(e⌧+p�) + a†aȧ(p) e

+i(e⌧+p�)
⌘

, (3.35)

Z↵↵̇(⌧,�) =

Z

dp

2⇡

1p
2e

⇣

a↵↵̇(p) e
�i(e⌧+p�) + a†↵↵̇(p) e

+i(e⌧+p�)
⌘

, (3.36)

✓a↵̇(⌧,�) = e�i
⇡
4

Z

dp

2⇡

1p
e

⇣

ba↵̇(p)u(p) e
�i(e⌧+p�) + b†a↵̇(p) v(p) e

+i(e⌧+p�)
⌘

, (3.37)

⌘↵ȧ(⌧,�) = e�i
⇡
4

Z

dp

2⇡

1p
e

⇣

b↵ȧ(p)u(p) e
�i(e⌧+p�) + b†↵ȧ(p) v(p) e

+i(e⌧+p�)
⌘

, (3.38)

where the energy is e =
p

1 + p2, the wave functions are

u(p) = cosh ✓
2 , v(p) = sinh ✓

2 , (3.39)
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and the rapidity ✓ is defined through p = sinh ✓. The creation and annihilation operators

satisfy the canonical commutation relations

[aaȧ(p), a†
bḃ
(p0)] = 2⇡ �ab �

ȧ
ḃ
�(p� p0) , {ba↵̇(p), b†

b�̇
(p0)} = 2⇡ �ab �

↵̇
�̇
�(p� p0) ,

[a↵↵̇(p), a†
��̇
(p0)] = 2⇡ �↵� �

↵̇
�̇
�(p� p0) , {b↵ȧ(p), b†

�ḃ
(p0)} = 2⇡ �↵� �

ȧ
ḃ
�(p� p0) . (3.40)

Let us stress that this decomposition allows to consider particles and anti-particles at

once, without any notational di↵erence. If one considers, for instance, the field Yaȧ

clearly the oscillator a†aȧ creates the “anti-particle” of the “particle” that is destroyed by

the oscillator aaȧ. These two oscillators appear in the decomposition of the same field

Yaȧ, but clearly they do not form a canonical pair. Rather a†aȧ and aaȧ = ✏ab✏ȧḃabḃ are

conjugated to each other as one can see from the commutation relations.

Interpreting the higher order corrections in the Lagrangian as perturbations of this free

action for large string tension, it is a straightforward exercise to compute the scatter-

ing process at tree-level. Before showing the explicit expressions, let us recall some

generalities about S-matrices of two-dimensional systems.

3.2 Worldsheet scattering in AdS5 ⇥ S5

As usual in scattering theory, the two-particle asymptotic states are simply the tensor

product of two one-particle states with di↵erent momenta p and p0. In general, the

S-matrix of a 2 ! n process can be seen as an operator from an asymptotic two-

particle state with arbitrary momenta (rapidities) to an asymptotic n-particle state

with arbitrary momenta (rapidities). Nevertheless, in an integrable theory, the S-matrix

satisfies a number of additional kinematic constraints [221] (see also [222] for a review),

as a consequence of the infinite number of conserved charges:

• there is no-particle production, i.e. the number of ingoing particles is equal to the

number of outgoing particles;

• the set of outgoing momenta is equal to the set of ingoing momenta;

• the many-body S-matrix factorizes into the products of two-body S-matrices.
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This final requirement implies the Yang-Baxter equation, a consistency condition for

equivalent orderings of scattering of three-particle states, which can be represented dia-

grammatically as follows:

#2

#1 #3
✓12

✓13

✓23

=

#2

#1

#3

✓12
✓13

✓23

(3.41)

where the grey blobs stand for 2 ! 2 S-matrices. Let us stress that these constraints

are applicable to a theory whose integrability is preserved at the quantum level (the

bosonic CPn models [223, 224] constitute a well known example of classical integrability

broken by quantum anomalies [225]). Although nowadays we have many di↵erent and

strong indications for the quantum integrability of the string sigma model in AdS5⇥S5,

we do not have an explicit proof of that. Furthermore, in general, the preservation

of quantum integrability requires a careful choice of regularization or addition of local

counterterms. Indeed the quantization of a classical theory is not unique and one is to

impose Ward identities or use a particular regularization to preserve a classical sym-

metry at the quantum level (see for instance [226, 227, 228]). One of our aims in the

following discussion will be to provide non-trivial quantum checks of the expected quan-

tum integrability of the model and suggest a possible regularization scheme preserving

the classical symmetries.

The properties listed above clearly indicate that, for an integrable theory, the two-

particle S-matrix is the fundamental building block for the construction of many body

S-matrices. From now on we focus on the two-particle S-matrix in two dimensions. It is

interesting to note that for a theory with a single mass scale (as is the case for the light-

cone gauge fixed string theory in AdS5⇥S5) the scattering of two relativistic excitations

of momenta p and p0 automatically yields two excitations with the same momenta. One

can easily see that introducing light-cone 2d coordinates ⇠± = ⌧ ± � and implementing

the mass-shell condition for a relativistic particle

p+p� = m2 , (3.42)
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the latter can be parametrized in terms of rapidities as p± = me±✓, and momentum

conservation would read

(

e✓1 + e✓2 = e✓3 + e✓4

e�✓1 + e�✓2 = e�✓3 + e�✓4 .
(3.43)

It is easy to see that this system admits a discrete set of solutions

(

✓1 = ✓3

✓2 = ✓4
or

(

✓1 = ✓4

✓2 = ✓3 .
(3.44)

As we mentioned, in general, the light-cone gauge fixed string theory in AdS5⇥S5 is not

invariant under worldsheet Lorentz transformations. As a consequence, the dispersion

relation of the fundamental excitations is non-relativistic. However, at quadratic order

in the near-BMN expansion (i.e. for the free states in perturbation theory) it is relativis-

tic. As the symmetry breaking terms appear at quartic order, the first non-relativistic

correction to the dispersion relation would appear in the two-loop two-point functions

and are irrelevant for the tree-level calculation. We can then conclude that the simple

kinematical constraint we just derived is enough to fix the kinematics of the tree-level

S-matrix. Let us stress that for higher loop corrections and for theories with di↵erent

masses this argument does not apply, and we have to rely either on integrability or on

an explicit computation to fix the set of outgoing momenta equal to the set of ingoing

momenta. In general we will use e to denote the relativistic energies of the free states,

and ! to denote their all-order form.

In this setup, we can interpret the S-matrix as an operator mapping a two-particle state

with momenta p and p0 to a di↵erent two-particle state with the same momenta p and

p0

S |�AȦ(p)�BḂ(p
0)i = |�CĊ(p)�DḊ(p

0)i SCĊDḊ
AȦBḂ

(p, p0) , (3.45)

with the index A taking values (a|↵) and similarly for Ȧ. The field � corresponds to

Y, Z, ✓, ⌘ according to the values of its indices. Modulo anomalies, the S-matrix should

enjoy the symmetries that are explicit in the Lagrangian. In this case the symme-

try is a centrally extended PSU(2|2)⇥ PSU(2|2) [19], the same appearing in the dual

gauge theory [16]. The invariance of the S-matrix under a non-simple group, such as

PSU(2|2)⇥ PSU(2|2), with the constraints coming from the YBE (3.41), lead to the

group-factorization 3

SCĊ,DḊ

AȦ,BḂ
(p, p0) = (�1)[Ȧ][B]+[Ċ][D]SCD

AB
(p, p0)SĊḊ

ȦḂ
(p, p0) , (3.46)

3This can also be interpreted as the requirement that the Faddeev-Zamolodchikov algebra, used in
describing the Hilbert space of the asymptotic states, is a direct product [20, 121].
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which has indeed been verified at tree level [121]. Since only SU(2)⇥SU(2) ⇢ PSU(2|2)
is a manifest symmetry of the gauge-fixed worldsheet theory, S may be parametrized in

terms of ten unknown functions of the momenta p and p0 of the two incoming particles:

Scd
ab = A �ca�

d
b +B �da�

c
b S��ab = C ✏ab✏

�� (3.47)

S��↵� = D ��↵�
�
� + E ��↵�

�
� Scd

↵� = F ✏↵�✏
cd (3.48)

Sc�
a� = G �ca�

�
� S�d↵b = L ��↵�

d
b (3.49)

S�da� = H �da�
�
� Sc�

↵b = K ��↵�
c
b . (3.50)

3.2.1 Tree-level S-matrix

The S-matrix can be expanded perturbatively in powers of the inverse string tension

S = 1 + i⇣T(0) + i⇣2T(1) +O(⇣3) , (3.51)

with

⇣�1 ⌘ T =

p
�

2⇡
. (3.52)

This kind of expansion can be performed either for the total S-matrix in the l.h.s. of

(3.46) or for the two factors in the r.h.s. of (3.46). The relation between the two

expansions at tree-level reads

T (0)CĊDḊ
AȦBḂ

(p, p0) = T (0)CD
AB (p, p0)�Ċ

Ȧ
�Ḋ
Ḃ
+ �CA�

D
BT (0)ĊḊ

ȦḂ
(p, p0) . (3.53)

This property has been checked to hold at tree-level in [121], where explicit expressions

for the leading order expansion of the S-matrix were given. They can be computed in

a straightforward way starting from the action (3.31) expanded in terms of the physical

degrees of freedom, as we did for the quadratic action in (3.33). As we anticipated, the

tree-level S-matrix shows a mild dependence on the gauge parameter a. It turns out

that this dependence has the following exact form

exp
⇥ i

2
(a� 1

2)(!
0p� !p0)

⇤

, (3.54)
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and in order not to clutter the equations we display results only for a = 1
2 . The tree-level

S-matrix reads

A(0) =
1

4

(p� p0)2

e0p� ep0
, C(0) =

1

2

p

(e+ 1)(e0 + 1)
e0p� p0e� p+ p0

e0p� ep0
,

D(0) =
1

4

(p� p0)2

e0p� ep0
, F (0) =

1

2

p

(e+ 1)(e0 + 1)
e0p� p0e� p+ p0

e0p� ep0
,

B(0) =
pp0

e0p� ep0
, H(0) =

1

2

pp0

e0p� ep0
(e+ 1)(e0 + 1)� pp0
p

(e+ 1)(e0 + 1)
,

E(0) = � pp0

e0p� ep0
, K(0) =

1

2

pp0

e0p� ep0
(e+ 1)(e0 + 1)� pp0
p

(e+ 1)(e0 + 1)
,

G(0) = �1

4

p2 � p02

e0p� ep0
, L(0) =

1

4

p2 � p02

e0p� ep0
. (3.55)

where e and e0 are the relativistic energies e =
p

1 + p2. As one can see from equations

(3.47)–(3.50), the components A, D, G and L correspond to the contributions propor-

tional to the identity, and for a 6= 1
2 they would contain the a dependence from the phase

(3.54). Notice that the tree-level S-matrix is not Lorentz invariant, as we could expect

due to the lack of Lorentz symmetry in the quartic action (3.31).

3.2.2 One-loop S-matrix

The computation of the one-loop correction is definitely more involved because of the

complicated structure of the interactions. Indeed, before [123, 124], the perturbative

S-matrix was known beyond the leading order [91, 122] only in the kinematic truncation

known as near-flat-space limit [147]. In [123, 124] the logarithmic part of the one-loop

result was computed using the so-called unitarity techniques and in [123] a prescription

was given to fix the remaining rational terms. The latter turned out to be successful for

a number of integrable models and, for the light-cone gauge fixed string in AdS5⇥S5, it

yields a result which agrees with the prediction from integrability [16]. The same result

was then re-derived in [150] using standard Feynman diagrams techniques, although

with a fairly unusual regularization, which allows to perform the computation in strictly

two dimensions.

Section (3.3) contains a very detailed description for the construction of the one-loop

S-matrix using unitarity. For clarity, here we simply report the final result and we

anticipate some important observations. The result can be written as follows

SCD
AB (p, p0) = ei⇣

2'(p,p0) S̃CD
AB (p, p0) +O(⇣3) , (3.56)
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where we have pulled out a factor that to the one-loop order can be resummed as an

overall phase. Expanding for large string tension we get

SCD
AB (p, p0) = �CA�

D
B + i⇣T (0)CD

AB (p, p0) + i⇣2
⇣

'(p, p0)�CA�
D
B + T̃ (1)CD

AB (p, p0)
⌘

+O(⇣3) .

(3.57)

The one-loop contribution T̃ (1)CD
AB (p, p0) has the same structure as in (3.47)–(3.50) with

parametrizing functions given by

Ã(1) = � i

4

✓

pp0 � (p+ p0)4

8(e0p� ep0)2

◆

, B̃(1) =
i

4
pp0 ,

D̃(1) = � i

4

✓

pp0 � (p+ p0)4

8(e0p� ep0)2

◆

, Ẽ(1) =
i

4
pp0 ,

C̃(1) = 0 , F̃ (1) = 0 ,

H̃(1) = 0 , K̃(1) = 0 ,

G̃(1) = � i

8

✓

pp0 � (p+ p0)4

4(e0p� ep0)2

◆

, L̃(1) = � i

8

✓

pp0 � (p+ p0)4

4(e0p� ep0)2

◆

,

and

'(p, p0) =
1

2⇡

p2p02 ((e0p� ep0)� (ee0 � pp0) arsinh[e0p� ep0])

(e0p� ep0)2
. (3.58)

A few comments about this result are in order. First of all, one should notice that the

real part of the one-loop S-matrix is fully contained in the phase factor '(p, p0). The

matrix part is purely imaginary and can be fully reproduced by the optical theorem. We

will see in section 3.3 that the unitarity computation separates nicely the real and the

imaginary contributions. It is also interesting to note that all the logarithmic dependence

on the kinematical variables is contained in the phase factor '(p, p0). This is an essential

requirement of integrability. Indeed the matrix structure of the S-matrix is completely

fixed by symmetries and it is a rational function of the Zhukovsky variables (see appendix

B for details). This implies that the whole logarithmic dependence must appear in the

overall phase factor that cannot be fixed by symmetries. The latter usually goes under

the name of dressing phase or dressing factor and its exact determination exploited the

non-relativistic generalization of the crossing symmetry [126, 130] as well as perturbative

data both from the string and gauge theory sides [138, 18]. In appendix B we provide

the detailed expressions of the exact S-matrix and explain how to expand it to reproduce

the one-loop result quoted here. We now move to the derivation of a general formula

for the one-loop S-matrix in terms of the tree-level one.
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3.3 Unitarity techniques

The remarkable e�ciency of unitarity-based methods [149, 152, 153, 154, 155] for the

calculation of space-time scattering amplitudes in non-abelian gauge theories motivates

the application of similar techniques to perturbative regimes of other interesting models.

Here we focus on two-dimensional models whose integrability has been proven at the

classical level and whose tree-level S-matrix satisfies all the requirements coming from

integrability (see section 3.2). We first outline the general construction of [123, 124, 141]

and then apply it to the light-cone gauge fixed superstring theory in AdS5 ⇥ S5 and in

AdS3 ⇥ S3 ⇥M4.

3.3.1 Theories with a single mass

The object of interest is the two-particle S-matrix (3.45). The latter is related to the

four-point scattering amplitude by

h�C(q)�D(q0) |S|�A(p)�B(p
0)i = ACD

AB (p, p0, q, q0) . (3.59)

Here A,B, . . . are indices running over the particle content of the theory and p, p0, q, q0

are the on-shell two-momenta of the fields. For now we will restrict to the case where

all the particles have equal non-vanishing mass, which we set to one. As a consequence

of momentum conservation, the four-point amplitude takes the form

ACD
AB (p, p0, q, q0) = (2⇡)2�(2)(p + p0 � q� q0) eACD

AB (p, p0, q, q0) . (3.60)

Furthermore, as we derived in section 3.2, two-dimensional kinematics implies that the

set of initial momenta is preserved in the scattering process. This property is translated

in the following distribution identity

�(2)(p+p0�q�q0) = J (p, p0)

4!!0
�

2! �(p�q) 2!0�(p0�q0)+2! �(p�q0) 2!0�(p0�q)
�

, (3.61)

where p, p0, q, q0 are the spatial momenta and the Jacobian J (p, p0) = 1/(@!/@p �
@!0/@p0) depends on the on-shell energies !(p),!0(p0). Note that we have assumed the

particle velocities ordered as v = @!/@p > @!0/@p0 = v0, and for the spatial momentum

�-functions we have used a normalization that becomes the standard Lorentz-invariant

one in the relativistic case.

Substituting (3.61) into (3.60) we find two terms. Without loss of generality we can con-

sider just the amplitude associated to the first product of �-functions, 2! �(p�q) 2!0�(p0�
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Figure 3.1: Diagrams representing s-, t- and u-channel cuts contributing to the four-
point one-loop amplitude.

q0). The two-particle S-matrix is then defined as

SCD
AB (p, p0) ⌘ J (p, p0)

4✏✏0
eACD
AB (p, p0, p, p0) . (3.62)

We will be interested in computing the cut-constructible part of T (1) from the tree-level

S-matrix T (0). Once more, the correction to the dispersion relation would a↵ect the

pre-factor in (3.62) starting from O(⇣2) corrections, and for our purposes the Jacobian

in (3.62) is just given by

J(p, p0) =
1

4(e0p� ep0)
, e =

p

p2 + 1 , e0 =
p

p02 + 1 . (3.63)

In general, there are three possible contributions (shown in figure 3.1) that can arise

in a unitarity computation. We ignore tadpoles and graphs built from a three- and

five-point amplitude. In the standard unitarity procedure such graphs have no physical

two-particle cuts and therefore they can safely be ignored. However, in higher dimen-

sions a recipe to deal with tadpole diagrams in the context of generalized unitarity for

massive theories was given in [229]. In two dimensions the situation is slightly di↵erent.

In particular, tadpole diagrams require the introduction of a regularization since they

develop a logarithmic divergence. Since our procedure is inherently finite it is not clear

how tadpoles should be included, but it appears that they do not need to be to con-

struct the one-loop S-matrix (up to possible shifts in the coupling), as we have explicitly

checked in all the cases under consideration.

The explicit expression for the three contributions in figure 3.1 is

A(1)CD
AB (p, p0, q, q0)|s�cut =

1

2

Z

d2l1
(2⇡)2

Z

d2l2
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+(l22 � 1)

⇥ A(0)EF
AB(p, p

0, l1, l2)A(0)CD
FE (l2, l1, q, q

0) , (3.64)
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A(1)CD
AB (p, p0, q, q0)|t�cut =

1

2

Z

d2l1
(2⇡)2

Z

d2l2
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+(l2

2 � 1)

⇥ A(0)FC
AE(p, l1, l2, q)A(0)ED

FB (l2, p
0, l1, q

0) , (3.65)

A(1)CD
AB (p, p0, q, q0)|u�cut =

1

2

Z

d2l1
(2⇡)2

Z

d2l2
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+(l2

2 � 1)

⇥ A(0)FD
AE (p, l1, l2, q

0)A(0)EC
FB(l2, p

0, l1, q) , (3.66)

where A(0) are tree-level amplitudes and a sum over the complete set of intermediate

states E,F (all allowed particles for the cut lines) is understood. The on-shell propagator

is given in terms of �+(k2�1) = ✓(k0)�(k2�1) and we have included a symmetry factor

of 1
2 .

To proceed, in each case we use (3.60) and the two-momentum conservation at the vertex

involving the momentum p to integrate over l2

eA(1)CD
AB (p, p0, q, q0)|s�cut =

1

2

Z

d2l1
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+((l1 � p� p0)2 � 1) (3.67)

⇥ eA(0)EF
AB(p, p

0, l1,�l1 + p + p0) eA(0)CD
FE (�l1 + p + p0, l1, q, q

0) ,

eA(1)CD
AB (p, p0, q, q0)|t�cut =

1

2

Z

d2l1
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+((l1 + p� q)2 � 1) (3.68)

⇥ eA(0)FC
AE(p, l1, l1 + p� q, q) eA(0)ED

FB (l1 + p� q, p0, l1, q
0) ,

eA(1)CD
AB (p, p0, q, q0)|u�cut =

1

2

Z

d2l1
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+((l1 + p� q0)2 � 1) (3.69)

⇥ eA(0)FD
AE (p, l1, l1 + p� q0, q0) eA(0)EC

FB(l1 + p� q0, p0, l1, q) .

In each of these integrals the set of zeroes of the �-functions are discrete. This allows us

to pull out the tree-level amplitudes with the loop-momenta evaluated at those zeroes,

leaving scalar bubbles 4. Following standard unitarity computations [149], we apply

the following replacement in the imaginary part of the amplitude (3.67)–(3.69) to the

internal on-shell propagators: i⇡�+(l2 � 1) �! 1
l2�1 . This allows us to rebuild, from its

imaginary part, the cut-constructible piece of the amplitude

eA(1)CD
AB (p, p0, q, q0) =

I((p + p0)2, 1, 1)

4

h

eA(0)EF
AB(p, p

0, p, p0) eA(0)CD
FE (p

0, p, q, q0)

+ eA(0)EF
AB(p, p

0, p0, p) eA(0)CD
FE (p, p

0, q, q0)
i

+
I((p� q)2, 1, 1)

2
eA(0)FC

AE(p, q, p, q) eA(0)ED
FB (p, p

0, q, q0)

4Note that if one first uses the �-function identity (3.61) to fix, for example, p = q and p0 = q0 the
t-cut integral is ill-defined. Furthermore, the procedure of fixing l1 = q no longer follows. Therefore,
to avoid this ambiguity we follow the prescription that we should only impose the �-function identity
(3.61) at the end. In some sense this is natural as, in general dimensions, QFT amplitudes have the
form (3.60), while the �-function identity (3.61) is specific to two dimensions.
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+
I((p� q0)2, 1, 1)

2
eA(0)FD

AE (p, q0, p, q0) eA(0)EC
FB(p, p

0, q0, q) , (3.70)

where we have introduced the bubble integral

I(P2,m,m0) =

Z

d2k

(2⇡)2
1

(k2 �m2 + i✏)((k� P)2 �m02 + i✏)
. (3.71)

The structure of (3.70) shows the di↵erence between the s-channel, for which there are

two solutions of the �-function constraints in (3.67) (for positive energies), and the t-

and u-channels, for which there is only one.

Choosing q = p, q0 = p0, which corresponds to considering the amplitudes associated

to the first product of �-functions �(p � q)�(p0 � q0), it then follows that a candidate

expression for the one-loop S-matrix elements is given by the following simple sum of

products of two tree-level amplitudes weighted by scalar bubble integrals.

T (1)CD
AB (p, p0) =

1

8(e0 p� e p0)

h

T̃ (0)EF
AB(p, p

0)T̃ (0)CD
EF (p, p

0)I((p + p0)2, 1, 1)

+T̃ (0)FC
AE(p, p)T̃

(0)ED
FB (p, p

0)I(0, 1, 1)

+T̃ (0)FD
AE (p, p0)T̃ (0)CE

FB(p, p
0)I((p� p0)2, 1, 1)

i

, (3.72)

where T̃ (0)(p, p0) = 4(e0p� ep0)T (0)(p, p0) and the scalar bubble integrals are

Is ⌘ I((p + p0)2, 1, 1) =
1

4(e0p� ep0)
(1� arcsinh(e0p� ep0)

i⇡
) =

J

i⇡
(i⇡ � ✓) , (3.73)

It ⌘ I(0, 1, 1) =
1

4⇡i
, (3.74)

Iu ⌘ I((p� p0)2, 1, 1) =
1

4(e0p� ep0)

arcsinh(e0p� ep0)

i⇡
=

J✓

i⇡
, (3.75)

where we have used (3.63) and defined

✓ ⌘ arcsinh(e0p� ep0) . (3.76)

Let us stop for a second, and notice that there is a potential ambiguity in the way

we proceeded. In particular, the t-channel contraction is rather subtle as there are two

possible choices for freezing the loop momenta (i.e. in terms of p and q or p0 and q0) giving

potentially di↵erent results. If we choose the alternative solution of the conservation �-

function in (3.65), the coe�cient of I(0) in (3.72) would read

T̃ (0)CF
AE(p, p

0)T̃ (0)DE
FB (p

0, p0) . (3.77)
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Therefore, consistency between the two expressions requires the following condition on

the tree-level S-matrix

T̃ (0)FC
AE(p, p) T̃

(0)ED
FB (p, p

0) = T̃ (0)CF
AE(p, p

0) T̃ (0)DE
FB (p

0, p0) . (3.78)

Clearly this is a non-trivial constraint on the form of the tree-level S-matrix, and it

turns out there are some non-relativistic models where this condition is not fulfilled.

More specifically, for the light-cone gauge fixed string in AdS5⇥S5 eq. (3.78) still holds,

despite the model being non-relativistic, however for AdS3 ⇥ S3 ⇥M4 this is no longer

the case. This can be traced back to the fact that the function eT (0)(p, p) cannot have

any momentum dependence in a relativistic theory,5 whereas in a non-relativistic theory

it can depend on p, generating an asymmetry between p and p0. Hence it is natural to

conjecture that we should take the average of the two contractions.

For theories including fermionic fields, the above derivation holds up to signs. To dis-

play the general result in a compact fashion it is useful to define the following tensor

contractions

(A s B)CD
AB (p, p0) = AEF

AB(p, p
0)BCD

EF (p, p0) , (3.79)

(A u B)CD
AB (p, p0) = (�1)([C]+[F ])([D]+[E])AFD

AE (p, p0)BCE
FB (p, p

0) , (3.80)

(A t
 B)CD

AB (p, p0) = (�1)[C][F ]+[E][F ]AFC
AE(p, p)B

ED
FB (p, p0) , (3.81)

(A t
! B)CD

AB (p, p0) = (�1)[D][E]+[E][F ]ACF
AE(p, p

0)BDE
FB (p0, p0) , (3.82)

where [A] = 0 for a boson and 1 for a fermion. The two contractions (3.81) and (3.82)

correspond to the two possible choices we discussed above (3.78). In this notation the

one-loop S-matrix reads6

T (1) =
iJ

2
(CsIs + CtIt + CuIu) , (3.83)

with the matrices Cs,u given by

Cs = eT (0) s eT (0) , Cu = eT (0) u eT (0) . (3.84)

Equation (3.78) now reads

eT (0) t
 

eT (0) = eT (0) t
!

eT (0), (3.85)

5Let us recall that in a relativistic theory the S-matrix depends only on the di↵erence of rapidities,
which vanishes for p0 = p.

