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1 Introduction

The discovery of the AdS/CFT correspondence has precipitated a number of new re-
search directions in theoretical physics. Despite of its origins in supersymmetric string
theory, many of these new �elds barely rely on calculations involving strings or even
supersymmetry. Applications of these new approaches are found in high-energy theory,
cosmology, and even condensed matter physics.

One of the �elds that developed from AdS/CFT involves the study of holographic entan-
glement entropy. Entanglement entropy is originally a concept from quantum many-body
physics, a quantity of interest mostly within condensed matter physics and quantum in-
formation theory. However, recent research has shown that entanglement entropy can
also be computed using the tools of AdS/CFT, in a �holographic� calculation. In fact,
its derivation is closely related to the famous Hawking-Bekenstein formula, which relates
the surface area of a black hole to its entropy.

While some of the fundamental concepts behind AdS/CFT remain far from being fully
understood, holographic entanglement entropy allows us to perform very concrete com-
putations, which shed light on the manner in which entanglement behaves in many-body
systems. In addition, some quantities can be calculated on both sides of the correspon-
dence, and their equivalence strongly supports the validity of the holographic approach.

The system which will be studied in this thesis involves strongly coupled �eld theories
that are locally excited, which is known as a �local quench�. Fundamentally, we seek to
understand how an excitation on the boundary between two regions creates entanglement
between those regions. Using gravity calculations on the AdS side, this has already
been studied perturbatively in various dimensions, and exactly for the case of (1 + 1)-
dimensional CFTs. For this particular case, exact results are also known from the CFT
side, and they match well.

However, no exact CFT calculations have yet been performed for the case of higher
dimensions. The perturbative results on the AdS side, however, are not reliable for sev-
eral interesting cases where we consider entanglement between two large regions. Thus,
we would like to obtain an exact result for such limits and understand how the lower-
dimensional behavior can be generalized.

This thesis consists of three parts. In the �rst part, we will review the theoretical foun-
dations of holographic entanglement entropy, including relevant aspects of AdS/CFT. In
the second part, we will outline the AdS-side calculations necessary for the description
of local quenches. We will also discuss how previous results can be extended to higher
dimensions, focusing on the AdS4/CFT3 case, and motivate the need for a numerical
approach. The third part explains a new numerical method for �nding extremal space-
time surfaces, and applies it to holographic entanglement entropy of a local quench in
AdS4/CFT3.



2 FOUNDATIONS 3

2 Foundations

2.1 Anti-de Sitter Spacetime

De Sitter spacetimes were originally introduced by Willem de Sitter in the early 20th
century, while studying solutions to Einstein's equations for positive and negative cos-
mological constants (see e.g. [1]). The latter are now commonly referred to as anti-de
Sitter (AdS) solutions.

A (d+ 1)-dimensional AdSd+1 spacetime can be described as a surface in the embedding
coordinates (T,W,X1, . . . , Xd). The metric of the embedding is given by

ds2 = −dT 2 − dW 2 +
d∑
i=1

dX2
d .

In this R2,d-type spacetime, the surface equivalent to AdSd+1 is given by the constraint

T 2 +W 2 −
d∑
i=1

X2
d = R2, (2.1)

where R determines the global curvature. This is equivalent to a solution of the Einstein
equation with a negative cosmological constant (see e.g. [2]),

Rµν = 8πGNΛgµν .

with Λ = − 3
R2 and GN being Newton's constant. Thus, AdS spacetime has a global

negative curvature. In particular, this implies that it possesses a boundary. Consider
Poincaré coordinates (t, z, x1, . . . , xd), which we de�ne as

T =
Rt

z
, Xi =

Rxi
z

,

W =
1

2z

(
−t2 + z2 +

∑
i

x2
i +R2

)
, Xd =

1

2z

(
−t2 + z2 +

∑
i

x2
i −R2

)
,

which leads to the metric

ds2 =
R2

z2

(
−dt2 + dz2 +

∑
i

dx2
i

)
.

In these coordinates, the boundary is given by z = 0. The region close to the boundary
is often called �UV� region, as it corresponds to small scales and high energies. Corre-
spondingly, the large z region is often called �IR� region. Note that while the Poincaré
coordinates only cover a part of the entire AdS spacetime given by (2.1), the boundary
is a general feature appearing in all coordinate systems.
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2.2 AdS/CFT

Studies of the AdS/CFT correspondence were initiated by Juan Maldacena's ground-
breaking paper in 1997 [3], which related M theory in an anti-de Sitter (AdS) spacetime
of d + 1 dimensions to a conformal �eld theory (CFT) in d dimensions, de�ned on the
AdS boundary. A short summary of the ideas behind AdS/CFT will be presented here.

An underlying assumption of AdS/CFT is the 't Hooft limit: A strongly coupled SU(N)
gauge theory cannot be treated perturbatively in terms of its coupling constant gYM.
However, one can consider the limit N → ∞ (while keeping λ = g2

YMN �xed), i.e. a
theory with in�nitely many colors. Then, the Feynman diagrams can be written in a
perturbation series in 1/N , and the result closely resembles a perturbative expansion in
closed string theory. This requires identifying f(λ)/N with the string coupling constant
gs (where f(λ) can be any function of our �xed λ), with the leading order terms (planar
diagrams) being of order O(N2). This resemblance suggests a close connection between
gauge theories and strings.

The setup considered by J. Maldacena uses type IIB string theory, which contains closed
superstring in 10 dimensions. We put N (3 + 1)-dimensional D-branes ("D3 branes")
parallel to each other, allowing open strings to have endpoints on each of the branes,
which corresponds to a U(N) symmetry. The low-energy limit of this construction is
U(N) N = 4 Super Yang-Mills (SYM) theory, which is conformally invariant.

At the same time, we can consider how the low-energy limit a�ects the closed strings
in the 10-dimensional bulk that contains the D-branes. In this limit, only the massless
graviton modes survive, giving supergravity. However, since two open strings on the
D-branes can connect to form a closed string and "escape" into the bulk, the bulk and
brane theory are connected (with string coupling gs = Yang-Mills coupling g2

YM ). The
branes have mass and thus curve the space around them. Close to the singularity of the
branes the resulting geometry is AdS5 × S5 containing supergravity, while the N = 4
SYM theory "lives" on the 4-dimensional boundary of AdS5.

To use the supergravity approximation, the AdS curvature R should be much larger than
the string length, which leads to the condition gsN � 1. In this case, the SYM theory
is strongly coupled, while the supergravity theory is weakly coupled. Thus, AdS/CFT
connects a strongly coupled theory, where perturbation theory cannot be used, to a
weakly coupled one, where calculations are much simpler. Because states and operators
from a (d + 1)-dimensional theory get mapped to a d-dimensional one, the idea behind
AdS/CFT is often called the �holographic principle�.

While the construction of AdS/CFT involves supersymmetry, the models we will be
discussing here do not explicitly use supersymmetry. As the S5 part of the AdS5 × S5

side of the duality corresponds to the N = 4 supersymmetry on the CFT side (due to the
equivalence SO(6) ∼ SU(4)), we can restrict ourselves to studying the duality between
Einstein gravity in AdS5 and a general CFT in 4 dimensions. The logic behind AdS/CFT
can be extended to other numbers of dimensions. For example, 11-dimensional M theory
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yields a duality between AdS4× S7 and an N = 8 CFT. Again, the non-supersymmetric
version connects gravity in AdSd+1 with a d-dimensional CFT without supersymmetry.
This general form of AdS/CFT is what will be considered here, with a special focus on
the d = 3 case.

2.3 Entanglement Entropy

The entanglement entropy SA is a measure of the quantum-mechanical entanglement
between two disjoint regions A and B, where B covers the entire space not covered by A.
For example, in a continuous (3+1)-dimensional quantum �eld theory, we could separate
the space at a constant time t by a sphere in R3, and de�ne the inside of the sphere as
A and the outside as B. We can also choose a discrete system, such as a spin chain of N
elements, in which case we would de�ne n elements as region A and the remaining N −n
elements as region B.

To formally de�ne entanglement entropy, we use the von Neumann entropy. Consider a
quantum-mechanical system that can be described by the state |ψ〉. The density matrix
is ρ = |ψ〉〈ψ|, and the corresponding von Neumann entropy is de�ned as

S = −tr (ρ log ρ) .

If ρ corresponds to a pure (unentangled) state, and thus ρ = ρ2, S vanishes.

We now separate our system into subsystems A and B, i.e. we separate the total Hilbert
space into Htot = HA ⊗ HB. The reduced density matrix ρA is then de�ned by taking
the partial trace of the total density matrix ρtot over all states in subsystem B:

ρA = trB ρtot =
∑

|ψi〉∈HB

〈ψi|ψtot〉〈ψtot|ψi〉 ,

where we wrote ρtot in terms of the pure zero-temperature state |ψtot〉. For nonzero
temperature, we can set ρtot = e−βH , with inverse temperature β and Hamiltonian H.

The entanglement entropy is now de�ned as the von Neumann entropy of the reduced
density matrix,

SA = −trA (ρA log ρA) .

Intuitively, the entanglement entropy measures the amount of information an observer
in A can discern about B through entanglement, without having direct access to B. If
the state of the entire system can be written as a product state |ψtot〉 = |ψA〉|ψB〉, i.e.
without entanglement between A and B, then ρA corresponds to a pure state and SA
vanishes.
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SA has a number of important properties:

• Invariance under A↔ B: At zero temperature, for a separation of the total Hilbert
space into Htot = HA ⊗HB corresponding to regions A and B,

SA = SB .

• Subadditivity: For A divided into regions A1 and A2,

SA1 + SA2 ≥ SA . (2.2)

This statement is easily explained: Because SA1 measures the entanglement be-
tween A1 and B ∪A2 and vice-versa, SA1 +SA2 contains contributions from entan-
glement between regions in A.

• Strong subadditivity: For two arbitrary (intersecting) subsystems A and B,

SA + SB ≥ SA∪B + SA∩B . (2.3)

Intuitively, this result is explained by entanglement between the regions A∩(A∩B)C

and B ∩ (A ∩ B)C (where AC is the complement of A), which only contributes to
the right-hand side of (2.3). For A ∩B = 0, (2.3) reduces to (2.2).

These three statements also result directly from the holographic de�nition of entangle-
ment entropy, to be introduced now.

2.4 Holographic Description of Entanglement Entropy

With the knowledge of AdS/CFT in mind, one may ask the following question: If we
consider entanglement entropy between some disjoint regions A and B in a strongly
coupled conformal �eld theory that lives on the boundary of a (d+1)-dimensional AdSd+1

spacetime, what is its dual description in the bulk?

