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Abstract
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After recalling some basics about string theory, I dive into the AdS/CFT correspondence
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AdS

5

◊S5, and the link between ABJM theory and type IIA string theory in AdS
4

◊CP3.
In both cases (the second being an original result) I compute at strong coupling the one
and two-loop cusp anomalous dimension of a lightlike cusped Wilson loop. The results
are linked via the all-loop Bethe ansatz for AdS

4

/CFT
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proposed in [1] and a conjecture
recently made in [2].
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Introduction
Since its early days, physics has always been a matter of unification. Newton unified celestial
and terrestrial motion, Maxwell unified electricity and magnetism, Einstein unified time and
space. But since the middle of last century, a bigger form of unification is at hand. Physicists
have been trying to merge into a single theory two of science’s most honourable achievements:
Einstein’s General Relativity and the Standard Model of particle physics. This is not an
easy task, because renormalizability problems appear everytime we try to build a version of
quantum gravity.

Originally intended as a theory explaining strong interactions, string theory emerged in
the eighties, and could be today one of the most promising candidates towards a unified
theory of particles and gravity.

String theory is based on one simple idea: instead of considering pointlike particles, one
deals with one-dimensional string to be the building blocks of the world as we know it. As
simple as it looks, this has tremendous consequences on the structure of the underlying field
theory.

After the two superstrings revolutions (1984 & 1995), one of the most exciting discoveries
in the field of string theory to this day remains the Maldacena conjecture (1997), also called
AdS/CFT correspondence [4]. Through this claim, a bridge can be built between two really
di�erent worlds: the world of particle physics, with a gauge theory that has no gravity; and
the world of strings, which possesses spin-2 particles like graviton, and thus gravity. The
correspondence states that the gauge theory takes place on the boundary of an AdS space,
where the string theory actually lives. This conjecture has lead to a significant number of
publications figuring out its implications. To this day, it remains unproved, but the recent
progress in the field of integrability may change this.

A really important observable in gauge theories is the Wilson loop. It is the base to build
other gauge-invariant objects, and therefore, gives a really interesting insight into the gauge
theory. According to the Maldacena conjecture, the expectation value of a Wilson loop can
be mapped to a particular minimal string configuration [4]. Performing the computation on
both sides can give evidence for the conjecture. As an example, many calculations were done
to map the Wilson loop in N = 4 SY M to a string living in AdS

5

◊ S5.

The report proceeds with the following structure :
Section 1 is a reminder about some basics in string theory: actions, constraints, quanti-

zation. In section 2, I present the AdS/CFT correspondence with more details and give two
examples of its realisation, which are of interest for our work. In section 3, the actual original
result will be presented. It consists in a calculation of the anomalous dimension for a cusped
Wilson loop at one- and two-loop order. First, the case of AdS

5

◊ S5 is used as a motivation
for the correspondence, through the work of [5], which is understood and reproduced. Then,
we turn to the AdS

4

◊CP 3 case and the action of [6], which we use to expand the Lagrangian
at quartic order, allowing us to compute the quantities and compare them to the AdS

5

◊ S5

ones through the conjecture done in [1] and [2].
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Conventions
We will be using most of the time the (≠, +, . . . , +) signature for the metric.

Greek indices µ, ‹, . . . are D-dimensional, with in general D = 10 or 26.
Latin indices a, b, . . . are two-dimensional worldsheet indices.

÷
µ‹

= ÷µ‹ = diag(≠1, +1, . . . , +1) is the Minkowski metric.
g

µ‹

refers to an indefinite Lorentzian metric of the embedding space.

1 String theory: a basic how-to
In this section, I will describe the minimal amount of string theory formalism that is needed
for later computations. It is just a glimpse in all the framework I have studied, and an even
tinier one in the actual framework that has been developed since the 80s.
My main references for this work are [7, 8, 9, 10].

1.1 Fields and actions
The goal is to describe strings evolving in a D-dimensional space. We keep D generic for
now. It is useful throughout string theory to build analogies with pointlike descriptions: a
particle moving through space-time will be described by D scalar fields parametrized by the
proper time of the particle: Xµ(·). Since a string also has a spatial extension, we must add
a spatial parametrization through a spacelike coordinate ‡. Thus, our string is described by:

Xµ(·, ‡) µ œ {0, 1, . . . , D ≠ 1} (1)
The parameters will sometimes be written (·, ‡) © (‡0, ‡1).

These fields are scalar3 bosonic fields. The surface described by the Xµ(·, ‡) is called the
worldsheet, while the embedding space in D dimensions is refered to as the target space.
We must now give these fields dynamics. In analogy to the pointlike particle action S =
≠m

⁄ Ò
≠ẊµẊ‹g

µ‹

d· 4 , we write the Nambu-Goto action for the string:

S
NG

= ≠T
⁄

d2‡
Ô≠“ (2)

where “ = det “
ab

is the determinant of the pull-back metric on the worldsheet defined as:

“
ab

= ˆXµ

ˆ‡a

ˆX‹

ˆ‡b

g
µ‹

(3)

T is the string tension, which is often written T = 1

2fi–

Õ , with –Õ the so-called Regge slope.
This formula is a compact form for a string action, but the square root might be really nasty
in many cases (e.g. in path integral formalism), so we trade it with an equivalent form,
namely the Polyakov action:

3With respect to the worldsheet coordinates transformations. This reflects the reparametrization invari-
ance of these fields.

4We recover the classical free action in the limit c æ Œ.
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S
P

= ≠T

2

⁄
d2‡

Ô≠““abˆ
a

Xµˆ
b

X‹g
µ‹

(4)

where now “ab is a dynamical field, the auxiliary metric of the world-sheet.

1.2 Symmetries and invariances
It can be shown that the Polyakov action enjoys:

• (in case of flat target space g
µ‹

= ÷
µ‹

) Invariance under Poincaré transformations of
the fields: Xµ æ �µ

‹

X‹ + cµ.

• Reparametrization invariance under (·, ‡) æ (· Õ(·, ‡), ‡Õ(·, ‡)) for any invertible maps
· Õ, ‡Õ.

• Weyl invariance, namely invariance under

·, ‡ æ ·, ‡
Xµ æ Xµ

“ab(·, ‡) æ �2(·, ‡)2“ab .

Weyl invariance is a property of the two-dimensional world, thus making strings really
special objects.

The importance of these invariances is that, as in electromagnetism, they allow us to
remove some redundant degrees of freedom, namely gauge-fix the worldsheet metric, in order
to simplify the formulas. As a matter of fact, it is always 5 possible to choose the components
of the metric such that “

ab

= e2„(·,‡)÷
ab

6. This is called the conformal gauge7, and will be
very useful in the following.

A remark should be done here. These invariances come naturally if we think in terms of
degrees of freedom (d.o.f.) of the system. Indeed, the reparametrization invariance is a direct
consequence of the fact that we have a redundancy in our description: these coordinates
(‡, ·) have no physical meaning whatsoever because the physics should not depend on them.

