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Inflation after Planck 2015
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Inflationary parameters after 12 years of observation
Vanilla monomial models V = φp, p ≥ 2, r & 0.1 are dead. (SUSY Higgs
inflation, IBD & Einhorn 2010)

WMAP 1-year (2003) & PLANCK (2015)



Current Knowledge*



Cosmological Parameters after 12 years ofobservations
I Basic flat ΛCDM 6 parameters model.

Ωm0,Ωc0,H0, As,ns, τ . Except for τ , from 10% accuracy to1%.

I This is a model dependent statement! Addingparameters increases the allowed values, improves thefit, but with not enough statistical significance.



Status of InflationaryModels and an OrganizingPrinciple



Status of Inflationary models - EFTapproach+UV embedding
I Inflation is sensitive to UV physics.
I Organizing Principle: Monge-Ampere eq. ⇔ Generalizedshift symmetry work in progress

V(φi) > 0, det Vij = 0
I Large Field Models, ∆φ� 1, r ∼ 0.1− 0.01. Shiftsymmetry, detectable in the near future.
V = Λ4(1− cos(φ/feff .)), V ∼ φ · · · (IBD, Pedro & Westphal 2014 x 2)

I ’functional fine-tuning’, symmetry is crucial, UVcompletion is crucial.



Status of Inflationary models - EFTapproach+UV embedding
I Inflation is sensitive to UV physics.
I Starobinsky type Models, ∆φ ∼ 1, r ∼ 0.001. Shiftsymmetry at φ→∞ . Could be detected in the nearfuture. (IBD, Jing, Torabian, Westphal, Zarate, 2013).
V(φ� 1) ' Λ4(1− e−κφ)2.

I ’functional fine-tuning’, symmetry is crucial, UVcompletion is crucial.



Status of Inflationary models - EFTapproach+UV embedding
I Inflation is sensitive to UV physics.
I Small Field Models, ∆φ� 1, r ≤ 10−4, ’AccidentalInflation’, theoretically motivated, difficult to detect inthe near future. (IBD, Brustein & de-Alwis 2008, IBD & Brustein 2009* (r tunable) , IBD,

Jing, Westphal & Wieck 2013) V ' Λ4(1− a2φ2 + · · · ).
I ’parameter fine-tuning’ of dimension 6 operators.

∆η ∼ 1.



Example: Hierarchical Axions
I How to get feff . � 1, if f̃i � 1:

V = Λ41
[
1− cos

(
p1
f̃1
φ1 +

p2
f̃2
φ2
)]

+Λ42
[
1− cos

(
q1
f̃1
φ1 +

q2
f̃2
φ2
)]

I V = V(φ1 + φ2)⇒ det Vij = 0. We have a flat direction,corresponding to Λ1 = 0 or p1 = q1,p2 = q2.
I The different models now correspond to differentbreaking patterns. Λ1 6= 0,p2 = 0,p1 � q1 is theHierarchical Axions model. p2 = q2(1+ δ) is the KNPmodel.



Example: Hierarchical Axions p2 = 0
I p2 = 0. Diagonalizing the mass matrix, and integratingout the heavy axion gives:

feff . = f̃2 q1
q2p1 � 1



Hierarchical Axions Summary (IBD, Pedro & Westphal 2014 x 2)
I Just 2 axions
I Non-perturbative effects only
I Least amount of tuning of the input parameters.
I The trajectory is contained in a very small field domain.Sheds light on the small vs. large field discussion.
I Combining the model with moduli stabilization in TypeIIB string theory.
I Predictions equivalent to ’Natural Inflation’
r ∼ 0.05,ns = 0.96.



More on String Theory Embedding (IBD, Pedro & Westphal 2014 x 2)

I In string theory we have many moduli that have to bestabilized to avoid decompactification+inflation
I This is achieved by creating a hierarchy betweendifferent terms in the lagrangian/potential
V0 >> V1 >> V2.