6For clarity we have suppressed the flavour indices.
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and since, as we discussed above (3.78), this relation does not hold in general, for the

coe�cient of I(0) we consider the average of the two contractions. Therefore

Ct =
1

2
( eT (0) t

 
eT (0) + eT (0) t

!
eT (0)) . (3.86)

To conclude the construction, we can use the explicit expressions of the integrals Is,t,u

in eqs. (3.73) to (3.75) and the relation between T (0) and eT (0) to rewrite the one-loop

result as

T (1) =
✓

2⇡
(T (0) u T (0) � T (0) s T (0)) +

i

2
T (0) s T (0) +

1

16⇡
( eT (0) t

 T (0) + T (0) t
!

eT (0)) ,

(3.87)

where, under the assumption that T (0) is real, there is a natural split of the result into

three pieces; a logarithmic part, an imaginary rational part, and a real rational part.

3.3.2 Theories with multiple masses

We will now generalize the above construction to the case where the asymptotic spectrum

contains particles of di↵erent mass. In this derivation we will restrict to theories whose

tree-level S-matrix is integrable, in particular, using the consequence that the set of

outgoing momenta is a permutation of the set of incoming momenta. This means that,

for the reasons explained in section 3.3.1, tadpoles and one-loop graphs built from a

three- and five-point amplitude will be ignored in the unitarity computation. Therefore

we are again left with the three contributions given in figure 3.1.

We consider the configuration in which the external legs with indices A and C have

mass m and the associated momenta are equal (p = q) and B and D have mass m0 with

p0 = q0.7 For the s- and u-channels the story is then largely the same as the single-mass

case. It follows from the assumptions outlined in the previous paragraph that when

the two propagators are cut the internal loop momenta are frozen to the values of the

external momenta. The tree-level amplitudes on either side of the cut can then be pulled

out of the integral and we are left with scalar bubble integrals with coe�cients given by

contractions of tree-level amplitudes. Working through the remaining steps, which are

essentially identical to the single-mass case, it is clear that the contribution from these

graphs is given by

T (1)
s,u =

✓

2⇡
(T (0) u T (0) � T (0) s T (0)) +

i

2
T (0) s T (0) , (3.88)

7Our procedure implies that if we assume the set of outgoing momenta is equal to a permutation of
the set of incoming momenta at tree level, this property automatically extends to one loop.
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where

✓ ⌘ arcsinh
�e0p� ep0

mm0
�

, e =
p

p2 +m2 , e0 =
p

p02 +m02 .

Is ⌘ I((p + p0)2,m,m0) =
1

4(e0p� ep0)
(1�

arcsinh( e
0p�ep0
mm0 )

i⇡
) =

J

i⇡
(i⇡ � ✓) ,

Iu ⌘ I((p� p0)2,m,m0) =
1

4(e0p� ep0)

arcsinh( e
0p�ep0
mm0 )

i⇡
=

J✓

i⇡
,

(3.89)

Here m and m0 are the masses of the two particles being scattered and the scalar bubble

integral I(P2,m,m0) is defined in eq. (3.71). Eq. (3.88) therefore fixes the logarithmic

and imaginary rational parts of the one-loop result.

The real rational part, which comes from the t-channel contribution, is, as before, more

subtle. In the single-mass case, the guiding principle for computing the t-channel cuts

was to only fix q = p and q0 = p0 at the end in order to avoid ill-defined expressions in

the intermediate steps. Therefore, let us consider the t-channel graph in figure 3.1 with

the external legs with indices A and C having mass m, B and D mass m0 and the loop

legs mass ml, but p, q, p0 and q0 kept arbitrary, i.e. we do not fix q = p and q0 = p0.

After putting the loop legs on-shell the loop momenta are fixed by the momentum

conservation delta functions in terms of the external momenta. Solving in terms of p

and q we find

l"1± =
1

2

⇥

q± � p± +

s

(q± � p±)2 + 4
m2

l

m2
q±p±

⇤

,

l"2± =
1

2

⇥

p± � q± +

s

(p± � q±)2 + 4
m2

l

m2
p±q±

⇤

,

(3.90)

while solving in terms of p0 and q0 gives

l#1± =
1

2

⇥

p0± � q0± +

s

(p0± � q0±)
2 + 4

m2
l

m2
p0±q

0
±
⇤

,

l#2± =
1

2

⇥

q0± � p0± +

s

(q0± � p0±)
2 + 4

m2
l

m02
q0±p

0
±
⇤

,

(3.91)

where the light-cone momenta are defined in appendix A. The first solution (3.90) then

gives a contribution proportional to

(�1)[C][F ]+[E][F ]
eA(0)FC

AE(p, l
"
1, l
"
2, q)

eA(0)ED
FB (l

"
2, p
0, l"1, q

0) . (3.92)

The arguments of the second factor of eA(0) contain all four of the external momenta

and therefore this part is well-defined when we fix q = p and q0 = p0. Therefore, let us
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focus on the first factor of eA(0), whose arguments only depend on two of the momenta.

Recalling that in an integrable theory the amplitude should vanish unless the set of

outgoing momenta is a permutation of the set of incoming momenta, it follows that this

first factor vanishes unless ml = m. In this case (3.92) reduces to

(�1)[C][F ]+[E][F ]
eA(0)FC

AE(p, q, p, q) eA(0)ED
FB (p, p

0, q, q0) . (3.93)

Finally setting q = p and q0 = p0 this expression can then be written in terms of tree-level

S-matrices. A similar logic follows for the second solution (3.91), except that here the

contribution vanishes unless ml = m0.

It therefore follows that the contribution from the t-channel is given by

T (1)
t =

1

16⇡
(
1

m2
eT (0) t

 T (0) +
1

m02
T (0) t

!
eT (0)) , (3.94)

where eT (0) in the first term is built from the tree-level S-matrix for the scattering of two

excitations of mass m, while in the second term it is built from the tree-level S-matrix

for two excitations of mass m0. We have included an additional factor of 1
2 , as we should

still use both vertices to solve for the loop momenta and take the average.

Combining eqs. (3.88) and (3.94) we find that the one-loop result, in the case where an

excitation of mass m is scattered with an excitation of mass m0, is given by

T (1) =
✓

2⇡
(T (0) u T (0)�T (0) s T (0))+ i

2T
(0) s T (0)+ 1

16⇡ (
1
m2

eT (0) t
 T (0)+ 1

m02T
(0) t
!

eT (0)) ,

(3.95)

where, again under the assumption that T (0) is real, there is a natural split of the result

into three pieces: a logarithmic part, an imaginary rational part, and a real rational

part. Setting m = m0 = 1 we see that this formula reduces to, and hence incorporates,

the single-mass case given in eq. (3.87).

A key consequence of the results in this section is that the cut-constructible one-loop

S-matrix for the scattering of a particle of mass m with one of mass m0 is built from the

corresponding tree-level S-matrix along with the tree-level S-matrices for the scattering

of two particles of mass m and for two particles of mass m0, both evaluated at equal

momenta. In particular there are no contributions containing tree-level S-matrices for

particles of masses other than m and m0. This will be important in later sections, as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without

knowing the full tree-level S-matrix.
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3.3.3 Relation to Yang Baxter equation

The result (3.95) deserves a comment regarding its relation to integrability and the

Yang-Baxter equation (YBE) (3.41). Up to signs related to fermions, which we are not

concerned with for this schematic discussion, the YBE can be written as

S12S13S23 = S23S13S12 , (3.96)

where these operators are acting on a three-particle state and the indices denote the

particles that are being scattered. The first non-trivial order in its perturbative expan-

sion is called the classical Yang-Baxter equation and is a relation that is quadratic in

the tree-level S-matrix,

[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0 . (3.97)

At the next order we find the following relation

[T(0)
12 ,T

(1)
13 ] + [T(0)

12 ,T
(1)
23 ] + [T(0)

13 ,T
(1)
23 ]� [T(0)

13 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
13 ] =

T(0)
23 T(0)

13 T(0)
12 � T(0)

12 T(0)
13 T(0)

23 .

(3.98)

One can check that, assuming that the tree-level S-matrix satisfies the classical Yang-

Baxter equation (3.97), the rational s-channel contribution to the cut-constructible one-

loop S-matrix precisely cancels the terms cubic in the tree-level S-matrix on the right-

hand side of eq. (3.98). Therefore, for the one-loop cut-constructible S-matrix to respect

integrability, the remaining terms should satisfy (3.98) with the right-hand side set to

zero. In general, this condition is not easy to solve, but two solutions are clear. The

first is the tree-level S-matrix itself (which amounts to a shift in the coupling), and the

second is any contribution that can be absorbed into the overall phase factors.

3.3.4 External leg corrections

In the construction outlined thus far we have not included any discussion of corrections to

the external legs. As shall become apparent, for the AdS3⇥S3⇥S3⇥S1 background these

will be important even at one loop. These corrections will give a rational contribution

to the S-matrix and can follow from the three types of Feynman diagrams in figure 3.2.

We will be interested in external leg corrections at one loop that are caught by unitarity.

In order to approach this problem let us first review how external leg corrections are

usually dealt with in a standard Feynman diagram calculation. We denote the sum of
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Figure 3.2: Diagrams contributing to external leg corrections at one-loop.

all one particle irreducible insertions into a scalar propagator as �i⌃(p) = �i⇣⌃(1)(p)+

O(⇣2), where �i⇣⌃(1)(p) is the one-loop contribution. After re-summing one finds

=
i

p2 �m2 � ⌃(p)
(3.99)

Expanding ⌃(p) around the on-shell condition, ⌃(p) = ⌃0(p)+⌃1(p)(p2�m2)+O((p2�
m2)2), one obtains a spatial momentum dependent shift in the pole and a non-vanishing

residue Z(p) such that

=
iZ(p)

p2 �m2 � ⌃0(p)
+ . . . . (3.100)

where Z = 1 + ⇣⌃(1)
1 (p) + O(⇣2) and ⌃0(p) = ⇣⌃(1)

0 (p) + O(⇣2). It is well-known

that the same quantity also appears in the LSZ reduction and the prescription to take

these contributions into account is to include a factor of
p
Z for the external legs of

the scattering process. When inserting this into the S-matrix of a 2 ! 2 process one

therefore gets an additional contribution to T (1) of the form

T (1)
ext = (⌃(1)

1 (p) + ⌃(1)
1 (p0))T (0) , (3.101)

where we recall that we are working in the configuration in which q = p and q0 = p0. Here

we can already make the observation that given that ⌃(1)
1 (p) is real (and assuming that

T (0) is real) the contribution from external legs should contribute to the real rational

part of T (1).

The contribution ⌃(1)
1 (p) is a subleading contribution in the expansion of the self-energy

around the on-shell condition and in a standard Feynman diagram computation would

be regularization dependent. Since in the unitarity computation we did not assume any

explicit regularization we may encounter problems combining the two results. For this



Chapter 3. BMN string 86

p pl1

l2

E

F

F (0) F (0)

Figure 3.3: Cut of a two-point function obtained by fusing two form factors. The
double line indicates an o↵-shell state.

reason, we will choose to follow a rather di↵erent approach and compute this subleading

contribution via unitarity.

As we are considering a unitarity computation, we will only consider contributions from

the graphs in figure 3.2 when they have a physical two-particle cut. In particular, to be

consistent with our approach for the S-matrix we ignore the latter two tadpole diagrams

and restrict our attention to the first diagram. It therefore follows that, in the unitarity

computation, external leg corrections will only play a role at one loop in theories with

cubic vertices. In the context of generalized unitarity, as we discussed in section 3.3.1,

tadpole diagrams may not be negligible and therefore there is no guarantee that our

procedure will provide the whole result. However, the precise cancellation we observe in

the specific example we discuss later is a clear indication of the validity of our result up

to a shift in the coupling (for a more detailed discussion see section 3.4.2.4).

The computation of correlation functions by generalized unitarity was extensively ana-

lyzed in four dimensions in [230], in which it was shown that the object that needs to

be put on either side of the cut is a form factor as shown in figure 3.3. However, let us

also note that we will want to expand around the on-shell condition and hence we ask

that the diagram should have a physical cut even when the external leg is on-shell. This

places a restriction on the masses of the particles involved. In particular they should

take the following form; m1, m2 and m1 �m2, where we take m1 > m2.

By taking figure 3.3 with a mass m1 � m2 external particle,8 internal particles with

masses m1 and m2 corresponding to momentum l1 and l2 and returning p o↵-shell, the

explicit expression for this diagram is given by

⌃(1)(p)|cut =
Z

d2l1
(2⇡)2

i⇡ �+(l1
2 �m1) i⇡ �

+((l1 � p)2 �m2) (3.102)

8This will be the case we consider for AdS3⇥S3⇥S3⇥S1. One can also consider a mass m1 external
particle and internal particles with masses m1 � m2 and m2 (m1 > m2). In this case the two loop
momenta in figure 3.3 should be pointing in the same direction.
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⇥ F (0)
EF (p, l1, l1 � p)F (0)

EF

†
(p, l1, l1 � p) . (3.103)

Here, as in the unitarity computation of the S-matrix, the cut completely freezes the

internal momenta:

l1 =
m2

1 �m2
2 + p2 �

p
�

2 p2
p ⌘ l⇤ , (3.104)

p� l1 =
m2

2 �m2
1 + p2 +

p
�

2 p2
p ⌘ l0⇤ , (3.105)

where � = p4 + m4
1 + m4

2 � 2m2
1p

2 � 2m2
2p

2 � 2m2
1m

2
2. It therefore follows that we

can pull the numerators out of the integrand and uplift the integral as was done for the

four-point amplitude. This gives

⌃(1)(p) =
1

2

�

�

�

F (0)
EF (p, l⇤, l

0
⇤)
�

�

�

2
I(p2,m1,m2) , (3.106)

with the integral I(p2,m1,m2) defined in (3.71). In section 3.4.2.4 we will apply this

formula to a specific example and we will also point out the limits of its application.

3.3.5 Structure of the result

To conclude this section let us make some remarks about the features of the result that

are relevant for our discussion. In all the theories of interest for this review the massive

excitations can be grouped into particles and antiparticles transforming with charge

� = +1 and � = �1 under a global U(1) symmetry. Furthermore, not only is the set

of incoming momenta preserved by the scattering process, but so are the U(1) charges

associated to the individual momenta, i.e. �A = �B and �C = �D. The general structure

of the S-matrix is then

SCD
AB (p, p0) = exp[i$�A�B (p, p

0)]ŜCD
AB (p, p0) , (3.107)

where $ are the phases9 and the matrix structure Ŝ is fixed by the symmetry of the

theory. Each of these objects admit a perturbative expansion at strong coupling:

S = 1+ i
1
X

n=1

⇣nT (n�1) , Ŝ = 1+ i
1
X

n=1

⇣nT̂ (n�1) ,

$�A�B (p, p
0) =

1
X

n=1

⇣n$(n�1)
�A�B (p, p0) . (3.108)

9In the case of AdS5 ⇥ S5 there is a single dressing factor, but we will see that for AdS3 ⇥ S3 ⇥M4

there may be more than one.
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Furthermore, as Ŝ is fixed by symmetries it should contain no logarithmic functions of

the momenta. Therefore, all the logarithms are contained in the phases, and to the

one-loop order we can separate these o↵ as follows

$(0)
�A�B (p, p

0) = �(0)�A�B (p, p
0) , $(1)

�A�B (p, p
0) = `�A�B (p, p

0) ✓ + �(1)�A�B (p, p
0) . (3.109)

Here ✓, defined in eq. (3.76), is the only possible logarithm appearing at one loop, and

�(n)�A�B are rational functions of the momenta.

Substituting eqs. (3.108) and (3.109) into (3.107) we find

T (0) = �(0)�A�B (p, p
0)1+ T̂ (0) , (3.110)

T (1) = `�A�B (p, p
0) ✓ 1+

i

2

h

�(0)�A�B (p, p
0)
i2

1+ �(1)�A�B (p, p
0)1 (3.111)

+ i�(0)�A�B (p, p
0) T̂ (0) + T̂ (1) . (3.112)

Let us compare the structure of the one-loop result following from integrability (3.112)

with that following from unitarity methods (3.87), (3.95). The comparison between

the two expressions leads to the following identifications (note that by definition the

functions `�A�B and �(n)�A�B are real)

1

2⇡
(T (0) u T (0) � T (0) s T (0)) = `�A�B (p, p

0)1 , (3.113)

1

2
T (0) s T (0) =

1

2

h

�(0)�A�B (p, p
0)
i2

1+ �(0)�A�B (p, p
0) T̂ (0) + Im(T̂ (1))

) 1

2
T̂ (0) s T̂ (0) = Im(T̂ (1)) , (3.114)

1
16⇡ (

1
m2

eT (0) t
 T (0) + 1

m02T
(0) t
!

eT (0)) + (⌃(1)
1 (p) + ⌃(1)

1 (p0))T (0) (3.115)

= �(1)�A�B (p, p
0)1+Re(T̂ (1)) , (3.116)

where we have assumed that T (0) is real, which will indeed be the case for all the models

we consider. For the rational terms coming from the s-channel in (3.114), we have

simplified the expression that needs to be checked by substituting in for T (0) (3.110)

and using that 1 s 1 = 1, T̂ (0) s 1 = T̂ (0) and 1 s T̂ (0) = T̂ (0) are satisfied by definition

(see eq. (3.79)). In (3.116) we have also included a possible contribution from external

leg corrections to the real rational part of T (1) (see eq. (3.101)), as discussed in section

3.3.4. Eqs. (3.113), (3.114) and (3.116) are therefore the three equations that we need to

check to see how much of the exact S-matrix is recovered from the unitarity construction.

Factoring out an overall phase factor as in (3.107) clearly contains a degree of arbitrari-

ness. Of course, this choice should not a↵ect the final result, however, there are certain

choices that interplay well with the unitarity construction. In particular, if there is a

scattering process for which the only possible outgoing two-particle state is the incoming
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state (A = C = A⇤, B = D = B⇤), then the corresponding amplitude must be a phase

factor. In this case we can set

ŜA⇤B⇤
A⇤B⇤

= 1 , (3.117)

where A⇤ and B⇤ are fixed and there is no sum. This choice is consistent with (3.114) –

both sides are clearly vanishing by construction. Furthermore, �(1) is just given by the

t-channel contraction (plus possible external leg corrections) with indices A = C = A⇤,

B = D = B⇤.

3.4 Worldsheet scattering in AdS3 ⇥ S3 ⇥M 4

In this section we apply the methods of section 3.3 to a class of integrable theories that

arise as the light-cone gauge-fixing of the AdS3⇥S3⇥M4 string backgrounds described

in section 2.5. We will focus on the following three cases. The first is the simplest and

is when the compact manifold is T 4 with the background supported by RR flux. The

second is when the compact manifold is S3 ⇥ S1, again supported by RR flux. For the

last we return to T 4, but with the background now supported by a mix of RR and NSNS

fluxes.

In analogy with AdS5⇥S5 we consider the S-matrix describing the scattering of excita-

tions on the decompactified string worldsheet in the uniform light-cone gauge. The

masses of the asymptotic excitations are given by the expansion around the BMN

string [75]. For the theories under consideration we have the following spectra

Theory Spectrum

AdS3 ⇥ S3 ⇥ T 4 (RR flux) (4 + 4)⇥ 1 (4 + 4)⇥ 0

AdS3 ⇥ S3 ⇥ S3 ⇥ S1 (RR flux) (2 + 2)⇥ 1 (2 + 2)⇥ ↵

(2 + 2)⇥ 1� ↵ (2 + 2)⇥ 0

AdS3 ⇥ S3 ⇥ T 4 (mixed flux) (4 + 4)⇥
p

1� q2 (4 + 4)⇥ 0

where (n + n) denotes bosons+fermions. As expected, in each case we have (8 + 8)

excitations in total and the masses of the bosons match those of the fermions. All three

cases feature massless modes, which need careful treatment in two dimensions. In the

following we will argue that if we restrict to massive external legs, then we can ignore

the massless modes completely in the one-loop unitarity computation.
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3.4.1 Tree-level S-matrices for pure RR flux

The main input of the one-loop unitarity computation is the tree-level S-matrix of the

theory. Various components of the tree-level S-matrices for the T 4 and S3 ⇥ S1 back-

grounds supported by RR flux were computed in [70, 69], and in [231] for the mixed flux

case. These results, along with the symmetries and integrability of the theory, can be

used to completely determine the tree-level S-matrix.

3.4.1.1 Massive sector for AdS3 ⇥ S3 ⇥ T 4

The quadratic light-cone gauge fixed action for the AdS3⇥S3⇥T 4 background describes

4 + 4 massive and 4 + 4 massless fields. Here we will just consider the scattering of two

massive excitations to two massive excitations. The S-matrix of the theory was fixed up

to two phases in [49] using symmetries.

Thinking of the particle content of the massive sector as 2+2 complex degrees of freedom,

we label these fields as �'', �  , �' and � ', and their complex conjugates as �'̄'̄,

� ̄ ̄, �'̄ ̄ and � ̄'̄, where we understand ', '̄ as bosonic and  ,  ̄ as fermionic indices.

As a consequence of the symmetries and integrability of the theory, the S-matrix factor-

izes:

S |�AȦ(p)�BḂ(p
0)i = (�1)[Ȧ][B]+[Ċ][D]SCD

AB (p, p0)SĊḊ
ȦḂ

(p, p0) |�CĊ(p)�DḊ(p
0)i , (3.118)

where the indices take the following values: {', '̄, ,  ̄}. One can check that the con-

struction outlined in section 3.3 gives the same one-loop result whether we consider

the factorized or full S-matrix. Therefore, for simplicity we will work with the former.

The general structure of the factorized S-matrix takes the form given in (3.107) with

�' = � = + and �'̄ = � ̄ = �. Charge conjugation symmetry implies that �++ = ���,

�+� = ��+, `++ = `�� and `+� = `�+. Therefore, in the following we will focus on the

++ and +� sectors. A typical feature of the uniform light-cone gauge is the dependence

of the phase on a gauge-fixing parameter a. This dependence has the following exact

form

exp
⇥ i

2
(a� 1

2)(!
0p� !p0)

⇤

, (3.119)

where the all-order energies ! are defined in appendix A.6.2.

As we discussed in section 3.3.5 we define the overall phase factors by setting particular

components of ŜCD
AB to one

Ŝ''''(p, p
0) = 1 , Ŝ' ̄

' ̄
(p, p0) = 1 . (3.120)
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The parametrizing functions of the exact S-matrix are defined as

S''''(p, p
0) = A++(p, p

0) S''̄''̄(p, p
0) = A+�(p, p

0)

S' ' (p, p
0) = B++(p, p

0) S  ̄''̄ (p, p
0) = B+�(p, p

0)

S '' (p, p
0) = C++(p, p

0) S' ̄
' ̄

(p, p0) = C+�(p, p
0)

S ' '(p, p
0) = D++(p, p

0) S '̄ '̄(p, p
0) = D+�(p, p

0)

S'  '(p, p
0) = E++(p, p

0) S  ̄
  ̄

(p, p0) = E+�(p, p
0)

S    (p, p
0) = F++(p, p

0) S''̄
  ̄

(p, p0) = F+�(p, p
0) (3.121)

The tree-level components computed directly in [70, 69] are consistent with the near-

BMN expansion of the exact result (B.13), (B.14). The remaining components of the

tree-level S-matrix can then be fixed from the expansion of the exact result. Here we

shall fix a = 1
2 as the dependence on a goes through the unitarity procedure without

any particular subtlety, i.e. it exponentiates as in eq. (3.119). The tree-level S-matrix

reads

A(0)
++(p, p

0) = (p+p0)2

4(e0p�ep0) , B(0)
++(p, p

0) = p02�p2
4(e0p�ep0) ,

C(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , D(0)

++(p, p
0) = � p02�p2

4(e0p�ep0) ,

E(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , F (0)

++(p, p
0) = � (p+p0)2

4(e0p�ep0) , (3.122)

A(0)
+�(p, p

0) = (p�p0)2
4(e0p�ep0) , B(0)

+�(p, p
0) = pp0

p
(e�p)(e0+p0)�

p
(e+p)(e0�p0)

2(e0p�ep0) ,

C(0)
+�(p, p

0) = p02�p2
4(e0p�ep0) , D(0)

+�(p, p
0) = � p02�p2

4(e0p�ep0) ,

E(0)
+�(p, p

0) = � (p�p0)2
4(e0p�ep0) , F (0)

+�(p, p
0) = pp0

p
(e�p)(e0+p0)�

p
(e+p)(e0�p0)

2(e0p�ep0) . (3.123)

3.4.1.2 Massive sector for AdS3 ⇥ S3 ⇥ S3 ⇥ S1

The quadratic light-cone gauge fixed action for the AdS3 ⇥ S3 ⇥ S3 ⇥ S1 background

describes particles with four di↵erent masses. The field content is summarised in table

3.1. Here we will focus on the scattering of massive states with masses ↵ and ↵̄ = 1�↵.

Let us first analyze the S-matrix for AdS3 ⇥ S3 ⇥ S3 ⇥ S1 describing the scattering of

two particles of mass ↵.10 When we restrict to this sector the S-matrix has the same

structure as the factorized S-matrix for AdS3 ⇥ S3 ⇥ T 4, again taking the form given

10For particles of mass ↵̄ the corresponding result can be obtained simply by replacing ↵ with ↵̄.
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Fields Mass

'1, '̄1,�1, �̄1 m1 = 1

'2, '̄2,�2, �̄2 m2 = ↵

'3, '̄3,�3, �̄3 m3 = ↵̄

'4, '̄4,�4, �̄4 m4 = 0

Table 3.1: Field content of the AdS3 ⇥ S3 ⇥ S3 ⇥ S1 light-cone gauge fixed string
theory.

in (3.107). The tree-level S-matrix, however, is di↵erent and this will have non-trivial

consequences for the unitarity calculation. Compared to the AdS3 ⇥ S3 ⇥ T 4 case the

dependence on the gauge-fixing parameter a is modified due to the fact that this is now

the full S-matrix. The new expression reads

exp
⇥

i(a� 1
2)(!