1.3 Light-cone gauge
The process of quantizing a stringy system is complex. We won’t describe all the formalism,
and will only give a way to do it that will be useful in our computations.

We start by defining the light-cone coordinates:

X± = 1Ô
2

(X0 ± XD≠1) (5)

5In some curved spaces (as in [11]), this choice must be modified if combined with light-cone gauge-fixing.
6This is done in the following way: through a conformal transformation, g

Õ–— = e

2‰
g

–— , which implies for
the Ricci scalar the relation

Ô
g

Õ
R

Õ = Ô
g(R ≠ 2�‰). Solving R ≠ 2�‰ = 0, we can impose R

Õ = 0, which
implies, in 2D, a vanishing Riemann tensor.

7We did not use all our invariances. We can still set „ = 0 and get Minkowski space on the worldsheet.
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Next step consists in using the gauge freedom to write X+ as

X+ = x+ + –Õp+· (6)
which can be redefined through a time shift to X+ = –Õp+· .
Then, we remark that the equations of motions and Virasoro constraints allows to solve

entirely X≠ in terms of the other fields X i. As a matter of fact, if we make the split
X≠ = X≠

L

(‡+) + X≠
R

(‡≠), we get:

ˆ
+

X≠
L

= 1
–Õp+

D≠2ÿ

i=1

ˆ
+

X iˆ
+

X i ˆ
+

X≠
R

= 1
–Õp+

D≠2ÿ

i=1

ˆ≠X iˆ≠X i (7)

Hence, we only have D ≠ 2 degrees of freedom left, which luckily are all space-like.
Therefore, we can hope that, when quantizing, we will get no negative states at all. It is
indeed the case. Therefore, after imposing light-cone gauge, we can try and quantize the
theory by building creation and annihilation operator as in any QFT. The interesting result
is that we can build a spin-2 state that mimics the behaviour of the graviton, making the
string theory a coherent theory of quantum gravity.

The tricky point of this approach is that it seems to violate Lorentz invariance, since we
removed coordinates. To check that it is preserved, the generators of Lorentz algebra have
to be computed, and it must be checked that they obey the usual commutation relations. It
can be shown, after long computations reviewed in [8, 9] that the Lorentz algebra holds if
D = 26. This gives us the critical dimension of the bosonic string8.

1.4 From strings to superstrings
So far we have only used bosonic coordinates. We did not talk about it, but there is a
problem with this approach. Indeed, the fundamental state of such a theory is a tachyon,
whose mass obeys m2 Ã ≠ 1

–

Õ . A tachyon is problematic since it travels faster then light, and
violates therefore causality, on which a consistent quantum field theory must be based. It
means we are developing the theory around a maximum instead of a minimum.

It can be shown that the theory behaves properly (has a stable minimum and non-
tachyonic vacuum state) if we use supersymmetry. In addition to the D bosonic degrees
of freedom Xµ, we add D spinors Âµ

A

, where A is a spinor index.
A naive way to introduce these fermions is to add a Dirac action term

S = ≠T

2

⁄
d2‡

1
ˆ

a

XµˆaX
µ

≠ iÂ̄µflaˆ
a

Â
µ

2
(8)

where fl are 2D Dirac matrices. We notice then that this action is invariant up to a total
derivative under the following supersymmetry transformations (‘ is a constant spinor):

”Xµ = ‘̄Âµ ”Âµ = ≠iflaˆ
a

Xµ‘ (9)
This naive attempt, however, su�ers from flaws:

8This dimension can be found to be 26 also using other constraints on the system (vanishing of the
operator anomalous dimension, BRST quantization,...), which stands for an important self-coherence test of
the theory.
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• The supersymmetry at work is a supersymmetry of the worldsheet, which must be
introduced by hand, and is therefore not really natural. This is the Ramond-Neveu
formulation.

• There’s a problem in counting the degrees of freedom. Indeed, we know from SUSY
that the number of on-shell fermionic d.o.f. must match the bosonic one. However, if we
choose Majorana-Weyl spinors, we are left with twice as many fermionic dof as bosonic
ones. Therefore, we must require a new symmetry in order to reduce the number of
fermionic dof. This is the so-called Ÿ-symmetry.

There are a lot of technicalities in these problems, but the final answer is to use the
framework of superspace and to make supersymmetry a manifest property of the target
space: this is the Green-Schwarz approach. We can again impose a definite value of the
space-time dimension to satisfy Lorentz algebra and preserve causality: D = 10. In this case,
we are allowed to use Majorana-Weyl spinors.

The most general action we can get in this framework is the Green-Schwarz action whose
derivation is really involved. For interest see Appendix B of [12] and chapter 4 and 5 of [8].
We will only be interested in the precise form of this action in definite cases as AdS

5

◊ S5 or
AdS

4

◊CP3, for which this action can more simply be found through the coset construction.

This ends our first part about generalities. A lot of them had to be swept under the rug,
but we now have enough formalism to really study some modern string issues.
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2 The AdS/CFT correspondence
2.1 Formulation
The AdS

n

/CFT
n≠1

correspondence, also called gauge-gravity duality, was proposed in 1997
by Maldacena [4]. It states the existence of a correspondence between a gauge theory enjoying
conformal invariance in dimension n ≠ 1, and a string/M-theory on a compactified space,
where one of the factor is the n-dimensional Anti de Sitter space AdS

n

, which is the embedded
hypersurface

≠ x2

0

+ x2

1

+ · · · + x2

n≠2

≠ x2

n≠1

= R2. (10)
Stated di�erently, the gauge theory “lives” on the boundary of the space described by

the string theory9. It is remarkable, since it makes a connection between a theory with no
gravity at all (the gauge side), and a theory which includes gravity (the string side). The
precise way in how the observables are sent onto an other is beyond the scope of this report.
We shall have interest in a particular link between observables at the end of this section.

The AdS space will be here parametrized using the Poincaré patch. We do not give its
explicit form now, since it will have two di�erent expressions in the particular cases of [5]
and [6].

We will now give two examples of this correspondence.

2.2 AdS5/CFT4 correspondence
The AdS

5

/CFT
4

correspondence is the most studied, known and tested version of AdS/CFT .
A useful summarized description of the correspondence can be found in [13]. It relates a type
IIB10 superstring theory on AdS

5

◊ S5 with the N = 4 Super Yang-Mills (SYM) theory in
flat 4D space.

N = 4 SYM theory is the natural supersymmetric extension of the Yang-Mills theory.
The most simple way to derive it is to start from a N = 1 supersymmetric Yang-Mills theory
in 10 dimensions, and to perform a reduction of six coordinates.

