A Symbol of Uniqueness:
 The Cluster Bootstrap for the 3-Loop MHV Heptagon

Georgios Papathanasiou

Laboratoire d'Annecy-le-Vieux
de Physique Théorique \& CERN

Humboldt-Universität zu Berlin March 6, 2015

1412.3763 [hep-th] with Drummond \& Spradlin work in progress

Outline

Motivation: Why $\mathcal{N}=4$ SYM?

Scattering Ampitudes, Wilson Loop OPE and Integrability

The Amplitude Bootstrap and its Cluster Algebra Upgrade A Symbol of Uniqueness: The 3-loop MHV Heptagon

Conclusions \& Outlook

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

- $\mathcal{N}=4 S U(N)$ SYM \Leftrightarrow Type IIB superstring theory on $A d S_{5} \times S^{5}$.

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

- $\mathcal{N}=4 S U(N)$ SYM \Leftrightarrow Type IIB superstring theory on $A d S_{5} \times S^{5}$. strongly coupled \Leftrightarrow weakly coupled

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

- $\mathcal{N}=4 S U(N)$ SYM \Leftrightarrow Type IIB superstring theory on $A d S_{5} \times S^{5}$. strongly coupled \Leftrightarrow weakly coupled
- In the 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed: Integrable structures \Rightarrow All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

- $\mathcal{N}=4 S U(N)$ SYM \Leftrightarrow Type IIB superstring theory on $A d S_{5} \times S^{5}$. strongly coupled \Leftrightarrow weakly coupled
- In the 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed: Integrable structures \Rightarrow All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

- $\mathcal{N}=4 S U(N)$ SYM \Leftrightarrow Type IIB superstring theory on $A d S_{5} \times S^{5}$. strongly coupled \Leftrightarrow weakly coupled
- In the 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed: Integrable structures \Rightarrow All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

- $\mathcal{N}=4 S U(N)$ SYM \Leftrightarrow Type IIB superstring theory on $A d S_{5} \times S^{5}$. strongly coupled \Leftrightarrow weakly coupled
- In the 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed: Integrable structures \Rightarrow All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

- Generalised Unitarity [Bern,Dixon,Dunbar,Kosower...]
- Method of Symbols ${ }^{\text {[Goncharov,Spradlin,Vergu,Volovich] }}$

$\mathcal{N}=4$ Super Yang Mills Theory \& Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

- $\mathcal{N}=4 S U(N)$ SYM \Leftrightarrow Type IIB superstring theory on $A d S_{5} \times S^{5}$. strongly coupled \Leftrightarrow weakly coupled
- In the 't Hooft limit, $N \rightarrow \infty$ with $\lambda=g_{Y M}^{2} N$ fixed: Integrable structures \Rightarrow All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

- Generalised Unitarity ${ }^{[B e r n, D i x o n, D u n b a r, K o s o w e r . . .] ~}$
- Method of Symbols ${ }^{\text {[Goncharov,Spradlin,Vergu,Volovich] }}$

Then apply to QCD, e.g. $|g g \rightarrow H g|^{2}$ for N^{3} LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

Scattering Amplitudes: $d \sigma \propto|\mathcal{A}|^{2}$
For $\mathcal{N}=4$, all fields massless and in adjoint of gauge group $S U(N)$.

Scattering Amplitudes: $d \sigma \propto|\mathcal{A}|^{2}$
For $\mathcal{N}=4$, all fields massless and in adjoint of gauge group $S U(N)$.
Can thus use helicity $h=\vec{S} \cdot \hat{p}$ to classify on-shell particle content,

$$
\begin{array}{rcccr}
h:-1 & -1 / 2 & 0 & 1 / 2 & 1 \\
G^{-} \xrightarrow{Q^{1}} & \bar{\Gamma}^{A} \xrightarrow{Q^{2}} & \Phi_{A B} \xrightarrow{Q^{3}} & \Gamma_{A} \xrightarrow{Q^{4}} & G^{+}
\end{array}
$$

For the gluons $G^{ \pm}$, the gluinos $\Gamma, \bar{\Gamma}$, and the scalars Φ.

Scattering Amplitudes: $d \sigma \propto|\mathcal{A}|^{2}$
For $\mathcal{N}=4$, all fields massless and in adjoint of gauge group $S U(N)$.
Can thus use helicity $h=\vec{S} \cdot \hat{p}$ to classify on-shell particle content,

$$
\begin{array}{rlrlr}
h:-1 & -1 / 2 & 0 & 1 / 2 & 1 \\
G^{-} \xrightarrow{Q^{1}} & \bar{\Gamma}^{A} \xrightarrow{Q^{2}} & \Phi_{A B} \xrightarrow{Q^{3}} & \Gamma_{A} \xrightarrow{Q^{4}} & G^{+}
\end{array}
$$

For the gluons $G^{ \pm}$, the gluinos $\Gamma, \bar{\Gamma}$, and the scalars Φ. For n gluons,

$$
\begin{aligned}
\mathcal{A}_{n}^{L-\text { loop }} & \left(\left\{k_{i}, h_{i}, a_{i}\right\}\right) \\
= & \sum_{\sigma \in S_{n} / Z_{n}} \operatorname{Tr}\left(T^{\left.a_{\sigma(1)} \ldots T^{a_{\sigma(n)}}\right) A_{n}^{(L)}\left(\sigma\left(1^{h_{1}}\right), \ldots, \sigma\left(n^{h_{n}}\right)\right)}\right. \\
& \quad+\text { multitrace terms, subleading by powers of } 1 / N^{2} .
\end{aligned}
$$

$A_{n}^{(L)}$: color-ordered amplitude, all color factors removed.

Maximally Hellicity Violating (MHV) Amplitudes

These are the simplest amplitudes: $A_{n}^{(L)}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)$

Maximally Hellicity Violating (MHV) Amplitudes

These are the simplest amplitudes: $A_{n}^{(L)}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)$
They also have remarkable properties, namely they

- are dual to null polygonal Wilson loops.
[Alday,Maldacena][Drummond,Korchemsky,Sokatchev][Brandhuber,Heslop,Travaglini]

$$
\begin{aligned}
k_{i} & \equiv x_{i+1}-x_{i} \equiv x_{i+1, i}, \\
k_{i}^{2} & =x_{i+1, i}^{2}=0 \\
\sum k_{i} & =0 \quad \text { automatically satisfied } \\
\log W_{n} & =\log \frac{A_{n}^{M H V}}{A_{n, \text { tree }}^{M H V}}+\mathcal{O}(\epsilon)
\end{aligned}
$$

Maximally Hellicity Violating (MHV) Amplitudes

These are the simplest amplitudes: $A_{n}^{(L)}\left(1^{+}, \ldots, i^{-}, \ldots, j^{-}, \ldots, n^{+}\right)$
They also have remarkable properties, namely they

- are dual to null polygonal Wilson loops.
[Alday,Maldacena][Drummond,Korchemsky,Sokatchev][Brandhuber,Heslop,Travaglini]

$$
\begin{aligned}
k_{i} & \equiv x_{i+1}-x_{i} \equiv x_{i+1, i} \\
k_{i}^{2} & =x_{i+1, i}^{2}=0 \\
\sum k_{i} & =0 \quad \text { automatically satisfied } \\
\log W_{n} & =\log \frac{A_{n}^{M H V}}{A_{n, \text { tree }}^{M H V}}+\mathcal{O}(\epsilon)
\end{aligned}
$$

- exhibit (formally) dual conformal invariance (DCI) under $x_{i}^{\mu} \rightarrow \frac{x_{i}^{\mu}}{x_{i}^{2}}$

MHV Scattering Amplitudes

- In reality DCI broken by divergences, (IR in massless $\mathcal{N}=4 / \mathrm{UV}$ in cusped WL). Breaking controlled by conformal Ward identity. [Drummond,Henn,Korchemsky,Sokatchev]

MHV Scattering Amplitudes

- In reality DCI broken by divergences, (IR in massless $\mathcal{N}=4 / \mathrm{UV}$ in cusped WL). Breaking controlled by conformal Ward identity. [Drummond,Henn,Korchemsky,Sokatchev]
- For $n=4,5$, the latter uniquely determines the dimensionally regularized A_{n} / W_{n} to all loops! Given by ansatz $W_{n}^{B D S}$ of [Anastasiou,Bern,Dixon,Kosower][Bern,Dixon,Smirnov]

MHV Scattering Amplitudes

- In reality DCI broken by divergences, (IR in massless $\mathcal{N}=4 / \mathrm{UV}$ in cusped WL). Breaking controlled by conformal Ward identity. [Drummond,Henn,Korchemsky,Sokatchev]
- For $n=4,5$, the latter uniquely determines the dimensionally regularized A_{n} / W_{n} to all loops! Given by ansatz $W_{n}^{B D S}$ of [Anastasiou,Bern,Dixon,Kosower][Bern,Dixon,Smirnov]
- For $n \geq 6$,

$$
W_{n}=W_{n}^{B D S} e^{R_{n}\left(u_{1}, \ldots, u_{m}\right)}
$$

where the 'remainder function' R_{n} is conformally invariant, and thus a function of conformal cross ratios, e.g $u=\frac{x_{6}^{2} x_{13}^{2}}{x_{36}^{2} x_{14}^{2}}$.