0p� !p0)
⇤

. (3.124)

We again use (3.120) to choose the overall phase factors and define the parametrizing

functions as in eq. (3.121).11

As in the AdS3 ⇥ S3 ⇥ T 4 case we shall present the result in the gauge a = 1
2 . The

tree-level S-matrix reads

A(0)
++(p, p

0) = ↵(p+p0)2

2(e0p�ep0) , B(0)
++(p, p

0) = ↵p0(p+p0)
2(e0p�ep0) ,

C(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , D(0)

++(p, p
0) = ↵p(p+p0)

2(e0p�ep0) ,

E(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , F (0)

++(p, p
0) = 0 , (3.125)

A(0)
+�(p, p

0) = ↵(p�p0)2
2(e0p�ep0) , B(0)

+�(p, p
0) = pp0

p
(e�p)(e0+p0)�

p
(e+p)(e0�p0)

2(e0p�ep0) ,

C(0)
+�(p, p

0) = ↵p0(p0�p)
2(e0p�ep0) , D(0)

+�(p, p
0) = ↵p(p�p0)

2(e0p�ep0) ,

E(0)
+�(p, p

0) = 0 , F (0)
+�(p, p

0) = pp0
p

(e�p)(e0+p0)�
p

(e+p)(e0�p0)
2(e0p�ep0) . (3.126)

Let us now turn our attention to the scattering between a mode with mass ↵ and one

with mass ↵̄ = 1�↵. There are no surprises regarding the gauge-fixing parameter a, i.e.

eq. (3.124) also holds for the two mass scattering. We again define the parametrizing

11To be precise we use the definitions (3.121) with the replacements '! '2 and  ! �2 and likewise
for their conjugates.
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functions as

S'2'3
'2'3

(p, p0) = A++(p, p
0) S'2'̄3

'2'̄3
(p, p0) = A+�(p, p

0)

S'2�3

'2�3 (p, p
0) = B++(p, p

0) S�
2�̄3

'2'̄3
(p, p0) = B+�(p, p

0)

S�
2'3

'2�3 (p, p
0) = C++(p, p

0) S'2�̄3

'2�̄3 (p, p
0) = C+�(p, p

0)

S�
2'3

�2'3
(p, p0) = D++(p, p

0) S�
2'̄3

�2'̄3
(p, p0) = D+�(p, p

0)

S'2�3

�2'3
(p, p0) = E++(p, p

0) S�
2�̄3

�2�̄3 (p, p
0) = E+�(p, p

0)

S�
2�3

�2�3 (p, p
0) = F++(p, p

0) S'2'̄3

�2�̄3 (p, p
0) = F+�(p, p

0) (3.127)

and the overall phase factors by setting

Ŝ'2'3
'2'3

(p, p0) = 1 , Ŝ'2�̄3

'2�̄3 (p, p
0) = 1 . (3.128)

As before, the tree-level S-matrix can be extracted from the near-BMN expansion of the

exact result along with those amplitudes computed in [70, 69]. For a = 1
2 (again the

contribution of the gauge-fixing parameter a to the unitarity computation goes through

without any particular subtlety) it is given by

A(0)
++(p, p

0) = 0 , B(0)
++(p, p

0) = �p(↵̄p+↵p0)
2(e0p�ep0) ,

C(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , D(0)

++(p, p
0) = �p0(↵̄p+↵p0)

2(e0p�ep0) ,

E(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , F (0)

++(p, p
0) = � (p+p0)(↵̄p+↵p0)

2(e0p�ep0) , (3.129)

A(0)
+�(p, p

0) = 0 , B(0)
+�(p, p

0) = pp0
p

(e�p)(e0+p0)�
p

(e+p)(e0�p0)
2(e0p�ep0) ,

C(0)
+�(p, p

0) = �p(↵̄p�↵p0)
2(e0p�ep0) , D(0)

+�(p, p
0) = p0(↵̄p�↵p0)

2(e0p�ep0) ,

E(0)
+�(p, p

0) = � (p�p0)(↵̄p�↵p0)
2(e0p�ep0) , F (0)

+�(p, p
0) = pp0

p
(e�p)(e0+p0)�

p
(e+p)(e0�p0)

2(e0p�ep0) . (3.130)

3.4.1.3 A general tree-level S-matrix for the AdS3 ⇥ S3 ⇥M4 theories

Comparing the expressions (3.122), (3.123), (3.125), (3.126), (3.129) and (3.130) we no-

tice their similarity. In particular, they all di↵er from one another by a term proportional

to the identity. Therefore in this section we will introduce an additional parameter �

along with two generic masses m and m0, such that, for particular values of these three

parameters the tree-level S-matrices are recovered. The advantage of this approach is

that it demonstrates how some quantities in the one-loop result are common to all three

theories (i.e. �-independent) up to the right assignment of the masses.
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To be concrete the expression for the general tree-level S-matrix is (we use the notation

�̄ = (1� �))

A(0)
++(p, p

0) = � (p+p0)(m0p+mp0)
2(e0p�ep0) , B(0)

++(p, p
0) = (�p0��̄p)(m0p+mp0)

2(e0p�ep0) ,

C(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , D(0)

++(p, p
0) = (�p��̄p0)(m0p+mp0)

2(e0p�ep0) ,

E(0)
++(p, p

0) = pp0
p

(e+p)(e0�p0)+
p

(e�p)(e0+p0)
2(e0p�ep0) , F (0)

++(p, p
0) = ��̄ (p+p0)(m0p+mp0)

2(e0p�ep0) ,

A(0)
+�(p, p

0) = � (p�p0)(m0p�mp0)
2(e0p�ep0) , B(0)

+�(p, p
0) = pp0

p
(e�p)(e0+p0)�

p
(e+p)(e0�p0)

2(e0p�ep0) ,

C(0)
+�(p, p

0) = (�̄p+�p0)(mp0�m0p)
2(e0p�ep0) , D(0)

+�(p, p
0) = (�̄p0+�p)(m0p�mp0)

2(e0p�ep0) ,

E(0)
+�(p, p

0) = ��̄ (p�p0)(m0p�mp0)
2(e0p�ep0) , F (0)

+�(p, p
0) = pp0

p
(e�p)(e0+p0)�

p
(e+p)(e0�p0)

2(e0p�ep0) .

(3.131)

The explicit assignments that need to be made to recover the various tree-level S-matrices

given in the previous section are shown in table 3.2. For most of the unitarity compu-

tation however, we will keep general values of �, m and m0 so as to better understand

the dependence of the result on these parameters.

(�,m,m0) Theory

(0,↵, ↵̄) AdS3 ⇥ S3 ⇥ S3 ⇥ S1 (two mass scattering)

(12 , 1, 1) AdS3 ⇥ S3 ⇥ T 4

(1,↵,↵) AdS3 ⇥ S3 ⇥ S3 ⇥ S1 (one mass scattering)

Table 3.2: Assignments of parameters for the various theories of interest.

3.4.2 Result from unitarity techniques for pure RR flux

In this section we compute the one-loop S-matrix from unitarity methods for the light-

cone gauge fixed string theories in the AdS3⇥S3⇥T 4 and AdS3⇥S3⇥S3⇥S1 backgrounds

supported by RR flux. As explained in section 3.3.5, we will split the result according to

eqs. (3.113), (3.114) and (3.116), where we recall that we have chosen S'''' = A++(p, p0)

and S' ̄
' ̄

= C+�(p, p0) as the overall phase factors.

In the general construction described in section 3.3.2, we found that when scattering

a particle of mass m with one of mass m0, the s- and u-channel contributions are just

given in terms of the tree-level S-matrices for the same scattering configuration. There-

fore, as the logarithmic terms (3.113) and the rational terms (3.114) only come from
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the s-channel and u-channel contributions, for these we can work with the general (�-

dependent) tree-level S-matrix (3.131). For the t-channel contribution (3.116) one needs

to combine di↵erent tree-level S-matrices, for example the scattering of two particles of

mass m with the scattering of a particle of mass m with one of mass m0. Hence for these

terms we will need to restrict to the specific values of �, m and m0 given in table 3.2.

3.4.2.1 Coe�cients of the logarithms

The coe�cients of the logarithmic parts were first computed in [124]. As discussed in

section 3.3.5 one should always be able to include the logarithmic terms of the S-matrix

in the phases. Therefore at one loop we expect them to only contribute to the diagonal

terms. This is indeed the case and furthermore, the particular combination governing

the logarithmic dependence does not depend on the diagonal components of the tree-

level S-matrix. Therefore, the one-loop logarithmic terms following from the unitarity

construction for the general tree-level S-matrix (3.131) will be �-independent. Indeed,

`++(p, p
0) = � p2p02

4⇡(ee0 � pp0 �mm0)
, (3.132)

`+�(p, p
0) = � p2p02

4⇡(ee0 � pp0 +mm0)
, (3.133)

where the functions `�M�N were introduced in eq. (3.109). Although not transparent

from this expression, these functions can be expressed as

`++(p, p
0) = � 1

2⇡
C(0)
++(p, p

0)E(0)
++(p, p

0) , (3.134)

`+�(p, p
0) = � 1

2⇡
B(0)

+�(p, p
0)F (0)

+�(p, p
0) . (3.135)

3.4.2.2 Rational terms from the s-channel – The imaginary part.

In section 3.3.5 we described how the contributions to the rational part of the S-matrix

in the unitarity calculation are split between the s-channel (3.114) and t-channel (3.116).

Let us start by considering the s-channel, for which we can work with the general �-

dependent tree-level S-matrix (3.131). From eq. (3.114) it is clear that we can restrict our

attention to Im(T̂ (1)), where we recall that T̂ (0) and T̂ (1) are the tree-level and one-loop

terms in the expansion of the S-matrix with the overall phase factors, S'''' = A++(p, p0)

and S' ̄
' ̄

= C+�(p, p0), set to one. The result from the unitarity calculation is (3.114)

1

2
T̂ (0) s T̂ (0) . (3.136)
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Below we give the components of (3.136). These are in perfect agreement with the

one-loop expansion of the exact results (B.13), (B.14), (B.27), (B.28), (B.29) and (B.30)

for the appropriate assignments of the masses m and m0, see table 3.2. This is not

particularly surprising since the imaginary part of a one-loop S-matrix is completely

determined by the optical theorem which was the starting point of our construction.

The one-loop expressions are

Â(1)
++(p, p

0) = 0 ,

B̂(1)
++(p, p

0) =
1

2

hp(m0p+mp0)

2(e0p� ep0)

i2
+

1

2

h

pp0
p

(e+ p)(e0 � p0) +
p

(e� p)(e0 + p0)

2(e0p� ep0)

i2
,

Ĉ(1)
++(p, p

0) = �1

2

h(p+ p0)(m0p+mp0)

2(e0p� ep0)

ih

pp0
p

(e+ p)(e0 � p0) +
p

(e� p)(e0 + p0)

2(e0p� ep0)

i

,

D̂(1)
++(p, p

0) =
1

2

hp0(m0p+mp0)

2(e0p� ep0)

i2
+

1

2

h

pp0
p

(e+ p)(e0 � p0) +
p

(e� p)(e0 + p0)

2(e0p� ep0)

i2
,

Ê(1)
++(p, p

0) = �1

2

h(p+ p0)(m0p+mp0)

2(e0p� ep0)

ih

pp0
p

(e+ p)(e0 � p0) +
p

(e� p)(e0 + p0)

2(e0p� ep0)

i

,

F̂ (1)
++(p, p

0) =
1

2

h(p+ p0)(m0p+mp0)

2(e0p� ep0)

i2
. (3.137)

Â(1)
+�(p, p

0) =
1

2

hp(m0p�mp0)

2(e0p� ep0)

i2
+

1

2

h

pp0
p

(e+ p)(e0 � p0)�
p

(e� p)(e0 + p0)

2(e0p� ep0)

i2
,

B̂(1)
+�(p, p

0) = �1

2

h(p+ p0)(m0p�mp0)

2(e0p� ep0)

ih

pp0
p

(e+ p)(e0 � p0)�
p

(e� p)(e0 + p0)

2(e0p� ep0)

i

,

Ĉ(1)
+�(p, p

0) = 0 ,

D̂(1)
+�(p, p

0) =
1

2

h(p+ p0)(m0p�mp0)

2(e0p� ep0)

i2
,

Ê(1)
+�(p, p

0) =
1

2

hp0(m0p�mp0)

2(e0p� ep0)

i2
+

1

2

h

pp0
p

(e+ p)(e0 � p0)�
p

(e� p)(e0 + p0)

2(e0p� ep0)

i2
,

F̂ (1)
+�(p, p

0) = �1

2

h(p+ p0)(m0p�mp0)

2(e0p� ep0)

ih

pp0
p

(e+ p)(e0 � p0)�
p

(e� p)(e0 + p0)

2(e0p� ep0)

i

.

(3.138)

Although there are simpler ways to express this result, we have chosen this form in order

to explicitly show the connection with the tree-level functions. The �-independence of

(3.137) and (3.138) is expected since � appears only in the phases. As explained earlier

in this section and in section 3.3.5, to check the s-channel rational terms we do not need

to consider the overall phase factors and hence they have been set to one.

Note that expressions for the components of 1
2T

(0) s T (0) in terms of tree-level functions

are given in [124] for AdS3⇥S3⇥T 4. These formulae also hold for the general tree-level

S-matrix (3.131), however, they will depend on �, which drops out only if we consider
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1
2 T̂

(0) s T̂ (0) as above. To see explicitly how this works let us consider F++.12 From [124]

the one-loop expression for F++ is simply given by

F (1)
++ =

1

2
[F (0)

++]
2 , (3.139)

however when we consider (3.136) (taking into account that �(0)++ = A(0)
++) we find

F̂ (1)
++ =

1

2
[F̂ (0)

++]
2 =

1

2
[F (0)

++ �A(0)
++]

2 . (3.140)

Comparing the expressions for F (0)
++ and A(0)

++ we can then observe the cancellation of �.

A similar story holds for the other components

Â(1)
++ = 0 , B̂(1)

++ =
1

2
[B(0)

++ �A(0)
++]

2 +
1

2
C(0)
++E

(0)
++ ,

Ĉ(1)
++ =

1

2
[B(0)

++ +D(0)
++ � 2A(0)

++]C
(0)
++ , D̂(1)

++ =
1

2
[D(0)

++ �A(0)
++]

2 +
1

2
C(0)
++E

(0)
++ ,

Ê(1)
++ =

1

2
[B(0)

++ +D(0)
++ � 2A(0)

++]E
(0)
++ , F̂ (1)

++ =
1

2
[F (0)

++ �A(0)
++]

2 . (3.141)

Â(1)
+� =

1

2
[A(0)

+� � C(0)
+�]

2 +
1

2
B(0)

+�F
(0)
+� , B̂(1)

+� =
1

2
[A(0)

+� + E(0)
+� � 2C(0)

+�]B
(0)
+� ,

Ĉ(1)
+� = 0 , D̂(1)

+� =
1

2
[D(0)

+� � C(0)
+�]

2 ,

Ê(1)
+� =

1

2
[E(0)

+� � C(0)
+�]

2 +
1

2
B(0)

+�F
(0)
+� , F̂ (1)

+� =
1

2
[A(0)

+� + E(0)
+� � 2C(0)

+�]F
(0)
+� . (3.142)

The validity of these relations is rather general and can be applied to any S-matrix with

the same underlying structure. In particular, this allows us to use them for the mixed

flux case in section 3.4.4.

3.4.2.3 The t-channel contribution and the dressing phases

As explained in section 3.3 the t-channel cut requires a non-trivial generalization of

the procedure used for the AdS5 ⇥ S5 case. Furthermore, the t-channel cut for the

scattering of two masses depends on the tree-level S-matrices for the scattering of the

same and di↵erent masses. Therefore, in this section it only makes sense to work with the

parameters �, m andm0 for the three cases of interest, as given in table 3.2. Inputting the

tree-level S-matrices (3.122), (3.123), (3.125), (3.126), (3.129) and (3.130) into eq .(3.94)

and splitting the result as in eq. (3.116) we find for all three scattering processes (AdS3⇥
S3 ⇥ T 4, AdS3 ⇥ S3 ⇥ S3 ⇥ S1 same mass and AdS3 ⇥ S3 ⇥ S3 ⇥ S1 di↵erent mass) the

12For the remainder of this section the dependence on p and p0 is understood.
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one-loop phases can be written in the following general form

�(1)++(p, p
0) =

p p0(m0p+mp0)2

8⇡mm0(e0p� ep0)
, (3.143)

�(1)+�(p, p
0) = � p p0(m0p�mp0)2

8⇡mm0(e0p� ep0)
. (3.144)

The real part of the one-loop cut-constructible S-matrix that is not part of the overall

phase factors is given by

Re(T̂ (1))|unit. =
1

4⇡
|1� 2�|

✓

p2

m
+

p02

m0

◆

T (0) . (3.145)

It is important to emphasise that even though we have written them in terms of �, m

and m0 the results (3.143), (3.144) and (3.145) are only valid for the assignments in table

3.2.

Two comments are in order here. First, eq. (3.145) is proportional to |1�2�|. Therefore,
this term vanishes for AdS3⇥S3⇥T 4, but does not for AdS3⇥S3⇥S3⇥S1. However,

we should recall that this is only the contribution to Re(T̂ (1)) coming from unitarity

and there are potentially additional terms arising from external leg corrections (3.116).

Indeed, one of the main di↵erences between AdS3 ⇥ S3 ⇥ T 4 and AdS3 ⇥ S3 ⇥ S3 ⇥ S1

is that the light-cone gauge fixed Lagrangian of the latter has cubic terms. Further-

more, the tree-level form factor for one o↵-shell and two on-shell particles is non-zero

and as a consequence non-trivial external leg corrections are already present at one loop

in the unitarity construction, as described in section 3.3.4. As we will see in the fol-

lowing section these precisely cancel (3.145) and re-establish agreement with the exact

result.13,14

The second comment concerns eqs. (3.132), (3.133), (3.143) and (3.144), which combined

have a natural interpretation as the one-loop contributions to the phases. It is interesting

to note that they are independent of �, indicating that the phases for all three scattering

processes should be related. This agrees with the semiclassical computation [232].15

A natural question is whether this relation extends to all orders in the coupling. To

facilitate comparison with the literature [50] we will rewrite the result in terms of the

13Let us point out that a term like (3.145) in the one-loop S-matrix would prevent the latter from
satisfying the Yang-Baxter equation, conflicting with the integrability of the theory.

14It is interesting to note that in the two loop near-flat-space computation of [122] for the AdS5 ⇥ S5

light-cone gauge S-matrix the external leg corrections also cancelled unwanted terms arising from t-
channel graphs and in the one-loop Feynman diagram computation of [150] external leg corrections were
a key ingredient for the cancellation of UV divergences.

15In [142] the author states that the one-loop dressing phase of AdS3 ⇥ S3 ⇥ S3 ⇥ S1 is half that of
AdS3⇥S3⇥T 4. This is consistent given that we are considering the factorized S-matrix for AdS3⇥S3⇥T 4.



Chapter 3. BMN string 99

standard strong coupling variables x and y, which we have defined in (A.62) and (A.63)

$(1)
++(p, p

0) = �mm0

⇡
x2

x2�1
y2

y2�1



(x+y)2(1� 1
xy )

(x2�1)(x�y)(y2�1) +
2

(x�y)2 log
⇣

x+1
x�1

y�1
y+1

⌘

�

, (3.146)

$(1)
+�(p, p

0) = �mm0

⇡
x2

x2�1
y2

y2�1



(xy+1)2(
1
x�

1
y )

(x2�1)(xy�1)(y2�1) +
2

(xy�1)2 log
⇣

x+1
x�1

y�1
y+1

⌘

�

. (3.147)

Here x corresponds to momentum p with mass m and y to momentum p0 with mass m0.

Finally, let us stress again that this expression is valid for all three cases summarized in

table 3.2. In particular, for m = m0 = 1 this is consistent with (B.26), where the overall

sign is compensated by the fact that ei#�M�N
(p,p0) ⇠ S11

�M�N (p, p
0)�1, see eqs. (B.15) and

(B.16).

3.4.2.4 External leg corrections for AdS3 ⇥ S3 ⇥ S3 ⇥ S1

In this section we focus on the AdS3⇥S3⇥S3⇥S1 background for which the unwanted

term (3.145) is present. With the aim of interpreting this missing term as a contribution

cancelled by external leg corrections let us review the results of [41, 233] for the one-loop

two-point functions. The near-BMN expansion of the light-cone gauge fixed Lagrangian

can be schematically written as

L = L2 + h�
1
2L3 + h�1L4 + . . . . (3.148)

The quadratic part is given by 16

L2 = �̄a(i/@ �ma)�
a + |@'a|2 �m2

a|'a|2 , (3.149)

where our conventions are summarized in appendix A and we have introduced the index

a = 1, . . . , 4 with the respective masses listed in table 3.1. The cubic Lagrangian [41, 233]

is given by

L3 =

r

↵↵̄

2

h

(�1)T�3(i/@ � ↵)'2 �
3 � i(�1)T�3(i/@ � ↵̄)'3 �

2 � 2(�2)T�1@1'1 �
3

+ �̄2�0(i/@ � ↵)'2 �
4 + i�̄3�0(i/@ � ↵̄)'3 �

4 (3.150)

�
�

�̄2(1� �3)�2 � �̄3(1� �3)�3 + 2↵|'2|2 � 2↵̄|'3|2
�

@0'4 + h.c.
i

.

Let us start by focusing on the tree-level processes following from the cubic Lagrangian.

The only processes allowed by two-dimensional kinematics involve a particle of mass 1

16Here we stress that, although the theory is not Lorentz invariant beyond quadratic order, we are
formally rearranging the fermions into doublets for notational and computational convenience.
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decaying into a particle of mass ↵ and one of mass ↵̄ and its reverse.17 The Feynman

rules associated to the relevant vertices are

'1

�2

�3

�1

'2

�3

�1

�2

'3

r

↵↵̄

2
2 i �1p1 , �

r

↵↵̄

2
i �3(/p2 + ↵) , �

r

↵↵̄

2
�3(/p3 + ↵̄) .

(3.151)

To obtain the amplitude one should contract the external legs with the fermion polar-

izations and enforce the on-shell condition. The three diagrams share the same on-shell

kinematics, i.e. denoting the incoming momentum of the heavy particle (with mass

m1 = 1) as p1, the outgoing momenta of the light particles are given by p2 = m2
m1

p1

and p3 = m3
m1

p1, where m3 = m1 � m2.18 Using the property that v(kp1) =
p
kv(p1)

(see eq. (A.68)), it is clear that both the second and the third diagrams vanish as

(/p+1)v(p) = 0. Furthermore, the first diagram is also identically zero as a consequence

of the identity v(p)T�1v(p) = 0.

One may ask how this is compatible with the result of [41] where the authors find a

non-vanishing expression for the one-loop correction to the propagators coming from

the graph formed of two three-point vertices. Focusing on the one-loop contribution to

the self-energy of the heavy boson the result of [41] reads

⌃(1)
0 (p) = i h'1'̄1i(1) =

1

⇡2
(↵ log↵+ ↵̄ log ↵̄) p2 . (3.152)

This result is obtained setting p2 = 1 (i.e. putting the propagator on-shell) and its de-

pendence on p is a consequence of the lack of Lorentz invariance. In a unitarity compu-

tation with the setup described in section 3.3.4 the two tree-level form factors appearing

in figure 3.3 would be vanishing in the strict on-shell limit and this contribution would

not be caught. However, as discussed in section 3.3.4, our treatment ignored any kind of

tadpole diagram contributing to the external leg corrections. Moreover, as pointed out

in [41] the contribution (3.152) can be understood as the one-loop term in the expansion

of h(⇣), an e↵ective coupling featuring all the integrability-based calculations (see sec-

tion 4.3 for an extensive discussion of the analogue quantity in AdS4⇥CP3background).

17Diagrams involving one massless leg are ruled out by two-dimensional kinematics. In the cubic
Lagrangian (3.150) the massless modes always couple to massive modes of equal mass. It then follows
that the on-shell condition implies that the massless leg carries vanishing momentum.

18This is true under the assumption of a relativistic dispersion relation, which in this case holds just
at tree level.
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This e↵ective coupling enters the dispersion relation of the worldsheet excitations as one

easily understands from equation (3.152) and perturbatively it is translated in a shift

of the coupling. Combining this observation with the fact that, in a number of other

examples we have considered, ignoring tadpole diagrams gives the S-matrix up to correc-

tions in h(⇣) we may argue that these are coming from tadpole diagrams whose analysis

would require the introduction of a regularization (see also [41]). This is therefore an

additional indication that unitarity techniques, neglecting tadpoles, are blind to shifts

in the coupling.

Therefore, we will consider the following alternative question. Are there external leg

corrections that are caught by unitarity and which are relevant for the one-loop cal-

culation? In the S-matrix computation we consider scattering processes for which the

external legs have masses ↵ or ↵̄. Therefore, the external leg corrections we compute

come from diagrams similar to the first graph in figure 3.2 with masses m1 = 1 and

m2 = ↵ or m2 = ↵̄.