The action is, in 10D:

S
10

= 1
g2

10

⁄
d10xTr

;
≠1

2F
MN

F MN ≠ i�̄�MD
M

�
<

. (11)

The first term is the classical Lagrangian for Yang-Mills theory, with the field strength
F

MN

= ˆ
M

A
N

≠ˆ
N

A
M

≠ i[A
M

, A
N

]. The second one looks like the massless11 Dirac equation
lagrangian, with 10-dimensional gamma matrices (representations of the Cli�ord algebra),
and the covariant derivative D

M

� = ˆ
M

� ≠ i[A
M

, �].
The dimensional reduction is performed via ˆ

M

A
N

= ˆ
M

� = 0 for M œ {4, . . . , 9}, and
additionally A

i+3

= „
i

for i œ {1, . . . , 6}. The coupling constant g
Y M

of the four-dimensional
theory is g

10

multiplied by the volume integrals which remain from the reduction procedure.
9This has been linked in many ways to ’t Hooft and Susskind’s holography principle.

10II stands for the number of supersymmetric charges (N = 2), B for the particular chirality of this theory.
11The fact that the matter fields are massless is important for the conformal invariance of the theory.
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N = 4 SYM is just a toy model for theoretical physics, since it enjoys both supersymmetry
and conformal invariance, leading to a superconformal group. In the case of N = 4 SYM,
this group is psu(2, 2|4). This mathematical fact is of importance for the correspondence.
Indeed, consider the isomorphism:

AdS
5

ƒ SO(2, 4) �SO(1, 4) S5 ƒ SO(6) �SO(5) (12)
Therefore, our background is isomorphic to:

AdS
5

◊ S5 ƒ SO(2, 4) ◊ SO(6)
SO(1, 4) ◊ SO(5) µ PSU(2, 2|4)

SO(1, 4) ◊ SO(5) (13)

Therefore, using the supercoset construction [14], one can construct the action of AdS
5

◊
S5 using this coset. The fact that the string theory on this background and N = 4 SYM
share a common superconformal group is a necessary, but not su�cient condition to the
correspondence. It helps us to see where to seek for other examples of correspondence.

A lot of observables can then be computed from N = 4 SYM: anomalous dimensions of
local operators, scattering amplitudes,... but this is not the purpose of this report. See [13]
for more details.

A commonly studied limit of this theory is the so-called planar limit. In N = 4 SYM, we
have two parameters: the rank N of the gauge group SU(N), and the gauge coupling g

Y M

.
The planar limit consists in sending N to infinity while sending g

Y M

to zero, while maintaing
their product finite. In that case, ⁄ = g2

Y M

N is called the ’t Hooft coupling. Therefore, when
proceeding to perturbative expansion, we will expand in powers of ⁄.

Note that the AdS/CFT correspondence gives the link between g
Y M

and the string
coupling constant g

S

as

g2

Y M

= 4fig
s

. (14)

2.2.1 An aside: planar limit in string theory

A slightly interesting remark can be made here about perturbative expansions in string theory.
Indeed, let us have a look at what happens when we compute the scattering amplitude of
two strings. References here are chapter 3 of [9], chapter 7 of [8] and chapter 6 of [7].

We have to sum over the di�erent topologies the worldsheet can choose. In fact, depending
on the number of “loops”, we can have the topology of a sphere, a torus, a two-handle torus,...

To implement the action of this topology, we must add to the action a term of the form
12

S
topo

= “‰ = “

4fi

⁄
d2‡

Ô≠gR, (15)

where ‰ is a term known as the Euler characteristic of the two-dimensional surface. It is
the only possibly consistent kind of interaction one may add which satisfies Weyl invariance.

According to di�erential geometry, this term should not depend on the metric. In fact,
the Gauss-Bonnet theorem simply states that

12We don’t follow the literature which denotes “ as ⁄, since for us ⁄ is already the ’t Hooft coupling.
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‰ = 2(1 ≠ g), (16)
where g is the genus of the surface.
Therefore, when considering di�erent topologies, we will write

ÿ

g

e≠2“(1≠g)

⁄
D[X, g]e≠Sstring . (17)

The string coupling constant is then defined 13 as g
s

= e“. However, we know from
AdS

5

/CFT
4

that g
s

= g2

Y M

4fi
= ⁄

4fiN
. Therefore, the topology of genus g will have a factor

–
g

= g≠2(1≠g)

s

Ã N2(1≠g), (18)
and therefore, for N æ Œ, we only have a contribution from the zero-genus surfaces, i.e. the
sphere.14

2.3 AdS4/CFT3 correspondence
These form of AdS/CFT will be of great interest in the next section. It relates a certain
type of M-theory on AdS

4

◊C4 �Z
k

with the three-dimensionnal ABJM theory on the gauge
side. However, for simplicity, we will be working in certain limits [15] that allow to go from
C4/Z

k

to S7/Z
k

ƒ CP3, and the M-theory is then a type IIA string theory. Therefore, we
relate this string theory in AdS

4

◊ CP3 to the ABJM theory, which we describe thereafter.

2.3.1 Chern-Simons and ABJ(M)

N = 6 ABJM theory, proposed in 2008 in [16], is a Chern-Simons matter theory. A N = 2
Chern-Simons theory is a topological theory in three dimensions, which is in many ways
analogue to SYM. It is described through the action:

S
CS

= k

4fi

⁄
d3x Tr

;
Áµ‹fl

3
A

µ

ˆ
‹

A
fl

+ 2
3A

µ

A
‹

A
fl

4
≠ ‰̄‰ + 2D‡

<
(19)

where k is the level of the theory, and has to be quantized to an integer (for gauge
invariance). A

µ

= Aa

µ

t
a

is the gauge field, D is an auxiliary scalar, ‡ an auxiliary scalar field,
and ‰, ‰̄ are two Dirac spinors.

As in the case of SYM, we can define the planar limit by taking N to infinity, k to infinity,
and ⁄ = N

k

fixed. We will work again at strong coupling, namely ⁄ >> 1.

To construct ABJ theory, we take two Chern-Simons theories with opposite levels k and
≠k, altogether with two gauge groups SU(N

1

) and SU(N
2

). They are coupled to four matter
fields �

i=1,...,4

which are hypermultiplets of the form
13It must be noted that “, or equivalently gs, is not arbitrary: it can be computed as the expectation value

of a constant dilation field. See (7.14) in [7] for more details.
14The relation between the genus expansion of two-dimensional surfaces and the perturbative expansion of

a SU(N) gauge field theory in the large N limit is originally due to ’t Hooft.
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� = {„, „̄, Â, Â̄, F, F̄} (20)
where „ is a complex scalar field, Â a complex Dirac spinor, and F is an auxiliary complex

field.
The ABJM theory corresponds to the case N

1

= N
2

. A good review on the subject can
be [17]. Note that though the Chern-Simons theory has been known for a long time, ABJM
theory only came up recently, particularly through its interest in the AdS/CFT duality.