MHV Scattering Amplitudes

- In reality DCI broken by divergences, (IR in massless $\mathcal{N}=4 / \mathrm{UV}$ in cusped WL). Breaking controlled by conformal Ward identity. [Drummond,Henn,Korchemsky,Sokatchev]
- For $n=4,5$, the latter uniquely determines the dimensionally regularized A_{n} / W_{n} to all loops! Given by ansatz $W_{n}^{B D S}$ of [Anastasiou,Bern,Dixon,Kosower][Bern,Dixon,Smirnov]
- For $n \geq 6$,

$$
W_{n}=W_{n}^{B D S} e^{R_{n}\left(u_{1}, \ldots, u_{m}\right)}
$$

where the 'remainder function' R_{n} is conformally invariant, and thus a function of conformal cross ratios, e.g $u=\frac{x_{46}^{2} x_{13}^{2}}{x_{36}^{2} x_{14}^{2}}$.

- \# of independent $u_{i}: m=4 n-n-15=3 n-15$

For the moment, focus on $R_{6}\left(u_{1}, u_{2}, u_{3}\right)$.

Nonperturbative Definition via the Collinear Limit

 Kinematics

Nonperturbative Definition via the Collinear Limit Kinematics

- Pick 2 non-intersecting segments (PO), (SF), form square by connecting them with another 2 null segments (PS), (OF).

Nonperturbative Definition via the Collinear Limit Kinematics

- Pick 2 non-intersecting segments (PO), (SF), form square by connecting them with another 2 null segments (PS), (OF).
- Fix all of its 16-4 coordinates by conformal transformations (15): In fact, each square invariant under subset of 3 transformations!

Nonperturbative Definition via the Collinear Limit

Kinematics

- Pick 2 non-intersecting segments (PO), (SF), form square by connecting them with another 2 null segments (PS), (OF).
- Fix all of its 16-4 coordinates by conformal transformations (15): In fact, each square invariant under subset of 3 transformations!
- Convenient to put cusps at origin O, spacelike and null (past+future) infinity $\mathrm{S}, \mathrm{P}, \mathrm{F}$ in $\left(x^{0}, x^{1}\right)$ plane. Symmetries generated by dilatations D, boosts M_{01}, and rotations on $\left(x^{2}, x^{3}\right)$ plane M_{23}.

Nonperturbative Definition via the Collinear Limit

Kinematics

- Pick 2 non-intersecting segments (PO), (SF), form square by connecting them with another 2 null segments (PS), (OF).
- Fix all of its 16-4 coordinates by conformal transformations (15): In fact, each square invariant under subset of 3 transformations!
- Convenient to put cusps at origin O, spacelike and null (past+future) infinity $\mathrm{S}, \mathrm{P}, \mathrm{F}$ in $\left(x^{0}, x^{1}\right)$ plane. Symmetries generated by dilatations D, boosts M_{01}, and rotations on $\left(x^{2}, x^{3}\right)$ plane M_{23}.

Collinear limit: Act with $e^{-\tau\left(D-M_{01}\right)}$ on A and B , and take $\tau \rightarrow \infty$. Parametrize u_{1}, u_{2}, u_{3} by group coordinates τ, σ, ϕ.

Nonperturbative Definition via the Collinear Limit

Dynamics

Nonperturbative Definition via the Collinear Limit

Dynamics

Can think of $(P O),(S F)$ as a color-electric flux tube sourced by a quark-antiquark pair moving at the speed of light, and decompose the Wilson loop with respect to all possible excitations ψ_{i} of this flux tube.

Nonperturbative Definition via the Collinear Limit

Dynamics

Can think of $(P O),(S F)$ as a color-electric flux tube sourced by a quark-antiquark pair moving at the speed of light, and decompose the Wilson loop with respect to all possible excitations ψ_{i} of this flux tube.

Schematically,

$$
W=\sum_{\psi_{i}} e^{-\tau E_{i}+i p_{i}+i m_{i} \phi} \mathcal{P}\left(0 \mid \psi_{i}\right) \mathcal{P}\left(\psi_{i} \mid 0\right)
$$

Nonperturbative Definition via the Collinear Limit

Dynamics

Can think of $(P O),(S F)$ as a color-electric flux tube sourced by a quark-antiquark pair moving at the speed of light, and decompose the Wilson loop with respect to all possible excitations ψ_{i} of this flux tube.

Schematically,

$$
W=\sum_{\psi_{i}} e^{-\tau E_{i}+i p_{i}+i m_{i} \phi} \mathcal{P}\left(0 \mid \psi_{i}\right) \mathcal{P}\left(\psi_{i} \mid 0\right)
$$

- Propagation of square eigenstates

Nonperturbative Definition via the Collinear Limit

Dynamics

Can think of $(P O),(S F)$ as a color-electric flux tube sourced by a quark-antiquark pair moving at the speed of light, and decompose the Wilson loop with respect to all possible excitations ψ_{i} of this flux tube.

Schematically,

$$
W=\sum_{\psi_{i}} e^{-\tau E_{i}+i p_{i}+i m_{i} \phi} \mathcal{P}\left(0 \mid \psi_{i}\right) \mathcal{P}\left(\psi_{i} \mid 0\right)
$$

- Propagation of square eigenstates
- Transition between squares

Nonperturbative Definition via the Collinear Limit

Dynamics

Can think of $(P O),(S F)$ as a color-electric flux tube sourced by a quark-antiquark pair moving at the speed of light, and decompose the Wilson loop with respect to all possible excitations ψ_{i} of this flux tube.

Schematically,

$$
W=\sum_{\psi_{i}} e^{-\tau E_{i}+i p_{i}+i m_{i} \phi} \mathcal{P}\left(0 \mid \psi_{i}\right) \mathcal{P}\left(\psi_{i} \mid 0\right)
$$

- Propagation of square eigenstates
- Transition between squares
\Rightarrow WL ‘Operator Product Expansion' (OPE)

Wilson Loop OPE \& Integrability

In $\mathcal{N}=4 \mathrm{SYM}$, flux tube excitations in 1-1 correspondence with excitations of an integrable spin chain with hamiltonian $D-M_{01}$.

Wilson Loop OPE \& Integrability

In $\mathcal{N}=4$ SYM, flux tube excitations in 1-1 correspondence with excitations of an integrable spin chain with hamiltonian $D-M_{01}$.

Lightest excitations made of 6 scalars $\phi, 4+4$ fermions $\psi, \bar{\psi}$ and $1+1$ gluons F, \bar{F} of the theory, with classical $\Delta-S=1$, over the

$$
\text { vacuum }=\operatorname{tr}\left(Z D_{+}^{S} Z\right), \quad Z=\phi^{1}+i \phi^{2}, \quad D_{+}=D_{0}+D_{1}
$$

Wilson Loop OPE \& Integrability

In $\mathcal{N}=4 \mathrm{SYM}$, flux tube excitations in 1-1 correspondence with excitations of an integrable spin chain with hamiltonian $D-M_{01}$.