The solution to this problem relies on generalizing the (d − 1)-dimensional boundary
∂A between A and B, which we can interpret as an information horizon between the
two regions. S. Ryu and T. Takayangi suggested the following [4]: Consider a (d − 1)-
dimensional surface at constant time in the AdSd+1 bulk whose boundary is given by
∂A. As an information horizon, it closely resembles the horizon of a black hole, whose
horizon area AH is proportional to the its entropy

SBH =
AH
4GN

,

which is the famous Bekenstein-Hawking entropy formula. On a black hole horizon,
the extrinsic curvature of the horizon surface vanishes at every point, which makes it
minimal (or more generally, extremal). Thus, it is reasonable to assume that the surface
area of the information horizon is minimal as well, so that the entanglement entropy
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associated with its d-dimensional surface area is as small as possible. The result is the
Ryu-Takayanagi formula

SA =
Area(γA)

4Gd+1
N

,

where γA is the minimal surface spanning ∂A, and Gd+1
N is Newton's constant in d + 1

dimensions.

For d = 2, γA is simply a constant-time geodesic in AdS3 connecting the two boundary
points of region A. This can be visualized classically: If A and B cannot communicate
with each other, then geodesics connecting both regions are not allowed. The geodesic γA
connecting the boundary points separates the geodesics with both endpoints in A from
those with both endpoints in B. For d > 2, γA describes a higher-dimensional minimal
surface, extending the notion of a geodesic.

2.5 Holographic Entanglement Entropy: An Example

Consider the case d = 2 in Poincaré coordinates. Empty AdS3 spacetime is given by the
metric

ds2 =
R2

z2

(
−dt2 + dz2 + dx2

)
.

The boundary is given by a (1 + 1)-dimensional CFT. We can take a slice of constant t
and pick a symmetric region A de�ned by −l ≤ x ≤ l. The geodesic γA connecting the
two boundary points is given by the solution to the geodesic equation for the geodesic
length

|γA| =
∫ l

−l
dx
R

z

√
1 +

dz(x)

dx
.

Requiring δ|γA| = 0, we get the equation

z′′(x)z(x) + z′(x)
2

= −1 .

Recognizing that the left-hand side is equal to d2

dx2
( z

2

2 ), we can integrate this expression
twice to obtain

z(x) =
√
−x2 +Ax+B.

Our boundary conditions z(−l) = z(l) = 0 yield A = 0 and B = l2. Thus, the geodesic is
simply a semicircle around z = x = 0. In order to compute a �nite length, we introduce
a small z cuto� z0. Then the length is given by

L = 2

∫ √l2−z20
0

dx
Rl

l2 − x2
= 2R artanh

√
1 +

z2
0

l2
= 2R log

l

z0
+O(z2

0) .

The corresponding entanglement entropy then directly follows as

SA =
|γA|
4GN

=
c

3
log

l

z0
,
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where we have written the result in terms of the central charge of the CFT, given by
c = 3R

2GN
(for a full treatment of and comparison with the CFT-side calculations, see

e.g. [5]). It should not worry us that SA is formally divergent: The UV boundary
corresponds to an in�nite energy scale, which can only lead to meaningful quantities
after regularization.

Let us now review the properties of entanglement entropy listed earlier, and how they
reduce to properties of minimal surfaces in the holographic construction:

• Invariance under A↔ B: From our previous example, it is clear that exchanging A
and B does not a�ect the construction of the minimal surface. This changes when
considering nonzero temperatures, which will be discussed below.

• Subadditivity: This property reduces to a simple geometrical statement: After
subdividing a region A into two subregions A1 and A2, the minimal surfaces γA1

and γA2 covering the subregions cannot have a total area smaller than the area of
the minimal surface γA. Otherwise, γA1∪γA2 would be a smaller �minimal� surface.

• Strong subadditivity: Two intersecting regions A and B have minimal surfaces γA
and γB intersecting each other. The intersection curve cuts both surfaces into an
�outer� and �inner� part. The union of the outer two parts gives a surface with
boundary A ∪ B, while the union of the inner two parts has the boundary A ∩ B.
Neither of the two surfaces can have an area smaller than the actual minimal
surfaces corresponding to their boundaries, leading to strong subadditivity.

All three cases are visualized for geodesics in �gure 1. The fact that they reproduce
the usual properties of entanglement entropy shows that the holographic construction is
sensible.

2.6 Nonzero Temperatures

We can also look at nonzero temperatures, where we no longer assume pure states. To
understand what geometries correspond to thermal states, it is most convenient to use
hyperbolic global coordinates for AdSd+1. For d = 2, the coordinate transformation from
the embedding coordinates is given by

T = R cosh ρ cos t , X1 = R sinh ρ cos θ ,

W = R cosh ρ sin t , X2 = R sinh ρ sin θ ,

which leads to the metric

ds2 = R2(− cosh2 ρ dt2 + dρ2 + sinh2 ρ dθ2) .

Note that we allow time in these coordinates to take any value t ∈ R, even though
the coordinate transformations are invariant under t → t + 2nπ, n ∈ Z. The angle θ
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Figure 1: Properties of minimal surfaces, visualized with geodesics in Poincaré coordi-
nates (with cuto� at z = 0.1). Upper two plots: Exchange of A ↔ B. Lower left plot:
Subadditivity of A1 and A2. Lower right plot: Strong subadditivity of A∪B and A∩B.

is restricted to [0, 2π]. The boundary is located at ρ → ∞. We now perform a Wick
rotation t→ itE to Euclidean time tE , which leads to

ds2 = R2(cosh2 ρ dt2E + dρ2 + sinh2 ρ dθ2) .

Unlike t, we take tE to be periodic. This periodicity can be made explicit using the
coordinate transformation

cosh ρ =
r

r+
, Rθ = r+τE , RtE = r+φ ,

leading to the new metric

ds2 = (r2 − r2
+)dτ2

E +
R2

r2 − r2
+

dr2 + r2dφ2 .

Taking φ ∈ [0, π], this is the metric of the BTZ black hole with Euclidean time and a
horizon at r = r+. The periodicity of θ leads to τE ∈ [0, 2πR/r+].

In the CFT on the boundary, the Wick rotation leads to a system described by statistical
mechanics [6] at an inverse temperature β equal to the length of a closed loop in imaginary
time. For a large radial cuto� r0 � r+, this leads to

β = r0

∫
dτE = 2πR

r0

r+
=
RL

r+
,
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r cos ϕ

r sin ϕ

Figure 2: Geodesics in an AdS geometry with a black hole (center) in global coordinates.
Region A and B on the boundary are shown as blue and red dashed curves. Their
respectively minimal surfaces (geodesics) are shown as solid curves.

where we have used the spatial length of the CFT given by L = 2πr0. As we are
considering the limit of an in�nitely long subsystem, we have β

L = R
r+
� 1. Note that

this corresponds to high temperatures.

We have thus shown the equivalence of a thermal CFT at high temperature and the
metric of a black hole in AdS spacetime. We can interpret the thermal state of the CFT
as being dual to the thermal Hawking radiation emitted by the black hole. In fact, the
calculation of the Hawking temperature T = 1/(4πrS) of a black hole with Schwarzschild
radius rS is quite similar to the above and also considers a near-horizon �eld theory.

The presence of a black hole a�ects the shape of minimal surfaces. Figure 2 shows how
this violates the invariance A↔ B of two subsystems A and B: Even though they share
the same boundary, the minimal surfaces bounding a simply connected volume extending
from each region are not identical. From the side of the geodesic equations, this shows
up as the appearance of two solutions for each pair of boundary points.
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3 Holographic Description of Local Quenches

In this part, we re-derive and extend some of the results of Nozaki et alii [7] on a
holographic system that describes a local quench. In particular, we will extend previous
calculations to AdS4 spacetime, where we seek to construct an exact solution. We will
also discuss the reliability of a perturbative approach.

3.1 AdS Spacetime with Freely Falling Mass

The simplest bulk geometry that we can consider is empty AdSd+1 spacetime of radius
R, given here in Poincaré coordinates:

ds2 =
R2

z2

(
dz2 − dt2 +

d−1∑
i=1

dx2
i

)
. (3.1)

As we described earlier, this is dual to a CFT at zero temperature. As a �rst extension
to this model, one might consider the addition of a mass m that is moving freely in the
z direction. It follows a geodesic minimizing the proper time

τ =

∫ √
−ds2 = R

∫ √
−dz2 + dt2

z
= R

∫ t1

t0

dt

√
1− ż(t)
z(t)

.

For simplicity, we have set all xi = 0. The solution for z(t) that minimizes τ is given by

z(t) =
√

(t− t0)2 + α2 , (3.2)

where α is an arbitrary positive constant. In the solution, we can see the peculiar feature
of AdS spacetime that a massive object thrown towards the horizon returns after �nite
time. We can easily see that α in our solution is the value of z at which the mass turns
around at time t0. The energy of the mass can be easily calculated: At t = t0, the mass
stands still and has no kinetic energy, while the total energy scales with z according to
E ∝ √gtt = R/z. Therefore,

E =
Rm

z(t = t0)
=
Rm

α
. (3.3)

To describe this system holographically, we �rst need the metric gµν that is created by
placing the mass m in the AdS spacetime. As the mass moves with time, the metric
becomes time-dependent as well and has a rather complicated form. However, we can
greatly simplify the situation by performing a coordinate transformation to global coordi-
nates (τ, r, θi) (with i = 1, 2, . . . , d−1), where the θi are the standard angular coordinates
on Sd−1. In terms of the embedding coordinates (T,W,Z,Xi), the Poincaré coordinates
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(t, z, xi) are mapped to

T =
Rt

z
=
√
R2 + r2 sin τ ,

W =
1

2z

(
eβR2 + e−β

(
z2 − t2 +

∑
i

x2
i

))
=
√
R2 + r2 cos τ ,

Z =
1

2z

(
−eβR2 + e−β

(
z2 − t2 +

∑
i

x2
i

))
= rΩd ,

Xi =
Rxi
z

= rΩi ,

(3.4)

where i again runs from 1 to d− 1. In this notation, Ωi is the ith component of the solid
angle, e.g. (Ω1,Ω2) = (cosφ, sinφ) for d = 3. The constant β can have any real value.
Applying the coordinate transformation to the empty AdS geometry (3.1), we get

ds2 = −(R2 + r2)dτ2 +
R2

R2 + r2
dr2 + r2dΩ2

d−1 .

Note that there is no dependence on β. Now, we map the trajectory of our mass, given
by (3.2), to global coordinates. For simplicity, we set t0 = 0. Using (3.4), we get

1

2z

(
−eβR2 + e−βα2

)
= rΩd .