2.4 Wilson loops and gauge/gravity
The main interest of this correspondence for us will be in the computation of Wilson loops.

In a non-abelian gauge field theory, a Wilson loop is defined as:

W (C) = 1
N

Tr
;

P
3

exp i
⁄

C
A

µ

dxµ

4<
(21)

where A
µ

= Aa

µ

t
a

is the gauge field, t
a

are the generators of the gauge group SU(N).
P is the path ordering operator (spatial equivalent of time ordering operator). It is needed
since the theory is non-abelian, hence one must order the generators ta. C is a curve (not
necessarily closed).

The Wilson loop is a non-local, gauge invariant observable. Indeed, if we take the simpler
abelian case of U(1), we can define a comparator between the points x and y to be

U
P

(y, x) = exp(≠ie
⁄

P

dxµA
µ

) (22)

If A
µ

(x) æ A
µ

(x)≠ i

e

ˆ
µ

–(x) under a gauge transformation, then U
P

(y, x) æ ei–(y)U
P

(y, x)e≠i–(x).
Note that the expression of the comparator depends on the path P. If we take a closed curve
C it becomes additionally gauge-invariant, thanks to the covariance of the comparator and
the cyclicity of the trace.

It can be shown [18] that all gauge-invariant functions of A
µ

are to be obtained by Wilson
loops for di�erent choices of C. A notable example is the field strength F

µ‹

.
The generalization to the non-abelian case is straightforward and yields expression (21).
We will see later that in the framework of involved theories, one can be interested in the

coupling to the matter fields. In the cae of N = 4 SYM, the Wilson loop admits a nice
generalization

W (C) = 1
N

Tr P

I

exp
Cj

C
ds

A

i
dxµ

ds
Aa

µ

ta + �
I

�I

-----
dxµ

ds

-----

BDJ

(23)

Here, �
I

are the matter fields, and �I is a “coupling” vector selecting which fields are
coupled to the loop. The fields are taken in the adjoint representation of the gauge group.

Very intuitively, a Wilson loop can be understood in terms of Feynman diagrams. For
example, in the non-abelian case of SU(3), computing the Wilson loop can amount to com-
puting the interacting potential of a quark-antiquark pair generated from the vacuum[19].
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According to the AdS/CFT correspondence, the expectation value of a Wilson loop on
the gauge side can be related to the partition function of a string configuration on the string
side. This equivalence is made explicit by mapping, via an exponential map, the Wilson loop
to a pair of antiparallel lines on the boundary of space.

The treatment of Wilson loops in large N gauge theories is performed in [20].

2.5 Semi-classical approach
This internship was all about the semi-classical quantization of strings. We would like to
motivate shortly this kind of framework.

The form of the Green-Schwarz action seems really di�cult to handle. Even after making
a choice of coordinate, fixing the gauges (metric, Ÿ-symmetry,...), choosing the vielbeins, its
interpretation remains really complicated. The hope for directly quantizing such an action
is to this day still a dream.

Therefore, we use semi-classical quantization: a particular solution of the equations of
motion is chosen (it can be the trivial one), and then small fluctuations around this equilib-
rium are set on. We can now use all the techniques of perturbative framework, in particular
evaluate path integrals using Feynman diagram techniques.

Some classical solutions to strings evolving in AdS are summed up in [19].

We have now the theoretical introduction to study a real string theory problem in the
framework of AdS/CFT: the computation of the anomalous dimension of a cusped Wilson
loop via a particular string configuration.

13



3 One- and two-loop anomalous dimension for cusped
Wilson loops

In this section, we describe the research project. All calculations done here are in Euclidean
space15.

3.1 Geometry
Our goal is to study a cusped Wilson loop. A cusp can be in general described as a non-
di�erentiable change of direction in the loop. It can be parametrized by an angle „.

uµ v‹

„

Figure 1: Cusped Wilson loop with angle cos „ = uµv

µ

|u||v| (figure from [12])

The natural quantity associated with a Wilson loop is its expectation value. As a matter
of fact, when dealing with a cusped Wilson loop, we expect this quantity to be

ÈWÍ Ã e
≠�cusp(⁄,„) log

LIR
‘UV (24)

where L
IR

and Á
UV

are infrared and ultraviolet cuto�s. The quantity we need to deal
with is therefore the cusp anomalous dimension �

cusp

(⁄, „), which is actually the coe�cient
of the regularized divergence. It has been linked to many other quantities (energy of large
strings, scattering amplitudes in their infrared strucutre), therefore its computation is of
highest interest.

At this point, AdS/CFT plays a role. We can compute the Wilson loop expectation value
through the partition function of a string configuration. More precisely

ÈW
cusp

Í = Z
string

=
⁄

D[„]e≠SE(„) (25)

where S
E

is the euclidean action of the string, depending on bosonic and fermionic fields „.
According to the correspondence, in order to map the cusped Wilson loop, one should consider
a string whose ends lie on the boundary of AdS, and two extremities make a geometrical
angle of fi ≠ „. See [19] and references therein.

15The time coordinate is Wick rotated according to x

0 æ ≠ix

0
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fl

t

„

fl = Œ

Figure 2: String configuration in AdS
4

(figure from [12])

We will describe a light-like cusp, obtained from the space-like one described above by
taking the limit „ æ iŒ. After doing this, �

cusp

(⁄, „) becomes linear in „

�
cusp

(⁄, „) ≥
„æiŒ

„

2 f(⁄), (26)

where f(⁄) only depends on the ’t Hooft coupling and is what in literature is referred to
as (light-like) cusp anomaly, or simply scaling function.

Now, we need a classical background solution for this case. It turns out that the relevant
solution is such that the Lagrangian of fluctuations over it has constant coe�cients. Then
the computation of �

cusp

follows the expansion scheme described in [5]

Z
string

= e≠W ∆ W = W
0

+ W
1

+ W
2

+ · · · = 1
2f(⁄)V (27)

where V = 1

4

s
dtds © 1

4

V
2

is the infinite worldsheet area and is the string counterpart of
the divergence in (24).

Since in front of the string action a
Ô

⁄ appears (see formula (35) below), which play
the role of 1/~, the perturbative expansion above results in the following one for the cusp
anomaly:

f(⁄) =
Ô

⁄

A

a
0

+ a
1Ô
⁄

+ a
2

⁄
+ . . .

B

(28)

The way to link the a
k

constants and the partition function in path integral formalism is
explained in [18]. We will be following these steps:

1. evaluate the action on the chosen classical solution. This gives the a
0

term.

2. expand the Lagrangian at quadratic order (there’s no linear order, since we are expand-
ing around a solution of the e.o.m.). It can be put in the form of a Gaussian integral,
therefore, we compute the mass spectrum by identifying the free bosonic (Klein-Gordon)
and fermionic (Dirac) kinetic and mass terms. After diagonalizing the propagators, we
get

15



Z
string

=
⁄

D[„
b

, „
f

]e≠t
„bKb„b≠i

t
„f Kf „f (29)

and therefore, W(1)

cusp

= ≠ ln Z
string

= ln
1

det Kb
det Kf

2
, which finally gives back a

1

.