Lightest excitations made of 6 scalars $\phi, 4+4$ fermions $\psi, \bar{\psi}$ and $1+1$ gluons F, \bar{F} of the theory, with classical $\Delta-S=1$, over the

$$
\text { vacuum }=\operatorname{tr}\left(Z D_{+}^{S} Z\right), \quad Z=\phi^{1}+i \phi^{2}, \quad D_{+}=D_{0}+D_{1}
$$

Integrability enables the calculation of the excitation energies $E(p)$,

$$
E(p)=(\Delta-S)_{1}-(\Delta-S)_{\mathrm{vac}}=1+\sum_{l=1}^{\infty} \lambda^{l} E^{(l)}(p)
$$

to all loops, and implies that for M excitations $E_{M}=M+\mathcal{O}(\lambda) .{ }^{[\text {Basso] }]}$

Wilson Loop OPE \& Integrability

In $\mathcal{N}=4 \mathrm{SYM}$, flux tube excitations in 1-1 correspondence with excitations of an integrable spin chain with hamiltonian $D-M_{01}$.

Lightest excitations made of 6 scalars $\phi, 4+4$ fermions $\psi, \bar{\psi}$ and $1+1$ gluons F, \bar{F} of the theory, with classical $\Delta-S=1$, over the

$$
\text { vacuum }=\operatorname{tr}\left(Z D_{+}^{S} Z\right), \quad Z=\phi^{1}+i \phi^{2}, \quad D_{+}=D_{0}+D_{1}
$$

Integrability enables the calculation of the excitation energies $E(p)$,

$$
E(p)=(\Delta-S)_{1}-(\Delta-S)_{\mathrm{vac}}=1+\sum_{l=1}^{\infty} \lambda^{l} E^{(l)}(p)
$$

to all loops, and implies that for M excitations $E_{M}=M+\mathcal{O}(\lambda) .{ }^{[\text {Basso] }]}$
Thus, weak coupling WL OPE=expansion in terms $\propto e^{-\tau M}, M=1,2 \ldots$

The Proposal of Basso,Sever,Vieira

To complete WL OPE description, also emission/absorption form factors or 'pentagon transitions' $\mathcal{P}\left(0 \mid \psi_{1}\right), \mathcal{P}\left(\psi_{1} \mid 0\right)$ needed.

The Proposal of Basso,Sever, Vieira

To complete WL OPE description, also emission/absorption form factors or 'pentagon transitions' $\mathcal{P}\left(0 \mid \psi_{1}\right), \mathcal{P}\left(\psi_{1} \mid 0\right)$ needed.

- Obtained for all $M=1,2$ particle excitations, and all arbitrary M gluonic excitations by exploiting once more the power of integrability.

The Proposal of Basso,Sever, Vieira

To complete WL OPE description, also emission/absorption form factors or 'pentagon transitions' $\mathcal{P}\left(0 \mid \psi_{1}\right), \mathcal{P}\left(\psi_{1} \mid 0\right)$ needed.

- Obtained for all $M=1,2$ particle excitations, and all arbitrary M gluonic excitations by exploiting once more the power of integrability.
- Yield all-loop integral expressions for individual terms in collinear limit expansion. Can compute at weak coupling. [GP' ${ }^{13]\left[G P{ }^{\prime} 14\right]}$

The Proposal of Basso,Sever,Vieira

To complete WL OPE description, also emission/absorption form factors or 'pentagon transitions' $\mathcal{P}\left(0 \mid \psi_{1}\right), \mathcal{P}\left(\psi_{1} \mid 0\right)$ needed.

- Obtained for all $M=1,2$ particle excitations, and all arbitrary M gluonic excitations by exploiting once more the power of integrability.
- Yield all-loop integral expressions for individual terms in collinear limit expansion. Can compute at weak coupling. [GP' ${ }^{13][\text { [GP' } 14]}$

Also very interesting integrability-based methods for constructing Yangian invariants relevant to scattering amplitudes.
[Arkani-Hamed,Beisert,Bourjaily,Broedel,Cachazo,Caron-Huot,Chicherin,Derkachov,Ferro,Frassek, Goncharov Kanning,Kirchner,Ko,Leeuw,Lukowski,Menenghelli,Plefka,Postnikov,Rosso,Staudacher, Trnka]

The Proposal of Basso,Sever,Vieira

To complete WL OPE description, also emission/absorption form factors or 'pentagon transitions' $\mathcal{P}\left(0 \mid \psi_{1}\right), \mathcal{P}\left(\psi_{1} \mid 0\right)$ needed.

- Obtained for all $M=1,2$ particle excitations, and all arbitrary M gluonic excitations by exploiting once more the power of integrability.
- Yield all-loop integral expressions for individual terms in collinear limit expansion. Can compute at weak coupling. [GP' ${ }^{13][\text { [GP' } 14]}$

Also very interesting integrability-based methods for constructing Yangian invariants relevant to scattering amplitudes.
[Arkani-Hamed,Beisert,Bourjaily,Broedel,Cachazo,Caron-Huot,Chicherin,Derkachov,Ferro,Frassek, Goncharov Kanning,Kirchner,Ko,Leeuw,Lukowski,Menenghelli,Plefka,Postnikov,Rosso,Staudacher, Trnka]

Spectral Problem Wisdom

If exact S-matrix within reach, look at many "data points" at weak/strong coupling to extract its general pattern.

How do we compute $R_{n}^{(L)}$ in general kinematics?

How do we compute $R_{n}^{(L)}$ in general kinematics?
For $n=6$, very successful amplitude bootstrap up to $L=4$ loops.
[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]

How do we compute $R_{n}^{(L)}$ in general kinematics?

```
For }n=6\mathrm{ , very successful amplitude bootstrap
up to L=4 loops.
[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]
```

A. Construct an ansatz assuming

How do we compute $R_{n}^{(L)}$ in general kinematics?
For $n=6$, very successful amplitude bootstrap up to $L=4$ loops.
[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]
A. Construct an ansatz assuming

1. What the general class of functions that suffices to express $R_{n}^{(L)}$ is

How do we compute $R_{n}^{(L)}$ in general kinematics?
For $n=6$, very successful amplitude bootstrap up to $L=4$ loops.
[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]
A. Construct an ansatz assuming

1. What the general class of functions that suffices to express $R_{n}^{(L)}$ is
2. What the function arguments (encoding the kinematics) are

How do we compute $R_{n}^{(L)}$ in general kinematics?

For $n=6$, very successful amplitude bootstrap up to $L=4$ loops.
[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]
A. Construct an ansatz assuming

1. What the general class of functions that suffices to express $R_{n}^{(L)}$ is 2. What the function arguments (encoding the kinematics) are
B. Fix the coefficients of the ansatz by imposing consistency conditions (e.g. collinear data we described in previous part of talk)

How do we compute $R_{n}^{(L)}$ in general kinematics?
For $n=6$, very successful amplitude bootstrap up to $L=4$ loops.
[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]
A. Construct an ansatz assuming

1. What the general class of functions that suffices to express $R_{n}^{(L)}$ is
2. What the function arguments (encoding the kinematics) are
B. Fix the coefficients of the ansatz by imposing consistency conditions (e.g. collinear data we described in previous part of talk)

Motivated by this progress, we upgraded this procedure for $n=7$, with information from the cluster algebra structure of the kinematical space.

How do we compute $R_{n}^{(L)}$ in general kinematics?
For $n=6$, very successful amplitude bootstrap up to $L=4$ loops.
[Dixon,Drummond,Henn]
[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]
A. Construct an ansatz assuming

1. What the general class of functions that suffices to express $R_{n}^{(L)}$ is
2. What the function arguments (encoding the kinematics) are
B. Fix the coefficients of the ansatz by imposing consistency conditions (e.g. collinear data we described in previous part of talk)

Motivated by this progress, we upgraded this procedure for $n=7$, with information from the cluster algebra structure of the kinematical space.

Surprisingly, we found that heptagon bootstrap is more powerful than the hexagon one! Obtained the symbol of $R_{7}^{(3)}$ from very little input. ${ }^{\text {[Drummond, GP,Spradin] }}$

What are the right functions?