We start by considering an external leg of mass ↵. Using the vertices in eq. (3.151) we

find the following form factors

'2

�1

�3

p

l1

l2

= i

r

↵↵̄

2
v(l1)

T�3(/p� ↵)u(l2) , (3.153)

�2

'1

�3

p

l1

l2

= i

r

↵↵̄

2
2u(l2)

T�1l1u(p) , (3.154)

�2

�1

'3

p

l1

l2

=

r

↵↵̄

2
v(l1)

T�3(/l2 � ↵̄)u(p) . (3.155)

To apply the construction outlined in section 3.3.4 we need to compute eq. (3.106). In

particular, we are interested in expanding the form factor squared around the on-shell

condition. Since we already know that the tree-level form factor vanishes on-shell, to

get the first order in the expansion there is no need to also expand the integral, i.e. it
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can be evaluated strictly on-shell

I(↵2, 1, ↵̄) = � i

4⇡↵̄
. (3.156)

Squaring the form factor (3.153) and expanding around the on-shell condition we find 19

� i⌃(1)
1,'2

(p) =
i

4⇡↵
p2 . (3.157)

Comparing to (3.145) this result is promising. However, (3.157) holds only when the

external leg is a boson. A non-trivial check of our procedure is that when the external

leg is a fermion the correction, which comes from two terms associated to the diagrams

(3.154) and (3.155), is exactly the same as for the boson, i.e.

� i⌃(1)
1,�2(p) =

i

4⇡↵
p2 . (3.158)

One might have expected this from worldsheet supersymmetry as discussed in [233].

Here we have computed the external leg corrections for a particle of mass ↵. From the

symmetry of the Lagrangian, it is clear that the result for a particle of mass ↵̄ is just

given by the replacement ↵! ↵̄.

Once the external leg contributions are computed we can apply eq. (3.101) to find their

contribution to the one-loop S-matrix. To be general, let us consider the scattering of a

particle of mass m with a particle of mass m0. Our result then reads

T (1)
ext = �

1

4⇡

✓

p2

m
+

p02

m0

◆

T (0) . (3.159)

This contribution exactly cancels (3.145) for � = 0 and � = 1. These are precisely the

values associated to the single and mixed mass scattering processes for AdS3⇥S3⇥S3⇥
S1, and hence we have established agreement between the unitarity calculation and the

exact result up to shifts in the coupling.

3.4.3 Tree-level S-matrix for mixed flux

The quadratic light-cone gauge fixed action for the AdS3⇥S3⇥T 4 background supported

by mixed flux again describes 4 + 4 massive and 4 + 4 massless fields. As usual we

restrict ourselves to considering the scattering of two massive excitations to two massive

excitations. Following the RR case described in section 3.4.1.1 we group the particle

content of the massive sector into 2 + 2 complex degrees of freedom (to recall, �'',

�  , �' , � ', and their complex conjugates �'̄'̄, � ̄ ̄, �'̄ ̄, � ̄'̄). The presence of

19A minus sign is included to take account of the fermion loop.
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the NSNS flux then breaks the charge conjugation invariance, such that the near-BMN

dispersion relations for these complex degrees of freedom are given by

e± =
p

(1� q2) + (p± q)2 . (3.160)

where + corresponds to �'', �  , �' , � ' and � to their complex conjugates.

As for q = 0 the S-matrix factorizes as in (3.118) and the general structure of the

factorized S-matrix takes the form given in (3.107) with �' = � = + and �'̄ = � ̄ = �.
Furthermore, the construction outlined in section 3.3 still gives the same one-loop result

whether we consider the factorized or full S-matrix. Therefore, for simplicity we will

again work with the former. Due to the lack of charge conjugation symmetry all four

phases are now di↵erent. However, charge conjugation along with formally sending

q ! �q is a symmetry and hence �++ = ���|q!�q and �+� = ��+|q!�q. Similarly,

for the functions `�M�N we have `++ = `��|q!�q and `+� = `�+|q!�q. Therefore, in

the following we will again focus on the ++ and +� sectors. The dependence on the

gauge-fixing parameter a is also modified in the following natural way

exp
⇥ i

2
(a� 1

2)(!
0
�Np� !�Mp0)

⇤

, (3.161)

where the all-order energies !± are defined in appendix A.6.3. As discussed in section

3.3.5 we choose the overall phase factors by setting particular components of ŜPQ
MN to

one

Ŝ''''(p, p
0) = 1 , Ŝ' ̄

' ̄
(p, p0) = 1 . (3.162)

The parametrizing functions of the S-matrix are defined as

S''''(p, p
0) = A++(p, p

0) S''̄''̄(p, p
0) = A+�(p, p

0)

S' ' (p, p
0) = B++(p, p

0) S  ̄''̄ (p, p
0) = B+�(p, p

0)

S '' (p, p
0) = C++(p, p

0) S' ̄
' ̄

(p, p0) = C+�(p, p
0)

S ' '(p, p
0) = D++(p, p

0) S '̄ '̄(p, p
0) = D+�(p, p

0)

S'  '(p, p
0) = E++(p, p

0) S  ̄
  ̄

(p, p0) = E+�(p, p
0)

S    (p, p
0) = F++(p, p

0) S''̄
  ̄

(p, p0) = F+�(p, p
0) (3.163)

The input needed for the unitarity construction of section 3.3 is the tree-level S-matrix.

Various tree-level components were computed directly in [231]. These are in agreement

with the near-BMN expansion of the exact result (B.36), (B.37). The remaining com-

ponents of the tree-level S-matrix can then be fixed from the expansion of the exact
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result. As in the RR case, here we shall present the result in the gauge a = 1
2 – the

dependence on a goes through the unitarity procedure without any particular subtlety,

i.e. it exponentiates as in eq. (3.161). The tree-level S-matrix reads

A(0)
++(p, p

0) = �F (0)
++(p, p

0) =
(p+p0)(e0+p+e+p0)

4 (p�p0) ,

C(0)
++(p, p

0) = E(0)
++(p, p

0) = p p0
p

(e++p+q)(e0++p0+q)+
p

(e+�p�q)(e0+�p0�q)
2(p�p0) ,

B(0)
++(p, p

0) = �D(0)
++(p, p

0) = � e0+p�e+p0

4 , (3.164)

A(0)
+�(p, p

0) = �E(0)
+�(p, p

0) =
(p�p0)(e0�p+e+p0)

4 (p+p0) ,

B(0)
+�(p, p

0) = F (0)
+�(p, p

0) = p p0
p

(e+�p�q)(e0��p0+q)�
p

(e++p+q)(e0�+p0�q)
2(p+p0) ,

C(0)
+�(p, p

0) = �D(0)
+�(p, p

0) = � e0�p�e+p0

4 , (3.165)

This form of writing the tree-level S-matrix elements is the simplest for the purposes

of introducing the parameter q. Agreement with (3.122) and (3.123) for q = 0 can be

checked using the dispersion relation.

3.4.4 Result from unitarity techniques for mixed flux

In this section we compute the one-loop S-matrix from unitarity methods for the light-

cone gauge fixed string theory in the AdS3⇥S3⇥T 4 background supported by a mix of

RR and NSNS fluxes. Again, we will split the result according to eqs. (3.113), (3.114)

and (3.116), where we recall that we have chosen S'''' = A++(p, p0) and S' ̄
' ̄

= C+�(p, p0)

as the overall phase factors.

There is a subtlety regarding the unitarity computation in that the near-BMN dispersion

relations (3.160) are not the standard relativistic ones that we assumed for the derivation

in section 3.3. To bypass this problem, we will first shift the momenta as

p! p� q for particles and p! p+ q for antiparticles , (3.166)

so as to put the near-BMN dispersion relations into the standard form. At the level of

the light-cone gauge fixed Lagrangian this just amounts to a �-dependent rotation of the

complex fields, where � is the spatial coordinate on the worldsheet [231]. We can then

straightforwardly use the construction of section 3.3 for two particles of mass
p

1� q2.

To construct the one-loop result, we should then conclude by undoing the shift (3.166).

An analogous approach was used in [124] to compute the logarithmic terms.
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Following this procedure it is apparent that the logarithms appearing in the one-loop

integrals, when written in terms of energy and momentum, are di↵erent for each of the

four sectors

✓±± = arcsinh
�e0±(p± q)� e±(p0 ± q)

1� q2
�

, ✓±⌥ = arcsinh
�e0⌥(p± q)� e±(p0 ⌥ q)

1� q2
�

.

(3.167)

The functions `�M�N are then defined as the coe�cients of ✓�M�N in the one-loop phase,

see eq. (3.109).

The coe�cient of the logarithmic terms were first computed in [124]. Given that the

structure of the S-matrix is not altered by the presence of NSNS flux it follows from

the unitarity computation that the coe�cients of the logarithms written in terms of the

tree-level functions, (3.164) and (3.165), are still given by (3.134) and (3.135)

`++(p, p
0) = � 1

2⇡
C(0)
++(p, p

0)E(0)
++(p, p

0) = �
p2p02

�

e+e0+ + (p+ q)(p0 + q) + (1� q2)
�

4⇡(p� p0)2
,

(3.168)

`+�(p, p
0) = � 1

2⇡
B(0)

+�(p, p
0)F (0)

+�(p, p
0) = �

p2p02
�

e+e0� + (p+ q)(p0 � q)� (1� q2)
�

4⇡(p+ p0)2
.

(3.169)

Using the dispersion relation, one can check that these expressions agree with eqs. (3.132)

and (3.133) for q = 0 and m = m0 = 1.

Furthermore, the rational s-channel terms (with the overall phase factors set to one) are

again given in terms of the tree-level functions as in eqs. (3.141) and (3.142). Plugging

in the corresponding expressions, (3.164) and (3.165), one can check agreement with the

near-BMN expansion of the exact result (B.36) and (B.37).

Finally, as for the AdS3 ⇥ S3 ⇥ T 4 background supported by pure RR flux, the rational

contributions from the t-channel go completely into the phases. That is Re(T̂ (1))|unit. =
0. Furthermore, also as for the case of pure RR flux, the light-cone gauge fixed La-

grangian contains no cubic terms. Therefore, there are correspondingly no external leg

corrections at one loop in the unitarity computation. It follows from computing the

t-channel cuts that

�(1)++(p, p
0) =

p p0(p+ p0)(e0+p+ e+p0)

8⇡(p� p0)
, (3.170)

�(1)+�(p, p
0) = �p p0(p� p0)(e0�p+ e+p0)

8⇡(p+ p0)
. (3.171)

Using the dispersion relation, one can check that these expressions agree with eqs. (3.143)

and (3.144) for q = 0 and m = m0 = 1.
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We conclude this section by giving the generalization of the one-loop dressing phases

(3.146) and (3.147) in the presence of NSNS flux. As discussed in appendix A.6.3 the

standard strong coupling variables x and y are modified for q 6= 0. In particular, we now

have a separate variable for the particle x+, y+ and the antiparticle x�, y�. These are

defined in (A.72) and (A.73). Our conjecture for the one-loop dressing phases is then

given by (x± corresponds to p and y± to p0)

$(1)
++(p, p

0) = � 1

⇡

x2+
p

1� q2(x2+ � 1)� 2qx+

y2+
p

1� q2(y2+ � 1)� 2qy+
 (x+ + y+)

�

p

1� q2(x+ + y+)(1� 1
x+y+

)� 4q
�

(
p

1� q2(x2+ � 1)� 2qx+)(x+ � y+)(
p

1� q2(y2+ � 1)� 2qy+)

+
2

(x+ � y+)2
log

✓p
1 + q x+ +

p
1� qp

1� q x+ �
p
1 + q

p
1� q y+ �

p
1 + qp

1 + q y+ +
p
1� q

◆�

,

(3.172)

$(1)
+�(p, p

0) = � 1

⇡

x2+
p

1� q2(x2+ � 1)� 2qx+

y2�
p

1� q2(y2� � 1) + 2qy�
 (x+y� + 1)

�

p

1� q2(x+y� + 1)( 1
x+
� 1

y�
) + 4q

�

(
p

1� q2(x2+ � 1)� 2qx+)(x+ � y�)(
p

1� q2(y2� � 1) + 2qy�))

+
2

(x+y� � 1)2
log

✓p
1 + q x+ +

p
1� qp

1� q x+ �
p
1 + q

p
1 + q y� �

p
1� qp

1� q y� +
p
1 + q

◆�

.

(3.173)

This result was independently found in [141] and [143].
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GKP string and cusp anomalous

dimension

Among the many solitonic classical solutions for string theory in AdS5 ⇥ S5 (see [234,

235, 236, 237] for extensive reviews), one that has deserved a lot of attention is the

folded spinning string [131, 163]. This configuration lies in an AdS3 subspace of AdS5

and can be pictured as a closed folded string rotating around its center of mass in AdS3.

Parametrizing AdS5 in global coordinates

ds2AdS5
= �dt2 cosh2 ⇢+ d⇢2 + sinh2 ⇢ d⌦2

3 , (4.1)

we consider the Ansatz

t = ⌧ � = !⌧ ⇢ = ⇢(�) , (4.2)

where � is an angle in the S3 parametrized by d⌦3 in (4.1). One can check that the

equations of motions are translated in the following 1d sinh-Gordon equation

(⇢́)2 = cosh2 ⇢+ !2 sinh2 ⇢ . (4.3)

The general solution (an elliptic sn function) has been studied in full details in [131]

(see also [238]). In [163], Gubser, Klebanov and Polyakov (GKP) observed that, when

the folded string stretches all the way to the boundary of AdS5, the relation between

the two quantum numbers of the string (energy associated to time translation and spin

associated to rotations in the � directions) exhibits an intriguing logarithmic behaviour

E � S ⇠ f(�) logS . (4.4)

107
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As discussed in the Introduction, the gauge theory counterpart of equation (4.4) is the

large spin behaviour of the anomalous dimension for twist-two Wilson operators [165,

166]. The function f(�) is then identified with twice the cusp anomalous dimension,

governing the UV divergences of a cusped Wilson loop. On the string theory side this

identification was clarified in [171, 170], where the authors derived a precise equivalence

between the two classical solutions describing the long folded spinning string and a

minimal surface ending on a light-like cusp on the boundary. Therefore, the physics of

string theory expanded around the null cusp vacuum is equivalent to that of the GKP

string. As the former turns out to be more tractable for perturbative computations,

hereafter we focus on the study of the quantum fluctuations about the null-cusp vacuum.

The construction of a minimal surface solution is easily achieved in a light-cone gauge

with the light-like geodesic lying in AdS. In this case the expression of the light-cone

gauge fixed action is rather compact and perturbative computations of the free energy up

to two loops have been performed in [176, 117]. As it should be clear from the previous

discussion, the computation of the free energy yields the two-loop expansion of the cusp

anomalous dimension and therefore constitutes a highly non-trivial test of the quantum

integrability of the model (as mentioned in the Introduction, assuming integrability

allows to express the cusp anomalous dimension at finite coupling as the solution of an

integral equation). Furthermore, assuming that the ABJM cusp anomalous dimension

is related to that of N = 4 SYM by a simple replacement
p
�

4⇡ ! h(�) (as predicted

comparing the asymptotic Bethe Ansätze of the two theories [30]) the two-loop result

for AdS4 ⇥ CP3background [117] provides additional data on the form of the e↵ective

coupling h(�).

Weak coupling Strong coupling

AdS5 ⇥ S5

6 bosons in the 6 m = 1 5 bosons yA m = 0

4/4 fermions in the 4/4̄ m = 1 8 fermions ⌘i, ✓i m = 1

2 bosons in the 1 m = 1 2 bosons x,x̄ m =
p
2

1 boson � m = 2

AdS4 ⇥ CP3

4/4 spinons in the 4/4̄ m = 1
2 3 complex bosons za m = 0

2 fermions ⌘4, ✓4 m = 0

6 fermions in the 6 m = 1 6 fermions ⌘a, ✓a m = 1

1 boson in the 1 m = 1 1 boson x m =
p
2

1 boson ' m = 2

Table 4.1: Summary of the spectra of GKP elementary excitations for AdS5⇥S5 and
AdS4 ⇥ CP3backgrounds.
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Starting from the same light-cone gauge fixed action, one can also estimate the disper-

sion relations of the worldsheet excitations. For the GKP string the first non-trivial

quantum corrections appear at one loop (as predicted in [182] using integrability). It is

therefore interesting to compare the predictions from integrability with those from per-

turbation theory. In particular, the correspondence between the weak coupling spectrum

of elementary excitations and the strong coupling worldsheet modes is not completely

straightforward. For AdS5 ⇥ S5 the spectra are resumed in table 4.1 and the relation

can be summarized in the following way:

• The mass of the 8 fermionic excitations is protected [239] and the mapping between

weak and strong coupling is straightforward;

• The 2 weak coupling excitations associated to the field strength insertion are

mapped to the 2 bosonic mass-
p
2 AdS3 excitations of the string1;

• The mass of the 6 scalars, as already clarified in [239], decreases as the coupling

gets larger and becomes exponentially small at strong coupling. The perturbative

string analysis detects only 5 massless excitations, which are Goldstone bosons

for rotations in S5. But these are not the genuine asymptotic excitations and the

actual spectrum contains 6 massive scalars with mass m ⇠ e�
p
�/4, in agreement

with the gauge theory expectations [239]. This is a phenomenon that has been

observed already for the O(N) sigma-model [196] and is related to the fact that

the AdS light-cone gauge fixed sigma-model on AdS5 ⇥ S5 is described in some

low-energy limit by the O(6) sigma-model [239];

• The worldsheet mass-2 boson is not an elementary excitation in the weak coupling

description and its role has been object of a long debate in the literature [240,

241, 242, 243]. The upshot is that the heavy scalar is most probably a compound

state of two mass-1 fermions, whose pole is below the production threshold, but is

located in the unphysical strip of the rapidity complex plane [242, 244].

A similar comparison can be carried out for AdS4⇥CP3and the outcome of this analysis

is:

• The six worldsheet massive fermions simply correspond to the twist-one fermions

at weak coupling. Their mass is protected and their dispersion relation is the same

as in N = 4 SYM up to replacing
p
�/4⇡ ! h(�).

• The mass-
p
2 boson is related to the weak coupling insertion of a gauge field and

its dispersion relation is once more the same as in N = 4 SYM

1This trend is confirmed by the one-loop computation of the dispersion relation of these fields which
shows that their mass decreases with the coupling [240].
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• The massless excitations di↵er substantially from the previous case. The La-

grangian for the low-energy excitations was written down in [245] and consists of a

CP3 sigma model coupled to a massless Dirac fermion, in agreement with the mass-

less string theory spectrum. The dynamics and S-matrix of this model were then

studied in [246] using integrability and it turned out that the spectrum is gapped

(the excitations acquire a mass which is exponentially suppressed at strong cou-

pling as in N = 4 SYM) and spanned by two multiplets of excitations in the 4 and

4̄ of SU(4). They were called spinons and anti-spinons and, interestingly, they are

neither fermions nor bosons, but they have a fractional statistics corresponding to

spin 1/4.

• The story for the mass-2 boson is essentially the same as in N = 4 SYM.

In the following, we will briefly summarize the results of the computations in AdS5 ⇥
S5 [176, 240] and then focus on the case of AdS4⇥CP3 [117, 247]. Despite the di↵erence

in the two sigma model actions we will notice a striking similarity in the results. This is

not surprising, since the two systems are believed to be described by the same integrable

structure up to a non-trivial interpolating function of the ’t Hooft coupling h(�). We

discuss this important feature in section 4.3.

4.1 String theory in AdS light-cone gauge

The gauge fixing procedure for the AdS light-cone gauge is less involved than for the

uniform light-cone gauge and here we describe the general strategy applicable both to

the AdS5 ⇥ S5 Lagrangian (2.108) and to the AdS4 ⇥ CP3one (2.185).

There are many di↵erent equivalent procedures of fixing the light-cone gauge with flat

target space 2. The BDHP formulation [248, 249], for instance, consists in fixing the

conformal gauge and then the residual conformal di↵eomorphism symmetry on the plane

by choosing x+ = ⌧ . Alternatively, the GGRT [187] approach is based on writing

the Nambu action in first-order form and then fixing the di↵eomorphisms by the two

conditions x+ = ⌧ and P+ = 1. The first approach does not apply in curved space-

time with Killing vectors which are not of the direct product form R1,1 ⇥Md�2, and

therefore for the case at hand one has to give up the standard conformal gauge. A slight

modification of it turns out to be a consistent gauge choice

�ij = diag
�

�G,G�1
�

, (4.5)

2See thorough discussion in [193, 194]
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where G = e2� = |z|2 ⌘ z2 for AdS5 ⇥ S5 and G = e4' for AdS4 ⇥ CP3. Substituting

this worldsheet metric in (2.63) and (2.127) we realize that the resulting action contains

x� only in the kinetic term. Imposing then

x+ = p+⌧ (4.6)

completely fixes the two-dimensional di↵eomorphism invariance and x� decouples from

the action (it can be determined by the Virasoro constraint where it appears linearly).

The final form of the AdS5 ⇥ S5 Lagrangian is

LAdS5 = ẋ⇤ẋ+
�

żM +
i

z2
zN⌘i(⇢

MN )ij⌘
j
�2

+ ip+(✓i✓̇i + ⌘i⌘̇i + ✓i✓̇
i + ⌘i⌘̇

i)

� (p+)2

z2
(⌘i⌘i)

2 � 1

z4
(x́⇤x́+ źM źM )

� 2
h p+

z3
zM⌘

i(⇢M )ij
�

✓́j � i

z
⌘j x́

�

+
p+

z3
zM⌘i(⇢

†
M )ij

�

✓́j +
i

z
⌘j x́
⇤�
i

. (4.7)

The AdS4⇥CP3one is more involved and we express it in terms of the functions (2.186)

LAdS4 =
1

4
ẋẋ� 1

4
e�8'x́x́+ '̇'̇� e�8''́'́+ e4'⌦a

⌧⌦a⌧ � e�4'⌦a
�⌦a�

+ p+
�

$⌧ + h⌧ + e�4'p+B + 2 e�4' !� � 2 e�4'`� + 2 e�6'C x́
�

. (4.8)

One important classical solution of this action is the open string solution ending on a

null cusp on the boundary. We discuss the expansion around this vacuum in section 4.4.

Let us first make a brief summary of the results of [176, 240] concerning the AdS5 ⇥ S5

background.

4.2 Summary of the results for AdS5 ⇥ S5

The expansion of the Lagrangian (4.7) about the null cusp background yields a two-

dimensional quantum field theory which can be studied perturbatively for large values

of the string tension. According to the discussion at the beginning of this section,

the computation of the free energy would give a prediction for the N = 4 SYM cusp

anomalous dimension and provide a non-trivial check of the quantum consistency of

the non-linear sigma model. The calculation of the free energy up to two loops was

performed in [176]. The expansion in term of the inverse string tension (T =
p
�

2⇡ ) reads

f(�) =

p
�

⇡

h

1 +
a1p
�
+

a2

(
p
�)2

+ · · ·
i

, (4.9)
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with coe�cients given by

a1 = �3 log 2 , a2 = �K , (4.10)

where K is the Catalan constant

K ⌘
1
X

n=0

(�1)n
(2n+ 1)2

. (4.11)

The spectrum of worldsheet excitations of the AdS light-cone gauge fixed AdS5 ⇥ S5

superstring expanded around the null cusp vacuum consists of

AdS3 transverse mode (�) : m2
� = 4 (4.12)

AdS5 outside AdS3 (x, x̄) : m2
x = 2 (4.13)

S5 (yA, A = 1, ..., 5) : m2
y = 0 (4.14)

Fermions (⌘i, ✓i, i = 1, ..., 4) : m2
⌘ = m2

✓ = 1 (4.15)

Those excitations are non-relativistic and a one-loop estimate of the corrections to the

dispersion relations can be obtained by studying their two-point functions. This was

done in [240] and we can summarize the result as3

!2(p,�) =



p2 +m2 +
qp
�
+O(��1)

� 

1 +
c p2p
�
+O(��1)

�

, (4.16)

q� = 0 , qx = �⇡ , qy = 0 , q⌘ = q✓ = 0 ,

c� = �⇡
2 , cx = �⇡ , cy = �7

3 , c⌘ = c✓ = �2⇡ .
(4.17)

In sections 4.3, 4.5.3 and 4.6.2 we will describe the same analysis in the setup of AdS4⇥
CP3(relevant for the AdS4/CFT3 case) and compare the two results.

4.3 AdS4/CFT3 system and h(�)

A powerful attribute that the planar AdS4/CFT3 system [250] shares with its higher-

dimensional version, is its conjectured integrability [29, 30, 251, 37]. The explicit real-

ization of the integrable structure is however non-trivial, due to significative peculiarites

of this case.
3Consistently with chapter 3, here and in the following ! is the energy of the worldsheet excitations

and p is the spacial component. We use p to indicate the two-momentum.
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A first important ingredient, to take into account when comparing string theory calcu-

lations with weak coupling results, is the correction to the e↵ective string tension [252]

which must be considered for the first time at two loops in sigma-model perturbation

theory. The original “dictionary” proposal [250] for the e↵ective string tension in terms

of the e↵ective ’t Hooft coupling � of ABJM reads

T =
R2

2⇡↵0
= 2
p
2� , � =

N

k
, (4.18)

where R is the CP3 radius. As pointed out in [252], the geometry (and flux, in the

ABJ [28] theory) of the background induces higher order corrections to the radius of

curvature in the Type IIA description, which in the planar limit of interest here appear

in the form of a shift in the square root

T = 2

s

2

✓

�� 1

24

◆

. (4.19)

We emphasize that the string perturbative expansion is an expansion in inverse string

tension whose coe�cients are obviously not a↵ected by the correction (4.19). The radius

shift is a (corrected) AdS4/CFT3 dictionary proposal, an assumed, new input which

plays a role when expressing the result in terms of the ’t Hooft coupling.

Another crucial property of the AdS4/CFT3 system is the interpolating function of

the ’t Hooft coupling h(�), which features all the integrability-based calculations in this

model4. Clearly its knowledge is decisive to grant the conjectured integrability of ABJM

theory a full predictive power. At strong coupling, one way to obtain information on

h(�) is to evaluate in string theory the cusp anomalous dimension for the ABJM theory

fABJM(�), and then compare the result with the asymptotic Bethe Ansatz prediction

of [30]. The latter is based on the equivalence of the BES [18] equations for the N = 4

and the ABJM case and reads

fABJM(�) =
1

2
fN=4(�YM)

�

�

�

�

p
�YM
4⇡ !h(�)

, (4.20)

which implies

fABJM(�) = 2h(�)� 3 log 2

2⇡
� K

8⇡2
1

h(�)
+ · · · , (4.21)

where fN=4(�YM) is the cusp anomaly of N = 4 SYM and K is the Catalan constant.