3. the contribution of a
2

can be interpreted as coming from all connected Feynman di-
agrams with two loops. We shall therefore expand the Lagrangian at quartic order,
deduce the vertex rules, study the contributing diagrams, and compute their contribu-
tion to W (2)

cusp

, from which we finally take a
2

.

3.2 Computation in AdS5 ◊ S5

This section mainly follows what was done in [5]. We deal here with a string in AdS
5

◊ S5.
The background is defined , for m = 0, 1, 2, 3, M = 1, . . . , 6, as

ds2 = z≠2(dxmdx
m

+ dzMdzM) = z≠2(dxmdx
m

+ dz2) + duMduM (30)
xmx

m

= x+x≠ + xúx x± = x3 ± x0 x = x1 + ix2 (31)
zM = zuM uMuM = 1 z = (zMzM)1

/2 = e„ (32)
The AdS light-cone gauge in [11] completely fixes the gauge freedom:

• a “modified” conformal gauge for the auxiliary world-sheet metric

Ô
““ij =

A
z2 0
0 z≠2

B

(33)

• bosonic light-cone gauge : x+ = x2 + x0 = · p+ = 1.

• fermionic light-cone gauge : �+◊I = 0 where ◊I , I = 1, 2 are the two Majorana-Weyl
spinors of the model.

The open strings surface lands on a light-like cusp in the AdS boundary at z = 0 and
oscillates around the null cusp background

z = e2Ï =
Ú

·

‡
x1 = 0 za = z̄

a

= 0 ◊A = ÷A = ◊̄
A

= ÷̄
A

= 0 (34)

The requirement that the string worldsheet described by these coordinates ends on a cusp
at the boundary of AdS

4

at z = 0 is manifestly enforced by the relation x+x≠ = ≠1

2

z2.
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3.2.1 Classical level

In AdS
5

, the e�ective string tension reads, in terms of the ’t Hooft coupling

T = R2

AdS

2fi–Õ =
Ô

⁄

2fi
(35)

We compute the first term by plugging the solution (34) in the action.

L
E,0

= ż2 + 1
z4

zÕMzÕM = 1
4·‡

(36)

S
E,0

= 1
4T

⁄
d·

⁄
+Œ

0

d‡
1

·‡
= T

4

⁄
dt

⁄
+Œ

≠Œ
ds = 1

4TV
2

(37)

Hence, at first order, we have

f (0)(⁄) = 2T =
Ô

⁄

fi
=∆ a

0

=
Ô

⁄

fi
(38)

3.2.2 One loop

We now turn on the fluctuations of the coordinates and compute the Lagrangian at order 2
in them. This is formula (3.14) in [5], which appendix A shows how to recover.

The interpretation regarding the spectrum is straightforward for the bosonic part, since
the propagator is diagonal: one field „̃, m2 = 1, two fields x, xú, m2 = 1/2, five fields ya,
m2 = 0.

The fermionic part needs more treatment. Using the notation � = (◊i, ◊
i

, ÷i, ÷
i

) (we drop
the tildas for convenience), we have L

F

= i�K
F

�T , where:

K
F

=

Q

cccca

0 ip
0

1
4

≠(ip
1

+ 1

2

)fl6 0
ip

0

1
4

0 0 ≠(ip
1

+ 1

2

)fl†
6

+(ip
1

≠ 1

2

)fl6 0 0 ip
0

1
4

0 +(ip
1

≠ 1

2

)fl†
6

ip
0

1
4

0

R

ddddb
(39)

with (p
0

, p
1

) = ≠i(ˆ
t

, ˆ
s

).
The propagator can be put in a block diagonal form and the computation of the deter-

minant yields

det(K
F

) =
3

p2 + 1
4

4
8

p2 = p2

0

+ p2

1

(40)

The fermionic spectrum has therefore eight fields of mass m2 = 1/4.

We can conclude the calculation:

W
1

= V
2

1
2

⁄ ⁄ d2p

(2fi)2

5
ln(p2 + 1) + 2 ln(p2 + 1

2) + 5 ln(p2) ≠ 8 ln(p2 + 1
4)

6
(41)

The computation of this last integral yields

W
1

= ≠3 ln(2)
8fi

V
2

=∆ a
1

= ≠3 ln(2) (42)
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3.2.3 Two loops

The expansion of the Lagrangian at quartic order is not really di�cult and is reproduced in
[5], paragraph 4. Let’s for the moment have a look at the general approach.

After expanding the Lagrangian, we can compute the vertex factor by looking at the
interaction terms. For example, the term

S
(3)

˜

„x̃x̃

ú = ≠2
⁄

dtds„̃
----ˆs

x̃ ≠ 1
2 x̃

----
2

(43)

means that when writing a vertex between the fields „, x and xú, we have to write a
≠2(p2

1

+ 1

4

) contribution, where p
1

is the spatial momentum of x. The propagators are
computed from the inverse of the quadratic lagrangian.

The contributing diagrams can also be read from the lagrangian. In our case, they only
are the sunset diagram (requiring two cubic vertices), the double-bubble (one quartic vertex)
and the double tadpole.

Figure 3: Contributing diagrams in AdS
5

◊ S5, which are the same in AdS
4

◊ CP3: sunset,
double bubble, double tadpole

We use the following formula for the e�ective action (which is a low-order expansion of
the Z = exp(≠W ) relation)

W (2) = ≠ ln Z = ÈS
int

Í ≠ ÈS2

int

Í
2 (44)

The first term will use quartic interactions, the second cubic ones.
We will not compute all the terms (see [3]), but we give an example of a bosonic compu-

tation. First note that all results can be given as combinations of the following integrals

I[m2] =
⁄

d2p
1

p2 + m2

(45)

I[m2

1

, m2

2

, m2

3

] =
⁄

d2p d2q d2r
”(2)(p + q + r)

(p2 + m2

1

)(q2 + m2

2

)(r2 + m2

3

) (46)

The first term is UV divergent, and the second one behaves properly whenever m
i

”= 0. In
order for the final result to be finite, it will have to be checked that all divergent contributions
cancel.

Consider the term given as an example. It gives rise to a contribution to the e�ective
action as

18



W
2,„xx

ú = ≠1
2ÈS3

„xx

S3

„xx

Í (47)

We have two vertices and three propagators, thus our computation yields, in momentum
space

W
2,„xx

ú = ≠1
2

⁄
d2pd2qd2r”(2)(p + q + r) (1 + 4q2

1

)(1 + 4r2

1

)
(p2 + 1)(q2 + 1

2

)(r2 + 1

2

) (48)

The explicit computation of this integral requires the Passarino-Veltman reduction for
scalar integrals16. We finally obtain

W
2,„xx

ú = 1
4I[1,

1
2 ,

1
2] (49)

All the bosonic diagrams can be treated in such a way. For the fermionic ones, the same
framework can be used, but one should be cautious to define an order in the diagram, since
the fermions anticommute. Besides, at least in [5], the propagators include Dirac matrices,
so the trace must be taken in order to get a gauge-invariant quantity.

