Black Hole Formation and Classicalization in Trans－Planckian Scattering

based on hep－th 1409.7405
with G．Dvali，C．Gómez，D．Lüst，and S．Stieberger

Reinke Sven Isermann
Ludwig－Maximilians－Universität

HU Berlin Research Seminar，28．01．2015

Einstein Gravity

Einstein gravity $(m=0, s=2)$ is a well-studied theory of gravitation,

- Many interesting features (Geometry, Black Holes, Symmetries, Relation to Yang-Mills,...),
- Supersymmetric extensions,
- Well-tested experimentally (GPS,...)

Fortunately for us: many problems and properties still not completely understood.

- UV completion at tree level? Unitarity?
- Quantum understanding of BH?
- (Renormalizability at loop level?)

Unitarity at Tree Level in Gravity

Known: Gravity scattering amplitudes grow like s (center of mass energy) \Rightarrow violation of (perturbative) unitarity at $s=M_{P}^{2}$.

Wilsonian UV completion: regulate by integrating-in weakly-coupled degrees of freedom of shorter and shorter wave-lengths.

Consequences for gravity: at energies $s>M_{P}^{2}$ UV-completion achieved by new quantum degrees of freedom of wavelength shorter than Planck length.

UV Completion and Classicalization

But: Gravity has a smallest length scale - the Planck length (area actually). Cannot go beyond this length since black holes will inevitably form, i.e. Wilsonian UV completion does not make sense anymore.

Based on this [Dvali, Gómez] argued that gravity is UV complete by itself through classical black hole formation - called classicalization.

Basic idea of UV completion by classicalization is that

$$
\text { short-scale UV physics } \rightarrow \text { long-scale IR physics }
$$

by formation of classical object at large energies - black holes dominate
In other words: gravity protects itself at high energies by BH formation.
Without doubt: better quantum understanding of black holes needed.

Black Hole N Portrait

Developments towards this in a program of work entitled Quantum Black Hole corpuscular N-portrait.
[Dvali, Gómez], [Dvali, Gómez, Kehagias], [Dvali, Gómez, Lüst]

> Quantum black hole
> $=$
collection of N self-bound gravitons at quantum critical point (Bose-Einstein condensate)

- interaction strength of gravitons $\alpha=\frac{1}{N}$ at this point
- BH fully characterized by the number N
- BH mass $M_{B H}=\sqrt{N} M_{P}, B H$ radius $R_{B H}=\sqrt{N} L_{P}$, entropy $S=N$
- Black hole physics \rightarrow condensed matter physics

Black Hole N Portrait

Reproduce semi-classical behavior via mean-field approximation

$$
N \rightarrow \infty \quad \text { and } \quad L_{p} \rightarrow 0 \quad \text { with } \quad \hbar \neq 0
$$

Used to pinpoint quantum origin of semi-classical properties:

- Bekenstein entropy \leftrightarrow quantum degeneracy of states at critical point
- Hawking radiation \leftrightarrow quantum depletion and leakage of condensate

Can think about classicalization as large \mathbf{N} quantum physics.

UV Completion, Classicalization, and the N portrait

Consequently: there are two interconnected claims:

- Einstein gravity is UV complete by classicalization (i.e. black hole formation) at tree level
- Black holes are a Bose-Einstein graviton condensate at a quantum critical point

In the language of classicalization and N portrait:

- Black hole formation process should correspond to graviton scattering

$$
2 \rightarrow N \text { with } p_{\text {in }} \sim \sqrt{s} \quad \text { and } \quad p_{\text {out }} \sim \sqrt{s} / N \quad \text { with } \quad N \gg 1
$$

via

$$
\left.A_{B H} \sim \sum_{j}|\langle 2| S| N\right\rangle\left.\right|_{P} ^{2}|\langle N \mid B H\rangle|_{N P}^{2} \text { with }|\langle N \mid B H\rangle|_{N P}^{2} \sim \exp \{N\}
$$

- Moreover, black hole formation should be dominating
- Need to supplement perturbative result with non-perturbative input.

This Talk

Investigate the question of UV completion and black hole formation in (Einstein) gravity at tree level.

Input from classicalization and the N-portrait
VS

High energy behavior of scattering amplitudes in relevant kinematics.