I The same hierarchy needed for the original modulistabilization gives the hierarchy needed for inflation.



What’s Next?
I CMB Polarization experiments: CLASS, soon operational
r ≤ 0.01, PIXIE r ∼ 10−3, PRISM, CoRE+→ cosmicvariance limited experiment ∼ 2030, r ≤ 5× 10−4.

I Measuring the energy spectrum of CMB, deviations fromblack body spectrum, hasn’t advanced since COBE,1992. PIXIE/PRISM (Chluba, Erickcek, IBD 2012)

INFLATION BEYOND CMB!
I Late time measurements: Weak Lensing, Galaxycorrelations, SNe, Strong Lensing, BAO and more.
I Challenges:

1. Designing efficient probes2. Accurate theoretical predictions
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Supernovae Lensing as aCosmological Probe



General Background
I Light-cone averaging method, luminosity-redshiftrelation dL − z up to second order in perturbationtheory. (IBD, Gasperini, Marozzi, Nugier & Veneziano 2012-2013 x 4)
I Valid for arbitrary geometry, non-perturbativestatements.
I UV and IR finite.
I Inhomogeneities are biasing measurements ofbackground quantities, ∆H0H0 ' 2% just fromcosmologically induced peculiar velocities! (IBD, Durrer, Marozzi,

Schwarz 2014)
I Inhomogeneities serve as probes for Cosmology if wecan get rid of systematics.

dL(z) =
1+ z
H0

∫ z

0
dz′√

Ωm0(1+ z′)3 + 1− Ωm0



SNIa Lensing (IBD & Kalaydzhyan 2014, IBD 2014)

I Large systematic dispersion of lensing at z ∼ 1.
σ2m '

( 5ln 10
)2

π

∆τ 2
∫ τo

τ
(0)
s
dτ1

∫
dkPΨ(k, τ1)k2(τ1 − τ (0)

s )2(τo − τ1)2

I τ conformal time, depends on background parametersonly! PΨ depends on fluctuations and backgroundparameters. Ψ is the gravitational potential.
I Data: σm(z ≤ 1) ≤ 0.095(≤ 0.12) at 1(2)σ.
I The lensing is sensitive to small scales (quasi) non-linear
kNL > 1hMpc−1. We need numerical simulations (IBD &
Takahashi TBP) and/or analytical predictions.



Current Knowledge



Are we lucky enough to probe Inflation?
I If yes,⇒ handle on the primordial power spectrumbeyond CMB scales!
I α = 0, β = 0.029 provide the best statistical significantimprovement over ΛCDM, ∆χ2 = 4.9, to solve the low-lanomaly.

P(k) = As

( k
k0

)ns−1+(α/2) ln(k/k0)+(β/6)[ln(k/k0)]2
, α ∼

V ′′′V ′
V2 , β ∼

V ′′′′V ′2
V3
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DM only results
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Designated numerical simulations⇒Memory of initialconditions is largely erased.



Results with baryons
’Competitive’ with PLANCK, but UV sensitive!



Lensing Dispersion Summary
I For DM only, the lensing dispersion probes small wavenumbers beyond CMB k & 1hMpc−1, not better thanPLANCK, because of the erasure of initial conditions bythe non-linear evolution.
I The baryons make the fitting formula UV sensitive andswamps initial conditions.This is a problem in weaklensing in general. Better understanding of baryonicprocesses is key.
I However, SNe do not suffer from ’alignment problems’.
I The upcoming surveys are expected to detect thelensing signal!



Large Scale Structure (LSS)and Consistency Relations(CR)



Consistency Relations
I Relate (n + 1)- to n-point correlation functions, e.g.,bispectrum→ power spectrum
I Analytical result in the squeezed limit q→ 0
I Based only on single field inflation and principle ofgeneral covariance (unequal time) - Non-perturbativestatements.
I Scrutinize two approaches at equal time & angularaveraged: (IBD, Konstandin, Porto, Sagunski 2015)

1. Time flow approach (TF) - transform the fluid eqs. intoflow eqs., and apply closure.2. Curved background approach (VKPR)- locally the long(soft) mode behaves like background curvature, K .