Generalised polylogarithms (GPLs)

What are the right functions?

Generalised polylogarithms (GPLs)
f_{k} is a GPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.

What are the right functions?

Generalised polylogarithms (GPLs)
f_{k} is a GPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Very convenient tool for describing them: The symbol $\mathcal{S}\left(f_{k}\right)$, encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

What are the right functions?

Generalised polylogarithms (GPLs)
f_{k} is a GPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Very convenient tool for describing them: The symbol $\mathcal{S}\left(f_{k}\right)$, encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

Collection of ϕ_{α} : symbol alphabet $\quad \mid \quad f_{0}^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)}$ rational

What are the right functions?

Generalised polylogarithms (GPLs)
f_{k} is a GPL of weight k if its differential may be written as a finite linear combination

$$
d f_{k}=\sum_{\alpha} f_{k-1}^{(\alpha)} d \log \phi_{\alpha}
$$

over some set of ϕ_{α}, where $f_{k-1}^{(\alpha)}$ functions of weight $k-1$.
Very convenient tool for describing them: The symbol $\mathcal{S}\left(f_{k}\right)$, encapsulating recursive application of above definition (on $f_{k-1}^{(\alpha)}$ etc)

$$
\mathcal{S}\left(f_{k}\right)=\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)}\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right) .
$$

Collection of ϕ_{α} : symbol alphabet $\quad \mid \quad f_{0}^{\left(\alpha_{1}, \ldots, \alpha_{k}\right)}$ rational
Empeirical evidence: L-loop amplitudes $=$ GPLs of weight $k=2 L$
[Duhr,Del Duca,Smirnov][Arkani-Hamed...][GP]

What are the right variables?

What are the right variables?

More precisely, what is the symbol alphabet?

What are the right variables?

More precisely, what is the symbol alphabet?

- For $n=6,9$ letters, motivated by analysis of relevant integrals

What are the right variables?
More precisely, what is the symbol alphabet?

- For $n=6$, 9 letters, motivated by analysis of relevant integrals
- More generally, strong motivation from cluster algebra structure of kinematical configuration space $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$
[Golden, Goncharov,Spradlin, Vergu,Volovich]

What are the right variables?
More precisely, what is the symbol alphabet?

- For $n=6$, 9 letters, motivated by analysis of relevant integrals
- More generally, strong motivation from cluster algebra structure of kinematical configuration space $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$
[Golden, Goncharov,Spradlin,Vergu,Volovich]
The latter is a collection of n ordered momentum twistors Z_{i} on \mathbb{P}^{3}, (an equivalent way to parametrise massless kinematics), modulo dual conformal transformations.

Momentum Twistors Z^{I} [Hodges]

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors $X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X$.

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \square \text { of } S U(2,2)
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle
$$

Momentum Twistors Z^{I} [Hodges]

- Represent dual space variables $x^{\mu} \in \mathbb{R}^{1,3}$ as projective null vectors

$$
X^{M} \in \mathbb{R}^{2,4}, X^{2}=0, X \sim \lambda X
$$

- Repackage vector X^{M} of $S O(2,4)$ into antisymmetric representation

$$
X^{I J}=-X^{J I}=\square \square \text { of } S U(2,2)
$$

- Can build latter from two copies of the fundamental $Z^{I}=\square$,

$$
X^{I J}=Z^{[I} \tilde{Z}^{J]}=\left(Z^{I} \tilde{Z}^{J}-Z^{J} \tilde{Z}^{I}\right) / 2 \text { or } X=Z \wedge \tilde{Z}
$$

- After complexifying, Z^{I} transform in $S L(4, \mathbb{C})$. Since $Z \sim t Z$, can be viewed as homogeneous coordinates on \mathbb{P}^{3}.
- Can show

$$
\begin{aligned}
& \left(x-x^{\prime}\right)^{2} \propto 2 X \cdot X^{\prime}=\epsilon_{I J K L} Z^{I} \tilde{Z}^{J} Z^{\prime K} \tilde{Z}^{\prime L}=\operatorname{det}\left(Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right) \equiv\left\langle Z \tilde{Z} Z^{\prime} \tilde{Z}^{\prime}\right\rangle \\
& \cdot\left(x_{i+i}-x_{i}\right)^{2}=0 \quad \Rightarrow X_{i}=Z_{i-1} \wedge Z_{i}
\end{aligned}
$$

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$\operatorname{Gr}(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$\operatorname{Gr}(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under $G L(k)$ transformations, basis vectors change, but still span the same plane.

$\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ and Graßmannians

Can realize $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$ as $4 \times n$ matrix

$$
\left(Z_{1}\left|Z_{2}\right| \ldots \mid Z_{n}\right)
$$

modulo rescalings of the n columns and $S L(4)$ transformations, which resembles a Graßmannian $\operatorname{Gr}(4, n)$.
$G r(k, n)$: The space of k-dimensional planes passing through the origin in an n-dimensional space. Equivalently the space of $k \times n$ matrices modulo $G L(k)$ transformations:

- k-plane specified by k basis vectors that span it $\Rightarrow k \times n$ matrix
- Under $G L(k)$ transformations, basis vectors change, but still span the same plane.
Comparing the two matrices,

$$
\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}
$$

Cluster algebras ${ }^{[\text {Fomin,Zelevinsky] }}$

Cluster algebras ${ }^{[\text {Fomin,Zelevinsky] }}$

They are commutative algebras equipped with a distinguished set of generators ($=$ cluster variables), grouped into overlapping subsets ($=$ clusters) with the same number of elements (= the rank of the algebra). Constructed from an initial cluster by an iterative process (= mutation).

Cluster algebras ${ }^{[\text {Fomin,Zelevinsky] }}$

They are commutative algebras equipped with a distinguished set of generators (= cluster variables), grouped into overlapping subsets (= clusters) with the same number of elements (= the rank of the algebra). Constructed from an initial cluster by an iterative process (= mutation).

Example: A_{2} Cluster algebra

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They are commutative algebras equipped with a distinguished set of generators (= cluster variables), grouped into overlapping subsets (= clusters) with the same number of elements (= the rank of the algebra). Constructed from an initial cluster by an iterative process (= mutation).

Example: A_{2} Cluster algebra

- Cluster variables: $a_{m}, m \in \mathbb{Z}$

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They are commutative algebras equipped with a distinguished set of generators (= cluster variables), grouped into overlapping subsets (= clusters) with the same number of elements (= the rank of the algebra). Constructed from an initial cluster by an iterative process (= mutation).

Example: A_{2} Cluster algebra

- Cluster variables: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$

Cluster algebras ${ }^{[\text {Fomin,Zelevinsky] }}$

They are commutative algebras equipped with a distinguished set of generators ($=$ cluster variables), grouped into overlapping subsets ($=$ clusters) with the same number of elements (= the rank of the algebra). Constructed from an initial cluster by an iterative process (= mutation).

Example: A_{2} Cluster algebra

- Cluster variables: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$

Cluster algebras ${ }^{[F o m i n, Z e l e v i n s k y]}$

They are commutative algebras equipped with a distinguished set of generators ($=$ cluster variables), grouped into overlapping subsets ($=$ clusters) with the same number of elements (= the rank of the algebra). Constructed from an initial cluster by an iterative process (= mutation).

Example: A_{2} Cluster algebra

- Cluster variables: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$
- Mutation: $\left\{a_{m-1}, a_{m}\right\} \rightarrow\left\{a_{m}, a_{m+1}\right\}$ with $a_{m-1} \rightarrow a_{m+1}=\frac{1+a_{m}}{a_{m-1}}$

Cluster algebras ${ }^{[\text {Fomin,Zelevinsky] }}$

They are commutative algebras equipped with a distinguished set of generators (= cluster variables), grouped into overlapping subsets (= clusters) with the same number of elements (= the rank of the algebra). Constructed from an initial cluster by an iterative process (= mutation).