Upon �xing β by requiring that α = Reβ , we see that our trajectory is mapped to r = 0,
without any dependence on global coordinate time τ . This simpli�es our system greatly,
as we can now use the general AdS black hole metric (see [8]) as a solution for the
geometry outside the mass:

ds2 = −(R2 + r2 − M

rd−2
)dτ2 +

R2

R2 + r2 − M
rd−2

dr2 + r2dΩ2
d−1 , (3.5)

where M corresponds to the actual mass m via

M =
8Γ(d2)GNR

2

(d− 1)πd/2−1
m . (3.6)

This solution can be mapped back to Poincaré coordinates using our previous coordinate
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Figure 3: Time dependence of metric component gtt for t = 0, 2, 4 in AdS4 with falling
mass. Horizontal axis gives radius ρ =

√
x2

1 + x2
2. Units correspond to M = R = α = 1.

transformations with eβ = α/R. Explicitly, we require:

r =
R

z

√∑
i

x2
i +

1

4α2
(α2 + t2 − z2 −

∑
i

x2
i )

2 ,

dτ = 2α
(α2 + z2 + t2 +

∑
i x

2
i )dt− 2t(zdz +

∑
i xidxi)

(α2 + z2 − t2 +
∑

i x
2
i )

2 + 4α2t2
,

r2dΩ2
d−1 =

R2

z2

(
((α2 − z2 + t2 −

∑
i x

2
i )dz + 2(zdz − tdt+

∑
i xdxi))

2

4α2z2

+
∑
i

(dxi −
x

z
dz)2

)
− dr2 .

The �nal expression of gµν in Poincaré coordinates is rather complicated and depends
heavily on the dimension d, so it is omitted here. See �gure 3 for a plot of gtt for several
values of t, for the case d = 3 (AdS4). The region inside the horizon is not plotted. Note
the complicated shape of the horizon for t 6= 0, and how the distortions created by the
mass extend towards the z = 0 boundary along two "arms". We will later see that these
correspond to a radially propagating excitation on the boundary.

Our coordinates correspond to a black hole geometry with a horizon (with the exception
of d = 2, where we can have a de�cit angle solution without a horizon). However, in
the context of AdS/CFT it is important to consider here a mass distribution without a
horizon that can be described by a pure state. Thus, we assume that the mass is spread
out just slightly beyond the horizon of our coordinates, so that our metric is still valid
close to it.
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3.2 Stress-Energy on the Boundary

In order to understand the e�ect of the AdS dynamics on the boundary, we need the
stress-energy tensor. We will focus on the d = 3 (AdS4) case here, which will be relevant
later. Because our system is radially symmetric, we use polar coordinates ρ =

√
x2

1 + x2
2

and φ = atan(x2/x1).We can study the boundary stress-energy by considering the metric
in the Fe�erman-Graham gauge,

ds2 =
R2

z2

(
dz2 + gab(ρ, z, t)dx

adxb
)

,

where a, b run over the coordinates ρ, φ, t. gab is a rescaled metric on a space-time at
constant z. Close to the boundary z = 0, we can expand gab(ρ, z, t) in powers of z:

ds2 =
R2

z2

(
−dt2 + dz2 + dρ2 + ρ2dφ2

+z3(tttdt
2 + 2tρtdρdt+ tρρdρ

2 + tφφdφ
2)
)

+O(z2) .

(3.7)

The e�ects of the mass on the empty AdS metric at its boundary are completely contained
in tab, as all higher terms are negligible in the limit z → 0. It is related to the boundary
stress-energy tensor [9] via

Tab =
3R2

16πGN
tab . (3.8)

However, the metric gµν we computed in the last section is not in the Fe�erman-Graham
gauge. Instead, it has the form

ds2 =
R2

z2

(
−dt2 + dz2 + dρ2 + ρ2dφ2

+z3(Adρ2 +Bdρdt+ Cdt2 +Ddz2)
)

+O(z2) ,

(3.9)

with the coe�cients A to D given by

A =
32Mα3

R3

t2ρ2

((α2 + t2 − ρ2)2 + 4α2ρ2)5/2
,

B = −32Mα3

R3

tρ(α2 + t2 + ρ2)

((α2 + t2 − ρ2)2 + 4α2ρ2)5/2
,

C =
8Mα3

R3

(α2 + t2 + ρ2)2

((α2 + t2 − ρ2)2 + 4α2ρ2)5/2
,

D =
8Mα3

R3

1

((α2 + t2 − ρ2)2 + 4α2ρ2)3/2
.

We want to remove the second dz2 term using a coordinate transformation z → z′. This
gives us the following condition: √

1

z2
+Dz dz =

dz′

z′
.
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We can integrate this equation, which gives us

2

3

(√
1 +Dz3 − 1

2
ln

√
1 +Dz3 + 1√
1 +Dz3 − 1

)
= ln z′ + c .

As we can ignore higher-order terms in z, we can expand z′(z) as

z′ = e
2
3

√
1+Dz3−c

(√
1 +Dz3 − 1√
1 +Dz3 + 1

)1/3

=
e2/3−CD1/3

22/3
z +O(z4) .

In order to reach the Fe�erman-Graham gauge, we require z′ = z to �rst order. Thus,
we need to set

c =
2

3
+

1

3
ln
D

4
.

All O(1/z2) terms in the metric (3.9) now create additional terms:

1

z′2
=

(
D

4

)2/3

e
4
3

(1−
√

1+Dz3)

(√
1 +Dz3 + 1√
1 +Dz3 − 1

)2/3

=
1

z2
− D

3
z +O(z4) .

Reversing both sides and using z′ = z +O(z4), this turns into

1

z2
=

1

z′2
+
D

3
z′ +O(z′

4
) .

After writing (3.9) in terms of z′ and comparing the result with (3.7), we can identify
the components of tab, and by using (3.8), Tab:

Ttt =
3R2

16πGN

(
C − D

3

)
=

Mα3

πGNR

(α2 + t2 + ρ2)2 + 2t2ρ2

((α2 + t2 − ρ2)2 + 4α2ρ2)5/2
,

Ttρ =
3R2

16πGN

B

2
= − 3Mα3

πGNR

tρ(α2 + t2 + ρ2)

((α2 + t2 − ρ2)2 + 4α2ρ2)5/2
,

Tρρ =
3R2

16πGN

(
A+

D

3

)
=

Mα3

2πGNR

(α2 + t2 + ρ2)2 + 8t2ρ2

((α2 + t2 − ρ2)2 + 4α2ρ2)5/2
,

Tφφ =
3R2

16πGN

D

3
ρ2 =

Mα3

2πGNR

ρ2

((α2 + t2 − ρ2)2 + 4α2ρ2)3/2
.

The energy density on the boundary is given by Ttt. We can con�rm that there is no
energy "leaking out" by integrating Ttt over the entire boundary:∫ 2π

0
dφ

∫ ∞
0

dρ ρ Ttt =
M

2αGNR
=
mR

α
= E ,

where we used (3.6) and (3.3) for the last two steps. The energy density is plotted in
�gure 4 for di�erent values of α. Only positive values of t are plotted, as Ttt is symmetric
under t→ −t.
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Figure 4: Time evolution of boundary energy density Ttt along the radius ρ for α =
0.5, 1.0 and 1.5, respectively. Units correspond to M = GN = R = 1.

We can now give an interpretation of the boundary CFT that the falling mass in AdS
is dual to. For t → −∞, the system is in equilibrium. Around t = 0, the system is
excited locally, and the excitation propagates radially within the CFT, until it reaches
equilibrium again at t → ∞. This system is equivalent to a local quench, which is
described by a Hamiltonian H1 that changes to H2 at time t = 0, and thus forces the
system to adjust to a new equilibrium.

The height of the excitation at t = 0 is proportional to the mass m. The width of the
peak is characterized by α, as we can clearly see in �gure 4.

As the excitation corresponds to a pure state in the AdS spacetime, points along the
peak of the �shockwave� are entangled with each other. Thus it is interesting to consider
the model in terms of entanglement entropy.

3.3 Perturbative Approach

The holographic entanglement entropy can be calculated in Poincaré coordinates, as long
as we only consider O(M) corrections to the empty AdS metric. Again, we will restrict
ourselves to the AdS4 case. Setting M = 0, we retrieve the empty AdS metric

g(0)
µν dx

µdxν =
R2

z2

(
dρ2 + ρ2dφ2 + dz2 − dt2

)
. (3.10)

As can be easily checked, the minimal surface γ
(0)
A for a circular boundary centered

around ρ = 0 on a constant time slice is given by

z =
√
l2 − ρ2 , 0 ≤ φ ≤ 2π , (3.11)

where l is the radius of the boundary circle (at z = 0). We can now express the minimal
surface area A(0) in the form

A(0) =

∫
d2ξ
√

detG(0) , (3.12)
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where G(0) is the induced metric on the minimal surface γ
(0)
A . In (ξ1, ξ2) = (ρ, φ) coordi-

nates, using (3.10) and (3.11), we get

G(0)
µν dx

µdxν =
R2

l2 − ρ2

(
l2

l2 − ρ2
dρ2 + ρ2dφ2

)
. (3.13)

Now, we consider how the minimal surface area A changes to linear order in M :

A =

∫
d2ξ
√

det(G(0) +G(1) +O(M2))

=

∫
d2ξ
√

detG(0)︸ ︷︷ ︸
A(0)

+
1

2

∫
d2ξ
√

detG(0)Tr[G(1)(G(0))−1]︸ ︷︷ ︸
A(1)

+ O(M2) . (3.14)

To get to the second line, we used the expansion

det(A+ εB) = detA+ εdetA Tr[BA−1] + O(ε2) .

The entanglement entropy relative to the ground state M = 0, denoted ∆SA, can be
estimated by A(1):

∆SA =
A−A(0)

4GN
=
A(1)

4GN
+O(M2) .

In the (ρ, φ) coordinates of (3.13), the inverse and determinant of G
(0)
µν can be easily

calculated:

(G(0))−1 =

(
(l2−ρ2)2

R2l2
0

0 l2−ρ2
R2ρ2

)
,

√
detG(0) =

R2lρ

(l2 − ρ2)3/2
.

G
(1)
µν is obtained by taking the O(M) term of the full Poincaré metric gµν and using (3.11)

to calculate the induced metric on γA. The only nonzero component is

G(1)
ρρ =

8α3Mρ2

R
√
l2 − ρ2

(
α4 + α2 (−2l2 + 2t2 + 4ρ2) + (l2 − t2)2

)3/2
.

The �rst-order term of the minimal surface area for a circular boundary according to
(3.11) is thus given by

A(1) =
4α3M

Rl

∫ 2π

0
dφ

∫ l

0
dρ

ρ3(
α4 + α2 (−2l2 + 2t2 + 4ρ2) + (l2 − t2)2

)3/2

=
πM

Rlα

 α4 + 2α2t2 +
(
l2 − t2

)2√
α4 + 2α2 (l2 + t2) + (l2 − t2)2

−
∣∣α2 − l2 + t2

∣∣ . (3.15)
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Figure 5: First-order correction to minimal surface area for a circular boundary centered
around the origin. Units correspond to M = R = α = 1 and l = 5.

The time dependence is shown in �gure 5. The peak of A(1) corresponds to the greatest
amount of entanglement entropy created by the mass M , and occurs when the mass
touches the M = 0 minimal surface, which occurs at t =

√
l2 − α2.