The leading strong coupling value for f(�) has been given already in [250] and reads

4A possible way to interpret these relations is to consider the triplet {T,�, h} as the three couplings
for string theory, quantum field theory and integrability respectively. Whereas in the AdS5⇥S5 case the
relations among them are trivial, here the dictionary is more complicated and one should take this into
account when comparing di↵erent results. On may argue further that not all the three quantities are
physical since the string tension is always defined uo to finite renomarlization and therefore its relation
with h is simply a choice of regularization scheme.
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f(� � 1) =
p
2�, from which via (4.21) one gets h(� � 1) =

p

�/2. At one loop in

sigma-model perturbation theory, the scaling function has been evaluated in [104, 105,

106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116] via the energy of closed spinning

strings in the large spin limit or similar means, providing a first subleading correction

� log 2/(2⇡) to h(�) on which some debate existed [253].

At two loops the shift (4.19) starts playing a role and the result reads

fABJM(�) =
p
2�� 5 log 2

2⇡
�
✓

K

4⇡2
+

1

24

◆

1p
2�

+O(
p
�)�2 . (4.22)

The formula can be rewritten in a more compact way defining the shifted coupling

�̃ ⌘ �� 1

24
, (4.23)

from which

fABJM

⇣

�̃
⌘

=
p

2�̃� 5 log 2

2⇡
� K

4⇡2
p

2�̃
+O(

p

�̃)�2 . (4.24)

This form of the result makes evident the striking similarity with the AdS5 ⇥ S5 result

fYM(�YM) =

p
�YM

⇡
� 3 log 2

⇡
� K

⇡
p
�YM

+O(
p

�YM)�2 , (4.25)

where the change in the transcendentality pattern is due to the corresponding di↵erence

in the e↵ective string tensions.

From (4.22) and via (4.20) we get then the strong-coupling two-loop correction for

the interpolating function h(�), that we report here together with the weak coupling

results [98, 99, 100, 101, 102, 103]

h2(�) = �2 � 2⇡3

3
�4 +O

�

�6
�

�⌧ 1 ,

h(�) =

r

�

2
� log 2

2⇡
� 1

48
p
2�

+O(
p
�)�2 �� 1 ,

(4.26)

where we emphasize the a priori non-obvious fact the two-loop coe�cient at strong

coupling is only due to the anomalous radius shift.

A conjecture for the exact expression of h(�) has been recently made [97], in a spirit

quite close to the one followed in [94, 95] on the comparison between two exact compu-

tations of the same observable. The authors of [97] elaborated on the similarity between

two all-order calculations in ABJM theory: one - the “slope function” [254] - derived via

integrability as exact solution of a quantum spectral curve [37] and one - a 1/6 BPS Wil-

son loop [255, 256, 257] - obtained with supersymmetric localization. As the first of the

two exact results is expressed in terms of the e↵ective coupling h(�), an “extrapolation”
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for the latter has been derived in an exact, implicit, form 5. It is

� =
sinh 2⇡h(�)

2⇡
3F2

✓

1

2
,
1

2
,
1

2
; 1,

3

2
;� sinh2 2⇡h(�)

◆

, (4.27)

with weak and strong coupling expansions

h(�) = �� ⇡2

3
�3 +

5⇡4

12
�5 � 893⇡6

1260
�7 +O(�9) �⌧ 1 , (4.28)

h(�) =

s

1

2

✓

�� 1

24

◆

� log 2

2⇡
+O

⇣

e�2⇡
p
2�
⌘

�� 1 . (4.29)

We see that (4.29) above, expanded for large �, agrees with (4.26). The aim of the next

sections is to provide an explicit string theory computation of the first three terms in

(4.29) supporting the conjecture of [97].

4.4 The null-cusp fluctuation in AdS4 ⇥ CP3

In this section we consider the Wick-rotated, Euclidean formulation of the Lagrangian

(4.8) and compute its fluctuations about the null cusp background. The equations of

motion derived from the (Euclidean) AdS light-cone gauge Lagrangian (4.8) admit a

classical solution for which the on-shell action is the area of the minimal surface ending

on a null cusp on the AdS4 boundary. This configuration is just the AdS4 embedding

of the classical string solution found in the AdS5 background [171, 176], and reads

w ⌘ e2' =

r

⌧

�
x = 0

x+ = ⌧ x� = � 1

2�
zM = 0 . (4.30)

The requirement that the open string Euclidean world-sheet described by these coor-

dinates ends on a cusp at the boundary of AdS4 at w = 0 is manifestly enforced by

the relation x+ x� = �1
2w

2. In the AdS/CFT dictionary of [261, 262], the Wilson loop

evaluated on a light-like cusp contour is then given by the superstring partition function

hWcuspi = Zstring ⌘
Z

D[x,w, z, ⌘, ✓] e�SE . (4.31)

5As noticed in [97], a more solid derivation of h(�) would require comparison between the localization
results of [256, 257] and the ABJM Bremsstrahlung function [258, 259, 260], similarly to the case of the
h(�YM) of N = 4 SYM.
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In order to compute it perturbatively, we first construct the Euclidean action SE for fluc-

tuations about the background (4.30). Following [176], we will use a suitable parametriza-

tion of fluctuations which, combined with a further redefinition of the worldsheet coor-

dinates6 t = 2 log ⌧ and s = 2 log �, is such that the coe�cients of the fluctuation action

become constant, namely (⌧,�)-independent. It reads 7

x = 2

r

⌧

�
x̃ w =

r

⌧

�
w̃ w̃ = e2'̃

za = z̃a z̄a = ˜̄za a = 1, 2, 3

⌘ =
1p
2�

⌘̃ ✓ =
1p
2�

✓̃ . (4.32)

After the Wick rotation ⌧ ! �i ⌧, p+ ! ip+ and having set p+ = 1, we end up with the

following action for fluctuations over the null-cusp background (4.30)

SE =
T

2

Z

dt dsL , L = LB + L(2)
F + L(4)

F , (4.33)

where

LB = (@tx̃+ x̃)2 +
1

w̃4
(@sx̃� x̃)2 + w̃2 (@t'̃)

2 +
1

w̃2
(@s'̃)

2 +
1

4

✓

w̃2 +
1

w̃2

◆

+ w̃2 g̃MN @tz̃
M @tz̃

N +
1

w̃2
g̃MN @sz̃

M @sz̃
N , (4.34)

L(2)
F = i

h

@t✓̃a✓̃
a � ✓̃a@t✓̃a + @t✓̃4✓̃

4 � ✓̃4@t✓̃4 + @t⌘̃a⌘̃
a � ⌘̃a@t⌘̃a + @t⌘̃4⌘̃

4 � ⌘̃4@t⌘̃4
i

+
2i

w̃2

h

ˆ̃⌘a
⇣

@̂s✓̃
a � ˆ̃✓a

⌘

+
⇣

@̂s✓̃a � ˆ̃✓a
⌘

ˆ̃⌘a +
1

2

⇣

@s✓̃4⌘̃
4 � @s⌘̃4✓̃4 + ⌘̃4@s✓̃

4 � ✓̃4@s⌘̃4
⌘ i

+ @tz̃
M h̃M +

4 i

w̃3
C̃ (@sx̃� x̃)� 2i

w̃2
@sz̃

M ˜̀
M , (4.35)

L(4)
F =

1

w̃2
B̃ . (4.36)

In the expressions above, with B̃, C̃, h̃M and ˜̀
M we indicate the quantities B, C, hM

and `M in (2.186) where a tilde over each field appears (namely, the weighting factors for

the fluctuations in (4.32) have already been made explicit in the derivatives of products).

4.4.1 Feynman rules

Provided with an explicit Lagrangian for the fluctuations around the cusp background,

we can expand it and extract the relevant Feynman rules for performing perturbative

computations. Hereafter we drop tildes from fluctuation fields in order not to clutter

formulae. All the fields are understood to be fluctuations.
6 Compared to [117] we introduced an additional factor of 2 in the redefinition of the worldsheet

coordinates. This e↵ectively doubles the masses of the excitations and does not a↵ect the final result
7The factor 2 in the fluctuation of the field x is introduced to normalize the kinetic term of x̃.
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The bosonic propagators are diagonal and read

G''(p) =
1

T

1

p2 + 4
, Gzaz̄b(p) =

1

T

2 �ba
p2

, Gxx(p) =
1

T

1

p2 + 2
. (4.37)

The fermionic propagators are not diagonal, instead, and take the form

G⌘4⌘4(p) = G✓4✓4(p) =
1

T

p0
p2

, G⌘4✓4(p) = G✓4⌘4(�p) = �
1

T

p1
p2

,

G⌘a⌘b(p) = G✓a✓b(p) =
1

T

p0
p2 + 1

�ba , G⌘a✓b(p) = G✓a⌘b(�p) = �
1

T

p1 + i

p2 + 1
�ba . (4.38)

The interaction vertices are obtained expanding the Lagrangian (4.33) in the fluctuation

fields. For the one-loop computation only terms with up to four fields are relevant. We

spell them out in the appendix C.

4.5 Cusp anomaly in AdS4 ⇥ CP3

Since the Lagrangian has now constant coe�cients and is thus translationally invariant,

the (infinite) world-sheet volume factor V factorizes. The scaling function is then defined

via the string partition function as [176]

W = � lnZ =
1

2
f(�)V = W0 +W1 +W2 + ... , V ⌘

Z

dt ds , (4.39)

where W0 ⌘ SE coincides with the value of the action on the background, W1,W2, ... are

one-, two- and higher loop corrections, and for the volume V we use a slightly di↵erent

convention from [176] due to the di↵erent choice of worldsheet coordinates (see footnote

6). From (4.39) we explicitly define f(�) in terms of the e↵ective action W

f(�) =
2

V
W . (4.40)

We are now ready to compute the e↵ective action perturbatively in inverse powers of

the e↵ective string tension g ⌘ T
2 . From this we will extract the corresponding strong

coupling perturbative expansion for the scaling function

f(g) = g



1 +
a1
g

+
a2
g2

+ . . .

�

, g =
T

2
. (4.41)

where we have factorized the classical result from W0 = SE [250] and the e↵ective string

tension T is defined in (4.19).
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4.5.1 Cusp anomaly at one loop

We start considering one-loop quantum corrections to the free energy (4.31), which are

derived expanding the fluctuation Lagrangian (4.33) to second order in the fields.

For the bosonic part we obtain

L(2)
B = (@tx)

2 + (@sx)
2 + 2x2 + (@t')

2 + (@s')
2 + 4'2 + |@tza|2 + |@sza|2 . (4.42)

The bosonic degrees of freedom consist of six real massless scalars (associated to the

CP3 coordinates), one real scalar x with mass m2 = 2 and one real scalar ' with mass

m2 = 4. This is a simple truncation (one less transverse degree of freedom in the AdS

space) of the bosonic spectrum found in the AdS5⇥ S5 [176]. For the fermions one gets

an o↵-diagonal kinetic matrix

L(2)
F = i⇥KF ⇥T where ⇥ ⌘

�

✓a, ✓4, ✓
a, ✓4, ⌘a, ⌘4, ⌘

a, ⌘4
�

, (4.43)

which reads

K
F

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 �@
t

0 0 0 �@
s

� 1 0

0 0 0 �@
t

0 0 0 �@
s

�@
t

0 0 0 @
s

+ 1 0 0 0

0 �@
t

0 0 0 @
s

0 0

0 0 @
s

� 1 0 0 0 �@
t

0

0 0 0 @
s

0 0 0 �@
t

�@
s

+ 1 0 0 0 �@
t

0 0 0

0 �@
s

0 0 0 �@
t

0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (4.44)

Fermions contribute to the partition function with the determinant (@µ = i pµ , µ = 0, 1)

det KF =
�

p2
�2 �

p2 + 1
�6

, (4.45)

from which we read that the fermionic spectrum is composed of six massive degrees of

freedom with mass m2 = 1 and two massless ones. The latter are of ⌘4 and ✓4 type,

namely those fermionic directions corresponding to the broken supersymmetries. The

presence of massless fermions marks a di↵erence with respect to the N = 4 SYM case,

already noticed in this theory when studying fluctuations over classical string solutions

only lying in AdS4 [107, 111, 115, 116].
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The one-loop e↵ective action is computed as

W1 = � logZ1 , (4.46)

where Z1 is the ratio of fermionic over bosonic determinants. Therefore

W1 =
1

2
V

Z

d2p

(2⇡)2
�

log
�

p2 + 4
�

+ log
�

p2 + 2
�

+ 4 log
�

p2
�

� 6 log
�

p2 + 1
� 

= �5 log 2

4⇡
V . (4.47)

The one-loop correction to the scaling function reads, according to (4.40),

a1 = �
5 log 2

2⇡
, (4.48)

and agrees with previous independent results [107, 111, 115].

4.5.2 Cusp anomaly at two loops

In this section we provide the details on the computation of the two-loop coe�cient

of the scaling function. The aim is to compute the connected vacuum diagrams of the

fluctuation Lagrangian around the null cusp background. Denoting by W the free energy

of the theory, W = � logZ, the two-loop contribution is given by

W2 = hSinti �
1

2
hS2

intic , (4.49)

where Sint is the interacting part of the action at cubic and quadratic order (see appendix

C). The subscript c indicates that only connected diagrams need to be included. In the

following we use Sint = T
R

dt dsLint and we give the expressions of the vertices as they

appear in Lint. Throughout this section we neglect the string tension T and the volume

V in the intermediate steps and reinstate them at the end of the calculation.

4.5.2.1 Bosonic sector

Let us first consider the purely bosonic sector. As pointed out in section 4.5.1, the spec-

trum of the theory contains one real boson of squared mass 4, one real boson of squared

mass 2 and three complex massless bosons. The interaction among these excitations

involves cubic and quartic vertices which give rise to the diagrams in figure 4.1.
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Figure 4.1: Sunset, double bubble and double tadpole are the diagrams appearing in
the two-loop contribution to the partition function.

When combining vertices and propagators in the sunset diagrams they originate various

non-covariant integrals with components of the loop momenta in the numerators. Stan-

dard reduction techniques allow to rewrite every integral as a linear combination of the

two following scalar ones (explicit reductions for the relevant integrals are spelled out in

appendix D)

I
⇥

m2
⇤

⌘
Z

d2p

(2⇡)2
1

p2 +m2
, (4.50)

I
⇥

m2
1,m

2
2,m

2
3

⇤

⌘
Z

d2p d2q d2r

(2⇡)4
�(2)(p + q + r)

(p2 +m2
1)(q

2 +m2
2)(r

2 +m2
3)

. (4.51)

The latter integral is finite, provided none of the masses vanishes, and is otherwise IR

divergent. The former is clearly UV logarithmically divergent, and also develops IR

singularities in the massless case. In our computation we expect all UV divergences to

cancel and therefore no divergent integral to appear in the final result. Nonetheless,

performing reduction of potentially divergent tensor integrals to scalar ones still implies

the choice of a regularization scheme. In our case we use the one adopted in [176, 174,

173]. This prescription consists of performing all manipulations in the numerators in

d = 2, which has the advantage of simpler tensor integral reductions. In this process we

set to zero power UV divergent massless tadpoles, as in dimensional regularization

Z

d2p

(2⇡)2
�

p2
�n

= 0 , n � 0. (4.52)

All remaining logarithmically divergent integrals happen to cancel out in the computa-

tion and there is no need to pick up an explicit regularization scheme to compute them.

As an explicit example, we consider the contribution to the sunset coming from the first

vertex in (C.1)

� 1

2
hV 2
'xxi = �16

Z

d2p d2q d2r

(2⇡)4
(1 + q21) (1 + r21) �

(2)(p + q + r)

(p2 + 4)(q2 + 2)(r2 + 2)
= 8 I[4, 2, 2] . (4.53)

The integral I[4, 2, 2] is a particular case of the general class

I
⇥

2m2,m2,m2
⇤

=
K

8⇡2m2
, (4.54)



Chapter 4. GKP string 121

whereK is the Catalan constant (4.11). The contribution of the sunset diagram involving

the second vertex in (C.1) is proportional to I[4]2, whereas the contribution of the third

vertex vanishes

� 1

2
hV 2
'3i = 8 I[4]2 , �1

2
hV 2
'|z|2i = 0 . (4.55)

The final contribution of the bosonic sunset diagrams is

W2,bos. sunset = 8 I[4, 2, 2] + 8 I[4]2 . (4.56)

The first two vertices in (C.1) can also be contracted to generate non-1PI graphs, namely

double tadpoles. However the resulting diagrams turn out to vanish individually.

Despite the lengthy expressions of the vertices (see appendix C), the only non-vanishing

double-tadpole comes from V'4 and gives

W2,bos. bubble = �8 I[4]2 , (4.57)

and cancels the divergent part of (4.56). As a result, the bosonic sector turns out to

be free of divergences without the need of fermonic contributions (as it happens at one

loop), which was already observed in the AdS5 ⇥ S5 case [176].

4.5.2.2 Fermionic contributions

We compute the diagrams arising from interactions involving fermions. The main di↵er-

ence between the spectrum of AdS5⇥S5 and the one introduced in section 4.5.1 resides

in the fermionic part. Although both theories have eight fermionic degrees of freedom, in

AdS4 ⇥CP3 they are split into six massive and two massless excitations, which interact

non-trivially among themselves.

We start by considering diagrams involving at least one massless fermion. The quartic

interactions are either not suitable for constructing a double tadpole diagram or they

produce vanishing integrals. These include vector massless tadpoles, which vanish by

parity, and tensor massless tadpoles, which have power UV divergences and are set to

zero. For completeness we list them in appendix C.

Focusing on the Feynman graphs which can be constructed from cubic interactions we

also note that the only double tadpole diagrams that can be produced using (C.4) and

(C.5) involve tensor massless tadpole integrals and therefore vanish. In the sector with

massless fermions we are therefore left with the sunset diagrams, which, thanks to the
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diagonal structure of the bosonic propagators, turn out to be only five

W2, 4 = �1
2hVz⌘a⌘4Vz⌘a⌘4 + Vz⌘a✓4Vz⌘a✓4 + 2Vz⌘a⌘4Vz⌘a✓4 + V'⌘4✓4V'⌘4✓4 + Vx 4 4

Vx 4 4
i

(4.58)

The explicit computation of the individual contributions shows that they are all vanish-

ing. As an example we consider

� 1

2
hV'⌘4✓4V'⌘4✓4i = 4

Z

d2p d2q d2r

(2⇡)4
(p1 � q1)

2(p0q0 � p1q1) �
(2)(p + q + r)

p2q2(r2 + 4)
= 0 ,

(4.59)

and similar cancellations happen for the other diagrams. Therefore we conclude that

W2, 4 = 0 and that massless fermions are e↵ectively decoupled at two loops.

We then move to consider massive fermions, starting from their cubic coupling to bosons.

As in the massless case, this generates five possible sunset diagrams. None of them

is vanishing. We present the details of a particularly relevant example, i.e. the one

involving the vertex Vx⌘⌘. This gives

�1

2
hVx⌘⌘Vx⌘⌘i = 24

Z

d2p d2q d2r

(2⇡)4
(p21 + 1) q0 r0 �

(2)(p + q + r)

(p2 + 2)(q2 + 1)(r2 + 1)

= �6 I[2, 1, 1] + 3 I[1]2 . (4.60)

We note the appearance of another integral in the class (4.54). The coe�cient in front of

this integral depends on the degrees of freedom of the theory and is thoroughly discussed

in section 4.5.3. The partial results of the remaining sunset diagrams are

� 1

2
h(Vz⌘⌘ + Vz⌘✓)(Vz⌘⌘ + Vz⌘✓)i = 12 I[1]2 � 24 I[1] I[0] ,

� 1

2
hV'⌘✓V'⌘✓i1PI = 24 I[1] I[4] + 3 I[1]2 . (4.61)

The latter vertices can be contracted also in a non-1PI manner

� 1

2
hV'⌘✓V'⌘✓inon-1PI = �

1

2
G''(0)⇥ 26 ⇥ 32 ⇥

Z

d2p

(2⇡)2
p21 + 1

p2 + 1
= �18 I[1]2 , (4.62)

where the factor in front of the integrals comes from the expression of the vertex and from

counting the degrees of freedoms that can run in the loops. As in [176], the divergent

contribution proportional to I[1]2 cancels exactly those coming from (4.60) and (4.61).

The total cubic fermionic part reads

W2,ferm. cubic = �6 I[2, 1, 1] + 24 I[1] I[4]� 24 I[1] I[0] . (4.63)

Finally, we consider the fermionic double bubble diagrams. These involve the fermionic
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quartic vertices. However, most of the vertices appearing in the Lagrangian cannot con-

tribute to the partition function, either because the bosonic propagators are diagonal

or because they would produce vanishing integrals. The only relevant vertices are V'2⌘✓

and Vzz⌘✓. Although we can build a diagram with V⌘4 , fermion propagators carry one

component of the loop momentum in the numerator and produce vector tadpole inte-

grals, which vanish by parity. We conclude that the contribution from fermionic double

bubble graphs is

W2,ferm. bubbles = �24 I[1] I[4] + 24 I[1] I[0] . (4.64)

Summing all the partial results and reinstating the dependence on the string tension

and the volume, we obtain

W2 =
V

T
(8 I[4, 2, 2]� 6I[2, 1, 1]) = �4V

T
I[4, 2, 2] = � K

4⇡2
V

T
, (4.65)

where T is defined in (4.19). Finally we can plug this expression into equation (4.40)

and read out the second order of the strong coupling expansion (4.41) of the ABJM cusp

anomalous dimension

a2 = �
K

4⇡2
. (4.66)

Plugging the result into (4.41) we find perfect agreement with (4.22), giving strong

support to the conjecture (4.29) formulated in [97].

4.5.3 Comparison with AdS5 ⇥ S5

In this section we point out similarities and di↵erences between the calculation we per-

formed and its AdS5 ⇥ S5 analogue [176]. The starting points, i.e. the Lagrangians in

AdS light-cone gauge, look rather di↵erent. Yet the final results of the two-loop compu-

tations are strikingly similar. More precisely, when written in terms of the string tension,

the two expressions have exactly the same structure up to the numerical coe�cients in

front of the integrals. Indeed the AdS5 computation gives8

W (AdS5)
2 =

V

T
(4 I[4, 2, 2]� 4 I[2, 1, 1]) , (4.67)

which looks very similar in structure to (4.65). Furthermore, using (4.54), both combi-

nations sum up to

W2 = �
V

T
4 I[4, 2, 2] , (4.68)

and only the di↵erent relation between the string tension and the ’t Hooft couplings

distinguishes the final results. It is easy to trace the origin of the integrals and their

8We translated the result of [176] to our convention for the worldsheet coordinates.
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coe�cients back in the vertices of the Lagrangian and to understand their meaning.

In particular in both computations only the sunset diagrams involving the interactions

V'xx and Vx  (with massive fermions) seem to e↵ectively contribute. All other terms

are also important, but just serve to cancel divergences. Hence we can now focus on

the relevant interactions and point out the di↵erences between the AdS5 and the AdS4

cases.

We start from the bosonic sectors. The two theories di↵er for the number of scalar

degrees of freedom with given masses. Focussing on massive fluctuations, after gauge

fixing we have one scalar with m2 = 4 associated to the radial coordinate of AdSd+1

and (d � 2) real scalars with m2 = 2. In the metric we chose for the AdS4 ⇥ CP3

background, the size of the AdS4 part is rescaled by a factor of r2 = 4. We have

compensated this, parametrizing the radial coordinate as w = er' and introducing a

factor r in the fluctuation of x, so as to have the same normalization for their kinetic

terms as in AdS5 ⇥ S5. This causes some factors r to appear in interaction vertices in

our Lagrangian. Apart from this, the relevant interaction vertices are exactly the same.

Then, the number of x fields (d � 2) and this factor r determine the coe�cient of the

integral I[4, 2, 2] appearing in equations (4.65) and (4.67).

Turning to fermions, the first striking di↵erence between the AdS5 and AdS4 cases is

the presence of massless ones. As pointed out at the beginning of section 4.5.2.2 their

contribution is e↵ectively vanishing at two loops (though they do contribute at first

order). Focussing on massive fermions, the relevant cubic interactions giving rise to

I[2, 1, 1] look again similar in the AdS4 and AdS5 cases. The di↵erence is given once

more by the ratio of the radii r (through the normalization of ' and x coordinates) and

the number nf of massive fermions in the spectrum (nf = 8 for AdS5 ⇥ S5 and nf = 6

for AdS4 ⇥ CP3).

The final results (4.65) and (4.67) can be re-expressed in the general form

W
(AdSd+1)
2 = 2

V

T
(d� 2)r2

⇣

I[4, 2, 2]� nf

8
I[2, 1, 1]

⌘

= 2
V

T
(d� 2)r2

⇣

1� nf

4

⌘

I[4, 2, 2] , d = 3, 4 , (4.69)

where the cases at hand are d = 4, nf = 8, r = 1 for N = 4 SYM and d = 3, nf = 6,

r = 2 for ABJM.
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4.6 Quantum dispersion relations for the AdS4⇥CP 3 GKP

string.

The excitations appearing in (4.33) are in general non-relativistic beyond the leading or-

der approximation. Moreover, unlike the BMN case the first non-relativistic corrections

appear already at one-loop order due to the presence of cubic interactions. Therefore

it is an interesting question to study the one-loop correction to the dispersion relation

of the worldsheet excitations and compare the result with the integrability predictions

of [177].