After summing all the contributions at two-loops, we get a finite result, namely

a
2

= ≠K K =
Œÿ

n=0

(≠1)n

(2n + 1)2

Catalan’s constant (50)

3.3 Computation in AdS4 ◊ CP3

We are now in position to do the same computation in the framework of AdS
4

◊ CFT
3

,
using namely as background AdS

4

◊ CP3. Surprisingly, the most of the toolkit used in the
previous case (gauge, cusp, coordinates, ...) can be translated in this space. We will compute
the one and two loop anomalous dimension for the cusped Wilson loop. We use as basis
the Lagrangian found in [6], expression (7), (8), which is obtained from double dimensional
reduction of the OSp(4|8)/(SO(1, 3) ◊ SO(7)) supercoset membrane action on the D = 11
maximally supersymmetric background AdS

4

◊ S7 in [21].
The coordinates are:

AdS
4

: x± = x2 ± x0, x1, Ï CP3 : zM , M = 1 . . . 6 © (za, z̄
a

), a = 1, 2, 3 (51)
with (x0, x1, x2) the three-dimensional Minkowski coordinates. The radial coordinate is

defined as z = e2Ï. The metric associated is

ds2

AdS

= e≠4Ï

4 (≠dx2

0

+ dx2

1

+ dx2

2

+ (d(e2Ï))2) = e≠4Ï

4 (dx+dx≠ + (dx1)2) + dÏ2 (52)

ds2

CP3 = g
MN

dzMdzN = g
ab

dzadzb + gabdz̄
a

dz̄
b

+ 2ga

b

dz̄
a

dzb (53)
16We refer to any good textbook on QFT for this technique
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There’s an important subtlety here: contrary to AdS
5

◊S5, AdS
4

◊CP3 is not maximally
supersymmetric17. Therefore, the AdS radius receives quantum corrections. The derivation
of these corrections can be found in [15] and yields to the following expression for the string
tension (in the ’t Hooft limit)

T =
Û

1
2

3
⁄ ≠ 1

24

4
(54)

It is important to emphasize that the string perturbative expansion is an expansion in
inverse string tension, whose coe�cients are not a�ected by the corrections (57). Namely, we
can rewrite (27) more generally as

f(g) = g

A

a
0

+ a
1

g
+ a

2

g2

+ . . .

B

(55)

The shift plays a role when expressing the formula above in terms of the ’t Hooft coupling,
and one finds

f(⁄) =
Ô

2⁄

A

1 + a
1Ô
⁄

+
a

2

≠ 1

48

⁄
+ . . .

B

, (56)

where we have already substituted the leading classical result [16].
Therefore, the shift modifies the result only at two-loop order and beyond. We can

redefine a
2

© a
2

≠ 1

48

.

3.3.1 ABJM interpolating h(⁄) function

Of course, the result of our direct string computation should be eventually compared with the
prediction that on the gauge side can be got via integrability, a feature which the AdS

4

/CFT
3

system seems to share [22] with the AdS
5

/CFT
4

case [23]. But there’s more. In [1], Gromov
and Vieira made a conjecture which allows the computation of the cusp anomalous dimension
in ABJM theory from the one computed in N = 4 SYM via Bethe equations. The details of
this paper are involved, but the main idea stands in the replacement

f
CS

(⁄) = 1
2fN =4

(⁄)
---- Ô

⁄
4fi æh(⁄)

(57)

Above, h(⁄) is a non-trivial function of the coupling which appears in the “magnon”
dispersion relation that is at the basis of all calculations based on integrability. Its exact
form is unknown by first principles, but an all loop conjecture has been made in [2], based
on a comparison with localization results, of which the weak and string coupling expansions
are Y

_]

_[

h(⁄) =
⁄<<1

⁄ ≠ fi

2

3

⁄3 + 5fi

4

12

⁄5 ≠ 893fi

6

1260

⁄7 + O(⁄9)

h(⁄) =
⁄>>1

Ú
1

2

1
⁄ ≠ 1

24

2
≠ ln(2)

2fi

+ O(e≠fi

Ô
8⁄)

(58)

If we use this for large coupling (the case which will be of interest for us) and plug it in the
N = 4 SYM expression of f(⁄), we get:

17Only 24 of the 32 supersymmetries are left.
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f
CS

(⁄) =
Ô

2⁄

C

1 ≠ 5 ln(2)
2fi

Ô
2
Ô

⁄
≠

3 1
48 + K

8fi2

4 1
⁄

D

(59)

That is
a

1

= ≠5 ln(2)
2fi

Ô
2

a
2

= ≠
3 1

48 + K

8fi2

4
(60)

In the next sections we are going to see whether our direct calculation matches this prediction.

3.3.2 Lagrangian expansion

Starting from the same background solution (34) as in AdS
5

◊ S5, we consider the action of
[6] which we report in appendix B, and expand the fields in small fluctuations in order to
compute the cusp anomalous dimension at one and two loop order in ‡-model perturbation
theory.

Fluctuations

We define the fluctuations. The expansion of CP3 metric, hatted variables and spin con-
nection can be found in appendix B.

• AdS
4

bosonic sector :

z̃ = ze2Ï̃ ∆ Ï = 1
4 ln

3
·

‡

4
+ Ï̃

x̃1 = 2
Ú

·

‡
x̃1

• CP3 bosonic sector :
We have 6 variables (za, z̄

a

), a = 1, 2, 3.
We define the fluctuations to simply be

z̃a © za ˜̄z
a

© z̄
a

• Fermions:
We first rotate the fermions in order to collect the same powers of eÏ in the expressions
:

◊
a

æ ◊
a

◊
4

æ e≠Ï◊
4

÷
a

æ e≠2Ï÷
a

÷
4

æ e≠Ï÷
4

and same thing for the conjugate variables.
nota: When considering derivatives, we can forget about the presence of terms involving
derivatives of Ï. It can be checked out that they cancel.
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Then, we define the fluctuations

fermion =
Û

2
‡

^fermion

nota: It can be checked out that this normalization has only one purpose: combined
with a further redefinition of the worldsheet coordinates t = log · and s = log ‡,
it is such that the coe�cients of the fluctuations become constant, namely (·, ‡)-
independent.

One loop

After plugging in the fluctuations, the bosonic Lagrangian in AdS
4

reads, at quadratic
order:

L
B

= ≠T

2

;
(ˆ

t

x1)2 + (ˆ
s

x1)2 + 1
2 x̃2 + (ˆ

t

Ï)2 + (ˆ
s

Ï)2 + Ï2

<
(61)

Hence, the bosonic spectrum in AdS
4

consists in:

1. a massive field x1 with mass m2 = 1/2.