We can generalize this result to a circular boundary that is not centered around the
origin ρ = 0, but shifted by a distance d. If we use (x, y) instead of (ρ, φ) coordinates,

and shift along the x direction, the form of the minimal surface γ
(0)
A at M = 0 is

z =
√
l2 − (x− d)2 − y2 . (3.16)

The induced metric (3.13) now turns into

G(0)
µν dx

µdxν =
R2

z4

(
(l2 − y2)dx2 + (l2 − (x− d)2)dy2 + 2(x− d)ydxdy

)
,

with z(x, y) according to (3.16). The inverse and determinant of G
(0)
µν become

(G(0))−1 =
z2

R2l2

(
l2 − (x− d)2 −(x− d)y
−(x− d)y l2 − y2

)
,

√
detG(0) =

R2l

z3
.

The form of G
(1)
µν is more complicated for this case, as the full metric gµν is symmetric

around (x, y) = (0, 0), while γ
(0)
A is symmetric around (x, y) = (d, 0). The �nal integrand√

detG(0)Tr[G(1)(G(0))−1] is equally complicated, so it is best integrated numerically.
The results are plotted in �gure 6 for di�erent values of d, as a function of time t.

Note that the peak is sharp if d � l. This is easily explained: The mass touches the
M = 0 minimal surface at t =

√
l2 − α2 − d2, but only for d ≤

√
l2 − α2. Thus, for
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Figure 6: First-order correction to minimal surface area for a circular boundary centered
around (x, y) = (d, 0). Units correspond to M = R = α = 1 and l = 5. d takes the
values 2, 4 and 6 (blue, orange, green).

d >
√
l2 − α2, we only have long-range e�ects of the mass. It should be noted that the

perturbative result may not be reliable when the mass is close to the minimal surface, as
this corresponds to the largest deformations of γA, and O(M2) e�ects may be relevant.
Figure 7 shows the dependence of A(1)(t) on d for an l�

√
α2 + d2, where we can trust

our perturbative result at all values of t.

3.4 Exact Results in AdS3

For d = 2, calculating the holographic entanglement entropy is equivalent to calculating
the length of a one-dimensional geodesic γA connecting two points on the boundary. It
is possible to solve the geodesic equations exactly, using global coordinates. In Poincaré
coordinates, the endpoints of this geodesic are labeled by (t, xi, z0), with i = 1, 2, where
time t is �xed and z0 → 0 is the cuto� parameter. In global coordinates, this translates
to two points (τi, θi, ri) given by

tan τi =
2t

1
α(x2

i − t2) + α
,

tan θi =
2xi

1
α(x2

i − t2)− α
,

ri =
R

2z0

√
4x2

i + (
1

α
(x2
i − t2)− α)2 ,

(3.17)
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Figure 7: First-order correction to minimal surface area for a circular boundary centered
around (x, y) = (d, 0). Units correspond to M = R = α = 1 and l = 0.5. d takes the
values 0.2, 0.4 and 0.6 (blue, orange, green).

where we already took the limit z0 → 0 by discarding z2
0 terms. In global coordinates,

the geodesic length corresponding to the metric (3.5) is given by

|γA| =
∫

ds =

∫ λ2

λ1

dλf(λ) ,

f(λ) =

√
−(R2 + r2 −M)

(
dτ

dλ

)2

+
R2

R2 + r2 −M

(
dr

dλ

)2

+ r2

(
dθ

dλ

)2

,

(3.18)

where λ parametrizes the geodesic. By requiring that the variation δ|γA| vanishes, we
get the geodesic equations

d

dλ

(
R2r′

f(λ)(R2 + r2 −M)

)
=

r

f(λ)

(
θ′

2 − τ ′2 − R2r′2

(R2 + r2 −M)2

)
,

d

dλ

(
r2θ′

f(λ)

)
= 0 ,

d

dλ

(
τ ′(R2 + r2 −M)

f(λ)

)
= 0 ,

where a prime indicates di�erentiation with respect to λ. We want to choose λ so that
these expressions become as simple as possible. A useful choice [10] is to take dλ as the
length element, which corresponds to setting

f(λ) = 1 (3.19)
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in the resulting equations. These are then simpli�ed to

R2(R2 + r2 −M)r′′ −R2rr′
2

= r(R2 + r2 −M)2(θ′
2 − τ ′2) ,

2
r′

r
+
θ′′

θ′
= 0 ,

τ ′′

τ ′
+

2rr′

R2 + r2 −M
= 0 .

Integrating the second and third equations yields

θ′ =
A

r2
,

τ ′ =
B

R2 + r2 −M
,

where A and B are positive constants. Combining these two, we get

dτ

dθ
=

Cr2

R2 + r2 −M
, (3.20)

where C = B/A. Using condition (3.19), we also get

r′
2

=
R2 + r2 −M

R2
+
B2

R2
− A2(R2 + r2 −M)

R2r2
,

which, using our result for θ′, again allows us to eliminate the dependence on λ:

dr

dθ
=

r

R

√
C2r2 + (

r2

A2
− 1)(R2 + r2 −M) . (3.21)

With equations (3.20) and (3.21) we can now calculate a geodesic parametrized by r.

First, we consider a symmetric interval (x1, x2) = (−l,+l). The coordinate transforma-
tion (3.17) tells us that such an interval corresponds to endpoints with τ1 = τ2, thus the
geodesic is time-independent. Also, the endpoints are at equal radii r1 = r2. Equation
(3.20) gives C = 0, which in turn simpli�es (3.21). If we de�ne r? as the turning radius
of the geodesic curve, with dr

dθ |r=r? = 0, we can put (3.21) into the simple form

dr

dθ
=

r

Rr?

√
r2 − r2

?

√
R2 + r2 −M . (3.22)

With this expression we can �nally calculate the length of the geodesic, and thus the
entanglement entropy:

SA =
|γA|
4GN

=
1

2GN

∫ r2

r?

dr

√
R2

R2 + r2 −M
+ r2

(
dθ

dr

)2

=
R

2GN

∫ r2

r?

dr
r√

r2 − r2
?

√
R2 + r2 −M

=
R

2GN
log

2r2√
R2 + r2

? −M
,
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where we used r2 � r?, which is valid in the z0 → 0 limit, to simplify the last expression.

We still need to express r? in terms of θ2 = −θ1, which we get from integrating (3.22)
with r2 →∞:

θ2 =

∫ r2→∞

r?

dr
Rr?
r

√
r2 − r2

?

√
R2 + r2 −M

=

{
R√

R2−M arctan
√
R2−M
r?

if M < R2

R√
M−R2

artanh
√
M−R2

r?
if M > R2

. (3.23)

The two cases M < R2 and M > R2 are a peculiarity of (2 + 1)-dimensional AdS space:
Even if the massM is compressed to a point, there will be no black hole (and no horizon)
if M < R2. As mentioned earlier, for M > R2 we assume that the mass is distributed
slightly beyond the coordinate horizon, so that there is no actual black hole and we can
describe the system as a pure state.

For the ground state M = 0, r? = R/ tan θ2, and the entanglement entropy is simply

SA =
R

2GN
log

2r2√
R2 + r2

?

=
R

2GN
log

(
2r2

R
sin θ2

)
.

Thus, the entanglement entropy relative to the ground state is given by

∆SA =


R

2GN
log

(
R√

R2−M

sin
(√

1− M
R2 θ2

)
sin θ2

)
if M < R2

R
2GN

log

(
R√

R2−M

sinh
(√

M
R2−1 θ2

)
sin θ2

)
if M > R2

.

Note that r2 vanishes, so the expression is not divergent in the z0 →∞ limit. The result
is plotted in �gure 8 for the case M > R2. The time-dependence is qualitatively similar
to the perturbative result for AdS4 (compare �gure 5).

3.5 Half-line in AdS3

An interesting choice of region A is to separate the space of the CFT in two parts, with
the origin of the local quench along the boundary. In AdS3, this corresponds to choosing
a subsystem (x1, x2) = (0, l) in Poincaré coordinates and taking the limit l→∞. Again,
this system has been solved exactly.

As we now have to consider τ dependence, we can no longer set C = 0 in (3.20). De�ning
s = R2 −M , the turning radius r? is now given by

r2
? =

1

2

(√
(A2(C2 − 1) + s)2 + 4A2s+A2(1− C2)− s

)
.
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Figure 8: Exact result for the entanglement entropy of a local quench in AdS3, relative
to the M = 0 value. Units correspond to R = α = 1,M = 2 and (x1, x2) = (−5.0, 5.0).

The integral of global time τ is given by

|τ2 − τ1| = 2

∫ ri→∞

r?

dr
CrR

(r2 + s)

√
C2r2 +

(
r2

A2 − 1
)

(r2 + s)

=
R√
s

(
arctan

2AC
√
s

A2 −A2C2 + s
mod π

)
, (3.24)

where the modulo operation ensures that the arctan function returns angles in the [0, 2π]
range. Similarly, the integral for θ is

|θ2 − θ1| = 2

∫ ri→∞

r?

dr
R

r
√
C2r2 + ( r

2

A2 − 1)(R2 + r2 −M)

=
R√
s

(
arctan

2A
√
s

A2 −A2C2 − s
mod π

)
. (3.25)

The entanglement entropy follows from the integral

SA =
|γA|
4GN

=
1

4GN

2∑
i=1

∫ ri

r?

dr

√
−(R2 + r2 −M)

(
dτ

dr

)2

+
R2

R2 + r2 −M
+ r2

(
dθ

dr

)2

=
R

4GN

2∑
i=1

∫ ri

r?

dr
r

A
√
C2r2 + ( r

2

A2 − 1)(r2 + s)

=
R

4GN

(
log

4r1r2√
(s−A2 +A2C2)2 + 4sA2

+O
(
r−2

1 , r−2
2

))
.
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Figure 9: Exact result for the entanglement entropy of a local quench in AdS3, relative
to the M = 0 value. Units correspond to R = α = 1,M = 2 and (x1, x2) = (0.0, 5.0).

Using (3.24) and (3.25), the entanglement entropy can be written directly in terms of
the di�erences in τ and θ:

SA =
R

4GN

[
log

(
2

s
r1r2

)
+ log

(
cos

(√
s

R
|τ2 − τ1|

)
− cos

(√
s

R
|θ2 − θ1|

))]
.

The non-divergent entanglement entropy relative to the ground state therefore reads:

∆SA =
R

4GN
log

 R2

R2 −M

cos
(√

1− M
R2 (τ2 − τ1)

)
− cos

(√
1− M

R2 (θ2 − θ1)
)

cos(τ2 − τ1)− cos(θ2 − θ1)

 .

(3.26)

The time dependence with regard to Poincaré time t enters through the de�nitions of τ
and θ in (3.17). For the half-line, the explicit expressions are:

τ2 − τ1 = arctan
2t

1
α(l2 − t2) + α

− arctan
2t

− 1
α t

2 + α
,

θ2 − θ1 = arctan
2l

1
α(l2 − t2)− α

.