4.6.1 One-loop dispersion relations

We consider the one-loop corrections to the two-point functions of the elementary fields

of the action (4.33). One-loop self-energy diagrams come in three di↵erent topologies:

bubble, tadpole and non-1PI contributions, which are depicted in Figure 4.2. The latter

Figure 4.2: Diagram topologies for the two-point function one-loop corrections.

are allowed since the heavy scalar ' has a non-trivial expectation value [117]. Indeed

the only one-loop contribution comes from a fermionic loop giving

h'i = 3 I[1] , (4.70)

with the tadpole integral I[m2] defined below in (4.71). Bubble and tadpole diagrams

give rise to integrals with several powers of loop momentum (up to six) in the numerator.

These are reduced to scalar integrals via Passarino-Veltman reduction. We use the same

regularization prescription adopted in section 4.5 (see comments around (4.52)).

After tensor reduction one is left with two kinds of integral: tadpoles and bubbles9

I[m2] ⌘
Z

d2q

(2⇡)2
1

q2 +m2
,

9The bubble integral is the same appearing in (3.71), however here we do not indicate explicitly the
dependence on the external momentum since there is only one external legf in the problem and this
will not generate any confusion. Moreover we use the representation (4.72) of the result which is more
convenient than (3.75) in this context.
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I[m2
1,m

2
2] ⌘

Z

d2q

(2⇡)2
1

⇥

q2 +m2
1

⇤ ⇥

(q + p)2 +m2
2

⇤ . (4.71)

The latter are ultraviolet convergent and IR finite if both propagators are massive and

evaluate to

I[m2
1,m

2
2] =

log
p2+m2

1+m2
2+
p

(p2+m2
1+m2

2)
2�4m2

1 m
2
2

p2+m2
1+m2

2�
p

(p2+m2
1+m2

2)
2�4m2

1 m
2
2

4⇡
p

(p2 +m2
1 +m2

2)
2 � 4m2

1m
2
2

. (4.72)

Whenever one of the masses vanishes the bubble su↵ers from infrared singularities which

can be isolated in terms of tadpole integrals using [240]

I[0,m2] =
1

p2 +m2

✓

1

2⇡
log

p2 +m2

m2
� I[m2] + I[0]

◆

. (4.73)

Tadpoles are UV divergent. We verify that in dispersion relations they always drop out

because they are multiplied by factors going to zero on-shell. Nevertheless, they are

present in the o↵-shell corrections to the two-point functions. In some cases they appear

in finite combinations, but in other they do produce ultraviolet singularities, indicating

that the corresponding fields undergo a non-trivial wave function renormalization.

We collect the tree level structure of propagators according to

h•(p) ? (�p)i(1) = 1

T

G•?(p)

p2 +m2
•
F (1)
•? , (4.74)

for generic fields • and ?. When performing the usual one-loop resummation of non-1PI

contributions the on-shell (p0 =
p

�m2 � p21) value of the function F (1)
•? shifts the pole

of the propagator. From this shift one can read o↵ the corrections to the dispersion

relations in (4.96). In particular, evaluating the shift at p1 = 0 one computes the mass

shift q in equation (4.96) and subsequently the coe�cients c and d by subtraction. We

now spell out the details of the results for the perturbative one-loop corrections to the

dispersion relations and masses of each particle in the fluctuation Lagrangian (4.33).

4.6.1.1 Light scalar

The x scalar self-energy one-loop correction reads

F (1)
xx =

�

p21 + 1
� �

�12 p2I[1, 1]
�

p4 + 4p21
�

� 16
�

p4 + 8p2 + 4
�

I[2, 4]
�

p2 � 2 p21
��

p4
+

+
16 (I[2]� I[4])

�

p2 + 2
� �

p21 + 1
� �

p2 � 2p21
�

p4
, (4.75)
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where the di↵erence of UV divergent tadpoles gives a finite remainder I[2]� I[4] = log 2

and hence x does not need any renormalization. The self-energy evaluated on-shell reads

F (1)
xx

�

�

�

p2=�2
=
�

p21 + 1
�2

. (4.76)

The one-loop corrected dispersion relation then becomes

p2 + 2 =
1

2
p
2�

F (1)
xx

�

�

�

p2=�2
+O(��1) , (4.77)

that is, in Lorentzian signature (p0, p1)! (�i!, p),

!2 = p2 + 2� 1

4h(�)

�

p2 + 1
�2

+O(��1) . (4.78)

At p = 0 one can read o↵ the one-loop correction to the mass

m2
x = 2� 1

4h(�)
+O(��1) < 2 . (4.79)

The fact that the first perturbative correction to the mass at strong coupling is decreasing

its value is in general agreement with the trend put forward in [177], according to which

the masses of all elementary excitations should tend to 1 at weak coupling.

4.6.1.2 Heavy scalar

We now turn to the heavy scalar mode ', whose one-loop correction to the self-energy

is found to be

F (1)
'' = 4 (3I[1]� I[2]� 2I[4])

�

p2 + 4
�

�
12

�

p2 + 4
�

p21I[1, 1]
�

p4 + 4p21
�

p4

+
8
�

p2 + 4
�2

I[4, 4]
�

p2 � 2 p21
�2

p4
+ 2I[2, 2]

✓

64 p41
p4
� 64 p21

p2
+
�

p2 + 4
�2
◆

. (4.80)

Again, the di↵erence of UV divergent tadpoles leave a finite remainder 3I[1]�I[2]�2I[4] =
5 log 2. Therefore the field ' does not renormalize, to one loop order. Evaluating the

self-energy on-shell we obtain

F (1)
''

�

�

�

p2=�4
=

1

2
p21
�

p21 + 4
�

. (4.81)

In going on-shell the integral I[1, 1] is singular, which is explained as coinciding with the

threshold energy for production of a pair of fermions. This integral is multiplied by a

power of (p2 + 4), enforcing the limit to vanish. Then the one-loop corrected dispersion
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relation reads

p2 + 4 =
1

2
p
2�

F (1)
''

�

�

�

p2=�4
+O(��1) . (4.82)

Switching to Lorentzian signature it becomes

!2 = p2 + 4� 1

8h(�)
p2
�

p2 + 4
�

+O(��1) . (4.83)

The one-loop correction to the mass is clearly seen to vanish. This agrees with the

analysis of [239], according to which the mass of this mode is protected. In section

4.6.2.2 we discuss more deeply the analytic structure of the one-loop correction (4.80)

and its implications for the role of the heavy scalar in the asymptotic states of the model.

4.6.1.3 Massless scalars

The one-loop contribution to the two-point function of the massless scalars su↵ers from

both IR and UV divergences, which can be expressed in terms of tadpoles using the

identity (4.73). The z scalar self-energy one-loop correction reads

F (1)
zz =

1

2⇡p4

h

8⇡p2 I[1, 1](p2 � p21)
�

p4 + 4p21
�

+ 2
�

p2 + 4
� �

p4 � 8p2p21 + 8p41
�

log(p
2+4
4 )

+
�

p6 � p4
�

2p21 + 1
�

+ 8p2p21 � 8p41
�

log
�

p2 + 1
�⇤

+
4

3
(I[0]� 3I[1]) p2 . (4.84)

Then one can see that I[4] tadpoles cancel and the rest is proportional to I[0] � 3 I[1]

which is UV (and IR) divergent, but it is multiplied by p2 and vanishes on-shell. The

on-shell self-energy evaluates

F (1)
zz

�

�

�

p2=0
=

11

3⇡
p41 , (4.85)

where the residual UV and IR divergences disappear. Hence the one-loop corrected

dispersion relation reads

!2 = p2 � 1

h(�)

11

12⇡
p4 +O(��1) . (4.86)

At p = 0 one can read o↵ the one-loop correction to the mass, which is seen to vanish.

4.6.1.4 Massive fermions

The kinetic terms of the fermion Lagrangian mix the fermion fields. Hence we have to

consider separately the corrections to the two-point functions h⌘a⌘ai, h✓a✓ai and h⌘a✓ai.
Their computation involves several contributions and the final forms are not particularly

illuminating; we spell them out in appendix E. We point out that the o↵-shell one-loop

corrections to h⌘a⌘ai and h✓a✓ai are finite, whereas that for h⌘a✓ai is UV divergent,
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although the divergent term cancels on-shell. This implies that the massive fermions,

like the massless scalars, undergo wave-function renormalization. The correction to the

h⌘a✓ai two-point function is also IR divergent o↵-shell. Once more the divergent term

vanishes on-shell. We will comment on the role of IR divergences in section 4.6.2.

The di↵erent two-point functions all coincide on-shell, corroborating the hypothesis that

all the massive fermions have the same dispersion relation

F (1)
⌘a⌘a

�

�

�

p2=�1
= F (1)

✓a✓a

�

�

�

p2=�1
= F (1)

⌘a✓a

�

�

�

p2=�1
= 2p21

�

p21 + 1
�

. (4.87)

Thus, the one-loop corrected dispersion relation takes the form

!2 = p2 + 1� 1

2h(�)
p2
�

p2 + 1
�

, (4.88)

from which one sees that the mass does not receive corrections. Again, this conclusion is

in agreement with the integrability prediction that the massive fermion mass is protected

from strong to weak coupling.

4.6.1.5 Massless fermions

The two-point functions for massless fermions are di↵erent, depending on the fields, but

coincide on-shell, where they are all finite

F (1)
⌘4⌘4

�

�

�

p2=0
= F (1)

✓4✓4

�

�

�

p2=0
= F (1)

⌘4✓4

�

�

�

p2=0
=

p21
�

7p21 � 4
�

⇡
. (4.89)

Hence the one-loop correction to the dispersion relation reads

!2 = p2 � 1

4⇡ h(�)
p2
�

7p2 � 4
�

, (4.90)

from which the mass is not corrected.

4.6.1.6 Summary of the results

We collect here the results of our perturbative computation for the excitations of the

ABJM GKP string in a compact form. The string theory spectrum at � ! 1 consists

of

AdS3 transverse mode (') : m2
' = 4 (4.91)

AdS4 outside AdS3 (x) : m2
x = 2 (4.92)

CP3 ({za, z̄a}, a = 1, 2, 3) : m2
z = 0 (4.93)
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Massive fermions (⌘a, ✓a) : m2
⌘a = m2

✓a = 1 (4.94)

Massless fermions (⌘4, ✓4) : m2
⌘4 = m2

✓4 = 0 (4.95)

We find the following quantum corrections to the dispersion relations and masses of

those excitations, which can be compared to the results (4.16) by replacing h(�)!
p
�

4⇡

!2(p,�) =



p2 +m2 +
q

h(�)
+O(��1)

� 

1 +
c p2 + d

h(�)
+O(��1)

�

, (4.96)

q' = 0 , qx = �1
4 , qz = 0 , q⌘a = q✓a = 0 , q⌘4 = q✓4 = 0 ,

c' = �1
8 , cx = �1

4 , cz = � 11
12⇡ , c⌘a = c✓a = �1

2 , c⌘4 = c✓4 = � 7
4⇡ ,

d' = 0 , dx = 0 , dz = 0 , d⌘a = d✓a = 0 , d⌘4 = d✓4 = 1
⇡ .

(4.97)

4.6.2 Comparison and comments

Provided with the result (4.96) we can compare it to the higher-dimensional case and

discuss some interesting implications of it.

4.6.2.1 Comparison with AdS5 ⇥ S5 and integrability predictions

The physics of the excitations on top of the GKP vacuum for the ABJM model has been

extensively analysed using integrability in [177]. In particular the dispersion relations

of its modes were computed exactly. The Bethe Ansatz analysis reveals a remarkable

similarity to the AdS5 ⇥ S5 spinning string setting. Therefore we start commenting on

the results of the previous section by comparing them with the corresponding findings

of N = 4 SYM (4.16). We observe that all the dispersion relations for massive modes

are related to those of the corresponding fields in the AdS5 ⇥ S5 sigma model by

!(p)(1)AdS5⇥S5 = !(p)(1)
AdS4⇥CP3

�

�

�

h(�)!
p
�

4⇡

. (4.98)

For massless modes such a comparison is not possible, since it is not even clear what to

compare: in AdS5⇥S5 there are only massless scalars, whereas for AdS4⇥CP3 these are

coupled to a massless fermion. Also the two low-energy models and their fundamental

excitations are rather di↵erent: in AdS5⇥S5 the relevant model in the Alday-Maldacena

limit is the O(6) sigma model, whose fundamental excitations are six massive scalars in

the 6 of SO(6) [239]; on the other hand for AdS4 ⇥ CP3the fundamental excitations of

the Bykov model [245] turned out to be 4 spinons and 4 antispinons transforming in the
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4 and 4̄ of SU(4) [246]. For both models the strong coupling perturbative interpretation

is far from obvious due to the exponentially small mass of the excitations in such regime.

Turning to the comparison with integrability, it turns out that, as in the AdS5/CFT4

case, it hides some subtleties. We start commenting on massive modes. In the asymptotic

Bethe Ansatz approach the dispersion relation of the massive modes of N = 4 SYM is

predicted to be the same as that of the corresponding massive excitations of ABJM.

For the bosons, the quantum correction to the dispersion relation of the light massive

scalar agrees with the integrability result. The heavy scalar, as in N = 4 SYM, is

absent in the Bethe Ansatz description. Therefore its role in the sigma model should

be analysed carefully and we postpone a thorough discussion of this issue to section

4.6.2.2. Here we stress that at one loop order the heavy scalar has the same dispersion

relation as the corresponding heavy field in N = 4 SYM, despite the fact that there is

no direct integrability based argument explaining that (although one may argue that

the similarity of the two Bethe Ansätze would make the predictions for N = 4 SYM

valid also in the present case).

For the fermions, the one-loop corrected dispersion relation for massive modes is in full

agreement with the integrability prediction.

Turning to the massless modes, only the fact that the mass does not receive perturbative

corrections is compatible with the integrability predictions. Indeed, the Bethe equations

analysis reveals that the model has a gap and such modes acquire non perturbatively an

exponentially small mass. This parallels what occurs to the scalars of the O(6) sigma

model emerging in AdS5⇥S5 in the Alday-Maldacena limit [239, 263]. Apart from that,

there is no direct identification between the dispersion relations of massless fields of

the superstring description and the non-perturbative modes of integrability. As pointed

out in [241], the presence of perturbatively massless fields induces IR divergences in loop

computations, which appear as logarithms of the infrared scale of the theory. Indeed the

explicit computation of some one-loop two-point functions already shows the presence of

IR divergences, though they always drop out from the dispersion relations. The infrared

cuto↵ of the theory is set by the non-perturbative mass of the particles which, roughly,

scales exponentially with the coupling
p
�. This implies that logarithms of this scale

behave like powers of the coupling, e↵ectively lowering the perturbative order to which

these terms contribute. In practice this means that an IR divergence appearing at l loops

contributes to the (l � 1)-loop result, invalidating the perturbation theory predictivity

at that order. Therefore it is likely that the one-loop dispersion relations for massless

modes (4.86) and (4.90) are not trustworthy due to two-loop IR divergences, despite

being IR finite at one loop. This argument could actually spoil the computation of the

one-loop dispersion relations for massive fields, where IR divergences could also appear
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at two loops. However the theorems in [264, 265] suggest that O(6) invariant quantities

should be IR finite, and since ' and x are singlets under O(6) we expect their correlation

function to be reliable in perturbation theory. It would be interesting to ascertain this

explicitly via a two-loop computation of the two-point functions.

Let us also mention an additional striking feature of the comparison with integrability.

The scalar excitations over the GKP vacuum in the integrability analysis of [177] trans-

form in the 4 and 4̄ of SU(4), whereas the superstring elementary excitations transform

only in the fundamental representation of the SU(3) symmetry which survives in the

Goldstone vacuum. This is similar to what happens in N = 4 SYM where the scalar

excitations in the string picture are organized in vectors of SO(5), the explicit symmetry

of the O(6) sigma model expanded around the Goldstone vacuum. In this context the

analysis of [264] gives a recipe for computing O(N) invariant correlation functions in the

O(N) sigma model and in [265] it was proven that they are free of IR divergences. It is

an interesting question whether the same technique can be applied to the Bykov model

or even to the full non-linear string sigma model in AdS5 ⇥ S5 or in AdS4 ⇥ CP3.

4.6.2.2 Comments on the heaviest scalar

As is the case for N = 4 SYM, the heaviest scalar mode ', which is present in the

Lagrangian (2.6), does not correspond to an elementary excitation in the Bethe ansatz

description, based on the conjectured integrability of the model. The rôle of this field

was deeply analysed in the literature for AdS5 ⇥ S5 [240, 241, 242, 243]. A possible

explanation that was put forward to explain this mismatch is that the ' field is not an

asymptotic state of the quantum theory, along the lines of the arguments of [151]. This

latter hypothesis and its consequences can be studied perturbatively. In particular the

analytic structure of the two-point function should tell whether it exists as an asymptotic

state and whether it is stable or it can decay into lighter particles, such as a pair of

massive fermions. This kind of analysis was performed at one loop in [240] and [241].

The punchline is that up to one-loop order the scalar ' is a stable threshold composite

state of two fermions. Its would be pole in the two-point function coincides with the

branching point of the two-fermion continuum square root and hence the scalar cannot

be interpreted as a genuine asymptotic bound state. However, depending on the next

order corrections, this conclusion can vary according to how the ' and the fermion

dispersion relations get modified.

In [242] the contribution of the heavy scalar appears naturally as a SU(4)-singlet com-

pound state of two fermions which perfectly reproduces one of the two-particle contri-

butions to the excited flux-tube. The energy and the momentum of this two-particle
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state at finite coupling are simply related to the energy and momentum of the fermionic

excitations. In particular analysing this relation at strong coupling one finds that

E'(p)� 2E 
⇣p

2

⌘

= �⇡
2p4(p2 + 4)

3
2

8�
+O(��

3
2 ) , (4.99)

where � is the N = 4 SYM ’t Hooft coupling. The minus sign in the r.h.s of this

equation predicts that at two-loops the pole of the heavy scalar two-point function

actually moves below the threshold. The results of [242] show that this property holds

also at finite coupling preventing ' from decaying into two fermions. Although the pole

of the heavy scalar two-point function is shifted below the threshold, the analysis of the

singlet channel in the scattering phase of two fermions shows that the unwanted pole is

located in the unphysical strip of the rapidity complex plane [242, 244]. This in turn

means that ' cannot be a true asymptotic state of the theory.

The same arguments should also apply to the heavy scalar in the AdS4 ⇥ CP3 model.

However they go beyond the one-loop computation carried out in this paper. What our

analysis can test is the integrability prediction that up to one-loop the ' scalar should

appear as a stable threshold bound state of two fermions. This expectation can be

verified along the lines of [240] and [241] as follows. The one-loop contribution to the

denominator of the resummed two-point function has the form

F (1)
'' (p) = a0 + a1/2(p

2 + 4)
1
2 + . . . , (4.100)

where all other terms vanish more rapidly in the vicinity of the tree-level mass condition.

In particular we note the presence of the square root
p

p2 + 4. Although it is not

immediate to see the emergence of this term from (4.80), it arises from the denominator

of I[1, 1], appearing in the fermion loop diagram. Close to the threshold, the inverse

corrected two-point function

G�1' (p) = p2 + 4� 1

2
p
2�

F (1)
'' (p) +O(��1) (4.101)

vanishes at

p2 = �4 + 1

2
p
2�

a0 +O(��1) , (4.102)

where here a0 =
1
2p

2
1(p

2
1 + 4). This location lies below the branch cut threshold induced

by the square root, meaning that it corresponds to a genuine pole. From this one would

conclude that the ' scalar does represent an asymptotic state of the theory. However

this does not take into account that the physical threshold for fermion production is

also shifted by quantum corrections. One can imagine the structure of the resummed
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two-point function to all orders to have the form (in Lorentz signature)

G�1' (p) = �E2 + 4E2
 i

⇣p

2

⌘

�
a1/2

2
p
2�

⇣

�E2 + 4E2
 i

⇣p

2

⌘⌘

1
2 + . . . , (4.103)

where 4E i
(p/2) = 4� a0

2
p
2�

+O(��1) is the quantum corrected dispersion relations of

the massive fermions. Its expansion to first order in ��
1
2 would be in agreement with

the perturbative computation (4.80), although the latter does not guarantee nor hint

that (4.103) should hold at higher order. Assuming this is the case, the would be pole

at E2 = 4E2
 i

�p
2

�

coincides with the branching point of the square root. Moreover if the

coe�cient of the square root a1/2 is positive (as the one-loop computation shows it is

the case) no other physical poles are present in the two-point function, but only a pole

on the second, unphysical, sheet of the square root, located at

E2 = 4E2
 i

⇣p

2

⌘

�
a21/2
8�

+O(��
3
2 ) (4.104)

where a1/2 can be extracted expanding (4.80) near the threshold and reads

a1/2 =
3p2(p2 + 4)

4
(4.105)

As a result ' does not represent a real asymptotic state of the theory. Insisting on this

logic, we can derive a conjectural analogue of (4.99), for the AdS4 ⇥ CP3 case

E'(p)� 2E i

⇣p

2

⌘

= �9 p4(p2 + 4)
3
2

256�
+O(��

3
2 ) , (4.106)

which would be interesting to check against an integrability based prediction and a full

two-loop perturbative computation.

4.7 Bound states for the AdS4 ⇥ CP3 GKP string.

The Bethe equation analysis of the GKP excitations shows that the light scalars x can

form bound states, whose energy can be computed. Although they are not immediately

detectable in a superstring approach, following [241] we can attempt to estimate their

energy to leading order. This is done treating the x fields as non-relativistic and com-

puting the scattering amplitude of a pair of them. From the amplitude one can extract

the e↵ective (attractive) potential experienced by the two particles. In particular, this

is done by computing their 2! 2 scattering amplitude and comparing it with the Born
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'
'

'

Figure 4.3: Tree level scattering xx! xx.

approximation in quantum mechanics

M(k) = �2 (2m)2
Z

dx e�ikx V (x) , (4.107)

where k is the momentum transfer of the scattering process. This means that the e↵ec-

tive potential V (x) is basically the Fourier transform of the amplitude up to numerical

constants due to di↵erent normalization of the wave-function and Bose statistics. To

lowest order in a momentum expansion, the scattering amplitudes become constants

and their Fourier transform is proportional to a �-function. The problem then reduces

to a many-body system of particles interacting pairwise with a �-function potential

Vij(x) = �g �(xi�xj). Such a model admits a two-particle bound state with one energy

level ! = �µ g2

2 , where µ is the reduced mass of the system (µ = 1p
2
for the x scalars).

More generally, the binding energies for bound states of ` particles of mass m are [266]

!` = �
mg2

24
`(`2 � 1) . (4.108)

This energy can be compared to the static limit of the lowest order expansion for �� 1

of the binding energy derived from integrability. This is given by

!binding,`(p) = !`(p)� ` !1(
p
` ) , (4.109)

where !`(p) is the dispersion relation for the relevant twist-` excitation.

In N = 4 SYM such a program was successfully carried out for the gauge excitation,

showing agreement with the integrability prediction at p = 0. In this section we perform

a similar computation for the mass
p
2 mode of the AdS4 ⇥ CP3 superstring. At tree

level the amplitude for xx ! xx scattering receives contributions from all s, t and u

channels, as in Figure 4.3. In the zero-momenta limit, the contributions from the t and

u channels are equal and give

Mxx!xx, t = Mxx!xx, u = 25
p
2�+O(k) , (4.110)
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'
'

'

Figure 4.4: Tree level scattering ''! ''.

whereas the s-channel contributes with an opposite result, corresponding to a repulsive

interaction. Altogether the amplitude gives

Mxx!xx = 25
p
2�+O(k) , (4.111)

from which we find the e↵ective potential (after properly rescaling fields by a T�1/2

factor and introducing h(�) (4.26))

Vxx(x) = �
1

4h(�)
�(x) . (4.112)

Plugging this into (4.108) we give an estimate for the binding energy of the twist ` gauge

bound state

!binding,`(0) = �
p
2 `(`2 � 1)

384h(�)2
+O(��2) , (4.113)

which is equivalent to the corresponding one for AdS5⇥S5, once the replacement h(�)!
p
�

4⇡ is performed. Thus it agrees with the integrability prediction of [182] at first order

at strong coupling.

According to the parallel analysis of [242] in AdS5 ⇥ S5, multi-fermion states are also

present in the theory. These appear as bound states of the two-fermion composites which

we have identified as the mass 2 excitations ' of the sigma model. These composite states

of 2n fermions are expected to have mass 2n, and consequently the bound states of '

to have zero binding energy at vanishing momentum10. We therefore repeat the same

analysis as above for the scalars ', in order to check whether the binding energy is

vanishing at leading order in the static limit. The lowest order scattering amplitude for

''! '' is given by the sum of the diagrams in Figure 4.4. Once again the t� and the

u�channel give two identical contributions in the static limit

M''!'', t = M''!'', u = 27
p
2�+O(k) . (4.114)

In this case also the four point vertex gives an attractive contribution, which is once

more equal to

M''!'', 4 = 27
p
2�+O(k) . (4.115)

10We would like to thank B. Basso for explaining this to us.
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The s-channel contribution, as in the previous case, contributes with a repulsive inter-

action which compensates exactly the other terms

M''!'', s = �3⇥ 27
p
2�+O(k) . (4.116)

In conclusion

M''!'' = O(k) , (4.117)

which implies that the bound state of ' has vanishing binding energy in the static limit,

in agreement with the integrability prediction. As a further check we performed the

same computation in AdS5⇥S5, where the vertices are modified by relative factors and

we found that the mechanism is exactly the same. Therefore, as expected, the binding

energy vanishes also in that case.





Chapter 5

Conclusions and outlook

In this thesis we have reviewed the construction of superstring theory for various AdS

backgrounds and we have shown several examples of perturbative computations in the

strong coupling regime of the AdS/CFT correspondence. The main purpose of these

calculations is to provide perturbative checks of the quantum integrability and quantum

consistency of the string sigma models. We probed these features in perturbation theory

for a number of interesting observables, finding strong support for their validity.

