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N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.

strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.

strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.
strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.
strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.
strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.
strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.
strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



N = 4 Super Yang Mills Theory & Why Should We Care

Unique possibility for the nonperturbative investigation of gauge theories

▸ N = 4SU(N) SYM ⇔ Type IIB superstring theory on AdS5 × S5.
strongly coupled⇔ weakly coupled

▸ In the ’t Hooft limit, N →∞ with λ = g2
YMN fixed:

Integrable structures ⇒ All loop, interpolating quantities!
[Beisert,Eden,Staudacher]

Ideal theoretical playground for developing new computational tools,

▸ Generalised Unitarity [Bern,Dixon,Dunbar,Kosower. . . ]

▸ Method of Symbols [Goncharov,Spradlin,Vergu,Volovich]

Then apply to QCD, e.g. ∣gg →Hg∣2 for N3LO Higgs cross-section!
[Anastasiou,Duhr,Dulat,Herzog,Mistlberger]

GP — A Symbol of Uniqueness Motivation: Why N = 4 SYM? 3/34



Scattering Amplitudes: dσ ∝ ∣A∣2

For N = 4, all fields massless and in adjoint of gauge group SU(N).

Can thus use helicity h = S⃗ ⋅ p̂ to classify on-shell particle content,

h ∶ −1 −1/2 0 1/2 1

G− Q1

Ð→ Γ̄A
Q2

Ð→ ΦAB
Q3

Ð→ ΓA
Q4

Ð→ G+

For the gluons G±, the gluinos Γ, Γ̄, and the scalars Φ. For n gluons,

AL−loopn ({ki, hi, ai})
= ∑
σ∈Sn/Zn

Tr(T aσ(1)⋯T aσ(n)) A(L)
n (σ(1h1), . . . , σ(nhn))

+multitrace terms, subleading by powers of 1/N2 .

A
(L)
n : color-ordered amplitude, all color factors removed.
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Maximally Hellicity Violating (MHV) Amplitudes

These are the simplest amplitudes: A
(L)
n (1+, . . . , i−, . . . , j−, . . . , n+)

They also have remarkable properties, namely they
▸ are dual to null polygonal Wilson loops.

[Alday,Maldacena][Drummond,Korchemsky,Sokatchev][Brandhuber,Heslop,Travaglini]

x1

x2

x3

xn

An

k1

k2

k3

kn ki ≡ xi+1 − xi ≡ xi+1,i ,

k2
i = x2

i+1,i = 0

∑ki = 0 automatically satisfied

logWn = log
AMHV
n

AMHV
n,tree

+O(ε)

▸ exhibit (formally) dual conformal invariance (DCI) under xµi →
xµi
x2i
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MHV Scattering Amplitudes

▸ In reality DCI broken by divergences, (IR in massless N = 4/UV in
cusped WL). Breaking controlled by conformal Ward identity.
[Drummond,Henn,Korchemsky,Sokatchev]

▸ For n = 4,5, the latter uniquely determines the dimensionally
regularized An/Wn to all loops! Given by ansatz WBDS

n of
[Anastasiou,Bern,Dixon,Kosower][Bern,Dixon,Smirnov]

▸ For n ≥ 6,

Wn =WBDS
n eRn(u1,...,um)

where the ‘remainder function’ Rn is conformally invariant, and thus

a function of conformal cross ratios, e.g u = x246x
2
13

x236x
2
14

.

▸ # of independent ui: m = 4n − n − 15 = 3n − 15

For the moment, focus on R6(u1, u2, u3).
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Nonperturbative Definition via the Collinear Limit
Kinematics

▸ Pick 2 non-intersecting segments (PO), (SF), form square by
connecting them with another 2 null segments (PS), (OF).

▸ Fix all of its 16-4 coordinates by conformal transformations (15): In
fact, each square invariant under subset of 3 transformations!