This Talk

Plan of the talk:

1.) Non-perturbative input from the N-portrait
2.) Scattering amplitudes in FT and ST at high energies
3.) Interpretation of high energy behavior in light of N-portrait
4.) Some further observations / comments

1.) Non-perturbative Input from the N-portrait

Black Hole N Portrait: Regimes of αN

Different regimes of αN (i.e. the self coupling of the graviton condensate)

- $\alpha N=1$ black hole formation: exponential degeneracy of states (N Bogolyubov modes become gapless) $\sim \exp \{N\}$.
- $\alpha N<1$ free graviton Bose gas: can be approximated by perturbative methods. No exponential degeneracy.
- $\alpha N>1$ unphysical region: Excluded, not a viable S - matrix state (Bogolyubov frequencies complex \rightarrow positive Lyapunov exponents). Region where unitarity would be violated.

Black Hole N Portrait: Regimes of αN

Different regimes of αN (i.e. the self coupling of the graviton condensate)

2.) Scattering amplitudes in FT and ST at high energies

How to actually compute amplitudes in gravity?

Textbook approach: scattering amplitudes $=\sum$ Feynman diagrams. However: Feynman rules of gravity horribly complicated!

$$
\begin{aligned}
& \xrightarrow[\delta \varphi_{\mu} \delta \varphi_{o^{\prime} r^{\prime} \delta} \delta \varphi_{\rho^{\prime \prime} \lambda^{\prime \prime}}]{\delta^{3} S}
\end{aligned}
$$

$$
\begin{align*}
& \left.-P_{s}\left(p \cdot p^{\prime} \eta^{v \sigma} \eta^{\tau p} \eta^{\lambda_{\mu}}\right)\right], \tag{2.6}\\
& \overline{\delta \varphi_{\mu \nu} \delta \varphi_{\sigma^{\prime}} \tau^{\prime} \delta \varphi_{p^{\prime \prime} \lambda^{\prime \prime}} \delta \varphi_{c^{\prime \prime \prime} x^{\prime \prime \prime}}}
\end{align*}
$$

How to compute amplitudes in gravity?

Example: 4 points tree level. Feynman diagrams give $\mathcal{O}(100)$ terms. Result extremely simple:

$$
M\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)=\frac{\langle 12\rangle^{7}[12]}{\langle 13\rangle\langle 14\rangle\langle 23\rangle\langle 24\rangle\langle 34\rangle^{2}}
$$

with $[i j]$ and $\langle i j\rangle$ roughly $\sim \sqrt{\left|s_{i j}\right|}$ (spinor helicity formalism).
What's the meaning of this?

- Huge cancellations in sum over terms; Feynman diagrams not the correct way to compute (offshell, unphysical information!)
- Missed a symmetry?
- Alternative methods?

KLT relations (1986) [Kawai, Lewellen, Tye]

- N graviton amplitude \sim sum of squares of N gluon amplitudes
- Can be derived most easily in string theory (closed string \sim open string \times open string)

$$
\begin{array}{r}
M_{N}=\left(-\frac{\kappa}{2}\right)^{N-2} \sum_{\sigma, \gamma \in S_{N-3}} A_{N}(1, \sigma(2, \ldots, N-2), N-1, N) \\
S[\gamma(2, \ldots, N-2), \sigma(2, \ldots, N-2)]_{N-1} A_{N}(1, N-1, \sigma(2, \ldots, N-2), N) \\
\text { [Bern, Dixon, Perelstein, Rozowsky] } \\
\text { [Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove] }
\end{array}
$$

- $S[\ldots, \ldots]$ called momentum kernel. Roughly $S \sim s_{i j}^{N-3}$
- $A_{N}(\ldots)$ color-ordered Yang-Mills amplitude
- Example:

$$
M_{4}=s_{12} A_{4}(1,2,3,4) A_{4}(2,1,3,4)
$$

Scattering Equations (2013) [Cachazo, He, Yuan]

- Tree-level S-matrix of massless particles with spin 0,1,2 (and also mixed amplitudes) in arbitrary spacetime dimension given by integral over punctures on a sphere.

