From Inflation to Large Scale Structure

Ido Ben-Dayan

DESY

Humboldt University, 22 April 2015

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Inflation and High Energy Physics

Inflation and Cosmology after Planck 2015 Status of Inflationary Models and an Organizing Principle

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Cosmological Perturbation Theory and Beyond Supernovae Lensing as a Cosmological Probe Large Scale Structure and Consistency Relations

Inflation and High Energy Physics

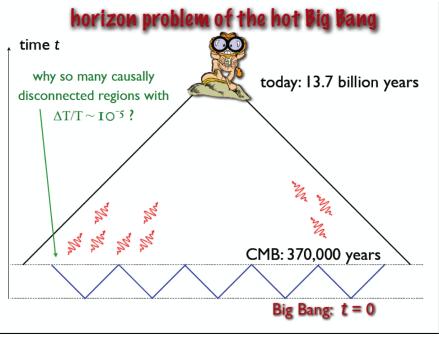
Inflation and Cosmology after Planck 2015 Status of Inflationary Models and an Organizing Principle

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

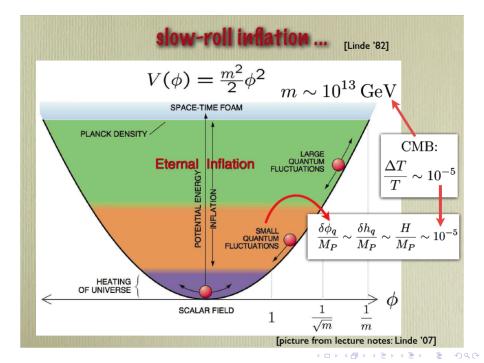
Cosmological Perturbation Theory and Beyond Supernovae Lensing as a Cosmological Probe Large Scale Structure and Consistency Relations

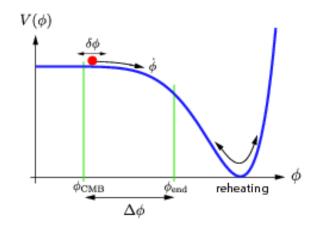
Inflation after Planck 2015

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



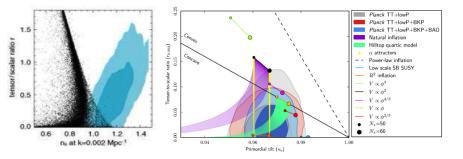


$$\epsilon = \frac{1}{2} \left(\frac{V'}{V}\right)^2 \ll 1, \ \eta = \frac{V''}{V} \ll 1, \ \cdots P_S = A \left(\frac{k}{k_0}\right)^{n_s - 1}$$
$$N_e = \int_{\phi_{CMB}}^{\phi_{END}} \frac{d\phi}{\sqrt{2\epsilon}} \sim 60, \ n_s = 1 + 2\eta - 6\epsilon, \quad r = \frac{P_T}{P_S} = 16\epsilon$$

・ロト・四ト・日本・日本・日本・日本

Inflationary parameters after 12 years of observation

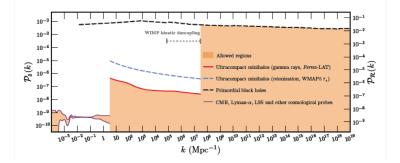
Vanilla monomial models $V = \phi^p, p \ge 2, r \gtrsim 0.1$ are dead. (SUSY Higgs inflation, IBD & Einhorn 2010)



WMAP 1-year (2003) & PLANCK (2015)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Current Knowledge*



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Cosmological Parameters after 12 years of observations

Basic flat ΛCDM 6 parameters model.
 Ω_{m0}, Ω_{c0}, H₀, A_s, n_s, τ. Except for τ, from 10% accuracy to 1%.