2. a massive field Ï with mass m2 = 1.

Regarding CP3, after expanding, we obtain

LCP3 = ≠T

2 {ˆ
t

zaˆ
t

z̄
a

+ ˆ
s

zaˆ
s

z̄
a

} (62)

We find that we have 6 massless fields on CP3.

Let us finally consider the fermions. After rotating the fermions (appendix) and plugging
in the fluctuations, we get the propagator K

F

defined by LF = it�K
F

�, � = (◊
i

, ◊
4

, ◊̄i, ◊̄4, ÷
i

, ÷
4

, ÷̄i, ÷̄4):

K
F

=

Q

ccccccccccccca

0 0 ip
0

0 0 0 ip
1

≠ 1

2

0
0 0 0 ip

0

0 0 0 ip
1

ip
0

0 0 0 ≠ip
1

+ 1

2

0 0 0
0 ip

0

0 0 0 ≠ip
1

0 0
0 0 ≠ip

1

≠ 1

2

0 0 0 ip
0

0
0 0 0 ≠ip

1

0 0 0 ip
0

ip
1

+ 1

2

0 0 0 ip
0

0 0 0
0 ip

1

0 0 0 ip
0

0 0

R

dddddddddddddb

(63)

The computation of its determinant is straightforward, and gives
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det K
F

= (p2)2(p2 + 1
4)6 (64)

where p2 = p2

0

+ p2

1

.
Hence, the fermionic spectrum consists in

• two massless fields.

• six massive fields with mass m2 = 1/4.

Given the previous results for the fermionic spectrum, we know from [5] that the one-loop
cusp anomaly is given by

W
1

= 1
2

⁄ d2p

(2fi)2

;
ln(p2 + 1) + ln

3
p2 + 1

2

4
+ 6 ln(p2) ≠ 2 ln(p2) ≠ 6 ln

3
p2 + 1

4

4<
= ≠5 ln 2

16fi

⁄
dtds

¸ ˚˙ ˝
V2

(65)
Which yields

a
1

= 8W
1Ô

2V
= ≠5 ln(2)

2fi
Ô

2
(66)

Two loops
We now go to cubic/quartic order in fluctuations. The derivation is quite lengthy, and the

result can be found in Appendix C.
Then, we use the same procedure as for AdS

5

: we compute the Feynman diagrams using
the expansion to express the vertices, and the inverse of the quadratic expansion to get the
propagators.

All of these diagrams give scalar integrals that must be reduced.
Since we know our final result should be finite, a first approach consisted in checking what

the finite contributions give as a result. After some work, we got the results summarized in
our paper [3]

W
2

Boson Fermion
Sunset V2Ô

2⁄

1
1

2

I[1, 1

2

, 1

2

] + 2I[1]2
2

V2Ô
2⁄

1
≠3

8

I[1

2

, 1

4

, 1

4

] + 6I[1

4

]I[1]
2

Double-bubble/tadpole V2Ô
2⁄

(≠2I[1]2) V2Ô
2⁄

1
≠6I[1

4

]I[1]
2

from which we get

W
2

= V
2Ô
2⁄

31
2I[1,

1
2 ,

1
2] ≠ 3

8I[12 ,
1
4 ,

1
4]

4
= ≠ K

32fi2

V
2Ô
2⁄

(67)

and
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a
2

= ≠ K

4fi2

∆ a
2

= ≠ K

4fi2

≠ 1
48 (68)

Afterwards, though, an important work was devoted to checking that the divergences
(caused by terms of the type I[m2] or I[m2

1

, m2

2

, m2

3

], where at least one of the three masses
is zero) e�ectively cancel one another. This is indeed the case, which is a remarkable proof
of the consistency of the action of [6] in the AdS

4

◊ CP3 background, at least up to second
order in ‡-model perturbation theory.

3.4 Results
The results (66) and (68) of our direct sigma-model calculation in the AdS

4

◊CP3 background
and the prediction (60) coming from integrability (with the assumption of h(⁄) given by the
conjecture of [2]) agree perfectly. This can be taken as evidence, albeit indirect, of quantum
integrability for the Type IIA AdS

4

◊ CP 3 superstring in this gauge. On the other hand, we
could interpret this result as a non-trivial consistency check of several conjectures, like the
one of [2] for h(⁄), the supposed integrability of strings in this background, the radius shift
of [15] and the AdS/CFT correspondence itself.

Conclusion
In this report, I presented the work achieved during the five months of my internship. A long
part was devoted to understanding the foundations of string theory (briefly summarized in
section 1). This report was limited to describing string actions, their symmetries, and the
introduction of supersymmetry.

Then, I got familiar with the AdS/CFT correspondence and its implications, understand-
ing how gauge and string sides are linked. In my internship, I was concerned with the
AdS

5

/CFT
4

and AdS
4

/CFT
3

cases.
Finally, we have computed the one- and two-loop cusp anomalous dimension in both

cases. The first case has been explored in [5], and redoing the calculation in it was merely a
warm-up exercise. The second case is an original result, appeared in [3]. We proved that up
to second order, the ansatz in [1] can be trusted to extrapolate the AdS

5

results in the AdS
4

context, thanks to which more and more light can be shed on the links between AdS
5

and
AdS

4

. Also, the mutual consistency of several ingredients - our direct perturbative string
calculation, the corrected dictionary of [15], the prediction (60) from the Bethe Ansatz [1]
and the conjecture of [2] for the interpolating function h(⁄) - provides highly non-trivial
evidence in support of the proposal [2] for the interpolating function h(⁄) of ABJM theory,
and furnishes an indirect check of the quantum integrability of the AdS

4

◊ CP3 superstring
theory in this Ÿ-symmetry light-cone gauge.
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Appendices

A Quadratic expansion of AdS5 ◊ S5

Let’s establish the expression of the Lagrangian at quadratic order L
2

. We start from the
expression (3.9) and expand every term at quadratic order using (3.4), (3.5), (3.6). Following
the paper, we explicitely discard every total derivative term. The equal sign must therefore
be understood as "equal up to a total derivative".

1. ----ˆt

x̃ + 1
2 x̃

----
2

= |ˆ
t

x̃|2 + 1
4 x̃2

2.
1
z̃4

----ˆs

x̃ ≠ 1
2 x̃

----
2

= |ˆ
s

x̃|2 + 1
4 x̃2

3. 3
ˆ

t

z̃M + 1
2 z̃M + i

z̃2

÷̃i(flMN)i

j

÷̃j z̃N

4
2

The fermionic part is already quadratic, hence we take it into account.