$$
M_{N, s}=\int \frac{d^{N} \sigma}{\operatorname{vol} S L(2, \mathbb{C})} \prod_{a}^{\prime} \delta\left(\sum_{b \neq a} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}\right)\left(\frac{\operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{N}}\right)}{\left(\sigma_{1}-\sigma_{2}\right)\left(\sigma_{2}-\sigma_{3}\right) \ldots}+\ldots\right)^{2-s}\left(P f^{\prime} \Psi\right)^{s}
$$

- Kinematic part independent of theories, given by a system of equations called scattering equations

$$
\sum_{b=1, b \neq a}^{n} \frac{s_{a b}}{\sigma_{a}-\sigma_{b}}=0, \quad a=1, \ldots, n
$$

- (N-3)! solutions to these equations determine position of n points on sphere, localizes integral.
- Caveat: extremely hard to solve in general for arbitrary kinematics.

Classicalization Regime

- Energy regime in $2 \rightarrow N$ scattering according to classicalization corresponds to

$$
\begin{gathered}
p_{\text {in }} \sim \sqrt{s} \quad \text { and } \quad p_{\text {out }} \sim \frac{\sqrt{s}}{N} \\
\Rightarrow \quad s_{i j}=\left(p_{i}+p_{j}\right)^{2} \sim\left\{\begin{array}{rc}
s, & \{i, j\} \in\{1, N\} \\
-\frac{s}{N}, & i \in\{1, N\}, j \notin\{1, N\} \\
\frac{s}{N^{2}}, & \{i, j\} \notin\{1, N\}
\end{array}\right.
\end{gathered}
$$

- Defined particles 1 and N incoming, rest outgoing.

Classicalization Regime and Scattering Equations

Rewrite this regime as (in units of $\frac{s}{N^{2}}$) introducing two parameter $\mathfrak{a}, \mathfrak{b}$, with $-1<\mathfrak{a}, \mathfrak{b}<0$, s.t.

$$
\begin{gathered}
s_{1, N}=\frac{1}{2}(N-\mathfrak{a}-\mathfrak{b}) \quad s_{i j}=1, \quad i, j=\{2, \ldots N-2\} \\
s_{N-1, N}=-\frac{1}{2}(N-3)(2-\mathfrak{b}) \quad s_{1, N-1}=-\frac{1}{2}(N-3)(2-\mathfrak{a}) \\
s_{1, i}=-\frac{1}{2}(N-2-\mathfrak{b}) \quad s_{i, N}=-\frac{1}{2}(N-2-\mathfrak{a}) \\
s_{N-1, i}=\frac{1}{4}(4-\mathfrak{a}-\mathfrak{b})
\end{gathered}
$$

- Similar setup studied by [Kalousios]:
- Solutions degenerate: only $(N-3)$ instead of $(N-3)$! indep. sold.
- Solutions to scattering eqs $=$ zeros of Jacobi polynomials $P_{N-3}^{(\mathfrak{a}, \mathfrak{b})}$
- $P_{n}^{(\alpha, \beta)}(x)=\frac{(-1)^{n}}{2^{n}!!}(1-x)^{-\alpha}(1+x)^{-\beta} \frac{d^{n}}{d x^{n}}\left[(1-x)^{\alpha+n}(1+x)^{\beta+n}\right]$.

Classicalization Regime

Use Kalousios' insights to obtain N-point gravity amplitude in classicalization regime:

$$
\begin{aligned}
M_{N} & =-\kappa^{N-2} 2^{8-N} \frac{s}{N^{2}}[(N-3)!!]^{2} \frac{\Gamma\left(\frac{\mathfrak{a}}{2}\right) \Gamma\left(\frac{3}{2}+\frac{\mathfrak{b}-N}{2}\right) \Gamma\left(\frac{1-N+\mathfrak{a}+\mathfrak{b}}{2}\right)}{\Gamma\left(1+\frac{\mathfrak{a}-N}{2}\right) \Gamma\left(\frac{\mathfrak{b}-1}{2}\right) \Gamma\left(\frac{\mathfrak{a}+\mathfrak{b}-3}{2}\right)} \\
& \times \frac{\Gamma\left(\frac{3}{2}+\frac{\mathfrak{a}-N}{2}\right) \Gamma\left(\frac{\mathfrak{b}}{2}\right) \Gamma\left(\frac{\mathfrak{a}+\mathfrak{b}-2}{2}\right)}{\Gamma\left(1+\frac{\mathfrak{b}-N}{2}\right) \Gamma\left(\frac{\mathfrak{a}-1}{2}\right) \Gamma\left(\frac{\mathfrak{a}+\mathfrak{b}-N}{2}\right)} H_{N(\mathfrak{a}, \mathfrak{b})^{2}}
\end{aligned}
$$