Parameter	TT+lowP 68% limits	TT+lowP+lensing 68% limits	TT+lowP+lensing+ext 68 % limits	TT,TE,EE+lowP 68% limits	TT,TE,EE+lowP+lensing 68 % limits	TT,TE,EE+lowP+lensing+ext 68% limits
Ωьh ²	0.02222 ± 0.00023	0.02226 ± 0.00023	0.02227 ± 0.00020	0.02225 ± 0.00016	0.02226 ± 0.00016	0.02230 ± 0.00014
$\Omega_c h^2$	0.1197 ± 0.0022	0.1186 ± 0.0020	0.1184 ± 0.0012	0.1198 ± 0.0015	0.1193 ± 0.0014	0.1188 ± 0.0010
1000 _{MC}	1.04085 ± 0.00047	1.04103 ± 0.00046	1.04106 ± 0.00041	1.04077 ± 0.00032	1.04087 ± 0.00032	1.04093 ± 0.00030
τ	0.078 ± 0.019	0.066 ± 0.016	0.067 ± 0.013	0.079 ± 0.017	0.063 ± 0.014	0.066 ± 0.012
$\ln(10^{10}A_{s})$	3.089 ± 0.036	3.062 ± 0.029	3.064 ± 0.024	3.094 ± 0.034	3.059 ± 0.025	3.064 ± 0.023
<i>n</i> _s	0.9655 ± 0.0062	0.9677 ± 0.0060	0.9681 ± 0.0044	0.9645 ± 0.0049	0.9653 ± 0.0048	0.9667 ± 0.0040
H ₀	67.31 ± 0.96	67.81 ± 0.92	67.90 ± 0.55	67.27 ± 0.66	67.51 ± 0.64	67.74 ± 0.46
Ω _Λ	0.685 ± 0.013	0.692 ± 0.012	0.6935 ± 0.0072	0.6844 ± 0.0091	0.6879 ± 0.0087	0.6911 ± 0.0062
Ω	0.315 ± 0.013	0.308 ± 0.012	0.3065 ± 0.0072	0.3156 ± 0.0091	0.3121 ± 0.0087	0.3089 ± 0.0062

This is a model dependent statement! Adding parameters increases the allowed values, improves the fit, but with not enough statistical significance. Status of Inflationary Models and an Organizing Principle

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Status of Inflationary models - EFT approach+UV embedding

- Inflation is sensitive to UV physics.
- ► Organizing Principle: Monge-Ampere eq. ⇔ Generalized shift symmetry work in progress

$$V(\phi_i) > 0$$
, det $V_{ij} = 0$

- ► Large Field Models, $\Delta \phi \gg 1$, $r \sim 0.1 0.01$. Shift symmetry, detectable in the near future. $V = \Lambda^4 (1 - \cos(\phi/f_{eff.})), V \sim \phi \cdots$ (IBD, Pedro & Westphal 2014 x 2)
- 'functional fine-tuning', symmetry is crucial, UV completion is crucial.

Status of Inflationary models - EFT approach+UV embedding

- Inflation is sensitive to UV physics.
- ► Starobinsky type Models, $\Delta \phi \sim 1$, $r \sim 0.001$. Shift symmetry at $\phi \to \infty$. Could be detected in the near future. (IBD, Jing, Torabian, Westphal, Zarate, 2013). $V(\phi \gg 1) \simeq \Lambda^4 (1 - e^{-\kappa \phi})^2$.

 'functional fine-tuning', symmetry is crucial, UV completion is crucial.

Status of Inflationary models - EFT approach+UV embedding

- Inflation is sensitive to UV physics.
- ► Small Field Models, $\Delta \phi \ll 1$, $r \leq 10^{-4}$, 'Accidental Inflation', theoretically motivated, difficult to detect in the near future. (IBD, Brustein & de-Alwis 2008, IBD & Brustein 2009* (r tunable), IBD, Jing, Westphal & Wieck 2013) $V \simeq \Lambda^4 (1 a_2 \phi^2 + \cdots)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

► 'parameter fine-tuning' of dimension 6 operators. $\Delta \eta \sim 1$.