Consistency Relations
Philosophy: If the approach is of non-perturbative nature, itshould definitely fulfill perturbative calculations in theproper limit. For a flat universe (EdS, ΛCDM):

I At linear order: All approaches agree X
I generalized to all correlators of δ and θ ≡∇ · v andgeneral cosmologies X
I At 1-loop order, for l� k � q: B - bispectrum, P - power
spectrum

B1-loop111 avq→0 '
[
k2 (β + α k ∂k)PL(k) ×

∫
dl l2

(PL(l)
l2
)

+ k4 γ ×
∫
dl l2

(PL(l)
l2
)2 ]

PL(q)



Consistency Relations
Coefficients α, β, γ at 1-loop order:
Approach α β γSPT 611890 ' 0.032 − 371913230 ' −0.281 5155292 ' 0.097TF − 1036930 ' 0.015 − 2331890 ' −0.123 27119404 ' 0.014VKPR 611890 ' 0.032 − 359913230 ' −0.272 1351372 ' 0.098
Deviation of O(10−2) between SPT and VKPR, O(1) betweenSPT and TF.

⇒ Both not valid beyond linear orderWhy is VKPR ("Guestimating" ∂κPK |K=0 = 4/7∂ηPK |K=0) so’successful’?



Curved Background Method
I For spherical perturbations, a long wavelength mode inflat FLRW equals positive curvature:

HK ' H
(1− 13δL

)
,aK ' a

(1− 13δL
)
,

K ' 53H2a2δL, κ = K
a2H2

ρ̄K = ρ̄(1+ δL)

I Fluid equations ∂ηψa = −Ωab ψb + γabc ψbψc
ψa = {δ, ∇ v}

I Judicious change of variables:
Ω̃ab ' Ωab(κ = 0) +

3κ
14
( 0 01 −1

)
,

The new contribution annihilates the growing mode
ψ

(n)
a ∝ (1,1) for all n⇒ Very good accuracy!



Conclusions



Conclusions
CMB and High Energy Physics:

I The inflationary ’landscape’ is well understood. Themost promising avenue to connect string theory tomeasurements.
I Polarization and Energy Spectrum measurements⇒CMB a relevant probe in the next decade and more.

Cosmological Perturbation Theory and Beyond:
I Lensing of SNIa is useful for cosmology or astrophysicsdepending on the baryons.
I Combination of late time probes will test extensions of

ΛCDM.
I Theoretical understanding of LSS behaviour is emergingas the forefront of theoretical cosmology.



Simulation Results (IBD & Takahashi 1504.xxxxx)
I We ran high and low resolution simulations (DM only)with different values of α, β.

Table : Our Simulation Setting
L(h−1Mpc) N3p kNyq(hMpc−1) mp(h−1M�) z Nr

high-resolution 100 20483 64.3 1.0× 107 0, 0.3, 0.6, 1, 1.5 3
low-resolution 100 12803 40.2 4.1× 107 0, 0.3, 0.6, 1, 1.5 6
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Fluid Equations
I Conservation of mass
= Continuity equation
∂δ

∂τ
+ ∇ ·

[
(1+ δ) v

]
= 0 (1)

Physical quantities:
→ Density contrast: δ = ρ−ρ̄

ρ̄

→ Conformal time τ : dτ = dt
a

→ Peculiar velocity v
I Conservation of momentum
= Euler equation
∂v
∂τ

+H v+(v·∇) v = −∇Φ (2)
→ Expansion rate: H = aH
→ Gravitational potential Φ(or Ψ)

I Poisson equation
4Φ =

3
2ΩmH2 δ (3)

→ highly non-linear differential equations



Standard Perturbation Theory - SPT
I Central quantity: δ
I Assumption: initial density contrast δ0 � 1
I Solution: perturbative expansion in terms of δ0