with $H_{N}(\mathfrak{a}, \mathfrak{b})$ encoding polarisation (but constant in N).
For $N \gg 1$ Taylor expand and find

$$
M_{N} \sim \kappa^{N} \frac{s}{N^{2}} N!
$$

Graviton Scattering Amplitudes in Classicalization Regime

To obtain the physical probability i.e. the S-matrix element, have to consider

$$
d|\langle 2| S| N\rangle\left.\right|^{2} \sim \frac{1}{(N)!} \prod_{i=2}^{N-1} d p_{i}^{4}\left|M_{N}\right|^{2} \delta^{4}\left(P_{\text {total }}\right)
$$

(Full cross section by integrating over momenta and summing over helicities)
Plugging in classicalization regime gives (taking $N \gg 1, \kappa=L_{P}$, and Stirling's formula)

$$
|\langle 2| S| N\rangle\left.\right|^{2} \sim\left(\frac{L_{\rho}^{2} s}{N^{2}}\right)^{N} N!\sim \exp (-N) \lambda^{N}
$$

Define $\lambda=\frac{L_{P}^{2} s}{N}$ for later convenience (collective coupling).

String Amplitudes

Known: High Energy behavior of open and / or closed string amplitudes given by exponential fall-off.
[Veneziano], [Gross, Mende], [Gross, Manes]
Thus no problem with unitarity at transplanckian energies.

- Example: 4-point closed string amplitude for $\alpha^{\prime} \rightarrow \infty$

$$
\mathcal{M}_{4} \sim \kappa^{2}\left|A_{4}\right|^{2} \times 4 \pi \alpha^{\prime} \frac{s t}{u} \exp \left\{\frac{\alpha^{\prime}}{2}(s \ln |s|+t \ln t+u \ln u)\right\}
$$

- Note: State-of-the-art until our paper came out!
- Computation via Laplace's saddle point method on world-sheet integrals:

$$
\int g(x) \exp \left\{\alpha^{\prime} f(x)\right\} d x \sim \sqrt{\frac{2 \pi}{\alpha^{\prime}\left|f^{\prime \prime}\left(x_{0}\right)\right|}} g\left(x_{0}\right) \exp \left\{\alpha^{\prime} f\left(x_{0}\right)\right\}+\mathcal{O}\left(\alpha^{\prime-1}\right)
$$

with x_{0} unique global maximum in interval of integration.

High Energy Behavior of N-point String Amplitudes

- Shall see: High energy string behavior closely related to scattering equations and their solutions
- Generic (open string) Koba-Nielsen factor given by

$$
Z \sim \int \prod_{i} d z_{i} \prod_{i<j}^{N}\left|z_{i j}\right|^{\alpha^{\prime} s_{i j}}
$$

- Koba-Nielsen factor can be written as

$$
\prod_{i<j}^{N} z_{i j}^{\alpha^{\prime} s_{i j}}=\exp \left\{\frac{\alpha^{\prime}}{2} \sum_{i \neq j} s_{i j} \ln \left|z_{i}-z_{j}\right|\right\}
$$

- Then: condition for saddle point $=$ scattering equations

$$
\sum_{j \neq i} \frac{s_{i j}}{z_{i}-z_{j}}=0, \quad i=1, \ldots, N \quad \text { has }(N-3)!\text { solutions in general }
$$