A typical plot for �nite l is given in �gure 9. Compared to �gure 8, the peak is much
broader, as the mass in AdS3 never touches the M = 0 minimal surface.

We can make a few simpli�cations for the l → ∞ case we are interested in. We are
also assuming t � α, as we are interested in the behavior of the entanglement entropy
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Figure 10: Log-linear plot of �gure 9, focused on the region before the peak. In the
region 1 < t < 2, the time dependence is nearly logarithmic.

when the two excitations are clearly separated between subsystems A and B, and as we
discussed earlier, the width of the excitation is characterized by α. First, we simplify

τ2 − τ1 '
2αt

l2
+

2α

t
− π ,

θ2 − θ1 ' π −
2α

l
.

The entanglement entropy can now be expanded in a
t and considered in the limit l→∞.

This yields

∆SA =
R

4GN

[
log

(
R√

R2 −M
sin

(
π

√
1− M

R2

))
+ log

t

α
+O

(α
t

)]
.

The most noteworthy part of this equation is the log t
α term. The entanglement entropy

created by the local quench increases logarithmically as the two excitations travel further
away from the boundary at x = 0. This corresponds to shifting the peak in �gure 9 to
t→∞. Of course, ∆SA is only unbounded because we assume A is in�nitely large.

Even for moderately large l, we can observe the log t behavior for α� t� l. See �gure
10 for a log-linear plot of the full solution of ∆SA.

The logarithmic time dependence of the entanglement entropy after a local quench has
also been found on the CFT side [11], corresponding to a system where two half-lines are
joined at t = 0. However, such calculations are restricted to (1 + 1)-dimensional CFTs
and it is not clear how they generalize to higher dimensions.
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Figure 11: Falling mass in Poincaré AdS3. Dashed blue lines represent geodesics for
M = 0 for regions 0 < x < l with varying size l. Black line represents z cuto�.

3.6 Exact Results in AdS4

We would like to understand the time dependence of the entanglement entropy for sim-
ilar regions in higher dimensions. However, our perturbative result is not reliable: For
instance, the generalization of the boundary half-line with x ≥ 0 in AdS3 is a half-space
x1 ≥ 0, x2 ∈ R on the AdS4 boundary. We can consider this as the limit of a region A
in the x1 ≥ 0 half, e.g. a half-disk, whose size goes to in�nity. However, as A grows, the
minimal surface γA extends further into the bulk, close to the mass, where we can no
longer trust our perturbative result. For the same reason, we needed an exact result for
the AdS3 case to consider the l → ∞ limit of our half-line. The problem is sketched in
�gure 11. As the subsystem size increases, the minimal surface (geodesic in AdS3) gets
arbitrarily close to the trajectory of the falling mass.

In this limit, the minimal surface becomes a plane separating the x < 0 from the x > 0
region (a line in AdS3). The perturbative prediction is easily calculated. We need to set
x1 = dx1 = dt = 0 in the O(1) and O(M) terms of our metric gµν in Poincaré coordinates

to get the induced metrics G
(0)
µν and G

(1)
µν . Following (3.14), the �rst-order correction to

the surface area (geodesic length for AdS3) generated by the mass in AdSd+1 is then
given by

|γA|(1) =
1

2

∫
dd−1ξ

√
detG(0)Tr[G(1)(G(0))−1] =

1

2

∫ ∞
0

dz

∫
dd−2x

(
R

z

)d−3

TrG(1) .

For a region A of in�nite size, assuming t� α, this yields

|γA|(1) =
πMt

2Rα
for AdS3, |γA|(1) =

4Mt

Rα
for AdS4. (3.27)
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Figure 12: Perturbative result for the geodesic length/minimal surface area in AdS3 (left)
and AdS4 (right). Boundary is located at x = 0 and covers the range 0 ≤ z ≤ 10 (and
−10 ≤ y ≤ 10 for AdS4 case). Units correspond to M = R = α = 1.

For the AdS3 case, the metric gµν was calculated in analogy to the AdS4 case, as outlined
in section 3.1. The time dependence of the results in AdS3 and AdS4 are shown in �gure
12, for a �nite integration area. The limiting cases given by (3.27) are also plotted.

According to this perturbative calculation, we expect a linear growth of the entanglement
entropy with time t for a half-plane region A in AdS4. It is clear from the AdS3 case,
however, that this result is not reliable: There, the perturbation also predicts a linear
growth, and not a logarithmic one, as we calculated exactly in section 3.5. We should
therefore seek an exact result to the AdS4 case, as well, instead of relying on perturbative
calculations.

For �nding an exact solution, we �rst consider the simplest case of a disk-shaped region A
in Poincaré coordinates, as this allows us to ignore time dependence in global coordinate
τ , equivalent to the AdS3 case of a symmetric interval. The transformations into the
remaining coordinates (r, θ, φ) are given by

tan θ =
2
√
x2 + y2

1
α(x2 + y2 − t2)− α

,

tanφ =
y

x
,

r =
R

2z0

√
4(x2 + y2) + (

1

α
(x2 + y2 − t2)− α)2 ,

(3.28)

for a point (x, y, t) on the AdS boundary at cuto� z = z0. Again, we have omitted
z2

0 terms in the coordinate transformations. For a disk-shaped subsystem, we have a
boundary x2 + y2 = l2, and the system is rotationally symmetric around φ.
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For dτ = 0, we can write the surface area as

|γA| =
∫

dA =

∫ 2π

0
dφ

∫ λ2

λ1

dλ f(λ) , (3.29)

f(λ) = r sin θ

√
R2

R2 + r2 − M
r

(
dr

dλ

)2

+ r2

(
dθ

dλ

)2

,

where λ parametrizes the surface along lines of constant φ. This is signi�cantly more
complicated than (3.18). For instance, if we �x f(λ)

r sin θ = 1 in the solution, similar to our
treatment of (3.18), then δ|γA| = 0 leads the equations

1 + r2θ′
2 − rr′θ′

tan θ

R2

R2 + r2 − M
r

+R2r′
2 R2 − M

2r

(R2 + r2 − M
r )2

= 0 ,

r2θ′
2

+ tan θ(3rr′θ′ + r2θ′′)− 1 = 0 .

It is not possible to integrate these expressions directly. A di�erent choice of λ does not
signi�cantly simplify these expressions, either.

An alternative is to integrate the expressions numerically. For this approach, the choice
λ = r gives us the following di�erential equation determining θ(r):

3rθ′ + r2θ′′ +
g(r)2θ′( r

2

R2 + M
2rR2 )− r2θ′3 + r4θ′θ′′

g(r) + r2θ′2
− g(r)

tan θ
= 0 ,

where we de�ned g(r) = R2

R2+r2−M/r
. A numerical approach would then have to �nd

a function θ(r) to ful�ll this equation with the starting condition θ(r?) = 0, calculate
the corresponding θ0 = θ(r → ∞) and create an inverse function r?(θ0), where θ0 is
t-dependent according to (3.28). The area could then be calculated by (3.29) using the
numerical θ(r), with the lower integration bound given by r = r?.

Unfortunately, �nding a function θ(r) numerically is almost impossible, as the solution
must contain a free constant corresponding to some choice of r?. But θ(r < r?) cannot
be real and thus θ(r) has a restricted domain, which makes the numerical construction
of such a function extremely di�cult. The complicated form of the di�erential equation
makes this approach even more problematic.

For a non-symmetric boundary, we also have to consider time dependence in τ , and the
expressions get even more complicated. We thus conclude that solving the di�erential
equations for a minimal surface directly is not practical.

However, that does not mean a numerical approach is impossible. Instead of construct-
ing an extremal surface from a minimum point at radius r?, it would be preferable to
construct a solution directly from the boundary conditions. This is the motivation for
the approach that we will now introduce.
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4 Numerical Approach

In this part, we introduce a new algorithm to calculate extremal surfaces in curved
spacetime. We will �rst explain basic principles of numerical optimization and the �nite-
element method, before explaining the features of our algorithm and applying it to the
holographic description of local quenches discussed in the last part.

4.1 Numerical Basics

Finite Element Method

Our goal is to numerically compute a surface with �xed boundary conditions in a given
4-dimensional spacetime. The surface area must be extremal, or more precisely, minimal
for space-like variations and maximal for time-like ones. In order to describe such a
surface numerically, we need to discretize it:

• Boundary curve → Boundary points: The boundary conditions are given by a set
of NB coordinate points (vertices). They are chosen such that the segments (edges)
connecting the vertices form an NB-polygon that closely approximates the exact
one-dimensional boundary curve.

• Continuous surface → Surface points: The surface is discretized by a set of NP

vertices that have to be determined by the algorithm.

• Surface area → Area of triangulation: The dynamic vertices are connected to each
other via NF triangles (faces) that cover the discretized surface. The total area of
the surface is approximated by the sum of the areas of each face.

The nomenclature used here ("vertices", "edges", "faces") is standard in graphics com-
putations. While a description of the surface in terms of both vertices and faces may
seem redundant, it is important to distinguish both computationally: The vertices are
the dynamical variables of the simulation, while the faces are only stored as a set of three
indices that point to the actual vertices.

This discretization approach is usually called "�nite element method", as it separates
a continuous domain into discrete ("�nite") elements. The continuous problem (in our
case: area optimization) is then broken down into a set of simpler problems for each
element. As the size of the elements is decreased, the discrete solution approaches the
continuous one.

Newton Optimization

A standard method for numerically �nding the extremum of a function is Newton's
method. As the simplest case, consider a smooth function f(x) that can be evaluated at
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arbitrary x ∈ R and that has one extremal point in its domain. One starts at some point
x0 and performs the following step recursively:

xn+1 = xn −
f ′(xn)

f ′′(xn)
. (4.1)

For su�ciently large n, xn converges to an x? with f ′(x?) = 0. E�ectively, each iteration
n corresponds to approximating f(x) by a quadratic function around x = xn, and then
choosing the extremum of the approximation as xn+1. Therefore, the method converges
fastest when the function is approximately quadratic between xn and x?. An example
where Newton's method fails is the function f(x) =

√
|x|, which clearly has a minimum

at x = 0. However, applying (4.1) leads to the recursion xn+1 = 3xn, which increases
the distance to the minimum at every step. This is because the iteration step always
moves xn in the direction where |f ′| decreases. Even if the function behaves quadratically
around its extremum, the method will diverge if the starting point x0 is in a region where
|f ′| steadily decreases towards positive or negative in�nity.

For the computational purposes needed here, we can use the following, modi�ed version:

xn+1 = xn − a
f ′(xn)

|f ′′(xn)|
, (4.2)

where a factor |a| ≤ 1 stabilizes the convergence by forcing smaller step sizes. a > 0
corresponds to a minimum search and a < 0 to a maximum search.

For vector-valued functions f(~x), (4.1) is modi�ed to

~xn+1 = ~xn −H[f(~xn)]−1~∇f(~xn) , (4.3)

where H is the Hessian matrix de�ned by

H[f(~xn)]ij =
∂2f

∂xi∂xj

∣∣∣∣
~x=~xn

.