= (ˆ
t

z̃M)2 + 1
4(z̃M)2 = (ˆ

t

„̃)2 + (ˆ
t

ya)2 + 1
2 „̃2

4.
1
z̃4

(ˆ
s

z̃M ≠ 1
2 z̃M)2 = (ˆ

s

z̃M)2 + 1
4(z̃M)2 = (ˆ

s

„̃)2 + (ˆ
s

ya)2 + 1
2 „̃2

5.
i(◊̃iˆ

t

◊̃
i

+ ÷̃iˆ
t

÷̃
i

+ ◊̃
i

ˆ
t

◊̃i + ÷̃
i

ˆ
t

÷̃i) = 2i(◊̃iˆ
t

◊̃
i

+ ÷̃iˆ
t

÷̃
i

)

6. The last two terms are easy: to get onl quadratic contributions, we need M = 6,
yielding to

2i
5
÷̃i(fl6)

ij

(ˆ
s

◊̃j ≠ 1
2 ◊̃j)

6
+ 2i

5
÷̃

i

((fl6)†)ij(ˆ
s

◊̃
j

≠ 1
2 ◊̃

j

)
6

Collecting all the terms, we get indeed the expression (3.14) of L
2

.
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B Lagrangian in AdS4 ◊ CP3

The Ÿ-symmetry light-cone gauge-fixed Lagrangian of [21] can be written as follows

S = ≠T

2

⁄
d· d‡ L (69)

L = “ij

;
e≠4Ï

4
1
ˆ

i

x+ˆ
j

x≠ + ˆ
i

x1ˆ
j

x1

2
+ ˆ

i

Ïˆ
j

Ï + g
MN

ˆ
i

zMˆ
j

zN

+ e≠4Ï

Ë
ˆ

i

x+È
j

+ ˆ
i

x+ˆ
j

zMh
M

+ e≠4ÏBˆ
i

x+ˆ
j

x+

È <

≠ 2 Áije≠4Ï

1
Ê

i

ˆ
j

x+ + e≠2ÏCˆ
i

x1ˆ
j

x+ + ˆ
i

x+ˆ
j

zM¸
M

2

where the string tension T has been defined in (54) and the following quantities

È
i

= i
1
ˆ

i

◊
a

◊̄a ≠ ◊
a

ˆ
i

◊̄a + ˆ
i

◊
4

◊̄4 ≠ ◊
4

ˆ
i

◊̄4 + ˆ
i

÷
a

÷̄a ≠ ÷
a

ˆ
i

÷̄a + ˆ
i

÷
4

÷̄4 ≠ ÷
4

ˆ
i

÷̄4

2
(70)

Ê
i

= ÷̂
a

ˆ̂
i

◊̄a + ˆ̂
i

◊
a

ˆ̄÷a + 1
2

1
ˆ

i

◊
4

÷̄4 ≠ ˆ
i

÷
4

◊̄4 + ÷
4

ˆ
i

◊̄4 ≠ ◊
4

ˆ
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(71)

B = 8
Ë
(÷̂

a

ˆ̄÷a)2 + Á
abc

ˆ̄÷a ˆ̄÷b ˆ̄÷c÷̄4 + Áabc÷̂
a

÷̂
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÷̂
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÷
4

+ 2÷
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1
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4
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4

◊̄4 + ÷
4
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h

M

= 2
Ë
�a

M

Á
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ˆ̄÷b ˆ̄÷c ≠ �
aM

Áabc÷̂
b

÷̂
c

+ 2
1
�

aM

ˆ̄÷a÷̄4 ≠ �a

M

÷̂
a

÷
4

2
+ 2

1
◊

4

◊̄4 + ÷
4

÷̄4

2
�̃ a

a M
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(74)

¸
M

= 2 i
Ë
�

aM

ˆ̄÷a◊̄4 + �a

M

÷̂
a

◊
4

+
1
◊

4

÷̄4 ≠ ÷
4

◊̄4

2
�̃ a

a M

È
(75)

include fermions up to the fourth power.
Above, the fermionic coordinates ÷

a

and ◊
a

(and their conjugates) transform in the fun-
damental (antifundamental) representation of SU(3) (a = 1, 2, 3), and correspond to the
unbroken 24 supersymmetries of the AdS

4

◊ CP3 background. The remaining fermions ÷
4

,
◊

4

and their conjugates originate from the eight broken supersymmetries. A manifest sym-
metry of the action is thus the SU(3) subgroup of the SU(4) global symmetry of CP3. As
in the AdS

5

◊ S5 case [11] the action is quadratic in the ◊-fermions and quartic in the
÷-fermions. The �a

M

and �
aM

appearing in the Lagrangian are the complex vielbein of
CP3, ds2

CP3 = �a

M

�
aN

dzM dzN , namely components of the Cartan one-forms of SU(4)/U(3),
�a = �a

M

dzM and �
a

= �
aM

dzM . In the construction of [21], �̃ a

a

is associated to a
one-form corresponding to the fiber direction of S7. Its expression is given explicitly be-
low in terms of the CP3 coordinates. The �a

M

and �̃ a

a

appear in [21] in a “dressed”
OSp(6|4)/(SO(1, 3)◊U(3)) supercoset element where the dressing incorporates the informa-
tion on the broken supersymmetries and U(1) fiber direction. In (70), hatted quantities are
related to un-hatted ones via a rotation by matrices T (similar matrices were conveniently
introduced in [11]) which depend on the CP3 coordinates and act as follows on e.g. a ÷

a

fermion
÷̂

a

= T b

a

÷
b

+ T
ab

÷̄b ˆ̄÷a = T a

b

÷̄b + T ab ÷
b

. (76)
The T matrix element can be expanded at fourth order

• T
ab

= iÁ
acb

zc(1 ≠ |z|2
6

)
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• T ab = ≠iÁacbz̄
c

(1 ≠ |z|2
6

)

• T b

a

= T b

a

= (1 ≠ |z|2
2

+ |z|4
24

)”a

b

+ 1

2

z̄az
b

(1 ≠ |z|2
12

)

For the worldsheet metric, Weyl invariance allows us to choose, in Euclidean space:

“ij =
A

z2 0
0 z≠2

B

The metric on CP3 is defined as follows

ds2 = g
ab

dzadzb + gabdz̄
a

dz̄
b

+ 2g b

a

dzadz̄
b

Nota: we will quasi-always trade the M œ {1, . . . , 6} indices with a œ {1, 2, 3} indices
through the substitution zM æ za, z̄

a

Taylor expansion of the metric yields at fourth order

• g
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≠ 8

45
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b
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zb(1

6

≠ 7

45
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Finally, the spin connection can also be Taylor expanded. Pay attention to the fact that (41)
in [6] omitts one term due to convenience.
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)
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C Expansion of the AdS4 ◊ CP3 Lagrangian at quartic
order

In this section, we give the final result of our expansion at quartic order of the Lagrangian
found in [5]. The computation was rather long, hence we do not explicit the calculation.
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