High Energy Behavior of N-point Closed String Amplitudes

Based on scattering equations, leading term of N -point closed string for $\alpha^{\prime} \rightarrow \infty$ can be written as [CHY]

$$
\begin{aligned}
\mathcal{M}_{N}=\kappa^{N-2}\left(4 \pi \alpha^{\prime}\right)^{N-3} & \sum_{a=1}^{(N-3)!} \frac{\left(\prod_{i<j}^{N}\left|z_{i j}^{(a)}\right|^{\frac{\alpha^{\prime}}{2}} s_{i j}\right.}{\operatorname{det}^{\prime} \Phi\left(z^{(a)}\right)^{1 / 2} \operatorname{det}^{\prime} \Phi\left(\bar{z}^{(a)}\right)^{1 / 2}} E_{N}\left(\left\{k, \xi, z^{(a)}\right\}\right)^{2} \\
& +\mathcal{O}\left(\alpha^{\prime-1}\right)
\end{aligned}
$$

- Sum runs over solutions to scattering equations
- E_{N} encodes momenta and polarizations
- $\operatorname{det}^{\prime} \Phi$ comes from localizing the integrations $\delta(f(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|}$
- Note how high energy limit of string theory amplitude looks very similar to field theory amplitude. Still not understood.
- Work out Koba-Nielsen factor above in classicalization regime now...

Properties of Zeros of Jacobi Polynomials

Have seen close relationship to zeros of Jacobi polynomials $P_{N-3}^{(\alpha \beta)}(x)$. Study their properties [Szegö]:
(1.) Discriminant of Jacobi polynomials given by

$$
\begin{aligned}
\Delta_{N-3} & :=l^{2 N-8} \prod_{1 \leq a<b \leq N-3}\left(x_{a}-x_{b}\right)^{2} \\
& =\frac{1}{2^{(N-3)(N-4)}} \prod_{\nu=1}^{N-3} \frac{(\alpha+\nu)^{\nu-1}(\beta+\nu)^{\nu-1}(\alpha+\beta+N-3+\nu)^{N-3-\nu}}{\nu^{-(\nu-2 N+8)}}
\end{aligned}
$$

with I is coefficient of highest term x^{N-3} of Jacobi polynomial $P_{N-3}^{(\alpha \beta)}(x)$.

Properties of Zeros of Jacobi Polynomials

Have seen close relationship to zeros of Jacobi polynomials $P_{N-3}^{(\alpha \beta)}(x)$.
Study their properties [Szegö]:
(1.) Discriminant of Jacobi polynomials given by

$$
\begin{aligned}
\Delta_{N-3} & :=l^{2 N-8} \prod_{1 \leq a<b \leq N-3}\left(x_{a}-x_{b}\right)^{2} \\
& =\frac{1}{2^{(N-3)(N-4)}} \prod_{\nu=1}^{N-3} \frac{(\alpha+\nu)^{\nu-1}(\beta+\nu)^{\nu-1}(\alpha+\beta+N-3+\nu)^{N-3-\nu}}{\nu^{-(\nu-2 N+8)}}
\end{aligned}
$$

with I is coefficient of highest term x^{N-3} of Jacobi polynomial $P_{N-3}^{(\alpha \beta)}(x)$.
(2.) $\prod_{a=1}^{N-3}\left(1-x_{a}\right)=(N-3)!\frac{P_{N-3}^{(\alpha \beta)}(1)}{P_{N-3}^{(\alpha \beta)^{(N-3)}(x)}}=2^{N-3} \prod_{\nu=1}^{N-3} \frac{(\alpha+\nu)}{(\alpha+\beta+N-3+\nu)}$
(3.) $\prod_{a=1}^{N-3}\left(1+x_{a}\right)=(-1)^{N+1}(N-3)!\frac{P_{N-3}^{(\alpha \beta)}(-1)}{P_{N-3}^{(\alpha \beta)^{(N-3)}(x)}}=2^{N-3} \prod_{\nu=1}^{N-3} \frac{(\beta+\nu)}{(\alpha+\beta+N-3+\nu)}$

Koba-Nielsen Factors on Solutions of Scattering Equation

Solutions of the scattering equation in the classicalization regime given by permutation $\pi_{I} \in S_{N-3}, I=1, \ldots,(N-3)$! acting on the $N-3$ zeros x_{a} via $\left\{z_{i}^{\prime}=x_{\pi_{((i-1)}} \mid i=2, \ldots, N-2\right\}$. Gauge fix $z_{1}^{(I)}=-1, z_{N-1}^{(I)}=\infty, z_{N}^{(I)}=1$.