Example: A_{2} Cluster algebra

- Cluster variables: $a_{m}, m \in \mathbb{Z}$
- Initial cluster: $\left\{a_{1}, a_{2}\right\}$
- Clusters: $\left\{a_{m}, a_{m+1}\right\}, m \in \mathbb{Z}$
- Mutation: $\left\{a_{m-1}, a_{m}\right\} \rightarrow\left\{a_{m}, a_{m+1}\right\}$ with $a_{m-1} \rightarrow a_{m+1}=\frac{1+a_{m}}{a_{m-1}}$

Here, finite number of cluster variables:

$$
a_{3}=\frac{1+a_{2}}{a_{1}}, \quad a_{4}=\frac{1+a_{1}+a_{2}}{a_{1} a_{2}}, \quad a_{5}=\frac{1+a_{1}}{a_{2}}, \quad a_{6}=a_{1}, \quad a_{7}=a_{2}
$$

Cluster algebras (cont'd)

For our purposes, can be described by quivers, where each variable a_{k} of a cluster corresponds to node k.

Example: A_{2} Cluster algebra

- Initial cluster: $\left\{a_{1}, a_{2}\right\}: 1 \rightarrow 2$

Cluster algebras (cont'd)

For our purposes, can be described by quivers, where each variable a_{k} of a cluster corresponds to node k.

- Mutation at node $k: \forall i \rightarrow k \rightarrow j$, add arrow $i \rightarrow j$, reverse all arrows to/from k, remove \rightleftarrows and C .

Example: A_{2} Cluster algebra

- Initial cluster: $\left\{a_{1}, a_{2}\right\}: 1 \rightarrow 2$
- Mutate at $1: 1^{\prime} \leftarrow 2$

Cluster algebras (cont'd)

For our purposes, can be described by quivers, where each variable a_{k} of a cluster corresponds to node k.

- Mutation at node $k: \forall i \rightarrow k \rightarrow j$, add arrow $i \rightarrow j$, reverse all arrows to/from k, remove \rightleftarrows and C .
- In this manner, obtain new quiver/cluster where

$$
a_{k} \rightarrow a_{k}^{\prime}=\frac{1}{a_{k}}\left(\prod_{\text {arrows } i \rightarrow k} a_{i}+\prod_{\text {arrows }} a_{k \rightarrow j}\right)
$$

Example: A_{2} Cluster algebra

- Initial cluster: $\left\{a_{1}, a_{2}\right\}: 1 \rightarrow 2$
- Mutate at $1: 1^{\prime} \leftarrow 2$
- Leads to new cluster $\left\{a_{2}, a_{3}\right\}$ with $a_{3}=a_{1}^{\prime}=\frac{1+a_{2}}{a_{1}}$ and so on

Connection with $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}$

Connection with $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=\operatorname{Gr}(4, n) /\left(C^{*}\right)^{n-1}$

- Graßmannians $\operatorname{Gr}(k, n)$ equipped with cluster algebra structure ${ }^{[S c o t t]}$

Connection with $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=\operatorname{Gr}(4, n) /\left(C^{*}\right)^{n-1}$

- Graßmannians $\operatorname{Gr}(k, n)$ equipped with cluster algebra structure
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$

Connection with $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=\operatorname{Gr}(4, n) /\left(C^{*}\right)^{n-1}$

- Graßmannians $\operatorname{Gr}(k, n)$ equipped with cluster algebra structure
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Mutations also yield certain homogeneous polynomials of Plücker coordinates

Connection with $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=\operatorname{Gr}(4, n) /\left(C^{*}\right)^{n-1}$

- Graßmannians $G r(k, n)$ equipped with cluster algebra structure
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Mutations also yield certain homogeneous polynomials of Plücker coordinates
- Crucial observation: For all known cases, symbol alphabet of n-point amplitudes for $n=6,7$ are $\operatorname{Gr}(4, n)$ cluster variables (also known as \mathcal{A}-coordinates) ${ }^{\text {[Golden,Goncharov, Spradlin,Vergu,Volovich] }}$

Connection with $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)=G r(4, n) /\left(C^{*}\right)^{n-1}$

- Graßmannians $G r(k, n)$ equipped with cluster algebra structure
- Initial cluster made of a special set of Plücker coordinates $\left\langle i_{1} \ldots i_{k}\right\rangle$
- Mutations also yield certain homogeneous polynomials of Plücker coordinates
- Crucial observation: For all known cases, symbol alphabet of n-point amplitudes for $n=6,7$ are $G r(4, n)$ cluster variables (also known as \mathcal{A}-coordinates) ${ }^{\text {[Golden,Goncharov, Spradlin,Vergu, Volovich] }}$

Fundamental assumption of "cluster bootstrap"
Symbol alphabet is made of cluster \mathcal{A}-coordinates on $\operatorname{Conf}_{n}\left(\mathbb{P}^{3}\right)$. For the heptagon, 42 of them.

Heptagon Symbol Letters

Multiply \mathcal{A}-coordinates with suitable powers of $\langle i i+1 i+2 i+3\rangle$ to form conformally invariant cross-ratios,

$$
\begin{aligned}
& a_{11}=\frac{\langle 1234\rangle\langle 1567\rangle\langle 2367\rangle}{\langle 1237\rangle\langle 1267\rangle\langle 3456\rangle}, \\
& a_{21}=\frac{\langle 1234\rangle\langle 2567\rangle}{\langle 1267\rangle\langle 2345\rangle}, \\
& a_{31}=\frac{\langle 1567\rangle\langle 2347\rangle}{\langle 1237\rangle\langle 4567\rangle},
\end{aligned}
$$

$$
\begin{aligned}
& a_{41}=\frac{\langle 2457\rangle\langle 3456\rangle}{\langle 2345\rangle\langle 4567\rangle}, \\
& a_{51}=\frac{\langle 1(23)(45)(67)\rangle}{\langle 1234\rangle\langle 1567\rangle}, \\
& a_{61}=\frac{\langle 1(34)(56)(72)\rangle}{\langle 1234\rangle\langle 1567\rangle},
\end{aligned}
$$

where

$$
\begin{gathered}
\langle i j k l\rangle \equiv\left\langle Z_{i} Z_{j} Z_{k} Z_{l}\right\rangle=\operatorname{det}\left(Z_{i} Z_{j} Z_{k} Z_{l}\right) \\
\langle a(b c)(d e)(f g)\rangle \equiv\langle a b d e\rangle\langle a c f g\rangle-\langle a b f\rangle\langle a c d e\rangle
\end{gathered}
$$

together with $a_{i j}$ obtained from $a_{i 1}$ by cyclically relabeling $Z_{m} \rightarrow Z_{m+j-1}$.

Imposing Constraints: Integrable Words

Imposing Constraints: Integrable Words

Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0,
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Imposing Constraints: Integrable Words

Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Example: $(1-x y) \otimes(1-x)$ with x, y independent.

Imposing Constraints: Integrable Words

Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Example: $(1-x y) \otimes(1-x)$ with x, y independent.

$$
\begin{aligned}
d \log (1-x y) \wedge d \log (1-x) & =\frac{-y d x-x d y}{1-x y} \wedge \frac{-d x}{1-x} \\
& =\frac{x}{(1-x y)(1-x)} d y \wedge d x
\end{aligned}
$$

Imposing Constraints: Integrable Words

Given a random symbol \mathcal{S} of weight $k>1$, there does not in general exist any function whose symbol is \mathcal{S}. A symbol is said to be integrable, (or, to be an integrable word) if it satisfies

$$
\sum_{\alpha_{1}, \ldots, \alpha_{k}} f_{0}^{\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)} d \log \phi_{\alpha_{j}} \wedge d \log \phi_{\alpha_{j+1}} \underbrace{\left(\phi_{\alpha_{1}} \otimes \cdots \otimes \phi_{\alpha_{k}}\right)}_{\text {omitting } \phi_{\alpha_{j}} \otimes \phi_{\alpha_{j+1}}}=0
$$

$\forall j \in\{1, \ldots, k-1\}$. These are necessary and sufficient conditions for a function f_{k} with symbol \mathcal{S} to exist.