Example: Hierarchical Axions

• How to get $f_{eff} \gg 1$, if $\tilde{f}_i \ll 1$:

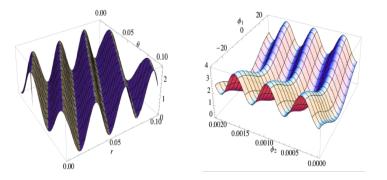
$$V = \Lambda_1^4 \left[1 - \cos\left(\frac{p_1}{\tilde{f}_1}\phi_1 + \frac{p_2}{\tilde{f}_2}\phi_2\right) \right] + \Lambda_2^4 \left[1 - \cos\left(\frac{q_1}{\tilde{f}_1}\phi_1 + \frac{q_2}{\tilde{f}_2}\phi_2\right) \right]$$

- ► $V = V(\phi_1 + \phi_2) \Rightarrow \det V_{ij} = 0$. We have a flat direction, corresponding to $\Lambda_1 = 0$ or $p_1 = q_1, p_2 = q_2$.
- ► The different models now correspond to different breaking patterns. $\Lambda_1 \neq 0, p_2 = 0, p_1 \ll q_1$ is the Hierarchical Axions model. $p_2 = q_2(1 + \delta)$ is the KNP model.

Example: Hierarchical Axions $p_2 = 0$

p₂ = 0. Diagonalizing the mass matrix, and integrating out the heavy axion gives:

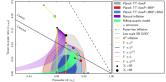
$$f_{eff.} = \tilde{f}_2 \frac{q_1}{q_2 p_1} \gg 1$$



▲ロ▶▲圖▶▲圖▶▲圖▶ = ● のへで

Hierarchical Axions Summary (IBD, Pedro & Westphal 2014 x 2)

- Just 2 axions
- Non-perturbative effects only
- Least amount of tuning of the input parameters.
- The trajectory is contained in a very small field domain.
 Sheds light on the small vs. large field discussion.
- Combining the model with moduli stabilization in Type IIB string theory.
- ▶ Predictions equivalent to 'Natural Inflation' $r \sim 0.05, n_s = 0.96.$



More on String Theory Embedding (IBD, Pedro & Westphal 2014 x 2)

- In string theory we have many moduli that have to be stabilized to avoid decompactification+inflation
- This is achieved by creating a hierarchy between different terms in the lagrangian/potential V₀ >> V₁ >> V₂.
- The same hierarchy needed for the original moduli stabilization gives the hierarchy needed for inflation.

What's Next?

- ▶ CMB Polarization experiments: CLASS, soon operational $r \le 0.01$, PIXIE $r \sim 10^{-3}$, PRISM, CoRE+ \rightarrow cosmic variance limited experiment ~ 2030 , $r \le 5 \times 10^{-4}$.
- Measuring the *energy spectrum* of CMB, deviations from black body spectrum, hasn't advanced since COBE, 1992. PIXIE/PRISM (Chluba, Erickcek, IBD 2012)

INFLATION BEYOND CMB!

- Late time measurements: Weak Lensing, Galaxy correlations, SNe, Strong Lensing, BAO and more.
- Challenges:
 - 1. Designing efficient probes
 - 2. Accurate theoretical predictions

Inflation and High Energy Physics Inflation and Cosmology after Planck 2015 Status of Inflationary Models and an Organizing Principle

Cosmological Perturbation Theory and Beyond Supernovae Lensing as a Cosmological Probe Large Scale Structure and Consistency Relations

Supernovae Lensing as a Cosmological Probe

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

General Background

- ► Light-cone averaging method, luminosity-redshift relation $d_L z$ up to second order in perturbation theory. (IBD, Gasperini, Marozzi, Nugier & Veneziano 2012-2013 x 4)
- Valid for arbitrary geometry, non-perturbative statements.
- UV and IR finite.
- ► Inhomogeneities are biasing measurements of background quantities, ^{ΔH}₀/_H₀ ≃ 2% just from cosmologically induced peculiar velocities! (IBD, Durrer, Marozzi, Schwarz 2014)
- Inhomogeneities serve as probes for Cosmology if we can get rid of systematics.