$$
\begin{aligned}
\prod_{i<j}\left|z_{i j}^{(l)}\right|^{\alpha^{\prime} s_{j j}} & =2^{\alpha^{\prime} s_{1 N}} \prod_{a=2}^{N-2}\left|z_{1}^{(l)}-z_{a}^{(l)}\right|^{\alpha^{\prime} s_{1 a}}\left|z_{N}^{(l)}-z_{a}^{(l)}\right|^{\alpha^{\prime} s_{\mathrm{a} N}} \prod_{2 \leq a<b \leq N-2}\left|z_{a}^{(l)}-z_{b}^{(l)}\right|^{\alpha^{\prime} s_{a b}} \\
& =\prod_{\nu=1}^{N-3}\left(\frac{\nu^{\nu}(\alpha+\nu)^{\alpha+\nu}(\beta+\nu)^{\beta+\nu}}{(\alpha+\beta+N-3+\nu)^{\alpha+\beta+N-3+\nu}}\right)^{\alpha^{\prime} / 2}
\end{aligned}
$$

- Note that independent on which permutation under consideration. Each solution yields same Koba-Nielsen factor.

N -point Closed String Amplitude in Classicalization Regime

- N-point closed tree amplitude becomes (permutation invariance)

$$
\mathcal{M}_{N}=\kappa^{N-2}\left(4 \pi \alpha^{\prime}\right)^{N-3}\left(\prod_{i<j}^{N}\left|z_{i j}^{(a)}\right|^{\frac{\alpha^{\prime}}{2}} s_{i j}\right) \sum_{a=1}^{(N-3)!} \frac{E_{N}\left(\left\{k, \xi, z^{(a)}\right\}\right)^{2}}{\operatorname{det}^{\prime} \Phi\left(z^{(a)}\right)^{1 / 2} \operatorname{det}^{\prime} \Phi\left(\bar{z}^{(a)}\right)^{1 / 2}}
$$

- Solutions here real: $\operatorname{det}^{\prime} \Phi\left(z^{(a)}\right)^{1 / 2} \operatorname{det}^{\prime} \Phi\left(\bar{z}^{(a)}\right)^{1 / 2}=\operatorname{det}^{\prime} \Phi\left(z^{(a)}\right)$
- $\sum_{a=1}^{(N-3)!} \ldots=M_{N}^{F T}$. Computed some slides ago.

Final result:

$\mathcal{M}_{N}=\left(4 \pi \alpha^{\prime}\right)^{N-3} \quad \prod_{\nu=1}^{N-3}\left(\frac{\nu^{\nu}(\alpha+\nu)^{\alpha+\nu}(\beta+\nu)^{\beta+\nu}}{(\alpha+\beta+N-3+\nu)^{\alpha+\beta+N-3+\nu}}\right)^{\alpha^{\prime} / 4} M_{N}^{F T}+\mathcal{O}\left(\alpha^{\prime-1}\right)$ with $\mathfrak{a}=\alpha+N-1$ and $\mathfrak{b}=\beta+N-1$.

Comments and Further Results

$\mathcal{M}_{N}=\left(4 \pi \alpha^{\prime}\right)^{N-3} \quad \prod_{\nu=1}^{N-3}\left(\frac{\nu^{\nu}(\alpha+\nu)^{\alpha+\nu}(\beta+\nu)^{\beta+\nu}}{(\alpha+\beta+N-3+\nu)^{\alpha+\beta+N-3+\nu}}\right)^{\alpha^{\prime} / 4} M_{N}^{F T}+\mathcal{O}\left(\alpha^{\prime-1}\right)$

- Same analysis also holds in pure $\alpha^{\prime} \rightarrow \infty$ regime (i.e. $\left|s_{i j}\right| \sim s$).

$$
\mathcal{M}_{N} \sim \kappa^{N-2} \alpha^{\prime N-3} s \exp \left\{-\frac{\alpha^{\prime}}{2}(N-3) s \ln \left(\alpha^{\prime} s\right)\right\}
$$

- Can also consider a regime where s and N are large but $\frac{s}{N^{2}}$ is below string scale

$$
\mathcal{M}_{N} \rightarrow M_{N}^{F T}
$$

Conjectured by [Cheung, O'Connell, Wecht].