Example: $(1-x y) \otimes(1-x)$ with x, y independent.

$$
\begin{aligned}
d \log (1-x y) \wedge d \log (1-x) & =\frac{-y d x-x d y}{1-x y} \wedge \frac{-d x}{1-x} \\
& =\frac{x}{(1-x y)(1-x)} d y \wedge d x
\end{aligned}
$$

Not integrable

Imposing Constraints: Physical Singularities

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Singularities of generalised polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only $\langle i-1 i j-1 j\rangle$ allowed in the first entry of \mathcal{S}

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Singularities of generalised polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only $\langle i-1 i j-1 j\rangle$ allowed in the first entry of \mathcal{S}

Particularly for $n=7$, this restricts letters of the first entry to $a_{1 j}$.

Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

$$
\left(p_{i}+p_{i+1}+\cdots+p_{j-1}\right)^{2}=\left(x_{j}-x_{i}\right)^{2} \propto\langle i-1 i j-1 j\rangle \rightarrow 0
$$

Singularities of generalised polylogarithm functions are encoded in the first entry of their symbols.

First-entry condition: Only $\langle i-1 i j-1 j\rangle$ allowed in the first entry of \mathcal{S}

Particularly for $n=7$, this restricts letters of the first entry to $a_{1 j}$.
Define a heptagon symbol: An integrable symbol with alphabet $a_{i j}$ that obeys first-entry condition.

MHV Constraints: Yangian anomaly equations

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka] [Drummond,Ferro]

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka] [Drummond,Ferro]
- Although broken at loop level by IR divergences, Yangian anomaly equations governing this breaking have been proposed [Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear combination of $d \log \langle i j-1 j j+1\rangle$, which implies

Last-entry condition: Only $\langle i j-1 j j+1\rangle$ may appear in the last entry of the symbol of any MHV amplitude.

MHV Constraints: Yangian anomaly equations

- Tree-level amplitudes exhibit (usual + dual) superconformal symmetry [Drummond,Henn,Korchemsky,Sokatchev]
- Combination of two symmetries gives rise to a Yangian [Drummond,Henn,Plefka] [Drummond,Ferro]
- Although broken at loop level by IR divergences, Yangian anomaly equations governing this breaking have been proposed [Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear combination of $d \log \langle i j-1 j j+1\rangle$, which implies

Last-entry condition: Only $\langle i j-1 j j+1\rangle$ may appear in the last entry of the symbol of any MHV amplitude.

Particularly here: Only the 14 letters $a_{2 j}$ and $a_{3 j}$ may appear in the last symbol entry of R_{7}.

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted n-particle L-loop MHV remainder function that it should smoothly approach the corresponding ($n-1$)-particle function in any simple collinear limit:

$$
\lim _{i+1 \| i} R_{n}^{(L)}=R_{n-1}^{(L)}
$$

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted n-particle L-loop MHV remainder function that it should smoothly approach the corresponding ($n-1$)-particle function in any simple collinear limit:

$$
\lim _{i+1 \| i} R_{n}^{(L)}=R_{n-1}^{(L)} .
$$

For $n=7$, taking this limit in the most general manner reduces the 42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet, plus nine additional letters.

Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted n-particle L-loop MHV remainder function that it should smoothly approach the corresponding ($n-1$)-particle function in any simple collinear limit:

$$
\lim _{i+1 \| i} R_{n}^{(L)}=R_{n-1}^{(L)}
$$

For $n=7$, taking this limit in the most general manner reduces the 42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet, plus nine additional letters.

> A function has a well-defined $i+1 \| i$ limit only if its symbol is independent of all nine of these letters.

Computing (MHV) Heptagon Symbols

Computing (MHV) Heptagon Symbols

Step 1 (Straightforward)

Form linear combination of all length k symbols made of $a_{i j}$ obeying initial (+final) entry conditions, with unknown coefficients grouped in vector X.

Computing (MHV) Heptagon Symbols

Step 1 (Straightforward)

Form linear combination of all length- k symbols made of $a_{i j}$ obeying initial (+ final) entry conditions, with unknown coefficients grouped in vector X.

Step 2 (Challenging)

Solve integrability constraints, which take the form

$$
A \cdot X=0 .
$$

Namely all weight- k (MHV) heptagon functions will be the right nullspace of rational matrix A.

Computing (MHV) Heptagon Symbols

Step 1 (Straightforward)

Form linear combination of all length- k symbols made of $a_{i j}$ obeying initial (+final) entry conditions, with unknown coefficients grouped in vector X.

Step 2 (Challenging)

Solve integrability constraints, which take the form

$$
A \cdot X=0 .
$$

Namely all weight- k (MHV) heptagon functions will be the right nullspace of rational matrix A.
"Just" linear algebra, however for e.g. 3-loop MHV hexagon A boils down to a size of 63557×15979. Tackled with fraction-free variants of Gaussian elimination that bound the size of intermediate expressions.

```
[Storjohann]
```


Results

Weight $k=$	1	2	3	4	5	6	
Number of heptagon symbols	7	42	237	1288	6763	$?$	
well-defined in the $7 \\| 6$ limit	3	15	98	646	$?$	$?$	
which vanish in the $7 \\| 6$ limit	0	6	72	572	$?$	$?$	
well-defined for all $i+1 \\| i$	0	0	0	1	$?$	$?$	
with MHV last entries	0	1	0	2	1	4	
with both of the previous two	0	0	0	1	0	1	

Table: Heptagon symbols and their properties.

Results

Weight $k=$	1	2	3	4	5	6	
Number of heptagon symbols	7	42	237	1288	6763	$?$	
well-defined in the $7 \\| 6$ limit	3	15	98	646	$?$	$?$	
which vanish in the $7 \\| 6$ limit	0	6	72	572	$?$	$?$	
well-defined for all $i+1 \\| i$	0	0	0	1	$?$	$?$	
with MHV last entries	0	1	0	2	1	4	
with both of the previous two	0	0	0	1	0	1	

Table: Heptagon symbols and their properties.
The symbol of the two-loop seven-particle MHV remainder function $R_{7}^{(2)}$ is the only weight-4 heptagon symbol which is well-defined in all $i+1 \| i$ collinear limits.

Results

Weight $k=$	1	2	3	4	5	6	
Number of heptagon symbols	7	42	237	1288	6763	$?$	
well-defined in the $7 \\| 6$ limit	3	15	98	646	$?$	$?$	
which vanish in the $7 \\| 6$ limit	0	6	72	572	$?$	$?$	
well-defined for all $i+1 \\| i$	0	0	0	1	$?$	$?$	
with MHV last entries	0	1	0	2	1	4	
with both of the previous two	0	0	0	1	0	1	

Table: Heptagon symbols and their properties.
The symbol of the three-loop seven-particle MHV remainder function $R_{7}^{(3)}$ is the only weight- 6 heptagon symbol which satisfies the lastentry condition and which is finite in the $7 \| 6$ collinear limit.

Comparison with the hexagon case

Weight $k=$	1	2	3	4	5	6	
Number of hexagon symbols	3	9	26	75	218	643	
well-defined (vanish) in the $6 \\| 5$ limit	0	2	11	44	155	516	
well-defined (vanish) for all $i+1 \\| i$	0	0	2	12	68	307	
with MHV last entries	0	3	7	21	62	188	
with both of the previous two	0	0	1	4	14	59	

Table: Hexagon symbols and their properties.

Surprisingly, heptagon bootstrap more powerful than hexagon one! Fact that $\lim _{7 \| 6} R_{7}^{(3)}=R_{6}^{(3)}$, as well as discrete symmetries such as cyclic $Z_{i} \rightarrow Z_{i+1}$, flip $Z_{i} \rightarrow Z_{n+1-i}$ or parity symmetry follow for free, not imposed a priori.

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever, Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever,Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

1. Computed its weak-coupling expansion to 3 loops, employing the

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever, Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

1. Computed its weak-coupling expansion to 3 loops, employing the technology of Z-sums $\left.{ }^{[M o c h, ~ U w e r, ~ W e i n z i e r l] ~[G P ' ~}{ }^{\prime} 13\right]$ [GP' ${ }^{14]}$
2. Expanded our symbol for $R_{7}^{(3)}$ in the same kinematics, relying on [Dixon,Drummond,Duhr,Pennington]

Further check: Heptagon Wilson loop OPE

This is an expansion in two variables $e^{-\tau_{1}}, e^{-\tau_{2}}$ near the double collinear limit $\tau_{1} \rightarrow \infty, \tau_{2} \rightarrow \infty$.