▸ Convenient to put cusps at origin O, spacelike and null (past+future)
infinity S,P,F in (x0, x1) plane. Symmetries generated by dilatations
D, boosts M01, and rotations on (x2, x3) plane M23.
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Collinear limit: Act with e−τ(D−M01) on
A and B, and take τ →∞. Parametrize
u1, u2, u3 by group coordinates τ, σ, φ.
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Nonperturbative Definition via the Collinear Limit
Dynamics

Can think of (PO),(SF ) as a color-electric flux tube sourced by a
quark-antiquark pair moving at the speed of light, and decompose the
Wilson loop with respect to all possible excitations ψi of this flux tube

.

Schematically,

W =∑
ψi

e−τEi+ipi+imiφP(0∣ψi)P(ψi∣0)

▸ Propagation of square eigenstates
▸ Transition between squares

⇒WL ‘Operator Product Expansion’ (OPE)

[Alday,Gaiotto,Maldacena,Sever,Vieira]
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Wilson Loop OPE & Integrability

In N = 4 SYM, flux tube excitations in 1-1 correspondence with
excitations of an integrable spin chain with hamiltonian D −M01.

Lightest excitations made of 6 scalars φ, 4+4 fermions ψ, ψ̄ and 1+1
gluons F, F̄ of the theory, with classical ∆ − S = 1, over the

vacuum = tr (ZDS
+Z) , Z = φ1 + iφ2 , D+ =D0 +D1

Integrability enables the calculation of the excitation energies E(p),

E(p) = (∆ − S)1 − (∆ − S)vac = 1 +
∞
∑
l=1

λlE(l)(p)

to all loops, and implies that for M excitations EM =M +O(λ).[Basso]

Thus, weak coupling WL OPE=expansion in terms ∝ e−τM ,M = 1,2 . . .
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λlE(l)(p)

to all loops, and implies that for M excitations EM =M +O(λ).[Basso]

Thus, weak coupling WL OPE=expansion in terms ∝ e−τM ,M = 1,2 . . .
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The Proposal of Basso,Sever,Vieira

To complete WL OPE description, also emission/absorption form factors
or ‘pentagon transitions’ P(0∣ψ1),P(ψ1∣0) needed.

▸ Obtained for all M = 1,2 particle excitations, and all arbitrary M
gluonic excitations by exploiting once more the power of integrability.

▸ Yield all-loop integral expressions for individual terms in collinear limit
expansion. Can compute at weak coupling. [GP’13][GP’14]

Also very interesting integrability-based methods for constructing Yangian
invariants relevant to scattering amplitudes.
[Arkani-Hamed,Beisert,Bourjaily,Broedel,Cachazo,Caron-Huot,Chicherin,Derkachov,Ferro,Frassek,Goncharov

Kanning,Kirchner,Ko,Leeuw,Lukowski,Menenghelli,Plefka,Postnikov,Rosso,Staudacher,Trnka]

If exact S-matrix within reach, look at many “data points” at
weak/strong coupling to extract its general pattern.
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How do we compute R
(L)
n in general kinematics?

For n = 6, very successful amplitude bootstrap
up to L = 4 loops. [Dixon,Drummond,Henn]

[Dixon,Drummond,Hippel,Pennington] [Dixon,Drummond,Duhr,Pennington]

A. Construct an ansatz assuming

1. What the general class of functions that suffices to express R
(L)
n is

2. What the function arguments (encoding the kinematics) are

B. Fix the coefficients of the ansatz by imposing consistency conditions
(e.g. collinear data we described in previous part of talk)

Motivated by this progress, we upgraded this procedure for n = 7, with
information from the cluster algebra structure of the kinematical space.

Surprisingly, we found that heptagon bootstrap is more power-

ful than the hexagon one! Obtained the symbol of R
(3)
7 from

very little input. [Drummond,GP,Spradlin]
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What are the right functions?
Generalised polylogarithms (GPLs)

fk is a GPL of weight k if its differential may be written as a finite linear
combination

dfk =∑
α

f
(α)
k−1 d logφα

over some set of φα, where f
(α)
k−1 functions of weight k − 1.