- Similar analyses can be done for open string tree amplitudes; structure of results very similar (s. paper)
3.) Interpretation of High Energy Behavior

Interpretation of High Energy Behavior in light of N-portrait \& Classicalization

Field theory result:

$$
|\langle 2| S| N\rangle\left.\right|^{2} \sim\left(\frac{\lambda}{N}\right)^{N} N!\sim \exp (-N) \lambda^{N} \quad, \quad \lambda \equiv \alpha N=\frac{L_{P}^{2} S}{N}
$$

- Remember that in N-portrait: $\lambda=\alpha N$ and $\alpha N>1$ not allowed (unitarity violation).
- At $\lambda=1$, amplitude $\sim \exp \{-N\}$ but has to be supplemented by bh degeneracy of states \Rightarrow compensation

$$
\left.A_{B H} \sim|\langle 2| S| N\right\rangle\left.\right|^{2}|\langle N \mid B H\rangle|_{N P}^{2} \sim\left(\frac{1}{N}\right)^{N} N!\times \exp N \sim 1
$$

- Close to $\lambda \lesssim 1$, degeneracy of states still countable, but another suppression $\sim \lambda^{N}$ factor which is not compensated for.
- \Rightarrow dominance of BH final states over other possible multi-particle final states.

Interpretation of High Energy Behavior in light of N-portrait \& Classicalization

Field theory result:

$$
|\langle 2| S| N\rangle\left.\right|^{2} \sim\left(\frac{\lambda}{N}\right)^{N} N!\sim \exp (-N) \lambda^{N} \quad, \quad \lambda \equiv \alpha N=\frac{L_{P}^{2} S}{N}
$$

- Behavior of large \sqrt{s} smoothened out if N increases appropriately \Rightarrow core idea of classicalization.
- Smoothing out starts at $N=s L_{P}^{2}$. "Unitarity threshold for given s ".
- In N-Portrait this is exactly entropy of a BH of mass \sqrt{s}
- Everything above unitarity threshold excluded by corpuscular picture (by black hole formation)

Interpretation of High Energy Behavior in light of N-portrait \& Classicalization

Planck and string length related. Identify two regimes:

- $\lambda=g_{s}^{2} N>1$: string effects relevant where outgoing gravitons strongly coupled. Does it tame unitarity violation in FT?
- $\lambda=g_{s}^{2} N<1$: string effects become relevant before black hole formation kicks in.

4.) Some further observations (and speculations...)

On the point $g_{s}^{2} N=1$

Threshold of string effects matches field theoretical critical point of black hole formation.

$$
g_{s}=\frac{1}{\sqrt{N}}
$$

- point where string coupling of constituent quanta becomes equally important as gravitational coupling
- corresponds to string-black hole correspondence,i.e. black hole state \sim state of strings and D-branes with same charges
[Horowitz, Polchinski], [Dvali, Gómez], [Dvali, Lüst]

On $G R=Y M^{2}$

Gravity amplitudes can be expressed as sum over Yang Mills amplitudes squared. Known for a long time, basis for many developments like recent study of UV properties of $\mathcal{N}=8$ by [Bern et al] up to 5 loops.

- But: never used at any point information about color of Yang-Mills N_{c}
- Connection closed string open string coupling:

$$
g_{s}=g_{\text {open }}^{2}
$$

- At point of string-bh correspondence:

$$
g_{s}=\frac{1}{\sqrt{N}}
$$

-

g_{o p e n}^{2}=\frac{1}{N_{c}}
\]

Thus naively: $\quad N=N_{c}^{2} \quad$ Interpretation?

Summary

- Studied high energy behavior of graviton amplitudes at tree level.
- Established connection between transplanckian scattering amplitudes and unitarization by BH formation (classicalization).
- Used classicalization and the BH corpuscular N portrait as a guide.

Findings in Field theory:

- Closed expressions for tree-level N-point graviton and gluon amplitudes in classicalization regime
- Identify microscopic reason of BH dominance over other final states.
- Find that high-energy behavior of graviton FT amplitudes becomes smoothened out when number N of produced gravitons is increased.
- Unitarity threshold at $N=s L_{P}^{2}$ for given s. Corresponds in N portrait to BH of mass \sqrt{s}.
- Strong coupling regime excluded by corpuscular arguments.