For most numerical applications, f can be evaluated at any point, but the form of f ′ and
f ′′ are not known explictly. Therefore, the derivatives have to be evaluated using �nite
di�erences [12]. If the step size is given by ∆ and the ith unit vector by ~ei, then the �rst
and second derivatives at ~x = (x1, . . . , xd) have the following �rst-order approximations:

∂f

∂xi
' 1

2∆
(f(~x+ ∆~ei)− f(~x−∆~ei)) +O(∆2) ,

∂2f

∂xi∂xj
' 1

4∆2
(f(~x+ ∆~ei + ∆~ej)− f(~x+ ∆~ei −∆~ej)

−f(~x−∆~ei + ∆~ej) + f(~x−∆~ei −∆~ej)) +O(∆2) .
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Finite Element Optimization

We now apply Newton optimization to our problem of extremizing the area of a dis-
cretized surface. The total area is given by

Atot(~x1, . . . , ~xNP
) =

NF∑
i=1

Ai(~xti,1 , ~xti,2 , ~xti,3) ,

where Ai is the area of the ith face and depends on the triangle vertices with indices
ti,1, ti,2, ti,3. The total area is extremal for the condition

∂Atot(~x1, . . . , ~xNP
)

∂xp,k
= 0 , (4.4)

for all NP dynamic vertices with index p and coordinate k. In d dimensions, this gives
NP ·d conditions on NP ·d independent variables. This can be rewritten to a set of NP ·d
equivalent local conditions: ∑

ti3p

∂Ai(. . . , ~xp, . . . )

∂xp,k
= 0 , (4.5)

where the sum runs over all faces ti (with area Ai) that contain the vertex p. In other
words, if the position of each vertex extremizes the area of its neighboring faces, then
the entire surface is extremal.

There are two approaches to solving this set of equations. The �rst is to consider the
variation of all NP vertices at once, as in (4.4). Of course, Newton's method for NP · d
dimensions would be terribly ine�cient, as it involves the computation and subsequent
inversion of a (NP · d) × (NP · d) Hessian matrix. A common approach for this type
of problem is the conjugate gradient method [13], which produces (NP · d)-dimensional,
mutually orthogonal search directions along which the problem is optimized. However,
the number of required optimization steps still scales linearly with (NP · d).

The second approach, which will be used here, relies on the conditions (4.5). The idea is to
optimize the problem for each vertex separately, while all others are held �xed. However,
if all vertices are far from the exact solution, many repetitions would be required for
convergence, as each step could only lead to a shift of a each vertex of the scale of the
distance to adjacent vertices.

As a solution to this problem, we use recursive subdivision: We start with a very coarse
mesh consisting of few vertices and optimize each of the points repeatedly, until the
vertex positions are su�ciently convergent. Then, we subdivide the mesh into smaller
faces and repeat the procedure. This ensures that after each subdivision, the new vertices
are already close to their optimal positions.
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Figure 13: Two subdivision strategies for triangular faces. The �rst creates one mid-face
vertex, the second three mid-edge vertices. Neighboring faces are shaded di�erently.

Subdivision Strategies

In order to recursively subdivide a triangular mesh, we need a suitable subdivision algo-
rithm. We require the following properties:

• Shape Conservation: The subdivided mesh has to closely follow the geometry of the
original one, so that as much information as possible from the previous optimization
step is preserved. As we are optimizing the total surface area, an ideal subdivision
algorithm does not change it.

• Smoothness: In the limit of in�nite iterations, the mesh must be locally smooth
everywhere, so that it can converge to any simply-connected surface.

• Homogeneous Resolution: The vertices approximating the surface should be dis-
tributed evenly, so that the face size decreases on the same scale throughout the
whole mesh at each iteration. An exception is a geometry that has greater curva-
ture in some regions and is �at in others, where the latter require less vertices for
a good approximation.

The �rst condition suggests that the old vertices should be preserved by the subdivision
process. Furthermore, to preserve the total surface area, all new vertices have to lie on
existing faces. This leaves only two symmetric and irreducible ways to subdivide each
face, both of them shown in �gure 13.

While the �rst method creates only one new vertex per face in each iteration, it violates
the second condition: As the subdivision also preserves edges, edge length does not
vanish in the limit of in�nite iterations. The second method, however, satis�es all of
our conditions: At each iteration, all edges are in divided in two and all faces in four
parts. Thus, the subdivided geometry becomes smooth at su�ciently many iterations.
As the number of points increases exponentially with iteration number NI , so does the
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computational e�ort for one iteration.

Note that the subdivision of faces with boundary vertices has to be treated di�erently:
After subdividing the edge along the boundary in half, the new boundary point has to
be �xed along the analytical boundary curve, instead of the center of the original edge.

4.2 Minimal Surfaces in Hyperbolic Space

Exact Solution

As a simple system to test the algorithm, we consider minimal surfaces in hyperbolic
3-dimensional space, using Poincaré coordinates:

ds2 =
R2

z2

(
dz2 + dx2 + dy2

)
. (4.6)

This is the same as an empty AdS4 spacetime with dt = 0. Surfaces in such a metric
were already computed numerically for various boundary conditions by Fonda et alii [14],
who also used a �nite element approach. However, their approach relies on the conjugate
gradient method for minimizing discretized surfaces, and does not cover time-dependent
boundary conditions or massive deformations of the metric, which we will include in the
next sections.

We start with simple circular boundary conditions given by√
x2 + y2 = l0 , z = z0 . (4.7)

We already know the minimal surface for this case: It is a half-sphere, given by (3.11).
Using (3.12) and (3.13), we get

A = 2πR2

√1 +

(
l0
z0

)2

− 1

 . (4.8)

Note that the radius l at the AdS boundary z = 0, as de�ned in (3.11), is given by
l =

√
l20 + z2

0 in terms of our �cut-o�� radius l0. The surface area diverges as z0 → 0.

Triangle Area

For our numerical simulation, we need to know the area of a triangle in hyperbolic space.
In �at space, the area of a triangle spanned by vectors ~v1 and ~v2 is given by the simple
formula

A4 =
1

2
|~v1 × ~v2| =

1

2

√
(~v1 · ~v1)(~v2 · ~v2)− (~v1 · ~v2)2 .
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For the triangle area spanned by two di�erential vectors dvµ1 and dvµ2 on a Riemannian
manifold with metric gµν , this formula generalizes to

dA4 =
1

2
|dv1 ∧ dv2| =

1

2

√
|dv1|2|dv2|2 − |dv1 · dv2|2

=
1

2

√
(gµνdv

µ
1dv

ν
1 )(gρσdv

ρ
2dv

σ
2 )− (gµνdv

µ
1dv

ν
2 )2 , (4.9)

where we used Lagrange's identity for the wedge product a ∧ b to get to the second
step. If we parametrize the di�erential vectors as the derivative of a function xµ along
two coordinates t and u, the result is equivalent to half the standard di�erential area
element:

dA4 =
1

2

√(
gµν

dx

dt

µdx

dt

ν)(
gρσ

dx

du

ρdx

du

σ)
−
(
gµν

dx

dt

µdx

du

ν)2

dtdu

=
1

2

√
detGµν dtdu ,

where Gµν is the induced metric on the surface parametrized by xµ(t, u). By integrating,
we can now get a full expression for the area of a triangle. After a high number of
iterations, we can assume a locally Euclidean geometry around the triangle. For our case
of purely spatial surfaces, we can thus parametrize it in the form ~x(t, u) = ~p+ t~v1 + u~v2,
where 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1 − t. The total area of a triangle in hyperbolic space in
Poincaré coordinates is then given by

A4 = |~v1 × ~v2|
∫ 1

0
dt

∫ 1−t

0

du

z(t, u)2

= |~v1 × ~v2|
∫ 1

0
dt

(
1

v2,z(pz + tv1,z)
− 1

v2,z(pz + tv1,z + (1− t)v1,z)

)
= |~v1 × ~v2|

(
log (pz + v1,z)

v1,z(v2,z − v1,z)
+

log (pz + v2,z)

v2,z(v1,z − v2,z)
− log pz
v1,zv2,z

)
,

where the �rst factor is the standard Cartesian cross product between the vectors span-
ning the triangle. This expression is terrible for numerical evaluation. It requires the
calculation of three logarithms, and has vanishing denominators for v1,z = 0, v2,z = 0
and v1,z = v2,z. The analytical limit v1,z, v2,z → 0, however, where z is assumed to be
constant along the triangle, is very simple:

A4 ≈
|~v1 × ~v2|

2p2
z

.

Because area evaluation is the most costly part of the entire algorithm, we will use this
expression for the case of hyperbolic space. However, as the choice of the triangle vertex
~p is arbitrary, we will use the z coordinate of the triangle midpoint instead, to make the
expression symmetric under relabeling of vertices.
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Figure 14: An example for a surface with normal vectors at each point.

Normals

In principle, each dynamic vertex has three degrees of freedom that have to be considered
by Newton's method. However, we have to constrain the direction in which vertices can
be moved. This is necessary to prevent vertices from distributing unevenly along the
discrete surface and accumulating in a certain region. Also, there are cases when the
optimal vertex position is not unique. A vertex that lies on a �at plane of surrounding
faces, for instance, does not change the surface area when moved along this plane. The
component of the Hessian matrix along this direction becomes zero, and its inverse in
(4.3) diverges.

It is thus preferable to constrain each vertex to a direction orthogonal to its surrounding
surface, and perform a one-dimensional optimization along this direction. To construct
such a normal vector, we have to consider the normals of the surrounding faces, and
average them. An example of such normal vectors along a discrete surface is shown in
�gure 14. In order to compute the normals correctly, the faces need to be oriented. This
is achieved by using the order in which the three vertices ~pi of each face are being stored.
The cross product (~p1 − ~p3)× (~p2 − ~p3) is chosen to always point to the �outside� of the
surface.

Numerical Simulation

As a �rst step of the algorithm, we have to choose a way to tesselate the initial surface.
After subdividing the boundary into NB boundary vertices, we add one dynamic vertex
in the center of the circle and connect it with all boundary vertices, creating NB initial
faces. The position of the dynamic vertex is then updated via Newton's method until
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the surface area has su�ciently converged towards the minimum. Each face is then
subdivided into four smaller faces, which corresponds to the second strategy in �gure 13.
The process is repeated as long as the di�erence between successive iterations is higher
than a given tolerance.

The �rst two iterations are shown in �gure 15. With each iteration, the discrete surface
more closely approaches the exact solution, which is a half-sphere cut o� at z = z0.
After 5 iterations, the result is the discrete surface shown in �gure 16. It consists of 721
dynamic vertices and 1536 faces, and was computed in only three seconds on a personal
computer.

The convergence of the discretized surface area to the actual value, which we calculated
in (4.8), is exponential. The di�erence between computed and exact value is plotted
logarithmically in �gure 17. It can be seen that the exponent of convergence does not
depend on the initial number of boundary points, which only a�ects the convergence by
a constant factor.