$$d_{L}(z) = \frac{1+z}{H_{0}} \int_{0}^{z} \frac{dz'}{\sqrt{\Omega_{m0}(1+z')^{3}+1-\Omega_{m0}}}$$

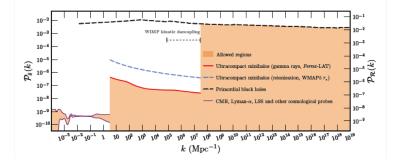
• Large systematic dispersion of lensing at $z \sim 1$.

$$\sigma_m^2 \simeq \left(\frac{5}{\ln 10}\right)^2 \frac{\pi}{\Delta \tau^2} \int_{\tau_s^{(0)}}^{\tau_o} d\tau_1 \int dk P_{\Psi}(k,\tau_1) k^2 (\tau_1 - \tau_s^{(0)})^2 (\tau_o - \tau_1)^2$$

- τ conformal time, depends on background parameters only! P_{Ψ} depends on fluctuations and background parameters. Ψ is the gravitational potential.
- Data: $\sigma_m(z \le 1) \le 0.095 (\le 0.12)$ at $1(2)\sigma$.
- ► The lensing is sensitive to small scales (quasi) non-linear $k_{NL} > 1hMpc^{-1}$. We need numerical simulations (IBD & Takahashi TBP) and/or analytical predictions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

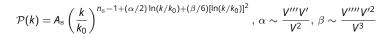
Current Knowledge

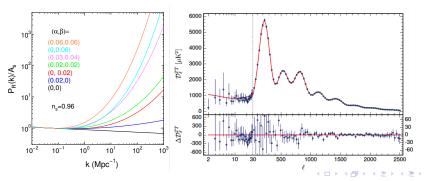


▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

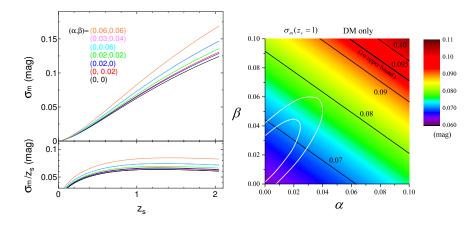
Are we lucky enough to probe Inflation?

- If yes, ⇒ handle on the primordial power spectrum beyond CMB scales!
- $\alpha = 0, \beta = 0.029$ provide the best statistical significant improvement over ACDM, $\Delta \chi^2 = 4.9$, to solve the low-l anomaly.





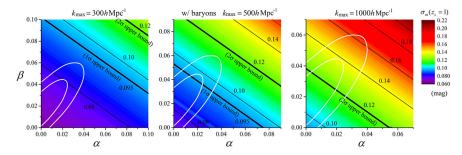
DM only results



Designated numerical simulations \Rightarrow Memory of initial conditions is largely erased.

Results with baryons

'Competitive' with PLANCK, but UV sensitive!



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Lensing Dispersion Summary

- ► For DM only, the lensing dispersion probes small wave numbers beyond CMB $k \gtrsim 1 h Mpc^{-1}$, not better than PLANCK, because of the erasure of initial conditions by the non-linear evolution.
- The baryons make the fitting formula UV sensitive and swamps initial conditions. This is a problem in weak lensing in general. Better understanding of baryonic processes is key.
- However, SNe do not suffer from 'alignment problems'.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The upcoming surveys are expected to detect the lensing signal!

Large Scale Structure (LSS) and Consistency Relations (CR)

Consistency Relations

- ► Relate (n + 1)- to n-point correlation functions, e.g., bispectrum → power spectrum
- Analytical result in the squeezed limit q
 ightarrow 0
- Based only on single field inflation and principle of general covariance (unequal time) - Non-perturbative statements.
- Scrutinize two approaches at equal time & angular averaged: (IBD, Konstandin, Porto, Sagunski 2015)
 - 1. Time flow approach (TF) transform the fluid eqs. into flow eqs., and apply closure.
 - 2. Curved background approach (VKPR)- locally the long (soft) mode behaves like background curvature, *K*.