Very convenient tool for describing them: The symbol S(fk),

encapsulating recursive application of above definition (on f
(α)
k−1 etc)

S(fk) = ∑
α1,...,αk

f
(α1,α2,...,αk)
0 (φα1 ⊗⋯⊗ φαk) .

Collection of φα : symbol alphabet ∣ f
(α1,...,αk)
0 rational

Empeirical evidence: L-loop amplitudes=GPLs of weight k = 2L
[Duhr,Del Duca,Smirnov][Arkani-Hamed...][GP]
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What are the right variables?

More precisely, what is the symbol alphabet?

▸ For n = 6, 9 letters, motivated by analysis of relevant integrals

▸ More generally, strong motivation from cluster algebra structure of
kinematical configuration space Confn(P3)
[Golden,Goncharov,Spradlin,Vergu,Volovich]

The latter is a collection of n ordered momentum twistors Zi on P3, (an
equivalent way to parametrise massless kinematics), modulo dual
conformal transformations.
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Momentum Twistors ZI [Hodges]

▸ Represent dual space variables xµ ∈ R1,3 as projective null vectors

XM ∈ R2,4 , X2 = 0 , X ∼ λX.

▸ Repackage vector XM of SO(2,4) into antisymmetric representation

XIJ = −XJI = of SU(2,2)

▸ Can build latter from two copies of the fundamental ZI = ,

XIJ = Z[I Z̃J] = (ZI Z̃J −ZJ Z̃I)/2 or X = Z ∧ Z̃

▸ After complexifying, ZI transform in SL(4,C). Since Z ∼ tZ, can be
viewed as homogeneous coordinates on P3.

▸ Can show

(x−x′)2 ∝ 2X ⋅X ′ = εIJKLZI Z̃JZ ′KZ̃ ′L = det(ZZ̃Z′Z̃ ′) ≡ ⟨ZZ̃Z ′Z̃ ′⟩

▸ (xi+i − xi)2 = 0 ⇒Xi = Zi−1 ∧Zi
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(x−x′)2 ∝ 2X ⋅X ′ = εIJKLZI Z̃JZ ′KZ̃ ′L = det(ZZ̃Z′Z̃ ′) ≡ ⟨ZZ̃Z ′Z̃ ′⟩

▸ (xi+i − xi)2 = 0 ⇒Xi = Zi−1 ∧Zi
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Confn(P3) and Graßmannians

Can realize Confn(P3) as 4 × n matrix

(Z1∣Z2∣ . . . ∣Zn)

modulo rescalings of the n columns and SL(4) transformations, which
resembles a Graßmannian Gr(4, n).

Gr(k,n): The space of k-dimensional planes passing through the origin in
an n-dimensional space. Equivalently the space of k × n matrices modulo
GL(k) transformations:

▸ k-plane specified by k basis vectors that span it ⇒ k × n matrix

▸ Under GL(k) transformations, basis vectors change, but still span the
same plane.

Comparing the two matrices,

Confn(P3) = Gr(4, n)/(C∗)n−1
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Cluster algebras [Fomin,Zelevinsky]

They are commutative algebras equipped with a distinguished set of
generators (= cluster variables), grouped into overlapping subsets (=
clusters) with the same number of elements (= the rank of the algebra).
Constructed from an initial cluster by an iterative process (= mutation).

Example: A2 Cluster algebra

▸ Cluster variables: am, m ∈ Z
▸ Initial cluster: {a1, a2}
▸ Clusters: {am, am+1}, m ∈ Z
▸ Mutation: {am−1, am}→ {am, am+1} with am−1 → am+1 = 1+am

am−1

Here, finite number of cluster variables:

a3 =
1 + a2

a1
, a4 =

1 + a1 + a2

a1a2
, a5 =

1 + a1

a2
, a6 = a1 , a7 = a2
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Cluster algebras (cont’d)

For our purposes, can be described by quivers, where each variable ak of a
cluster corresponds to node k.

▸ Mutation at node k: ∀ i→ k → j, add arrow i→ j, reverse all arrows
to/from k, remove ⇄ and ⟳.