Error Estimation

While we can estimate the error of our simulation by the convergence speed, we can
see in �gure 17 that this gives only an order-of-magnitude estimate. For more accurate
error estimation, we require a method to estimate more precisely how close the numerical
solution is to the exact one. This can be done by noticing that the computed surface
is not actually a minimal solution to the region A enclosed by the analytic boundary
(4.7), but to a region Apoly within a polygon approximating the boundary. From the
property of subadditivity of entanglement entropy, we know that if Apoly ⊆ A, then the
entanglement entropy (and thus the minimal surface area) is bounded by SApoly

≤ SA.
Conversely, if the polygon contains the exact boundary, the discrete solution is an upper
bound to the exact entanglement entropy.

Thus, we estimate the numerical error by performing the algorithm twice: In the �rst
run, the boundary points lie on the exact boundary, so the result will give a lower bound
on the exact solution. In the second run, the points lie on a slightly larger curve, so that
the polygon exactly encloses A, giving an upper bound on the solution. For the circular
region considered here, the radius of the outer curve is given by

l′0 =
l0

cos π
2NI−1NB

,

where NI is the number of iterations and NB the number of boundary points at NI = 1.

The numerical values of the minimal area from the lower and upper bound condition are
shown for several iterations in �gure 19. The exact result is bracketed by the estimates.
For NI = 5, the numerical estimate is 2.6024 ± 0.0012, compared to the exact value of
2.6026 at the same number of signi�cant digits. The method appears to be reliable, and
is therefore used for all subsequent numerical estimates.
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Figure 15: First steps of the algorithm: Initialization → Vertex optimization → Subdi-
vision → Vertex optimization. Metric is given by (4.6). Parameters are R = l0 = z0 = 1
and NB = 6 at initialization.
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Figure 16: Discrete surface after 5 iterations. Same parameters as in �gure 15.
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Figure 17: Di�erence between discretized surface area and exact result for NB = 3 (blue)
and NB = 6 (yellow) initial boundary points, after NI iterations of the algorithm.

4.3 Extremal Surfaces in AdS4 Black Hole Spacetime

Time-independent Case

The method developed for purely spatial surfaces in the last section will now be applied
to the AdS4 black hole metric in global coordinates. It is given by:

ds2 = −
(
R2 + r2 − M

r

)
dτ2 +

R2

R2 + r2 − M
r

dr2 + r2dθ2 + r2 sin θ2dφ2 . (4.10)

In principle, we could also use the Poincaré coordinate form, but as discussed in section
3.1, the exact form of this metric is very complicated and thus ine�cient to use in a
numerical simulation.

As it is inconvenient to use angular coordinates (r, θ, φ) in a numerical simulation, we
instead use pseudo-Euclidean X,Y, Z coordinates (capitalized to avoid confusion with
the Poincaré coordinates). De�ning

r =
√
X2 + Y 2 + Z2 ,

a = R2 + r2 − M

r
,

b =
1

a

(
M

r3
− 1

)
,

the metric can be written as

ds2 = −adτ2 + (1 + b)(dX2 + dY 2 + dZ2) + 2b(dXdY + dY dZ + dZdX) . (4.11)
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Figure 18: Bounding the exact region A by polygons. For the enclosing polygon, the
position of the initial boundary points depends on the number of subdivisions, as the
boundary points are static throughout the program.
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Figure 19: Numerical results from lower (blue) and upper bound estimate (red) for a
varying number of total iterations. Exact result given by blue line. Parameters are
R = l0 = z0 = 1 and NB = 6 at initialization.
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The coordinate transformation for a boundary point (t0, x0, y0, z0) in the Poincaré form
in the z0 → 0 limit is given by

tan τ0 =
2t0

1
α(x2

0 + y2
0 − t20) + α

,

X0 =
R

z0
x0 ,

Y0 =
R

z0
y0 ,

Z0 =
R

2z0

(
1

α
(x2

0 + y2
0 − t20)− α

)
.

(4.12)

Looking at these expressions, it is clear that a cuto� at small z0 corresponds to a radial
cuto� at large r0 =

√
X2

0 + Y 2
0 + Z2

0 .

Note the e�ect of the constants R and α: While R corresponds to the spatial size of
the boundary in global coordinates, changing α corresponds to rescaling the Poincaré
coordinates (t, x, y, z). In fact, we can remove the explicit α dependence by using unitless
coordinates (t̃, x̃, ỹ, z̃) = (t/α, x/α, y/α, z/α). In our simulations, we always set α = 1.

Surfaces at constant time τ in global coordinates have a boundary with constant radius√
x2

0 + y2
0 = l in Poincaré coordinates, i.e. a circle centered around x = y = 0. We

already computed a perturbative result for this case in section 3.3.

For the numerical simulation, we can now use the same algorithm as for the case of empty
hyperbolic space. However, there is one modi�cation: The geometry described by (4.10)
has a horizon at R2 + r2 − M

r = 0. As the algorithm modi�es the position of dynamic
vertices in discrete steps, we have to take care that no vertices cross the horizon. If they
do, the step size is shortened until the vertex ends up outside the horizon.

An example for the minimal surface that the algorithm produces is shown in �gure 20.
Note how the surface wraps itself around the horizon of the metric, just as the geodesics
in the AdS3 case. In global coordinates, the metric is static and the boundary depends
on the value of Poincaré time t. The peak region, where the mass moves closest to the
minimal surface in Poincaré coordinates, corresponds to a boundary in global coordinates
with its center close to the origin.

The quantity that we are interested in is ∆A, the di�erence between the surface area
of the geometry with a black hole and the one with M = 0, both of which are cuto�-
dependent. It is clear that we must choose z0 (or equivalently, r0) so that the near-horizon
region is contained. The choice depends on the mass parameter M , the value of t0, and
of course the size l of region A, and has to be chosen carefully in each case.
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Adaptive Subdivision

The part of the surface we are interested in is the region close to the horizon, i.e. the
region of small r. For small values of z0, however, the geometry largely consists of a
conical surface which is �at in the radial direction. It is therefore preferable to weaken
the third of the conditions for subdivisions from section 4.1, and modify the subdivision
strategy to increase the density of discretization points at small r. This is achieved by
modifying the way we split edges when subdividing a face. Instead of dividing evenly
at the center, we generate the new vertex ~pnew from the edge vertices ~pe,1 and ~pe,2 with
radii re,1 and re,1 in the following manner:

~pnew =
rae,2

rae,1 + rae,2
~pe,1 +

rae,1
rae,1 + rae,2

~pe,2 .

Here, a is a positive real number that determines how strongly vertices are concentrated
at small value of r. a = 0 corresponds to the subdivision at the center. Figure 21
shows the dependence of the subdivision on a. If a is too large, the assumption that the
space around each face is locally Euclidean is no longer justi�ed even at large iteration
numbers, and the surface area calculation loses accuracy. For the purposes here, a value
of a between 0.2 and 0.5 has usually led to the best convergence behavior.

Numerical Results: Symmetric Quenches

We can now compare the numerical results with the O(M) perturbative result given by
(3.15). First, we look at the case l < α, for which the minimal surface at M = 0 does
not touch the falling mass, and we can have some con�dence in the perturbative result.
As we can see in �gure 22, numerical and perturbative result agree very well for smallM
and l. As expected, the agreement is best for large t, where the surface is further away
from the horizon and thus O(M2) e�ects in the metric are small.

In �gure 23, we see an example for l > α. For large t, where the surface is again far
away from the horizon, the agreement is very good, but around the peak (where the
mass touches the M = 0 surface) the perturbative result signi�cantly diverges from the
numerical one. However, the shape remains the same and the peak is sharp in both
versions. It is thus reasonable to assume that the numerical method works reliably and
that the deviations from the perturbative approach are the result of higher-order e�ects
in M . We observe that the O(M) perturbative calculation consistently overestimates
∆A. There is an intuitive explanation for this: If the minimal surface is close the mass,
it wraps around part of the horizon to minimize its area. However, the perturbation
assumes an O(M) metric correction without a horizon, leading to a minimal surface with
a larger area extending further into the bulk.
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Figure 20: Minimal surface in AdS black hole geometry along a symmetric, constant-
time boundary. The sphere represents the coordinate horizon. Parameters are l0 = 1,
z0 = 0.25, t0 = 0.8, M = R = 1, NB = 6 and NI = 5.

Figure 21: Adaptive subdivision of mesh, corresponding to a = 0.1 and a = 0.8. Param-
eters as in �gure 20.
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Figure 22: Minimal surface area relative to M = 0 value for a symmetric boundary.
Points are results of the �nite-element method, curves correspond to the perturbative
result. Parameters are M = 0.5, l = 0.25 and z0 = 0.025 for �rst plot, M = 2, l = 0.5
and z0 = 0.05 for the second plot, and R = α = 1 for both. Error bars for numerical
results too small to display.
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Figure 23: Minimal surface area relative to M = 0 value for a symmetric boundary.
Points are results of the �nite-element method, curve corresponds to the perturbative
result. Parameters are M = 1.0, l = 2.0, z0 = 0.4 and R = α = 1.
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Time-dependent Case

We now move on to a non-symmetric subsystem shape. The coordinate transformation
(4.12) tells us that any non-circular boundary in Poincaré coordinates leads to a boundary
in global coordinates that depends on time τ . The full metric (4.11) with nonzero dτ
has to be used.

Therefore, the algorithm needs to be modi�ed to handle surfaces in 3 + 1 dimensions.
Each dynamic vertex now has two degrees of freedom during the application of Newton's
method: A space-like one in the direction of the normal vector (computed only along
the spatial part of the surface), and a time-like one. Therefore, we have to use the
multidimensional version of Newton's method, given by (4.3). Previously, we modi�ed
the method to ensure that vertices would be changed in a direction which decreases the
surface area. This still works for the space-like direction, but in the time-like direction
we now have to maximize the area, as varying the time component of a point on an
extremal surface decreases its area. Instead of a one-dimensional minimization for each
vertex, the algorithm must perform a two-dimensional saddle point search.

There is another complication: The formula (4.9) used to calculate the area of a triangle
is only valid for space-like triangles. For time-like ones, i.e. for

(gµνdv
µ
1dv

ν
1 )(gρσdv

ρ
2dv

σ
2 )− (gµνdv

µ
1dv

ν
2 )2 < 0 ,

the formula returns an imaginary value. While the exact extremal surface is necessarily
space-like, there are boundary conditions for which no discretized space-like solutions
exist. This problem occurs only at a low number of discretization points, as regions
where the exact solution has strong curvature are not properly resolved. For such a
situation, a typical plot of the surface area resulting from varying a dynamic vertex in
the space-like direction XN (along the normal vector) and time-like direction τ is shown
in �gure 24. The real part corresponding to neighboring space-like faces shows the typical
saddle point structure. The imaginary part corresponding to time-like faces is nonzero
for all possible vertex positions, but has a minimum close to the saddle point of the real
part.