Consistency Relations

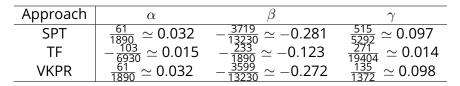
Philosophy: If the approach is of non-perturbative nature, it should definitely fulfill perturbative calculations in the proper limit. For a flat universe (EdS, ACDM):

- At linear order: All approaches agree \checkmark
- ▶ generalized to all correlators of δ and $\theta \equiv \nabla \cdot \mathbf{v}$ and general cosmologies \checkmark
- ► At 1-loop order, for *l* ≫ *k* ≫ *q*: *B* bispectrum, *P* power spectrum

$$B_{111}^{1\text{-loop av}}_{q \to 0} \simeq \left[k^2 \left(\beta + \alpha \, k \, \partial_k \right) P^L(k) \times \int dl \, l^2 \left(\frac{P^L(l)}{l^2} \right) \right. \\ \left. + k^4 \, \gamma \, \times \int dl \, l^2 \left(\frac{P^L(l)}{l^2} \right)^2 \right] P^L(q)$$

Consistency Relations

Coefficients α , β , γ at 1-loop order:



Deviation of $\mathcal{O}(10^{-2})$ between SPT and VKPR, $\mathcal{O}(1)$ between SPT and TF.

 \Rightarrow Both not valid beyond linear order Why is VKPR ("Guestimating" $\partial_{\kappa}P_{\kappa}|_{\kappa=0} = 4/7\partial_{\eta}P_{\kappa}|_{\kappa=0}$) so 'successful'?

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Curved Background Method

For spherical perturbations, a long wavelength mode in flat FLRW equals positive curvature:

$$egin{aligned} \mathcal{H}_{\mathcal{K}} &\simeq \mathcal{H}\left(1-rac{1}{3}\delta_L
ight)\,, a_{\mathcal{K}} &\simeq a\left(1-rac{1}{3}\delta_L
ight), \ \mathcal{K} &\simeq rac{5}{3}\mathcal{H}^2a^2\delta_L, \quad \kappa = rac{\mathcal{K}}{a^2\mathcal{H}^2} \ ar{
ho}_{\mathcal{K}} &= ar{
ho}(1+\delta_L) \end{aligned}$$

► Fluid equations $\partial_{\eta}\psi_a = -\Omega_{ab}\psi_b + \gamma_{abc}\psi_b\psi_c$ $\psi_a = \{\delta, \nabla \mathbf{v}\}$

Judicious change of variables:

$$ilde{\Omega}_{ab}\simeq \Omega_{ab}(\kappa=0)+rac{3\kappa}{14}\left(egin{array}{cc} 0&0\ 1&-1\end{array}
ight) \;,$$

The new contribution annihilates the growing mode $\psi_a^{(n)} \propto (1,1)$ for all $n \Rightarrow$ Very good accuracy!

Conclusions

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Conclusions

CMB and High Energy Physics:

- The inflationary 'landscape' is well understood. The most promising avenue to connect string theory to measurements.
- ► Polarization and Energy Spectrum measurements ⇒ CMB a relevant probe in the next decade and more.

Cosmological Perturbation Theory and Beyond:

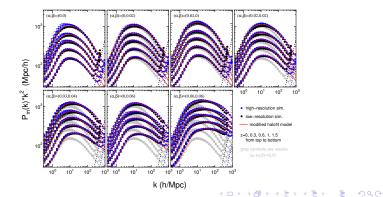
- Lensing of SNIa is useful for cosmology or astrophysics depending on the baryons.
- Combination of late time probes will test extensions of ACDM.
- Theoretical understanding of LSS behaviour is emerging as the forefront of theoretical cosmology.

Simulation Results (IBD & Takahashi 1504.xxxx)

We ran high and low resolution simulations (DM only) with different values of α, β.