Integrability predicts linear terms in $e^{-\tau_{i}}$ to
 all loops in integral form, e.g. ${ }^{\text {[Basso,Sever, Vieira 2] }}$

$$
\begin{aligned}
h=e^{i\left(\phi_{1}+\phi_{2}\right)} e^{-\tau_{1}-\tau_{2}} & \int \frac{d u d v}{(2 \pi)^{2}} \mu(u) P_{F F}(-u \mid v) \mu(v) \times \\
& \times e^{-\tau_{1} \gamma_{1}+i p_{1} \sigma_{1}-\tau_{2} \gamma_{2}+i p_{2} \sigma_{2}}
\end{aligned}
$$

Perfect match!

1. Computed its weak-coupling expansion to 3 loops, employing the

2. Expanded our symbol for $R_{7}^{(3)}$ in the same kinematics, relying on [Dixon,Drummond,Duhr,Pennington]

Summary

In this presentation, we talked about

Summary

In this presentation, we talked about

- The beauty and simplicity of amplitudes in $\mathcal{N}=4$ SYM theory

Summary

In this presentation, we talked about

- The beauty and simplicity of amplitudes in $\mathcal{N}=4$ SYM theory
- The integrability-based approach, yielding all-loop integrals for each term in their collinear limit expansion

Summary

In this presentation, we talked about

- The beauty and simplicity of amplitudes in $\mathcal{N}=4$ SYM theory
- The integrability-based approach, yielding all-loop integrals for each term in their collinear limit expansion
- The bootstrap for amplitudes at fixed-order/general kinematics, based on simple assumptions on their analytic structure, and upgraded with input from the cluster algebra structure of the kinematical space

Summary

In this presentation, we talked about

- The beauty and simplicity of amplitudes in $\mathcal{N}=4$ SYM theory
- The integrability-based approach, yielding all-loop integrals for each term in their collinear limit expansion
- The bootstrap for amplitudes at fixed-order/general kinematics, based on simple assumptions on their analytic structure, and upgraded with input from the cluster algebra structure of the kinematical space
- The surprising power of the latter in determining the symbol of the 3-loop 7-point amplitude

Summary

In this presentation, we talked about

- The beauty and simplicity of amplitudes in $\mathcal{N}=4$ SYM theory
- The integrability-based approach, yielding all-loop integrals for each term in their collinear limit expansion
- The bootstrap for amplitudes at fixed-order/general kinematics, based on simple assumptions on their analytic structure, and upgraded with input from the cluster algebra structure of the kinematical space
- The surprising power of the latter in determining the symbol of the 3-loop 7-point amplitude
- The rich interplay between the two approaches

Outlook

Outlook

-Where does the surprising power of the cluster bootstrap come from? Relation to Yangian symmetry?

Outlook

- Where does the surprising power of the cluster bootstrap come from? Relation to Yangian symmetry?
- Important to explore and test it at different MHV degree, higher loops and more legs.

Outlook

- Where does the surprising power of the cluster bootstrap come from? Relation to Yangian symmetry?
- Important to explore and test it at different MHV degree, higher loops and more legs.
- Exploit $R_{7}^{(3)}$ to shed light on yet unknown key quantities in the integrability-based OPE approach, such as multi-particle scalar/fermion pentagon transitions.

Outlook

-Where does the surprising power of the cluster bootstrap come from? Relation to Yangian symmetry?

- Important to explore and test it at different MHV degree, higher loops and more legs.
- Exploit $R_{7}^{(3)}$ to shed light on yet unknown key quantities in the integrability-based OPE approach, such as multi-particle scalar/fermion pentagon transitions.
- Similar story with the multi-Regge kinematics and BFKL approach

Outlook

- Where does the surprising power of the cluster bootstrap come from? Relation to Yangian symmetry?
- Important to explore and test it at different MHV degree, higher loops and more legs.
- Exploit $R_{7}^{(3)}$ to shed light on yet unknown key quantities in the integrability-based OPE approach, such as multi-particle scalar/fermion pentagon transitions.
- Similar story with the multi-Regge kinematics and BFKL approach
- Can we resum the OPE series to obtain full amplitudes? For a first step in this direction, see ${ }^{\text {[Drummond, Papathanasiou, to appear] }}$

Outlook

-Where does the surprising power of the cluster bootstrap come from? Relation to Yangian symmetry?

- Important to explore and test it at different MHV degree, higher loops and more legs.
- Exploit $R_{7}^{(3)}$ to shed light on yet unknown key quantities in the integrability-based OPE approach, such as multi-particle scalar/fermion pentagon transitions.
- Similar story with the multi-Regge kinematics and BFKL approach
- Can we resum the OPE series to obtain full amplitudes? For a first step in this direction, see ${ }^{\text {[Drummond, Papathanasiou, to appear] }}$

Ultimately, can the integrability of planar SYM theory, together with a thorough knowledge of the analytic structure of its amplitudes, lead us to the theory's exact S-matrix?

The Successes of Integrability: Scaling Dimensions 't Hooft limit

The Successes of Integrability: Scaling Dimensions 't Hooft limit

Local, gauge-invariant operators:

$$
\mathcal{O}=\operatorname{Tr}\left(\phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{n}}\right),
$$

where ϕ_{i} the elementary fields of the theory plus derivatives.

The Successes of Integrability: Scaling Dimensions
't Hooft limit
Local, gauge-invariant operators:

$$
\mathcal{O}=\operatorname{Tr}\left(\phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{n}}\right),
$$

where ϕ_{i} the elementary fields of the theory plus derivatives.
Classically,

$$
x \rightarrow \mu x \Rightarrow \phi_{i} \rightarrow \mu^{-\Delta_{0}} \phi_{i} \quad \text { and } \quad \mathcal{O} \rightarrow \mu^{-\sum_{i} \Delta_{0}} \mathcal{O}
$$

The Successes of Integrability: Scaling Dimensions 't Hooft limit

Local, gauge-invariant operators:

$$
\mathcal{O}=\operatorname{Tr}\left(\phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{n}}\right),
$$

where ϕ_{i} the elementary fields of the theory plus derivatives.
Classically,

$$
x \rightarrow \mu x \Rightarrow \phi_{i} \rightarrow \mu^{-\Delta_{0}} \phi_{i} \quad \text { and } \quad \mathcal{O} \rightarrow \mu^{-\sum_{i} \Delta_{0}} \mathcal{O}
$$

However, Δ receives quantum corrections due to renormalization, which combines all operators with the same quantum numbers.

The Successes of Integrability: Scaling Dimensions 't Hooft limit

Local, gauge-invariant operators:

$$
\mathcal{O}=\operatorname{Tr}\left(\phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{n}}\right),
$$

where ϕ_{i} the elementary fields of the theory plus derivatives.
Classically,

$$
x \rightarrow \mu x \Rightarrow \phi_{i} \rightarrow \mu^{-\Delta_{0}} \phi_{i} \quad \text { and } \quad \mathcal{O} \rightarrow \mu^{-\sum_{i} \Delta_{0}} \mathcal{O}
$$

However, Δ receives quantum corrections due to renormalization, which combines all operators with the same quantum numbers.

- Dilatation operator $\mathcal{D}=\sum_{n=0}^{\infty} \mathcal{D}_{n}, \quad \mathcal{D}_{n}$ of order λ^{n}.

The Successes of Integrability: Scaling Dimensions
't Hooft limit
Local, gauge-invariant operators:

$$
\mathcal{O}=\operatorname{Tr}\left(\phi_{i_{1}} \phi_{i_{2}} \ldots \phi_{i_{n}}\right),
$$

where ϕ_{i} the elementary fields of the theory plus derivatives.
Classically,

$$
x \rightarrow \mu x \Rightarrow \phi_{i} \rightarrow \mu^{-\Delta_{0}} \phi_{i} \quad \text { and } \quad \mathcal{O} \rightarrow \mu^{-\sum_{i} \Delta_{0}} \mathcal{O}
$$

However, Δ receives quantum corrections due to renormalization, which combines all operators with the same quantum numbers.