δ = δ(1) + δ(2) + . . . with δ(N) ∝ δN0
I Power spectrum P(k),
generally Pab, bispectrum Babc etc. a, b, c = δ or θ ≡∇ · v= Gaussian average of density contrasts

P(k) ∝ 〈δδ〉

→ Perturbative (loop) expansion:
P(k) ∝ 〈δ(1)δ(1)〉 + . . . = P(1) + . . . with P(N) ∼ (δ20)N



Time-flow approach
I Gaussian i.c., solving iteratively with closure⇒Correlation functions:

〈ψaψb〉 ∼ Pab,
〈ψaψbψc〉 ∼ Babc,

〈ψaψbψcψd〉 ∼ Pab Pcd + Pac Pbd + Pad Pbc + Qabcd
I Closure approximation: Qabcd = 0

Babc = gadgbegcf Babc(η = 0)

+ 2
∫ η

0 dη
′eη′gadgbegcf

×
[
γdgh PegPfh + γeghPfgPdh + γfghPdgPeh

]
I Linear propagator gab:

→ describes η-evolution of linear perturbations
→ depends via Ωab on cosmological model



Bispectrum consistency relations
For a flat universe (EdS, ΛCDM):

Pab(k) ' uaub PL(k) with ua = (1,1)

I At linear order:
BLabc avq→0 ' ub

( 1
21
( 47 3939 31

)
ac
− 13uauc k ∂k

)
PL(k)PL(q)

→ BL111 avq→0 ∼ 〈δδδ〉avq→0:Coincides with SPT. Reproduces KPRV relation for
P(k) ' PL(k)

〈δδδ〉avq→0 =

(47
21 −

1
3k ∂k

)
P(k)PL(q)

[Kehagias, Perrier, Riotto ’13], [Valageas ’13]



Bispectrum consistency relations
For general cosmological models and all correlations of δand θ

Babc avq→0 =
1
3
∫ η

0 dη
′eη′ gbe

×

{
gaf
(
3 gc1 [Pe1(q)Pf2(k) + Pe2(q)Pf1(k)

]
+ 2 gc2 Pe2(q)Pf2(k)

)
+ gcf

(
[3 ga1Pe1(q)− ga2Pe2(q)]Pf2(k)

− 2 gadPe2(q) k ∂kPfd(k)

}



Bispectrum consistency relations
For a flat universe (EdS, ΛCDM):

I At 1-loop order:
B1-loop111 avq→0 '

[
k2 (α + β k ∂k)PL(k) ×

∫
dl l2

(PL(l)
l2
)

+ k4 γ ×
∫
dl l2

(PL(l)
l2
)2 ]

PL(q)

for l� k � q

→ Coefficients α, β, γ:Deviation of O(10−2) between SPT and KPRV
⇒ KPRV relation not valid beyond linear order



Curved Background Method
I Non perturbative, but unmeasurable CR: Baldauf et al. 2011

B(k,−q,q− k, η)av
q→0−−−→ PL(q, η)

[(
1− 13 k ∂k −

1
3∂η

)
P(k, η) +

5
3

∂

∂κ
PK (k, η)

∣∣∣∣K=0
]
,

VKPR :
∂

∂κ
PK (k, η)

∣∣∣∣K=0 =
4
7 ∂ηPK=0(k, η) .

I Fluid equations ∂ηψa = −Ωab ψb + γabc ψbψc
I Judicious change of variables:

Ω̃ab ' Ωab(κ = 0) +
3κ
14
( 0 01 −1

)
,

The new contribution annihilates the growing mode
ψ

(n)
a ∝ (1,1) for all n⇒ Very good accuracy.


	Inflation and High Energy Physics
	Inflation and Cosmology after Planck 2015
	Status of Inflationary Models and an Organizing Principle

	Cosmological Perturbation Theory and Beyond
	Supernovae Lensing as a Cosmological Probe
	Large Scale Structure and Consistency Relations