As part of Newton's method, this imaginary part has to be minimized at every step, until
the mesh is subdivided su�ciently so that the area function returns purely real values
for each face. Thus, the Newton step (4.3) has to be performed twice, once for the real
part (saddle point optimization) and once for the imaginary part (minimization) of the
surface area of neighboring faces.

Numerical Results: Disk with o�set

The �rst non-symmetric case we consider is a disk-shaped subsystem of radius l with an
o�set d, which we already calculated perturbatively in section 3.3. Thus, the accuracy
of the time-dependent algorithm can be tested by comparing the results.
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Figure 24: Typical plots of the real and imaginary part of the area of faces connected to
a vertex, which is varied along a space-like (∆XN ) and time-like direction (∆τ).

Figure 25 gives two examples for small subsystem sizes. As for the symmetric case, the
agreement between perturbative and numerical result is perfect for large t, where the
mass is far away from the minimal surface. There are only small deviations around the
peak region, where the perturbative result is least reliable. These deviations increase at
larger values of l and M , as is visible in �gure 25. Figure 26 is an example for the case
l > α. Deviations from the perturbative result are clearly seen around the peak region,
just as for the symmetric case (compare �gure 23). Both the position of the peak and
its sharp shape are reproduced by the numerical result. Therefore, we can conclude that
the numerical results are also reliable for the time-dependent case.

A typical minimal surface in global coordinates is shown in �gure 27. The τ coordinate
of each point is shown as a color gradient. The asymmetrical shape of the boundary
suggests that any analytical expressions describing the surface would have to be rather
complicated.

Numerical Results: Half-disk

We now turn to the boundary case of a half-disk, given by

x2 + y2 = l2 for x > 0, − l ≤ y ≤ l for x = 0. (4.13)

This region generalizes the half-line with 0 ≤ x ≤ l that we studied exactly in section
3.5. For l→∞, we can thus study the entanglement entropy after a local quench at the
boundary of the half-space x > 0, y ∈ R.

An example for the minimal surface in global coordinates resulting from such a boundary
is shown in �gure 28. The half-circle part of (4.13) corresponds to a half-circle parallel
to the XY plane and at constant τ in global coordinates. The line at x = 0 corresponds
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Figure 25: Minimal surface area relative to M = 0 value for an asymmetric boundary.
Points are results of the �nite-element method, curve corresponds to the perturbative
result. Parameters are l = 0.25, d = 0.05,M = 0.5 for �rst plot, l = 0.5, d = 0.2,M = 1.0
for second plot, and R = α = 1 and a t-dependent z0 cuto� for both. Error bars for
numerical results too small to display.
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Figure 26: Minimal surface area for parameters l = 2.0, d = 1.0,M = 0.5, R = α = 1
and a t-dependent z0 cuto�. Second plot shows peak region and error bars.

to an arc in the Y Z plane at X = 0, with varying τ along the curve. Again, the shape
of the boundary depends on t according to (4.12).

The error estimation method has to be changed slightly: Instead of constraining the exact
solution with an outer and inner circle, as was possible for the disk-shaped subsystems
considered so far, we now consider boundaries of half-circles with radii l and l+a, where
a is chosen so that the discretization constrains the exact half-circle. We also need to be
careful in the construction of the initial surface: It should already contain the two corner
points (x, y) = (0,+l) and (0,−l) (translated to global coordinates), and the number of
points to discretize the line and half-circle parts should be chosen such that the boundary
is evenly resolved by discretization points.

First, we will look at the general behavior for �nite l. The time dependence is plotted
in �gure 29. The behavior is similar to the AdS3 case (compare �gure 9): After an
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Figure 27: Minimal surface in AdS black hole geometry along a boundary equivalent to
a disk with an o�set in Poincaré coordinates. Time-dependence in τ is color-coded for
each vertex. The sphere represents the coordinate horizon. Parameters are l = 2, d =
0.5, z0 = 0.5, t = 2.0,M = R = α = 1, NB = 6 and NI = 6.

Figure 28: Minimal surface in AdS black hole geometry along a boundary equivalent to
a half-disk in Poincaré coordinates. Time-dependence in τ is color-coded for each vertex.
The sphere represents the coordinate horizon. Parameters are l = 2.5, z0 = 0.3, t =
1.0,M = R = α = 1, NB = 6 and NI = 6.



4 NUMERICAL APPROACH 48

accelerated increase for t < α, the area di�erence ∆A (and thus the excited entanglement
entropy) increases slowly until a peak around tpeak ≈ l

2 . It is this region α < t < tpeak
in which we want to understand the time dependence. This requires larger values of l,
increasing the scale of the boundary with respect to the size of the perturbation, which
means that it is more computationally demanding.

An example for larger l is given in �gure 30 for the l = 12 case. For comparison with the
half-line in AdS3, see �gure 31 for the exact result (equation (3.26)) in a similar region
(in that case, l is the length of the half-line instead of the radius of the half-disk). The
plots show a nearly logarithmic time dependence for both the exact AdS3 and numerical
AdS4 case.

Note that our O(M) perturbative result for the l → ∞ limit (�gure 12) predicted a
linear behavior, both for AdS3 and AdS4. However, as we showed before, this result is
not correct for the full AdS3 solution.

The numerical data produced by the algorithm is compared to three �t functions:

• Linear: ∆A(t) = R
(
a ∗ t

α + b
)
.

• Logarithmic: ∆A(t) = R
(
a ∗ log t

α + b
)
.

• Squared logarithmic: ∆A(t) = R
(
a ∗ log2 t

α + b ∗ log t
α + c

)
.

In all three cases, the dependence on R and α is �xed by the scaling properties of the
coordinate transformation, as explained earlier. For the numerical �t, each data point is
weighted by 1

∆2
i
, where ∆i is the absolute error of the respective data point.

We use a data set at l = 13, M = R = α = 1 and a dynamic z cuto� given by
z0 = 0.25

√
t2 + α2, which is translated into a radial cuto� r0 in global coordinates in

the z0 � 1 limit. Looking at �gure 28, and considering that due to the coordinate
transformations (4.12) the boundary is shifted along the Z direction for an increasing t,
it is easy to visualize why the radial cuto� should be made time-dependent to restrict
the surface to a region of small r.

For the �t, only numerical points in the range 1.8 ≤ t ≤ 5.0 are considered. Using
Mathematica, we get the following �t parameters:

Type Parameters R2

Linear a = 0.805± 0.020
b = 2.971± 0.063

0.999973

Logarithmic a = 2.346± 0.040
b = 2.854± 0.045

0.999988

Squared Logarithmic a = 0.50± 0.10
b = 1.29± 0.22
c = 3.39± 0.11

0.999997

Figures 32 and 33 show how the �t functions approximate the numerical data. The
numerical errors are of order O(10−2) or less, so the error bars are not visible.
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Figure 29: Minimal surface area relative to M = 0 value for a half-disk boundary,
numerical results. Parameters are l = 3, M = R = α = 1 and a t-dependent z0 cuto�.
Error bars for numerical results too small to display.
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Figure 30: Minimal surface area relative to M = 0 value for a half-disk boundary,
numerical results in a log-linear plot. Parameters are l = 12, M = R = α = 1 and a
t-dependent z0 cuto�. Error bars for numerical results too small to display.
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Figure 31: Minimal surface area relative to M = 0 value for a half-disk boundary, exact
result for the AdS3 case in a log-linear plot. Parameters are l = 12 and M = R = α = 1.
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Figure 32: Minimal surface area relative to M = 0 value for a half-disk boundary,
numerical results (points) and best-�t function for linear time dependence. Parameters
are l = 13,M = R = α = 1 and a t-dependent z0 cuto�.
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Figure 33: Minimal surface area relative toM = 0 value for a half-disk boundary, numer-
ical results (points) and best-�t curves for logarithmic (orange) and squared-logarithmic
(green) time dependence in a log-linear plot. Same parameters as in �gure 32.
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While the linear �t shows visible deviations from the numerical results, both the logarith-
mic and squared-logarithmic �t are very close to the plot points and each other. In fact,
the squared-logarithmic �t has only a small log2 t dependence. This is not surprising, as
the numerical results appear to lie on a straight line in the log-linear plot, suggesting a
dominant log t dependence.

It should also be noted that while the squared logarithmic �t has the highest R2 value,
it also has three free parameters, which makes it easier to approximate any function.

If we assume that the time dependence is purely logarithmic, the �t function corresponds
to an excited entanglement entropy

∆SA =
∆A

4GN
=

R

GN

(
(0.587± 0.010) log

t

α
+ (0.713± 0.011)

)
.

The results for the other �ts can be calculated accordingly.
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5 Conclusion and Outlook

In this thesis, the entanglement entropy created by a local quench was studied in the
context of AdS4/CFT3. This was done by calculating the area of extremal surfaces along
time-dependent boundaries in AdS4, using the Ryu-Takayanagi formula of holographic
entanglement entropy. On the AdS side, the system is equivalent to a freely falling mass.

After reviewing previous exact results for AdS3/CFT2 and perturbative calculations for
higher dimensions, we have attempted to describe an exact solution for AdS4/CFT3.
Due to the problems associated with �nding an analytic expression and applying direct
numerical techniques, we have developed a new type of algorithm for approximating
extremal surfaces with complicated boundary conditions, based on a �nite-element ap-
proach. After validating the algorithm by comparing its predictions with perturbative
results, we have applied it to the AdS4 case.

We were most interested in the entanglement of a region that �lls a half-plane in the CFT
space, with the local quench corresponding to an excitation along the boundary. The
time-dependence of the entanglement entropy contains information on how entanglement
propagates in the strongly coupled �eld theory. Previous results for a (1+1)-dimensional
CFT show a logarithmic time dependence, but the behavior in higher dimensions is not
yet understood.

Our numerical results apply to (2 + 1)-dimensional CFTs. While the numerical data is
not su�cient to give a de�nite result, it is suggestive of a logarithmic time dependence
of the entanglement entropy after local quenches.

We also considered the entanglement entropy of �nite, disk-shaped regions. In this case,
the perturbation theory generally underestimates the entanglement entropy induced by
the quench. The deviations are largest around the peak, i.e. when the entanglement
between the region A and its complement AC is largest.

We have only applied our algorithm to the problem of local quenches. However, it allows
us to describe the entanglement entropy in a variety of time-dependent systems in AdS4

which are beyond the scope of this work.

All of the numerical computations presented here were performed using a personal com-
puter. The accuracy of the results could be greatly increased by using high-performance
computers. This would also allow us to more clearly distinguish the time dependence of
the entanglement entropy after local quenches.

If the time dependence is truly logarithmic, it would be interesting to develop a phe-
nomenological model to describe such behavior. One possible model is the multi-scale
renormalization ansatz (MERA) [15], which has already been applied to the AdS3/CFT2

case [7].
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