- Dilatation operator $\mathcal{D}=\sum_{n=0}^{\infty} \mathcal{D}_{n}, \quad \mathcal{D}_{n}$ of order λ^{n}.
- Eigenvectors and eigenvalues $\mathcal{D O}=\Delta \mathcal{O}$, and conventionally we define $\delta \Delta \equiv \Delta-\Delta_{0}$ as the anomalous dimension.

The Successes of Integrability: Scaling Dimensions In the beginning there was...

The Successes of Integrability: Scaling Dimensions In the beginning there was...
...the discovery that for operators consisting of SYM scalar fields, \mathcal{D}_{1} takes the form of an integrable spin chain hamiltonian! ${ }^{[\text {Minahan, Zarembo'02] }}$

The Successes of Integrability: Scaling Dimensions In the beginning there was...
...the discovery that for operators consisting of SYM scalar fields, \mathcal{D}_{1} takes the form of an integrable spin chain hamiltonian! ${ }^{[\text {Minahan, Zarembo'02] }}$

For example, operators made of 2 complex combinations Z, W of the 6 real scalars of SYM can be represented as

$$
\operatorname{Tr}\left[Z^{4} W Z^{2} W\right] \quad \Leftrightarrow \quad \bullet \bullet \bullet \quad \bullet \quad|\downarrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \uparrow\rangle_{\text {cyclic }}
$$

The Successes of Integrability: Scaling Dimensions In the beginning there was...
...the discovery that for operators consisting of SYM scalar fields, \mathcal{D}_{1} takes the form of an integrable spin chain hamiltonian! ${ }^{[\text {Minahan, Zarembo'02] }}$

For example, operators made of 2 complex combinations Z, W of the 6 real scalars of SYM can be represented as

$$
\operatorname{Tr}\left[Z^{4} W Z^{2} W\right] \quad \Leftrightarrow \quad \bullet \bullet \bullet \bullet \quad \bullet \quad|\downarrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \uparrow\rangle_{\text {cyclic }}
$$

The dilatation operator reads

$$
\mathcal{D}_{1}=\frac{\lambda}{8 \pi^{2}} \mathcal{H}_{X X X_{1 / 2}}=\frac{\lambda}{4 \pi^{2}} \sum_{i=1}^{L}\left(\frac{1}{4}-\vec{\sigma}_{i} \cdot \vec{\sigma}_{i+1}\right) .
$$

The Successes of Integrability: Scaling Dimensions In the beginning there was...
...the discovery that for operators consisting of SYM scalar fields, \mathcal{D}_{1} takes the form of an integrable spin chain hamiltonian! ${ }^{[\text {Minahan, Zarembo'02] }}$

For example, operators made of 2 complex combinations Z, W of the 6 real scalars of SYM can be represented as

$$
\operatorname{Tr}\left[Z^{4} W Z^{2} W\right] \quad \Leftrightarrow \quad \bullet \bullet \bullet \bullet \quad \bullet \quad|\downarrow \downarrow \downarrow \downarrow \uparrow \downarrow \downarrow \uparrow\rangle_{\text {cyclic }}
$$

The dilatation operator reads

$$
\mathcal{D}_{1}=\frac{\lambda}{8 \pi^{2}} \mathcal{H}_{X X X_{1 / 2}}=\frac{\lambda}{4 \pi^{2}} \sum_{i=1}^{L}\left(\frac{1}{4}-\vec{\sigma}_{i} \cdot \vec{\sigma}_{i+1}\right) .
$$

So the ground state is $\operatorname{Tr}\left(Z^{L}\right)$ and its excitations are given by spin flips $Z \rightarrow W$ or "magnons". Can solve by Bethe Ansatz Equations.

Exact Solvability Beyond the Spectral Problem

Exact Solvability Beyond the Spectral Problem

> Assuming quantum integrability, possible to obtain equations encoding the all-loop spectrum of scaling dimensions!
> [Arutyunov, Beisert,Bombardelli,Eden,Fioravanti,Frolov, Gromov,Janik, Kazakov
> Leurent,Staudacher,Tateo,Vieira,Volin. . .]

Exact Solvability Beyond the Spectral Problem

```
Assuming quantum integrability, possible to obtain equa-
tions encoding the all-loop spectrum of scaling dimensions!
[Arutyunov,Beisert,Bombardelli,Eden,Fioravanti,Frolov,Gromov,Janik, Kazakov
Leurent,Staudacher,Tateo,Vieira,Volin. . .]
```

The tremendous success in the solution of this problem, makes it natural to ask whether similar progress could be made for other important observables of $\mathcal{N}=4 \mathrm{SYM}$ as well.

Exact Solvability Beyond the Spectral Problem

Assuming quantum integrability, possible to obtain equations encoding the all-loop spectrum of scaling dimensions!
[Arutyunov,Beisert,Bombardelli,Eden,Fioravanti,Frolov, Gromov,Janik, Kazakov
Leurent,Staudacher, Tateo, Vieira, Volin. . .]

The tremendous success in the solution of this problem, makes it natural to ask whether similar progress could be made for other important observables of $\mathcal{N}=4 \mathrm{SYM}$ as well.

Which ones? Hinted by further unexpected, hidden symmetries that begin to unravel.
[Eden,Heslop,Korchemsky,Sokatchev. . .]

Amplitudes \longleftrightarrow Wilson loops

Exact Solvability Beyond the Spectral Problem

Assuming quantum integrability, possible to obtain equations encoding the all-loop spectrum of scaling dimensions!
[Arutyunov,Beisert,Bombardelli,Eden,Fioravanti,Frolov, Gromov,Janik, Kazakov
Leurent,Staudacher, Tateo, Vieira, Volin. . .]

The tremendous success in the solution of this problem, makes it natural to ask whether similar progress could be made for other important observables of $\mathcal{N}=4 \mathrm{SYM}$ as well.

Which ones? Hinted by further unexpected, hidden symmetries that begin to unravel.
[Eden,Heslop,Korchemsky,Sokatchev. ..]
In this talk,

Computing Nullspaces

Computing Nullspaces

By Gaussian elimination: Bring A to column echelon form H by transformation $U, A \cdot U=H$,

$$
U=(\underbrace{U_{1}}_{r} \mid N), \quad H=(\underbrace{H_{1}}_{r} \mid \mathbf{0}), \quad r=\operatorname{rank}(A),
$$

Computing Nullspaces

By Gaussian elimination: Bring A to column echelon form H by transformation $U, A \cdot U=H$,

$$
U=(\underbrace{U_{1}}_{r} \mid N), \quad H=(\underbrace{H_{1}}_{r} \mid \mathbf{0}), \quad r=\operatorname{rank}(A),
$$

Clearly, the submatrix N forms basis for the right nullspace of A.

Computing Nullspaces

By Gaussian elimination: Bring A to column echelon form H by transformation $U, A \cdot U=H$,

$$
U=(\underbrace{U_{1}}_{r} \mid N), \quad H=(\underbrace{H_{1}}_{r} \mid \mathbf{0}), \quad r=\operatorname{rank}(A),
$$

Clearly, the submatrix N forms basis for the right nullspace of A.
Major complication: For rational matrices like A, standard Gaussian elimination doubles size of entries at each step, leading to runtimes depending exponentially on size of A.

Computing Nullspaces

By Gaussian elimination: Bring A to column echelon form H by transformation $U, A \cdot U=H$,

$$
U=(\underbrace{U_{1}}_{r} \mid N), \quad H=(\underbrace{H_{1}}_{r} \mid \mathbf{0}), \quad r=\operatorname{rank}(A),
$$

Clearly, the submatrix N forms basis for the right nullspace of A.
Major complication: For rational matrices like A, standard Gaussian elimination doubles size of entries at each step, leading to runtimes depending exponentially on size of A.

Key idea: Transform A from rational to integer, and use fraction-free variants of Gaussian elimination that bound the size of intermediate expressions by virtue of Hadamard's inequality.

```
[Storjohann]
```