▸ In this manner, obtain new quiver/cluster where

ak → a′k =
1

ak

⎛
⎝ ∏

arrows i→k
ai + ∏

arrows k→j
aj

⎞
⎠

Example: A2 Cluster algebra

▸ Initial cluster: {a1, a2}: 1→ 2

▸ Mutate at 1: 1′ ← 2

▸ Leads to new cluster {a2, a3} with a3 = a′1 = 1+a2
a1

and so on
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Connection with Confn(P3) = Gr(4, n)/(C∗)n−1

▸ Graßmannians Gr(k,n) equipped with cluster algebra structure [Scott]

▸ Initial cluster made of a special set of Plücker coordinates ⟨i1 . . . ik⟩
▸ Mutations also yield certain homogeneous polynomials of Plücker

coordinates

▸ Crucial observation: For all known cases, symbol alphabet of n-point
amplitudes for n = 6,7 are Gr(4, n) cluster variables (also known as
A-coordinates) [Golden,Goncharov,Spradlin,Vergu,Volovich]

Symbol alphabet is made of cluster A-coordinates on
Confn(P3). For the heptagon, 42 of them.

Fundamental assumption of “cluster bootstrap”
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Heptagon Symbol Letters

Multiply A-coordinates with suitable powers of ⟨i i + 1 i + 2 i + 3⟩ to form
conformally invariant cross-ratios,

a11 =
⟨1234⟩⟨1567⟩⟨2367⟩
⟨1237⟩⟨1267⟩⟨3456⟩ , a41 =

⟨2457⟩⟨3456⟩
⟨2345⟩⟨4567⟩ ,

a21 =
⟨1234⟩⟨2567⟩
⟨1267⟩⟨2345⟩ , a51 =

⟨1(23)(45)(67)⟩
⟨1234⟩⟨1567⟩ ,

a31 =
⟨1567⟩⟨2347⟩
⟨1237⟩⟨4567⟩ , a61 =

⟨1(34)(56)(72)⟩
⟨1234⟩⟨1567⟩ ,

where
⟨ijkl⟩ ≡ ⟨ZiZjZkZl⟩ = det(ZiZjZkZl)

⟨a(bc)(de)(fg)⟩ ≡ ⟨abde⟩⟨acfg⟩ − ⟨abfg⟩⟨acde⟩ ,

together with aij obtained from ai1 by cyclically relabeling Zm → Zm+j−1.
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Imposing Constraints: Integrable Words

Given a random symbol S of weight k > 1, there does not in general exist
any function whose symbol is S. A symbol is said to be integrable, (or, to
be an integrable word) if it satisfies

∑
α1,...,αk

f
(α1,α2,...,αk)
0 d logφαj ∧ d logφαj+1 (φα1 ⊗⋯⊗ φαk)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
omitting φαj ⊗ φαj+1

= 0 ,

∀j ∈ {1, . . . , k − 1}. These are necessary and sufficient conditions for a
function fk with symbol S to exist.

Example: (1 − xy)⊗ (1 − x) with x, y independent.

d log(1 − xy) ∧ d log(1 − x) = −ydx − xdy
1 − xy ∧ −dx

1 − x
= x

(1 − xy)(1 − x)dy ∧ dx

Not integrable
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Imposing Constraints: Physical Singularities

Locality: Amplitudes may only have singularities when some intermediate
particle goes on-shell.

Planar colour-ordered amplitudes in massless theories: Only happens when

(pi + pi+1 +⋯ + pj−1)2 = (xj − xi)2 ∝ ⟨i−1 i j−1 j⟩→ 0

Singularities of generalised polylogarithm functions are encoded in the first
entry of their symbols.