In particular, in the context of the near-BMN expansion of the AdS5⇥S5 and AdS3⇥S3⇥
M4 superstring actions, we have shown how the introduction of new powerful techniques

allows to overcome the obstacles to the computation of the one-loop correction to the

worldsheet S-matrix. Those obstacles had mainly to do with the several complicated

interaction vertices appearing in the action and with the subtleties related to di↵erent

possible regularization procedures. The unitarity methods provide an e�cient way to

bypass these di�culties [123, 124]. Indeed, the only ingredient for the computation of

a one-loop amplitude via unitarity is the tree-level amplitude and, since the result is

expressed only in terms of bubble integrals, it is inherently finite and any regularization

issue is avoided. Driven by this line of thought, we explicitly reproduced all the steps

leading to a compact and rather general formula expressing the one-loop S-matrix of

any two-dimensional massive field theory in terms of the tree-level one. There is an

important caveat, though. The result obtained by unitarity is guaranteed to work as

far as the logarithmic (and imaginary) part of the one-loop amplitude is concerned (the

so-called cut constructible part). The result is therefore determined, in general, up to a

rational function of the kinematical variables.

Nonetheless, the various examples we collected allow us to postulate that for integrable

theories the cut constructible part should coincide with the full result, up to something

proportional to the tree-level S-matrix which can be interpreted as a shift in the coupling.

139
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Under this assumption, following [141] we provided one-loop predictions for the dressing

phases of AdS3 ⇥ S3 ⇥M4 backgrounds. For AdS3 ⇥ S3 ⇥ S3 ⇥ S1 and AdS3 ⇥ S3 ⇥ T 4

supported by pure RR flux we found complete agreement with the results available in

the literature [139, 142], while for AdS3⇥S3⇥T 4 supported by a mix of RR and NSNS

flux the unitarity result allowed to predict the previously unknown form of the one-loop

dressing factor.

In chapter 4 we analyzed the quantum fluctuations about the null-cusp background for

the AdS light-cone gauge fixed superstring in AdS4⇥CP3. The study of the free energy

of this model entails information about the cusp anomalous dimension of ABJM and,

indirectly, about the interpolating function h(�) (see section 4.3). We reproduced in full

details the calculation of [117] for the one- and two-loop correction to the string free

energy, which allowed to extract the order ��1/2 (NNLO) contribution to h(�) [117].

While the one-loop result was already available [107, 111, 115], the two-loop result was

first computed in [117] and provided strong support for a recent conjecture on the exact

form of h(�) [97].

Elaborating further on the same AdS light-cone gauge fixed action in AdS4⇥CP3, we re-

viewed the evaluation of the one-loop dispersion relation of the fundamental excitations

on top of the GKP vacuum [247]. This was done by studying the two-point functions

of the fundamental fields and comparing the result with the predictions from integra-

bility [177]. This comparison however is not completely straightforward. Indeed, while

for massive modes we have ascertained that the dispersion relation coincides with that

predicted by the asymptotic Bethe Ansatz, for massless modes it is hard to match the

string elementary excitations with the spinons of the integrability description, and con-

sequently there is no clear identification of their dispersion relations. Furthermore these

quantities are probably plagued by IR divergences at higher loops and this fact, com-

bined with an IR cut-o↵ (the mass of the low-energy excitations) that is exponentially

small at strong coupling, would completely invalidate the reliability of perturbation the-

ory at this order (see section 4.6.2). Another intriguing issue in the comparison with the

integrability picture is the fate of the heaviest scalar in the spectrum. Such a mode is

absent as an elementary state in the integrability approach and it has been interpreted

as a two-fermion virtual state, i.e. a state whose pole in the fermion S-matrix lies in

the unphysical strip of the rapidity plane [242]. This pole is expected to appear at two-

loop order, since up to one loop it merges with the branching point of the two-fermion

continuum. The explicit computation of [247], reviewed in section 4.6.1, confirmed this

fact.

We finally comment (see section 4.7) on the possible bound states that the GKP exci-

tations can form. Integrability predicts the binding energy of possible bound states of
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several mass-
p
2 or mass-1 scalars at finite coupling. Using the non-relativistic limit of

their scattering amplitudes we have estimated those binding energies, finding consistency

with the integrability predictions in the static approximation.

5.1 Future directions

An immediate follow-up of the work described in this thesis is the study of the worldsheet

S-matrix for the GKP excitations in AdS5⇥S5. Recently, this object has been extensively

studied using integrability [177, 267, 243], especially due to its primary role in the OPE

approach to light-like polygonal Wilson loops and scattering amplitudes [268, 269, 270,

271, 242, 272, 273, 274]. The string perturbative analysis of this object presents various

subtleties and interesting aspects (see also the recent works [275, 276]). First of all,

since the perturbative action is not O(6) invariant it is important to understand which

is the mechanism that enhances the symmetry non-perturbatively and leads to a finite

coupling O(6)-invariant S-matrix. This question, pretty well understood in the case of

the six massless bosons, has not been analyzed yet for the case of fermions.

Pushing the computation at one-loop order would allow to consider the application of

unitarity techniques for this model. This is particularly interesting since the diversified

mass spectrum of the GKP excitations would provide a very non-trivial setting where to

test the conjecture of a connection between integrability and cut-constructibility [123].

Furthermore, it would be interesting to analyze the implications of this result for the

computation of the pentagon transition, i.e. the building block of the OPE construction

of [270, 271, 242, 272, 273, 274], and consequently of the gluon scattering amplitudes

beyond the leading order approximation at strong coupling.

One of the complications that one may encounter during this analysis is the presence of

massless modes. The perturbative interpretation of massless modes in two dimensions is

rather tricky since there is only one spatial dimension and all the left (or right) moving

particles have the same speed (the speed of light). However, in the context of the GKP

excitations, the spectrum is gapped, and there is no issue in writing down an exact S-

matrix for the sextuplet of massive excitations at finite coupling (the S-matrix is actually

a non-relativistic generalization of the O(6) sigma model S-matrix). At strong coupling,

though, the mass of those excitations is exponentially suppressed, and in a perturbative

setting they are e↵ectively massless. It would be interesting to understand how these

two pictures can be combined.

A rather di↵erent context is represented by the massless modes appearing in the near-

BMN AdS3 ⇥ S3 ⇥ T 4 spectrum. In that case, indeed, the excitations are massless
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at any value of the coupling, and the S-matrix for those excitations may look like a

completely meaningless object. Nevertheless, an exact expression for it can be extracted

by symmetry considerations [53, 54, 55, 56] and the authors of [53] argued that the

scattering is actually well-defined due to the non-relativistic nature of the excitations.

How this is translated to the perturbative picture is still an open and interesting question.

Whenever dealing with perturbation theory, a natural possible development is the explo-

ration of higher and higher orders in the perturbative expansion. Let us mention some

of the problematics that one may encounter in the extension of the results presented

in this thesis. The recipe to compute the two-loop logarithmic part of the worldsheet

S-matrix via unitarity has been given already in [124] and then perfected in [277]. The

recovery of the correct rational term, already at one-loop, is tied to the interpretation of

the singular t-channel cut. While at one loop the prescription described in section 3.3

looks pretty natural, the higher number of diagrams and cuts involved in the two-loop

computation seems to obstruct the proposal of a correct prescription. Still, the eval-

uation of the complete two-loop worldsheet S-matrix is an interesting and challenging

problem which deserves further analysis.

The kind of obstacles one has to face in the extension of our results for the free-energy

of the GKP string and the dispersion relations of the GKP excitations are slightly

di↵erent. The regularization employed for the two-loop calculation in section 4.5.2 (or

equivalently the one used in section 4.6.1 for the one-loop dispersion relation) does not

admit an immediate higher loop extension, and one would have to explore possible

generalizations of that procedure. Furthermore, the presence of cubic interactions and

of a diversified mass spectrum dramatically increases the di�culty in the computation of

the Feynman integrals, compared to the BMN picture. However, the recent developments

in the computation of Feynman integrals [278, 279] may o↵er a valuable tool to overcome

this obstruction.

Let us conclude mentioning a possible future direction which lies outside the context

of perturbation theory, but it is closely related to the subjects discussed here. Follow-

ing [280], it would be interesting to discretize the AdS-light-cone gauge action (4.7) on

the lattice and analyze numerically various features of the GKP string at finite cou-

pling 1, providing a formidable test of quantum integrability.

1Preliminary results in this direction appeared in [281]
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Notations and conventions

A.1 SO(5) gamma matrices

Throughout the text we use the following representation of the SO(5) gamma matrices.
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. (A.1)

A.2 ⇢ matrices

Our convention on the ⇢ matrices appearing in section 2.3.3.2 and then in chapter 4 is

the following
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. (A.2)

The definition of the matrices ⇢MN is given in (2.105) and they enjoy the following

properties and ⇢MN = �⇢NM , ⇢MN † = �⇢MN , (⇢T )MN = �(⇢⇤)MN .

The following identities hold

⇢Mij = �⇢Mji , (⇢M )ij = �(⇢Mij )⇤ , (⇢M )il⇢Nlj + (⇢N )il⇢Mlj = 2 �MN�ij . (A.3)

A.3 Uniform light-cone gauge generators

In section 2.3.2 we introduced a parametrization of psu(2, 2|4) particularly suitable for

fixing a light-cone gauge involving one big angle coordinate on S5. In that contest it

emerged that the bosonic subalgebra su(2, 2)�su(4) is conveniently represented in terms

of the set of generators {�0,�i,�i0,�ij}�{�̃A, �̃AB} with i, j = 1, ..., 4 and A,B = 1, ..., 5

satisfying the following commutation relations

[�i,�j ] = �ij , [�i,�0] = �i0 , [�̃A, �̃B] = ��̃AB , (A.4)

[�0,�i0] = �i , [�i,�j0] = �ij�
0 , [�i,�jk] = �i[j�k] , (A.5)

[�i0,�j0] = �ij , [�i0,�jk] = �i[j�k]0 , [�ij ,�kl] = �l[i�j]k + �k[j�i]l , (A.6)

[�̃A, �̃BC ] = �A[B�̃C] , [�̃AB, �̃CD] = �D[A�̃B]C + �C[B�̃A]D . (A.7)

It is worthwhile noting that the generators {�̃A, �̃AB} are organized in such a way that

the subset {�̃AB} alone generates the so(5) algebra which appears in the denomina-

tor of the coset. As a consequence the generators {�̃A} are associated to the coset
SO(6)
SO(5) = S5, and indeed they generate translations in the directions {yi,�} introduced

in (2.28) and (2.30). In particular �̃5 generates a translation in the direction of �, and

finding the centralizer of the u(1) isometry associated to shifts of � coincides with find-

ing the maximal subset of SO(6) generators commuting with �̃5. This is clearly given

by {�̃ij}, i, j = 1, ..., 4, which generates a so(4) ⇢ so(5). A similar reasoning applies to

the subset {�0,�i,�i0,�ij}, with the only di↵erence that now the index 0 is special due

to the di↵erent signature. As before, the generators {�i0,�ij} alone generate so(1, 4)

and the remaining ones {�0,�i} are associated to translations in the AdS5 coordinates

{t, zi}. Once more finding the centralizer of the u(1) isometry associated to shifts of t
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is equivalent to find the subset of generators commuting with �0. This is simply {�ij},
which provides the second so(4) algebra appearing in (2.47).

An explicit representation in terms of supermatrices is given by
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, (A.8)

with the gamma matrices given in (A.1).

The fermionic degrees of freedom are best dealt with using the supermatrix representa-

tion of su(2, 2|4). A generic element is represented by
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. (A.9)

As we have shown explicitly in section 2.3.2, the constraint coming from -symmetry

reduce the 16 complex degrees of freedom of matrix to (A.9) by a factor one half, leaving

a matrix like (2.39).

A.4 AdS light-cone gauge basis for AdS5 ⇥ S5

Here we describe the AdS light-cone basis for the generators of psu(2, 2|4). We spell

out the expressions of all the non-vanishing commutators and provide a representation

in terms of 8 ⇥ 8 supermatrices as in (2.14). As we mentioned in footnote 3, there is

no explicit supermatrix representation of the whole psu(2, 2|4) superalgebra, therefore

we need to include the identity among the list of generators. Of course the identity

commutes with all the other generators, but it appears on the right-hand-side of the
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anticommutator of two supercharges and is necessary for the closure of the algebra of

su(2, 2|4).

The bosonic subalgebra consists of the direct sum su(2, 2)� su(4). As mentioned above

(2.64), we interpret su(2, 2) as the conformal group in 4 dimension whose commutation

relations are

[Pµ, J⌫⇢] = ⌘µ⌫P ⇢ � ⌘µ⇢P ⌫ , [Kµ, J⌫⇢] = ⌘µ⌫K⇢ � ⌘µ⇢K⌫ , (A.10)

[Pµ,K⌫ ] = �2 ⌘µ⌫D + 2 Jµ⌫ , [Jµ⌫ , J⇢�] = ⌘µ[⇢J�]⌫ � ⌘⌫[⇢J�]µ , (A.11)

[D,Pµ] = �Pµ , [D,Kµ] = Kµ . (A.12)

In the light-cone coordinates (2.63) one can introduce the generators (2.64) which are

given by

P± =
P 3 ± P 0

p
2

, P =
�P 2 + i P 1

p
2

, P̄ =
�P 2 � i P 1

p
2

, (A.13)

K± =
K3 ±K0

p
2

, K =
�K2 + iK1

p
2

, K̄ =
�K2 � iK1

p
2

. (A.14)

J+� = J03, J+x =
�J02 � J32 + i J01 + i J31

2
, J+x̄ =

�J02 � J32 � i J01 � i J31

2
,

(A.15)

Jxx̄ = �i J12 , J�x =
J02 � J32 � i J01 + i J31

2
, J�x̄ =

J02 � J32 + i J01 � i J31

2
.

(A.16)

The commutation relations of the new generators are given by (A.10), (A.11) and (A.12)

provided that ⌘+� = ⌘�+ = ⌘xx̄ = ⌘x̄x = 1. The su(4) commutation relations read

[J i
j , J

k
l] = �ilJ

k
j � �kj J i

l . (A.17)

The 32 supercharges of psu(2, 2|4) are chosen to be diagonal under the action of D, J+�

and Jxx̄, i.e.

[D,Q± i] = �1

2
Q± i [D,Q±

i ] = �
1

2
Q±

i [D,S± i] =
1

2
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i

(A.18)

[J+�, Q± i] = ±1

2
Q± i [J+�, Q±

i ] = ±1

2
Q±

i [J+�, S± i] = ±1

2
S± i [J+�, S±

i ] = ±1

2
S±
i

(A.19)

[Jxx̄, Q± i] = ±1

2
Q± i [Jxx̄, Q±

i ] = ⌥
1

2
Q±

i [Jxx̄, S± i] = ⌥1

2
S± i [Jxx̄, S±

i ] = ±1

2
S±
i .

(A.20)
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They carry an SU(4) index and they rotate under the action of su(4) generators

[Q±
i , J

j
k] = ��jiQ±

k +
1

4
�jkQ

±
i , [Q± i, J j

k] = �ikQ
± j � 1

4
�jkQ

± i, (A.21)

and similarly for the S supercharges. The action of translations and conformal boosts

are given by

[S±
i , P

⌥] = ±i
p
2Q⌥i , [S+

i , P̄ ] = i
p
2Q+

i , [S�i , P ] = i
p
2Q�i , (A.22)

[Q± i,K⌥] = ⌥i
p
2S⌥ i, [Q+ i, K̄] = i

p
2S+ i, [Q� i,K] = i

p
2S� i, (A.23)

whereas Lorentz transformations act as

[Q� i, J+x] = Q+ i, [Q+ i, J�x̄] = �Q� i, [S� i, J+x̄] = �S+ i, [S+ i, J�x] = S� i.

(A.24)

Finally, the anticommutation relations of two supercharges are given by

{Q± i, Q±
j } = ⌥i P±�ij , {Q+ i, Q�j } = i P �ij , {Q+ i, S+

j } =
p
2 J+x�ij , (A.25)

{S± i, S±
j } = ⌥iK±�ij , {S� i, S+

j } = �iK�ij , {Q� i, S�j } = �
p
2 J�x̄�ij , (A.26)

{Q± i, S⌥j } =
p
2

✓

⌥1

2
(J+� + Jxx̄ ⌥D)�ij � J i

j +
1

4
1�ij

◆

. (A.27)

The supermatrix representation which we employ in the text and which reproduces these

commutation relations can be represented as follows. The bosonic generators of su(2, 2)

are 4⇥ 4 matrices in the upper left corner. The translation generators are given by

P 0 =

0

B

B

B

B

B

@

0 0 0 0

0 0 0 0

i 0 0 0

0 i 0 0

1

C

C

C

C

C

A

, P 1 =

0

B

B

B

B

B

@

0 0 0 0

0 0 0 0

0 1 0 0

�1 0 0 0

1

C

C

C

C

C

A

, (A.28)

P 2 =

0

B

B

B

B

B

@

0 0 0 0

0 0 0 0

0 i 0 0

i 0 0 0

1

C

C

C

C

C

A

, P 3 =

0

B

B

B

B

B

@

0 0 0 0

0 0 0 0

i 0 0 0

0 �i 0 0

1

C

C

C

C

C

A

. (A.29)
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The diagonal generators are

D =
1

2

0

B

B

B

B

B

B

@

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

C

C

C

C

A

, J+� =
1

2

0

B

B

B

B

B

B

@

�1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

1

C

C

C

C

C

C

A

, Jxx̄ =
1

2

0

B

B

B

B

B

B

@

�1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 1

1

C

C

C

C

C

C

A

. (A.30)

The remaining Lorentz generators read

J+x =

0

B

B

B

B

B

@

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1

C

C

C

C

C

A

, J�x =

0

B

B

B

B

B

@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

1

C

C

C

C

C

A

. (A.31)

The su(4) generators occupy the lower right corner of the supermatrix and we use the

following convention for the entries of the matrices J i
j

(J i
j)

k
l = ��

ik�jl +
1

4
�ij�

k
l . (A.32)

Finally, the supercharges are represented by non-vanishing entries in the odd part of

the supermatrix. We provide here the representation of a generic odd element of the

algebra su(2, 2|4), from which it is easy to extract supermatrix representations for the

single supercharges

✓�i Q
+ i + ✓� iQ+

i + ⌘�i S
+ i + ⌘� iS+

i + ✓+i Q
� i + ✓+ iQ�i + ⌘+i S

� i + ⌘+ iS�i =

2
1
4

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 0 0 ⌘+1 ⌘+2 ⌘+3 ⌘+4

0 0 0 0 ⌘� 1 ⌘� 2 ⌘� 3 ⌘� 4

0 0 0 0 ✓� 1 ✓� 2 ✓� 3 ✓� 4

0 0 0 0 ✓+1 ✓+2 ✓+3 ✓+4

✓�1 ✓+1 ⌘+1 ⌘�1 0 0 0 0

✓�2 ✓+2 ⌘+2 ⌘�2 0 0 0 0

✓�3 ✓+3 ⌘+3 ⌘�3 0 0 0 0

✓�4 ✓+4 ⌘+4 ⌘�4 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

. (A.33)

A.5 AdS light-cone gauge basis for AdS4 ⇥ S7

In equation (2.122) we represented a generic element of osp(4|8) using the set of gener-

ators: {Mµ⌫ ,Mµ, VIJ , V8I , QA0}. Here we give a detailed description of the procedure to

change from this basis to the one that we used for the construction of the Lagrangian.
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Let us start from the AdS4 bosonic part. We define the 3d conformal generators as

Pm = �M3m+
1

2
Mm, Km = M3m+

1

2
Mm, D = �M3, Jmn = Mmn, (A.34)

with the standard commutation relations

[Pm, Jnr] = ⌘mnPr � ⌘mrPn, [Km, Jnr] = ⌘mnKr � ⌘mrKn, (A.35)

[Pm,Kn] = ⌘mnD + 2 Jmn, [Jmn, Jrs] = ⌘m[rJs]n � ⌘n[rJs]m, (A.36)

[D,Pm] = 2Pm, [D,Km] = �2Km. (A.37)

Using the representation (2.122) of the Cartan form one can relate the coe�cients of

(2.122) with the ones in (2.140). This yields

!m = Em � !3m, cm = Em + !3m, � = �E3. (A.38)

The light-cone basis is simply introduced by the change of variables P± = P 2 ± P 0 and

similarly for K.

The SO(8) generators in (2.122) are {VIJ , VI8} with the commutation relations

[VI8, VJ8] = �VIJ , [VIJ , VK8] = �JKVI8 � �IKVJ8, (A.39)

[VIJ , VKL] = �ILVJK � �IKVJL + �JKVIL � �JLVIK . (A.40)

These generators can be split further to the set {VMN , V78, V8M , V7M} appearing in

equation (2.132). The so(6) generators VMN are projected to an SU(4) basis via

V i
j =

i

4
(⇢MN )ijVMN (A.41)

and then further reduced to the SU(3) irreducible parts

{V 78, V 7
4a, V 8

4a, Va
4, Va

b � 1

3
�baVc

c, Va
a} , (A.42)

and their complex conjugates using

V i
j =

0

B

B

@

Va
b Va

4

V4
b V4

4

1

C

C

A

, V4
4 = �Va

a, V 7(8)
4a = V7(8)M (⇢M )4a . (A.43)
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To provide a representation which make the Hopf fibration explicit we need to further

redefine the generators (A.42). The U(1) fiber generator is

H = 2Va
a � V 78, (A.44)

and the U(3) subrgoup of SU(4) is generated by

Ṽa
b = Va

b � 1

2
�baVc

c � 1

4
�baV

78, (A.45)

with the trace Ṽa
a = �1

2Va
a� 3

4V
78 identifying with the U(1) subgroup of U(3). The form

of T a and Ta in (2.133) is dictated by the generation of the su(4) algebra commutation

relations and commutativity with H

Ta =
1

2
(V 7

4a � iV 8
4a), T a = �1

2
(V 74a + iV 84a). (A.46)

Finally the remaining generators are

T̃a = �1

2
(V 7

4a + iV 8
4a), T̃ a =

1

2
(V 74a � iV 84a), Va

4, V4
a. (A.47)

Using all these relations one can easily work out the relations between the coe�cients

in (2.122) and those in (2.133) first using

⌦i
j =

i

2
⌦MN (⇢MN )i

j =

0

B

B

@

⌦̃a
b ⌦a

4

⌦4
b ⌦̃4

4 ,

1

C

C

A

, ⌦̃4
4 = �⌦̃a

a , (A.48)

⌦7
4a = ⌦7I(⇢I)4a , ⌦8

4a = ⌦8I(⇢I)4a , (A.49)

and then

⌦a = ⌦7
4a �

i

2
⌦8

4a, ⌦a = �⌦74a � i

2
⌦84a, (A.50)

⌦̃a = �⌦7
4a �

i

2
⌦8

4a, ⌦̃a = ⌦74a � i

2
⌦84a, (A.51)

⌦a
b = ⌦̃a

b � �ba⌦̃c
c + �bah, ⌦78 = �⌦̃a

a � h. (A.52)
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A.6 Conventions for the exact S-matrices

A.6.1 AdS5 ⇥ S5

The AdS5⇥S5 S-matrix reported in B.2 is expressed in terms of the Zhukovsky variables

x± defined by the following relations

x+

x�
= eip , x+ � 1

x+
� x� +

1

x�
=

2 i!

h
, x+ +

1

x+
� x� � 1

x�
=

2 i

h
. (A.53)

Solving for energy and momentum we get

x± =
e±i p2 (1 + !(p))

2h sin p
2

, !(p) =

r

1 + 4h2 sin2
p

2
, � = |x� � x+|1/2 . (A.54)

Here h is in general a di↵erent coupling from the string tension T and one could define

a non-trivial interpolating function h(T ) which builds a connection between the result

from integrability and the one from perturbation theory. However for AdS5 ⇥ S5 large

evidence has been provided, both at weak and strong couplingm for the equality h = T .

When expanding the exact result in the near-BMN limit, we should understand how

the spin chain momenta are related to the worldsheet momenta. As part of the gauge

fixing of the worldsheet theory we chose the density of the light-cone momentum to be

a constant, which in turn fixed the string length to be P+

2T . Then, we took P+ to be

infinite, which allowed for a sensible definition of the S-matrix, and expanded in powers

of ⇣ which acts as a loop-counting parameter. This should be contrasted with the spin

chain picture, where the spin chain length L is identified with the momentum J plus an

additional term that depends on the number of excitations: L = J+M . Going from the

spin chain to the string worldsheet involves the rescaling by a factor of ⇣, which a↵ects

all dimensional quantities and in particular all momenta, which should be rescaled as

p �! ⇣p , pchain = ⇣pstring . (A.55)

Therefore, the strong-coupling expansion is equivalent to the low-momentum expansion

of the spin chain S-matrix. For the kinematical variables (A.54) the rescaling of momenta

yields:

x± =
1 + !

p

✓

1± i⇣p

2
+O(⇣2)

◆

. (A.56)

Note that in the limit we are considering here all information about bound states appears

at higher orders in the ⇣- expansion.
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A.6.2 AdS3 ⇥ S3 ⇥M4 supported by RR flux

In appendix B the exact S-matrices are written as functions of the Zhukovsky variables

x± and y±. These are defined in terms of the energy and momentum as follows

x+

x�
= eip , x+ � 1

x+
� x� +

1

x�
=

2 i!

h
, x+ +

1

x+
� x� � 1

x�
=

2 im

h
, (A.57)

y+

y�
= eip , y+ � 1

y+
� y� +

1

y�
=

2 i!

h
, y+ +

1

y+
� y� � 1

y�
=

2 im0

h
, (A.58)

where h is the integrable coupling that is (potentially non-trivially) related to the string

tension T . The third equation of each line is a constraint that is interpreted as the

dispersion relation. In particular, m and m0 are the masses of the respective particles.

The variables x0± and y0± are simply given by sending p ! p0 and ! ! !0. Solving for

x± and y± in terms of p we find

x± =
e±i p2 (m+ !)

2h sin p
2

, ! =

r

m2 + 4h2 sin2
p

2
, (A.59)

y± =
e±i p2 (m0 + !)