	$L(h^{-1}Mpc)$	$N_{\rm p}^3$	$k_{\rm Nyq}(h{ m Mpc}^{-1})$	$m_{ m p}(h^{-1}M_{\odot})$	Ζ	$N_{\rm r}$
high-resolution	100	2048 ³	64.3	1.0×10^{7}	0, 0.3, 0.6, 1, 1.5	3
low-resolution	100	1280 ³	40.2	4.1×10^{7}	0, 0.3, 0.6, 1, 1.5	6

Table : Our Simulation Setting



Fluid Equations

- Conservation of mass
 - = Continuity equation

$$\frac{\partial \delta}{\partial \tau} + \boldsymbol{\nabla} \cdot \left[(\mathbf{1} + \delta) \, \boldsymbol{v} \right] = \mathbf{0}$$
 (1)

Physical quantities:

 \rightarrow Density contrast: $\delta = \frac{\rho - \bar{\rho}}{\bar{\rho}}$

 \rightarrow Conformal time τ : $d\tau = \frac{dt}{a}$

$$ightarrow$$
 Peculiar velocity **v**

Conservation of momentum

= Euler equation

$$\frac{\partial \mathbf{v}}{\partial \tau} + \mathcal{H} \, \mathbf{v} + (\mathbf{v} \cdot \nabla) \, \mathbf{v} = - \nabla \Phi$$
 (2)

 \rightarrow Expansion rate: $\mathcal{H} = a H$ \rightarrow Gravitational potential Φ (or Ψ)

Poisson equation

$$\Delta \Phi = \frac{3}{2} \Omega_m \mathcal{H}^2 \delta \qquad (3)$$

 \rightarrow highly non-linear differential equations

Standard Perturbation Theory - SPT

- Central quantity: δ
- Assumption: initial density contrast $\delta_0 \ll 1$
- Solution: perturbative expansion in terms of δ_0

 $\delta = \delta^{(1)} + \delta^{(2)} + \dots$ with $\delta^{(N)} \propto \delta_0^N$

Power spectrum P(k),

generally P_{ab} , bispectrum B_{abc} etc. $a, b, c = \delta$ or $\theta \equiv \nabla \cdot \mathbf{v}$

= Gaussian average of density contrasts

$$P(k) \propto \langle \delta \delta \rangle$$

 \rightarrow Perturbative (loop) expansion:

$$P(k) \propto \langle \delta^{(1)} \delta^{(1)} \rangle + \ldots = P^{(1)} + \ldots \quad \text{with } P^{(N)} \sim (\delta_0^2)^N$$

Time-flow approach

► Gaussian i.c., solving iteratively with closure ⇒ Correlation functions:

 $\begin{array}{l} \langle \psi_{a}\psi_{b}\rangle \sim P_{ab}, \\ \langle \psi_{a}\psi_{b}\psi_{c}\rangle \sim B_{abc}, \\ \langle \psi_{a}\psi_{b}\psi_{c}\psi_{d}\rangle \sim P_{ab}P_{cd} + P_{ac}P_{bd} + P_{ad}P_{bc} + Q_{abcd} \end{array}$

• Closure approximation: $Q_{abcd} = 0$

$$\begin{split} B_{abc} &= g_{ad}g_{be}g_{cf} \ B_{abc}(\eta=0) \\ &+ 2 \ \int_{0}^{\eta} d\eta' e^{\eta'} g_{ad}g_{be}g_{cf} \\ &\times \left[\gamma_{dgh} \ P_{eg}P_{fh} + \gamma_{egh}P_{fg}P_{dh} + \gamma_{fgh}P_{dg}P_{eh} \right] \end{split}$$

- Linear propagator g_{ab} :
 - \rightarrow describes η -evolution of linear perturbations
 - \rightarrow depends via Ω_{ab} on cosmological model