First-entry condition: Only ⟨i−1 i j−1 j⟩ allowed in the first entry of S

Particularly for n = 7, this restricts letters of the first entry to a1j .
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MHV Constraints: Yangian anomaly equations

▸ Tree-level amplitudes exhibit (usual + dual) superconformal symmetry
[Drummond,Henn,Korchemsky,Sokatchev]

▸ Combination of two symmetries gives rise to a Yangian
[Drummond,Henn,Plefka][Drummond,Ferro]

▸ Although broken at loop level by IR divergences, Yangian anomaly
equations governing this breaking have been proposed [Caron-Huot,He]

Consequence for MHV amplitudes: Their differential is a linear
combination of d log⟨i j−1 j j+1⟩, which implies

Last-entry condition: Only ⟨i j−1 j j+1⟩ may appear in the last entry
of the symbol of any MHV amplitude.

Particularly here: Only the 14 letters a2j and a3j may appear in the last
symbol entry of R7.
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Imposing Constraints: The Collinear Limit

It is baked into the definition of the BDS-subtracted n-particle L-loop
MHV remainder function that it should smoothly approach the
corresponding (n−1)-particle function in any simple collinear limit:

lim
i+1∥i

R(L)
n = R(L)

n−1 .

For n = 7, taking this limit in the most general manner reduces the
42-letter heptagon symbol alphabet to 9-letter hexagon symbol alphabet,
plus nine additional letters.

A function has a well-defined i+1 ∥ i limit only if its symbol is
independent of all nine of these letters.
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Computing (MHV) Heptagon Symbols

Step 1 (Straightforward)
Form linear combination of all length-k symbols made of aij obeying initial
(+final) entry conditions, with unknown coefficients grouped in vector X.

Step 2 (Challenging)
Solve integrability constraints, which take the form

A ⋅X = 0 .

Namely all weight-k (MHV) heptagon functions will be the right nullspace
of rational matrix A.

“Just” linear algebra, however for e.g. 3-loop MHV hexagon A boils down
to a size of 63557 × 15979. Tackled with fraction-free variants of Gaussian
elimination that bound the size of intermediate expressions. [Storjohann]
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Results

Weight k = 1 2 3 4 5 6

Number of heptagon symbols 7 42 237 1288 6763 ?

well-defined in the 7 ∥ 6 limit 3 15 98 646 ? ?

which vanish in the 7 ∥ 6 limit 0 6 72 572 ? ?

well-defined for all i+1 ∥ i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table : Heptagon symbols and their properties.
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Table : Heptagon symbols and their properties.

The symbol of the two-loop seven-particle MHV remainder function

R
(2)
7 is the only weight-4 heptagon symbol which is well-defined in

all i+1 ∥ i collinear limits.
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which vanish in the 7 ∥ 6 limit 0 6 72 572 ? ?

well-defined for all i+1 ∥ i 0 0 0 1 ? ?

with MHV last entries 0 1 0 2 1 4

with both of the previous two 0 0 0 1 0 1

Table : Heptagon symbols and their properties.

The symbol of the three-loop seven-particle MHV remainder function

R
(3)
7 is the only weight-6 heptagon symbol which satisfies the last-

entry condition and which is finite in the 7 ∥ 6 collinear limit.
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Comparison with the hexagon case

Weight k = 1 2 3 4 5 6

Number of hexagon symbols 3 9 26 75 218 643

well-defined (vanish) in the 6 ∥ 5 limit 0 2 11 44 155 516

well-defined (vanish) for all i+1 ∥ i 0 0 2 12 68 307

with MHV last entries 0 3 7 21 62 188

with both of the previous two 0 0 1 4 14 59

Table : Hexagon symbols and their properties.

Surprisingly, heptagon bootstrap more powerful than hexagon one! Fact that

lim7∥6R
(3)
7 = R(3)

6 , as well as discrete symmetries such as cyclic Zi → Zi+1, flip
Zi → Zn+1−i or parity symmetry follow for free, not imposed a priori.
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Further check: Heptagon Wilson loop OPE

This is an expansion in two variables e−τ1 , e−τ2 near the double collinear
limit τ1 →∞, τ2 →∞.

Integrability predicts linear terms in e−τi to
all loops in integral form, e.g.[Basso,Sever,Vieira 2]

h =ei(φ1+φ2) e−τ1−τ2 ∫
dudv

(2π)2
µ(u)PFF (−u∣v)µ(v)×

× e−τ1γ1+ip1σ1−τ2γ2+ip2σ2 .