2h sin p
2

, ! =

r

m02 + 4h2 sin2
p

2
. (A.60)

When expanding in near-BMN regime, the spatial momenta should first be rescaled as

p ! ⇣ p where ⇣ is the inverse of the string tension. The integrable coupling h, in

principle, is related to ⇣ in a non-trivial way, however, its strong coupling (small ⇣)

expansion starts with h(⇣) = ⇣�1 + O(⇣0). Therefore, at leading order in the near-

BMN expansion the dispersion relation is given by its relativistic counterpart. The two

additional functions that we use to write the expressions for the exact S-matrices are

⌘ =
p

i(x� � x+) , ⌫ =

r

x+

x�
, (A.61)

and similarly for y± when referring to a particle of mass m0.

In section 3.4.2.3 we are interested in expanding the functions x± and y± at strong

coupling. To do so it is convenient to introduce a new variable x such that

x± = x± im

h

x2

x2 � 1
+O(h�3) . (A.62)

Expressing x in terms of p in the near-BMN expansion (i.e. first rescaling p) one finds

x(p) =
m+

p

m2 + p2

p
+O(⇣2) . (A.63)

Using the new variable one can easily expand the dressing phase at strong coupling as

shown in appendix B.
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In the discussion of the AdS3⇥S3⇥S3⇥S1 background, we need to use the cubic terms

in the expansion of the light-cone gauge-fixed Lagrangian. We use a worldsheet metric

with signature (+,�). Light-cone coordinates are defined for a generic two-dimensional

vector vµ as v± = 1
2(v

0 ± v1) and for a covector vµ as v± = v0 ± v1. The non-vanishing

elements of the metric in light-cone coordinates are ⌘+� = ⌘�+ = 2. Correspondingly

⌘+� = ⌘�+ = 1
2 . The Levi-Civita tensor is defined as ✏01 = 1 = �✏01.

As usual, gamma matrices are defined by the anti-commutation relation

{�µ, �⌫} = 2 ⌘µ⌫ . (A.64)

An explicit representation is given by

�0 =

0

B

B

@

0 1

1 0

1

C

C

A

, �1 =

0

B

B

@

0 1

�1 0

1

C

C

A

, �3 = ��0�1 =

0

B

B

@

1 0

0 �1

1

C

C

A

. (A.65)

A generic spinor is represented as

� =

0

B

B

@

�+

��

1

C

C

A

, (A.66)

where �± are the chiral projections of � by the projectors P± = 1
2(1±�3). The conjuga-

tion is defined in the usual way �̄ = �†�0 and to make contact with [41, 233] we define

�̄± ⌘ �†
±. The polarization vectors can be chosen to be purely real and given by

u(p) =

0

B

B

@

p
p+

p
p�

1

C

C

A

, (A.67)

v(p) =

0

B

B

@

p
p+

�pp�

1

C

C

A

. (A.68)

A.6.3 AdS3 ⇥ S3 ⇥ T 4 supported by mixed flux

In the mixed flux case discussed in appendix B, the S-matrix is again written in terms of

Zhukovsky-type variables. However, the dispersion relation is modified and is di↵erent

for particles (x±+) and antiparticles (x±�). The Zhukovsky variables are defined in terms
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of the energy and momentum as follows

x+±
x�±

= eip , x+± �
1

x+±
� x�± +

1

x�±
=

2 i ✏±

h
p

1� q2
. (A.69)

However, the dispersion relation [52] is now given by

p

1� q2
�

x+± +
1

x+±
� x�± �

1

x�±

�

⌥ 2 q log
x+±
x�±

=
2i

h
, (A.70)

The variables x0±+ and x0±� are simply given by sending p! p0 and ✏± ! ✏0±. Solving for

x±+ and x±� in terms of p we find

x±+ =
e±i p2 (1 + q p+ ✏+(p))

2h
p

1� q2 sin p
2

, x±� =
e±i p2 (1� q p+ ✏�(p))

2h
p

1� q2 sin p
2

,

✏± =

r

(1± q h p)2 + 4h2(1� q2) sin2
p

2
.

(A.71)

As expected, at leading order in the near-BMN expansion the dispersion relation is given

by e± as defined in (3.160). The functions ⌘± and ⌫± are generalized in the obvious way

from (A.61).

In section 3.4.4 we are interested in expanding the functions x±+ and x±� at strong cou-

pling. To do so it is convenient to introduce new variables x± such that

x±+ =x+ ± i

h

x2+
p

1� q2(x2+ � 1)� 2 q h x+
+O(h�3) ,

x±� =x� ± i

h

x2�
p

1� q2(x2� � 1) + 2 q h x�
+O(h�3) .

(A.72)

Expressing x± in terms of p in the near-BMN expansion (i.e. first rescaling p) one finds

x±(p) =
1± q p+

p

(1± q p)2 + (1� q2)p2
p

1� q2 p
+O(⇣2) . (A.73)
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Exact S-matrices

B.1 AdS5 ⇥ S5

The exact SU(2|2) S-matrix was first evaluated in [16]. The parametrizing functions used

there are slightly di↵erent from the one used here (3.47)-(3.50). The precise relation is

[91]

A =
1

2
p
AB

(AB �BB) , B =
1

2
p
AB

(AB +BB) , C =
1

2
p
AB

CB ,

D =
1

2
p
AB

(�DB + EB) , E =
1

2
p
AB

(�DB � EB) , F = � 1

2
p
AB

FB ,

H =
1p
AB

HB , K =
1p
AB

KB , G =
1p
AB

GB , L =
1p
AB

LB ,

(B.1)

where the label B refers to the functions used in [16]. Translating the result of [16] to

our language we find

A = S0
x0� � x�

x0� � x+
1� 1

x0�x+

1� 1
x+x0+

, B = S0

 

x0+ � x�

x0� � x+
+

1� 1
x+x0�

1� 1
x+x0+

x0� � x�

x0� � x+

!

,

C = �S0
x0� � x�

x0� � x+
��0

x+x0+
1

1� 1
x+x0+

D = S0
x0� � x�

x0� � x+
1� 1

x�x0+

1� 1
x+x0+

,

E = S0

 

1�
1� 1

x0+x�

1� 1
x�x0�

x0+ � x+

x0� � x+

!

, F = S0
x0+ � x+

x0� � x+
��0

x�x0�
1

1� 1
x�x0�

,

G = S0
x0+ � x+

x0� � x+
, H = S0

x0+ � x0�

x0� � x+
�

�0
,

L = S0
x0� � x�

x0� � x+
, K = S0

x+ � x�

x0� � x+
�0

�
. (B.2)
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The definitions of the variables x± entering these expressions are given in (A.54) and

the overall factor S0 is related to the BES [18] dressing phase

S2
0 =

x0� � x+

x0+ � x�
1� 1

x0+x�

1� 1
x0�x+

ei#BES(x±,x0±) , (B.3)

with #BES(x±, x0±) expressible in the following way

#BES(p, p
0) =

1

⇣

X

r,s=±
rs�BES(x

r
p, x

s
p0). (B.4)

The function �BES can be represented compactly as a contour integral

�BES(x, y) = i

I

dw

2⇡i

I

dw0

2⇡i

1

x� w

1

y � w0
log

�[1 + ih(w + 1/w � w0 � 1/w0)]

�[1� ih(w + 1/w � w0 � 1/w0)]
. (B.5)

The first few orders in the near-BMN expansion read

�BES(x, y) =
1
X

l=0

⇣ l�1(�(l)(x, y)� �(l)(y, x)) , (B.6)

�(0)(x, y) =� 1

y
+

✓

1

y
� x

◆

log

✓

1� 1

xy

◆

, (B.7)

�(1)(x, y) =� 1

2⇡
Li2

p
x� 1p

yp
x�py �

1

2⇡
Li2

p
x+ 1p

yp
x+
p
y

+
1

2⇡
Li2

p
x+ 1p

yp
x�py +

1

2⇡
Li2

p
x� 1p

yp
x+
p
y
, (B.8)

�(2)(x, y) =� y

24(xy � 1)(y2 � 1)
, (B.9)

�(3)(x, y) =0 , (B.10)

�(4)(x, y) =� y3 + 4y5 � 9xy6 + y7 + 3x2y7 � 3xy8 + 3x2y9

720(xy � 1)3(y2 � 1)5
, (B.11)

�(5)(x, y) =0 . (B.12)

Let us stress that the whole logarithmic dependence has a one-loop origin and this is an

important constraint for the unitarity-cut computation.

B.2 Massive sector for AdS3 ⇥ S3 ⇥ T 4

The exact S-matrix for the massive sector of light-cone gauge fixed sigma model on

AdS3 ⇥ S3 ⇥ T 4 supported by pure RR flux was first computed in [49]. In string frame
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it reads

A++(p, p
0) = S11

++(p, p
0) , B++(p, p

0) = S11
++(p, p

0)
x0+ � x+

x0+ � x�
1

⌫
,

C++(p, p
0) = S11

++(p, p
0)
x0+ � x0�

x0+ � x�
⌘

⌘0

r

⌫ 0

⌫
, D++(p, p

0) = S11
++(p, p

0)
x0� � x�

x0+ � x�
⌫ 0 ,

E++(p, p
0) = S11

++(p, p
0)
x+ � x�

x0+ � x�
⌘0

⌘

r

⌫ 0

⌫
, F++(p, p

0) = S11
++(p, p

0)
x0� � x+

x0+ � x�
⌫ 0

⌫
,

(B.13)

A+�(p, p
0) = S11

+�(p, p
0)
1� 1

x+ x0�

1� 1
x� x0�

⌫ , B+�(p, p
0) = �S11

+�(p, p
0)

i ⌘⌘0

x�x0�
(⌫⌫ 0)�

1
2

1� 1
x� x0�

,

C+�(p, p
0) = S11

+�(p, p
0) , D+�(p, p

0) = S11
+�(p, p

0)
1� 1

x+ x0+

1� 1
x� x0�

⌫⌫ 0 ,

E+�(p, p
0) = S11

+�(p, p
0)
1� 1

x� x0+

1� 1
x� x0�

⌫ 0 , F+�(p, p
0) = �S11

+�(p, p
0)

i ⌘⌘0

x+x0+
(⌫⌫ 0)

3
2

1� 1
x� x0�

.

(B.14)

The definitions of the variables x± entering these expressions are given for general mass

in appendix A.6.2. Here the masses should be set to one. The functions S11
++(p, p

0) and

S11
+�(p, p

0) are two overall phase factors, i.e. in the notation of eq. (3.109) S11
�M�N (p, p

0) =

ei$
11
�M�N

(p,p0). The superscripts refer to the masses of the two particles being scattered.

These phase factors are not fixed by symmetry. They are, however, constrained by cross-

ing symmetry and a conjecture for their exact expressions was given in [50], supported

by semiclassical one-loop computations [139, 140]. The proposal reads

S11
++(p, p

0)�1 = e�
i
2a(✏

0p�✏p0)

s

x0� � x+

x0+ � x�
1� 1

x+x0�

1� 1
x�x0+

⌫ 0

⌫
ei#

11
++(x±,x0±) , (B.15)

S11
+�(p, p

0)�1 = e�
i
2a(✏

0p�✏p0)

s

1� 1
x+x0+

1� 1
x�x0�

1� 1
x+x0�

1� 1
x�x0+

⌫ 0 ei#
11
+�(x±,x0±) . (B.16)

The functions #11++(p, p
0) and #11+�(p, p

0) can be expressed in terms of an auxiliary function

�

#11++(x
±, x0±) = �(x+, x0+) + �(x�, x0�)� �(x+, x0�)� �(x�, x0+) , (B.17)

#11+�(x
±, x0±) = �̃(x+, x0+) + �̃(x�, x0�)� �̃(x+, x0�)� �̃(x�, x0+) , (B.18)

and the explicit all-order expressions for � and �̃ are

�(x, y) = �BES(x, y) +
1

2

�

� �HL(x, y) + ��(x, y)
�

, (B.19)
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�̃(x, y) = �BES(x, y) +
1

2

�

� �HL(x, y)� ��(x, y)
�

. (B.20)

Here the function �BES is the same which appears in the AdS5⇥S5 dressing factor [18],

�HL is the Hernandez Lopez phase [128] and is given by the one-loop term in the strong

coupling expansion of �BES, while the function �� does not appear in the AdS5 ⇥ S5

light-cone gauge S-matrix. The three functions can be expressed compactly as contour

integrals

�BES(x, y) = i

I

dw

2⇡i

I

dw0

2⇡i

1

x� w

1

y � w0
log

�[1 + ih(w + 1/w � w0 � 1/w0)]

�[1� ih(w + 1/w � w0 � 1/w0)]
, (B.21)

�HL(x, y) =
⇡

2

I

dw

2⇡i

I

dw0

2⇡i

1

x� w

1

y � w0
sign(w0 + 1/w0 � w � 1/w) , (B.22)

��(x, y) =

I

dw

8⇡

1

x� w
log

h

(y � w)
⇣

1� 1
yw

⌘i

sign((w � 1/w)/i) � x$ y . (B.23)

We are interested in the near-BMN expansion of these expressions. Therefore, let us

quote the first two orders of #11++(x
±, x0±) and #11+�(x

±, x0±)

#11++(x
±, x0±) =

1

h
#AFS(x, x0) +

1

h2
#(1)++(x, x

0) +O(h�3) , (B.24)

#11+�(x
±, x0±) =

1

h
#AFS(x, x0) +

1

h2
#(1)+�(x, x

0) +O(h�3) . (B.25)

The functions appearing in (B.24) and (B.25) are given by

#AFS(x, y) = 2(x�y)
(x2�1)(xy�1)(y2�1) +O(h�2) , (B.26)

#(1)++(x, y) =
1
⇡

x2

x2�1
y2

y2�1

"

(x+y)2
⇣
1� 1

xy

⌘

(x2�1)(x�y)(y2�1) +
2

(x�y)2 log
⇣

x+1
x�1

y�1
y+1

⌘

#

+O(h�1) ,

#(1)+�(x, y) =
1
⇡

x2

x2�1
y2

y2�1

"

(xy+1)2
⇣
1
x�

1
y

⌘

(x2�1)(xy�1)(y2�1) +
2

(xy�1)2 log
⇣

x+1
x�1

y�1
y+1

⌘

#

+O(h�1) .

It is important to point out that the pre-factors appearing in (B.15) and (B.16) can be

written as a phase factor whose exponent has a vanishing one-loop (O(h�2)) term. This

property, together with (B.26), allows us to compare #(1)++ and #(1)+� directly with our

perturbative result following from unitarity-cut methods.

B.3 Massive sector for AdS3 ⇥ S3 ⇥ S3 ⇥ S1

The exact S-matrix for the massive sector of the light-cone gauge fixed sigma model on

AdS3⇥S3⇥S3⇥S1 supported by pure RR flux was first computed in [47, 48]. In string
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frame it reads

A++(p, p
0) = S↵↵++(p, p

0) , B++(p, p
0) = S↵↵++(p, p

0)
x0+ � x+

x0+ � x�
1

⌫
,

C++(p, p
0) = S↵↵++(p, p

0)
x0+ � x0�

x0+ � x�
⌘

⌘0

r

⌫ 0

⌫
, D++(p, p

0) = S↵↵++(p, p
0)
x0� � x�

x0+ � x�
⌫ 0 ,

E++(p, p
0) = S↵↵++(p, p

0)
x+ � x�

x0+ � x�
⌘0

⌘

r

⌫ 0

⌫
, F++(p, p

0) = S↵↵++(p, p
0)
x0� � x+

x0+ � x�
⌫ 0

⌫
,

(B.27)

A+�(p, p
0) = S↵↵+�(p, p

0)
1� 1

x+ x0�

1� 1
x� x0�

⌫ , B+�(p, p
0) = �S↵↵+�(p, p0)

i ⌘⌘0

x�x0�
(⌫⌫ 0)�

1
2

1� 1
x� x0�

,

C+�(p, p
0) = S↵↵+�(p, p

0) , D+�(p, p
0) = S↵↵+�(p, p

0)
1� 1

x+ x0+

1� 1
x� x0�

⌫⌫ 0 ,

E+�(p, p
0) = S↵↵+�(p, p

0)
1� 1

x� x0+

1� 1
x� x0�

⌫ 0 , F+�(p, p
0) = �S↵↵+�(p, p0)

i ⌘⌘0

x+x0+
(⌫⌫ 0)

3
2

1� 1
x� x0�

.

(B.28)

The structure of the S-matrix is identical to (B.13) and (B.14), the only di↵erences

being the overall phase factors, S↵↵++(p, p
0) and S↵↵+�(p, p

0), and that in the definition of

the variables x± given in appendix A.6.2 the mass should be set to ↵. The phase factors

S↵↵±± and S↵↵±⌥ have been computed semiclassically in [142].

For the scattering of a mass ↵ with a mass ↵̄ the functions in string frame are given by

[47, 48]

A++(p, p
0) = S↵↵̄++(p, p

0) , B++(p, p
0) = S↵↵̄++(p, p

0)
y0+ � x+

y0+ � x�
1

⌫
,

C++(p, p
0) = S↵↵̄++(p, p

0)
y0+ � y0�

y0+ � x�
⌘

⌘0

r

⌫ 0

⌫
, D++(p, p

0) = S↵↵̄++(p, p
0)
y0� � x�

y0+ � x�
⌫ 0 ,

E++(p, p
0) = S↵↵̄++(p, p

0)
x+ � x�

y0+ � x�
⌘0

⌘

r

⌫ 0

⌫
, F++(p, p

0) = S↵↵̄++(p, p
0)
y0� � x+

y0+ � x�
⌫ 0

⌫
,

(B.29)

A+�(p, p
0) = S↵↵̄+�(p, p

0)
1� 1

x+ y0�

1� 1
x� y0�

⌫ , B+�(p, p
0) = �S↵↵̄+�(p, p0)

i ⌘⌘0

x�y0�
(⌫⌫ 0)�

1
2

1� 1
x� y0�

,

C+�(p, p
0) = S↵↵̄+�(p, p

0) , D+�(p, p
0) = S↵↵̄+�(p, p

0)
1� 1

x+ y0+

1� 1
x� y0�

⌫⌫ 0 ,

E+�(p, p
0) = S↵↵̄+�(p, p

0)
1� 1

x� y0+

1� 1
x� y0�

⌫ 0 , F+�(p, p
0) = �S↵↵̄+�(p, p0)

i ⌘⌘0

x+y0+
(⌫⌫ 0)

3
2

1� 1
x� y0�

.

(B.30)
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Here we have defined the overall phase factors by setting

Ŝ'2'3
'2'3

(p, p0) = 1 , Ŝ'2�̄3

'2�̄3 (p, p
0) = 1 . (B.31)

and we can express them as

S↵↵++(p, p
0)�1 = e�ia(✏

0p�✏p0) 1�
1

x+x0�

1� 1
x�x0+

x0� � x+

x0+ � x�

✓

⌫ 0

⌫

◆2

ei#
↵↵
++(x±,x0±) , (B.32)

S↵↵+�(p, p
0)�1 = e�ia(✏

0p�✏p0)

s

1� 1
x+x0+

1� 1
x�x0�

1� 1
x+x0�

1� 1
x�x0+

⌫ 0 ei#
↵↵
+�(x±,x0±) , (B.33)

and

S↵↵̄++(p, p
0)�1 = e�ia(✏

0p�✏p0) 1� 1
x+y0�

1� 1
x�y0+

⌫ 0

⌫
ei#

↵↵̄
++(x±,x0±) , (B.34)

S↵↵̄+�(p, p
0)�1 = e�ia(✏

0p�✏p0)

v

u

u

t

1� 1
x+y0+

1� 1
x�y0�

 

1� 1
x+y0�

1� 1
x�y0+

!

3
2

⌫ 0 ei#
↵↵̄
+�(x±,x0±) . (B.35)

Unlike the AdS3 ⇥ S3 ⇥ T 4 case, all-order expressions for #↵↵�M�N and #↵↵̄�M�N are not

known. The one-loop near-BMN expansions for these phases have been computed semi-

classically at one loop in [142] and we displayed them in eqs. (3.146), (3.147). They are

essentially the same as (B.26) up to an overall scaling depending on the masses.

B.4 Massive sector for AdS3 ⇥ S3 ⇥ T 4 supported by mixed

flux

The functions in string frame given by [51]

A++(p, p
0) = S++(p, p

0) , B++(p, p
0) = S++(p, p

0)
x0++ � x++
x0++ � x�+

1

⌫+
,

C++(p, p
0) = S++(p, p
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x0++ � x0�+
x0++ � x�+

⌘+
⌘0+

s

⌫ 0+
⌫+

, D++(p, p
0) = S++(p, p

0)
x0�+ � x�+
x0++ � x�+

⌫ 0+ ,

E++(p, p
0) = S++(p, p

0)
x++ � x�+
x0++ � x�+

⌘0+
⌘+

s

⌫ 0+
⌫+

, F++(p, p
0) = S++(p, p

0)
x0�+ � x++
x0++ � x�+

⌫ 0+
⌫+

,

(B.36)

and

A+�(p, p
0) = S+�(p, p

0)
1� 1

x+
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1� 1
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�

⌫+ , B+�(p, p
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0)
i ⌘+⌘0�
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�

(⌫+⌫ 0�)
� 1

2

1� 1
x�
+ x0�

�

,
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C+�(p, p
0) = S+�(p, p

0) , D+�(p, p
0) = S+�(p, p

0)
1� 1

x+
+ x0+

�

1� 1
x�
+ x0�

�

⌫+⌫
0
� ,
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1� 1

x�
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�
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0)
i ⌘+⌘0�
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�
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1� 1
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(B.37)

The definitions of the variables entering these expressions are given in appendix A.6.3.

The functions S++(p, p0) and S+�(p, p0) are two of the overall phase factors. These

phase factors are not fixed by global symmetry, but constrained by crossing symmetry,

however, they are currently unknown.





Appendix C

Details on the expanded

Lagrangian for null cusp

fluctuations in AdS4 ⇥ CP3

In this appendix we provide the expanded fluctuation Lagrangian (4.33) up to quartic

order in the fields. The vertices come with a factor 1
2 , with respect to the original

Lagrangian, from the prefactor T
2 in the action. In order not to clutter the expressions

we drop the tildes and the coupling T , which is understood to appear in each vertex

insertion in Feynman diagrams. We also introduce the notation rs = @s� 1. The cubic

interactions read

V'xx = �4' [rs x]
2 , V'3 = 2'

⇥

(@t')
2 � (@s')

2
⇤

, V'|z|2 = 2'
⇥

|@tz|2 � |@sz|2
⇤

,

(C.1)

Vz⌘⌘ = �✏abc@tz̄a⌘b⌘c + h.c., Vz⌘✓ = �2 ✏abcz̄a⌘brs✓c � h.c., (C.2)

V'⌘✓ = �4 i'⌘ars✓
a � h.c., Vx⌘⌘ = �4 i ⌘a⌘arsx, (C.3)

Vz⌘a⌘4 = �2 @tza⌘a⌘4 + h.c., Vz⌘a✓4 = 2 @sz
a⌘a✓4 � h.c., (C.4)

V'⌘4✓4 = �2 i' (✓4@s⌘4 � @s✓4⌘4)� h.c., Vx 4 4
= �2 i (⌘4⌘4 + ✓4✓4)rsx, (C.5)

whereas the quartic vertices are

Vz4 =
1

6

h

(z̄a@tz
a)2 + (z̄a@sz

a)2 + (za@tz̄a)
2 + (za@sz̄a)

2

�|z|2
�

|@tz|2 + |@sz|2
�

� |z̄a@tza|2 � |z̄a@sza|2
i

, (C.6)

V'2xx = 16'2 [rs x]
2 , V'4 = 4'2



(@t')
2 + (@s')

2 +
2

3
'2

�

,

V'2|z|2 = 4'2
⇥

|@tz|2 + |@sz|2
⇤

, Vżz̄ 4 4
= �2 i (⌘4⌘4 + ✓4✓4)z̄b@tz

b + h.c.,
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V⌘2⌘4⌘4 = 8 ⌘4⌘4⌘
a⌘a, Vz0z̄ 4 4

= �2 i (⌘4✓4 � ✓4⌘4)z̄b@szb � h.c.,

V⌘4 = 4(⌘a⌘a)
2, V'2⌘4✓4 = 4 i'2 (✓4@s⌘4 � @s✓4⌘4)� h.c.,

V⌘4⌘4✓4✓4 = �8 ⌘4⌘4✓4✓4, V'x 4 4
= 12 i' (⌘4⌘4 + ✓4✓4)rsx,

V⌘3⌘4 = 4 ✏abc⌘a⌘b⌘c⌘4 + h.c., Vzz⌘a⌘4 = �2 i ✏abc@tzazb⌘c⌘4 + h.c.,

V' z⌘a✓4 = �8'@sza⌘a✓4 � h.c., V' z⌘✓ = 8'✏abcz̄a⌘brs✓c � h.c.,

Vzz⌘a✓4 = 2 i ✏abc@sz
azb⌘c✓4 � h.c., Vzz⌘⌘ = �2 i (z̄a@tza⌘b⌘b � z̄b@tz

a⌘b⌘a) + h.c.,
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a � z̄bz
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b]� h.c.,

V'2⌘✓ = 8 i'2 ⌘ars✓
a � h.c., Vxz⌘⌘ = �4rsx✏

abcz̄a⌘b⌘c � h.c.. (C.7)



Appendix D

Integral reductions for vacuum

diagrams

In this appendix we provide the relevant tensor integral reductions in two dimensions

that we used in the computation of the two-loop correction to the partition function in

section 4.5.2. We define the two basic scalar integrals

I
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⌘
Z

d2p

(2⇡)2
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Then we have (the factors (2⇡)4 in the denominator of the integrands are understood)
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Appendix E

Self-energies of fermions in the

null cusp background for

AdS4 ⇥ CP3

In this appendix we collect the o↵-shell fermion self-energies entering the computation

of the one-loop dispersion relations in section 4.6.1.
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