Bispectrum consistency relations

For a flat universe (EdS, ΛCDM):

$$P_{ab}(k) \simeq u_a u_b P^L(k)$$
 with $u_a = (1, 1)$

At linear order:

$$B^{L}_{abc} \stackrel{\text{av}}{q \to 0} \simeq u_b \left(\frac{1}{21} \left(\begin{array}{cc} 47 & 39 \\ 39 & 31 \end{array} \right)_{ac} - \frac{1}{3} u_a u_c \ k \ \partial_k \right) P^{L}(k) \ P^{L}(q)$$

→
$$B_{111}^{L} \stackrel{\text{av}}{q \to 0} \sim \langle \delta \delta \delta \rangle_{q \to 0}^{\text{av}}$$
:
Coincides with SPT. Reproduces KPRV relation for
 $P(k) \simeq P^{L}(k)$

$$\langle \delta \delta \delta \rangle_{q \to 0}^{\mathrm{av}} = \left(\frac{47}{21} - \frac{1}{3} k \, \partial_k \right) P(k) P^L(q)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

[Kehagias, Perrier, Riotto '13], [Valageas '13]

Bispectrum consistency relations

For general cosmological models and all correlations of δ and θ

$$B_{abc} _{q \to 0}^{av} = \frac{1}{3} \int_{0}^{\eta} d\eta' e^{\eta'} g_{be}$$

$$\times \left\{ g_{af} \left(3g_{c1} \left[P_{e1}(q) P_{f2}(k) + P_{e2}(q) P_{f1}(k) \right] \right. \right. \\ \left. + 2g_{c2} P_{e2}(q) P_{f2}(k) \right) \right. \\ \left. + g_{cf} \left(\left[3g_{a1} P_{e1}(q) - g_{a2} P_{e2}(q) \right] P_{f2}(k) \right. \\ \left. - 2g_{ad} P_{e2}(q) k \partial_k P_{fd}(k) \right\} \right\}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Bispectrum consistency relations

For a flat universe (EdS, ΛCDM):

► At 1-loop order:

$$B_{111}^{1-\text{loop av}}_{q \to 0} \simeq \left[k^2 \left(\alpha + \beta \ k \ \partial_k \right) P^L(k) \times \int dl \ l^2 \left(\frac{P^L(l)}{l^2} \right) \right. \\ \left. + k^4 \ \gamma \ \times \int dl \ l^2 \left(\frac{P^L(l)}{l^2} \right)^2 \right] P^L(q)$$

for $l \gg k \gg q$

→ Coefficients α , β , γ : Deviation of $\mathcal{O}(10^{-2})$ between SPT and KPRV \Rightarrow KPRV relation not valid beyond linear order

Curved Background Method

► Non perturbative, but unmeasurable CR: Baldauf et al. 2011

$$B(\boldsymbol{k}, -\boldsymbol{q}, \boldsymbol{q} - \boldsymbol{k}, \eta)^{\mathrm{av}} \xrightarrow{q \to 0} P_L(q, \eta) \left[\left(1 - \frac{1}{3}k \,\partial_k - \frac{1}{3}\partial_\eta \right) P(k, \eta) + \frac{5}{3} \left. \frac{\partial}{\partial \kappa} P_K(k, \eta) \right|_{K=0} \right] \,,$$

$$\mathrm{VKPR}: \quad \frac{\partial}{\partial \kappa} P_{K}(k,\eta) \Big|_{K=0} = \frac{4}{7} \partial_{\eta} P_{K=0}(k,\eta) \, .$$

- Fluid equations $\partial_{\eta}\psi_a = -\Omega_{ab}\,\psi_b + \gamma_{abc}\,\psi_b\psi_c$
- Judicious change of variables:

$$ilde{\Omega}_{ab}\simeq \Omega_{ab}(\kappa=0)+rac{3\kappa}{14}\left(egin{array}{cc} 0&0\ 1&-1\end{array}
ight) \;,$$

The new contribution annihilates the growing mode $\psi_a^{(n)} \propto (1, 1)$ for all $n \Rightarrow$ Very good accuracy.