1. Computed its weak-coupling expansion to 3 loops, employing the
technology of Z-sums [Moch,Uwer,Weinzierl][GP’13][GP’14]

2. Expanded our symbol for R
(3)
7 in the same kinematics, relying on

[Dixon,Drummond,Duhr,Pennington]
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(2π)2
µ(u)PFF (−u∣v)µ(v)×

× e−τ1γ1+ip1σ1−τ2γ2+ip2σ2 .

Perfect match!

1. Computed its weak-coupling expansion to 3 loops, employing the
technology of Z-sums [Moch,Uwer,Weinzierl][GP’13][GP’14]

2. Expanded our symbol for R
(3)
7 in the same kinematics, relying on

[Dixon,Drummond,Duhr,Pennington]
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Summary

In this presentation, we talked about

▸ The beauty and simplicity of amplitudes in N = 4 SYM theory

▸ The integrability-based approach, yielding all-loop integrals for each
term in their collinear limit expansion

▸ The bootstrap for amplitudes at fixed-order/general kinematics, based
on simple assumptions on their analytic structure, and upgraded with
input from the cluster algebra structure of the kinematical space

▸ The surprising power of the latter in determining the symbol of the
3-loop 7-point amplitude

▸ The rich interplay between the two approaches

GP — A Symbol of Uniqueness Conclusions & Outlook 28/34



Summary

In this presentation, we talked about

▸ The beauty and simplicity of amplitudes in N = 4 SYM theory

▸ The integrability-based approach, yielding all-loop integrals for each
term in their collinear limit expansion

▸ The bootstrap for amplitudes at fixed-order/general kinematics, based
on simple assumptions on their analytic structure, and upgraded with
input from the cluster algebra structure of the kinematical space

▸ The surprising power of the latter in determining the symbol of the
3-loop 7-point amplitude

▸ The rich interplay between the two approaches

GP — A Symbol of Uniqueness Conclusions & Outlook 28/34



Summary

In this presentation, we talked about

▸ The beauty and simplicity of amplitudes in N = 4 SYM theory

▸ The integrability-based approach, yielding all-loop integrals for each
term in their collinear limit expansion

▸ The bootstrap for amplitudes at fixed-order/general kinematics, based
on simple assumptions on their analytic structure, and upgraded with
input from the cluster algebra structure of the kinematical space

▸ The surprising power of the latter in determining the symbol of the
3-loop 7-point amplitude

▸ The rich interplay between the two approaches

GP — A Symbol of Uniqueness Conclusions & Outlook 28/34



Summary

In this presentation, we talked about

▸ The beauty and simplicity of amplitudes in N = 4 SYM theory

▸ The integrability-based approach, yielding all-loop integrals for each
term in their collinear limit expansion

▸ The bootstrap for amplitudes at fixed-order/general kinematics, based
on simple assumptions on their analytic structure, and upgraded with
input from the cluster algebra structure of the kinematical space

▸ The surprising power of the latter in determining the symbol of the
3-loop 7-point amplitude

▸ The rich interplay between the two approaches

GP — A Symbol of Uniqueness Conclusions & Outlook 28/34



Summary

In this presentation, we talked about

▸ The beauty and simplicity of amplitudes in N = 4 SYM theory

▸ The integrability-based approach, yielding all-loop integrals for each
term in their collinear limit expansion

▸ The bootstrap for amplitudes at fixed-order/general kinematics, based
on simple assumptions on their analytic structure, and upgraded with
input from the cluster algebra structure of the kinematical space

▸ The surprising power of the latter in determining the symbol of the
3-loop 7-point amplitude

▸ The rich interplay between the two approaches

GP — A Symbol of Uniqueness Conclusions & Outlook 28/34



Summary

In this presentation, we talked about

▸ The beauty and simplicity of amplitudes in N = 4 SYM theory

▸ The integrability-based approach, yielding all-loop integrals for each
term in their collinear limit expansion

▸ The bootstrap for amplitudes at fixed-order/general kinematics, based
on simple assumptions on their analytic structure, and upgraded with
input from the cluster algebra structure of the kinematical space

▸ The surprising power of the latter in determining the symbol of the
3-loop 7-point amplitude

▸ The rich interplay between the two approaches

GP — A Symbol of Uniqueness Conclusions & Outlook 28/34



Outlook

▸ Where does the surprising power of the cluster bootstrap come from?
Relation to Yangian symmetry?

▸ Important to explore and test it at different MHV degree, higher
loops and more legs.

▸ Exploit R
(3)
7 to shed light on yet unknown key quantities in the

integrability-based OPE approach, such as multi-particle
scalar/fermion pentagon transitions.

▸ Similar story with the multi-Regge kinematics and BFKL approach

▸ Can we resum the OPE series to obtain full amplitudes? For a first
step in this direction, see [Drummond,Papathanasiou, to appear]

Ultimately, can the integrability of planar SYM theory, together with
a thorough knowledge of the analytic structure of its amplitudes, lead
us to the theory’s exact S-matrix?
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step in this direction, see [Drummond,Papathanasiou, to appear]

Ultimately, can the integrability of planar SYM theory, together with
a thorough knowledge of the analytic structure of its amplitudes, lead
us to the theory’s exact S-matrix?
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The Successes of Integrability: Scaling Dimensions
’t Hooft limit

Local, gauge-invariant operators:

O = Tr (φi1φi2 ...φin) ,

where φi the elementary fields of the theory plus derivatives.

Classically,

x→ µx⇒ φi → µ−∆0φi and O → µ−∑i∆0O.

However, ∆ receives quantum corrections due to renormalization, which
combines all operators with the same quantum numbers.

▸ Dilatation operator D =
∞
∑
n=0

Dn, Dn of order λn.

▸ Eigenvectors and eigenvalues DO = ∆O, and conventionally we define
δ∆ ≡ ∆ −∆0 as the anomalous dimension.
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The Successes of Integrability: Scaling Dimensions
In the beginning there was...

...the discovery that for operators consisting of SYM scalar fields, D1 takes
the form of an integrable spin chain hamiltonian![Minahan,Zarembo’02]

For example, operators made of 2 complex combinations Z,W of the 6
real scalars of SYM can be represented as

Tr[Z4WZ2W ] ⇔ ⇔ ∣ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↑ ⟩cyclic

The dilatation operator reads

D1 =
λ

8π2
HXXX1/2

= λ

4π2

L

∑
i=1

(1

4
− σ⃗i ⋅ σ⃗i+1) .

So the ground state is Tr (ZL) and its excitations are given by spin flips
Z →W or “magnons”. Can solve by Bethe Ansatz Equations.
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Exact Solvability Beyond the Spectral Problem

Assuming quantum integrability, possible to obtain equa-
tions encoding the all-loop spectrum of scaling dimensions!
[Arutyunov,Beisert,Bombardelli,Eden,Fioravanti,Frolov,Gromov,Janik, Kazakov

Leurent,Staudacher,Tateo,Vieira,Volin. . . ]

The tremendous success in the solution of this problem, makes it natural
to ask whether similar progress could be made for other important
observables of N = 4 SYM as well.

Which ones? Hinted by further unexpected,
hidden symmetries that begin to unravel.
[Eden,Heslop,Korchemsky,Sokatchev. . . ]
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Computing Nullspaces

By Gaussian elimination: Bring A to column echelon form H by
transformation U , A ⋅U =H,

U = ( U1

r̄

∣N) , H = ( H1°
r

∣0) , r = rank(A),

Clearly, the submatrix N forms basis for the right nullspace of A.

Major complication: For rational matrices like A, standard Gaussian
elimination doubles size of entries at each step, leading to runtimes
depending exponentially on size of A.

Key idea: Transform A from rational to integer, and use fraction-free
variants of Gaussian elimination that bound the size of intermediate
expressions by virtue of Hadamard’s inequality. [Storjohann]
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