Summary

- Studied high energy behavior of graviton amplitudes at tree level.
- Established connection between transplanckian scattering amplitudes in FT and ST and unitarization by BH formation (classicalization).
- Used classicalization and the BH corpuscular N portrait as a guide.

Findings in String theory:

- Closed expressions for tree-level N-point open and closed string scattering at high energies.
- Beautiful connection to recent developments in FT (scattering equations)
- Identify two regimes (not talked about today in detail)
- $\frac{\sqrt{s}}{N}<M_{s}$: String amplitudes agree with FT amplitudes at N-points
- $\frac{\sqrt{s}}{N}>M_{s}$: String effects become important

Summary

- Could identify interplay between N portrait, black hole formation, and scattering amplitudes in a field theory regime and string regime.
- Amplitudes reveal key features of the N portrait; perturbative amplitudes already seem to know about non-perturbative physics.

Outlook

- Precise the role of color in " $G R=Y M^{2}$ "?
- Implications along the lines of AdS/CFT?
- Beyond tree level in light of classicalization and N-portrait? First steps in [Kuhnel, Sandborg].
- Next: High energy behavior of amplitudes including gluons? Take as inspiration [Dvali, Gómez, Lüst] and [Stieberger] (ST) or [Cachazo, He, Yuan] in (FT) - work in progress.

Stay tuned...

Your Questions Here?

Extra slides

Scattering Equations [Cachazo, He, Yuan]

Skipping most details, the final formula for the tree-level S-matrix of a massless spin s particle is given by $\left(\sigma_{k l}=\sigma_{k}-\sigma_{l}\right)$

$$
M_{n, s}=\sum_{\{\sigma\} \in s o l}\left(\frac{\operatorname{Tr}\left(T^{a_{1}} \ldots T^{a_{n}}\right)}{\sigma_{12} \ldots \sigma_{n 1}}+\text { perms }\right)^{2-s} \frac{\left(\operatorname{Pf}^{\prime} \Psi(\{k, \epsilon, \sigma\})\right)^{s}}{\operatorname{det}^{\prime} \Phi(\sigma)}
$$

with ψ a $2 n \times 2 n$ skew-symmetric matrix given by $\psi=\left(\begin{array}{cc}A & -C^{\top} \\ C & B\end{array}\right)$ with

$$
A_{a b}=\left\{\begin{array}{cc}
\frac{s_{a b}}{\sigma_{a b}}, & a \neq b \\
0, & a=b
\end{array} \quad B_{a b}=\left\{\begin{array}{cc}
\frac{2 \epsilon_{a} \cdot \epsilon_{b}}{\sigma_{a b}}, \quad a \neq b \\
0, & a=b
\end{array} \quad C_{a b}= \begin{cases}\frac{2 \epsilon_{a} \cdot k_{b}}{\sigma_{a b}}, & a \neq b \\
-\sum_{c \neq a} \frac{2 \epsilon_{a} \cdot k_{c}}{\sigma_{a c s}}, & a=b\end{cases}\right.\right.
$$

$$
\text { and } \operatorname{Pf}^{\prime} \Psi=\frac{(-1)^{i+j}}{\sigma_{i j}} \operatorname{Pf}\left(\Psi_{i j}^{i j}\right), \quad 1 \leq i<j \leq n \text { and } \operatorname{Pf} \Psi_{i j}^{i j}=\sqrt{\operatorname{det} \Psi_{i j}^{i j}} .
$$

$$
\operatorname{det} \Phi^{\prime} \equiv \frac{\operatorname{det}(\Phi)_{i j k}^{r s t}}{\sigma_{i j} \sigma_{j k} \sigma_{k i} \sigma_{r s} \sigma_{s t} \sigma_{t r}} \text { with } \Phi_{a b}=\left\{\begin{array}{l}
\frac{s_{a b}}{\sigma_{a b}^{2}}, a \neq b \\
-\sum_{c \neq a} \frac{s_{a c}}{\sigma_{a c}^{2 c}}, a=b
\end{array}\right.
$$

High Energy N-point Closed String Amplitude [CHY]

Closed-string amplitude can be written via (symmetric) KLT relations
$M_{N}\left(\alpha^{\prime}\right)=\int D_{\alpha^{\prime}}^{N-3} z_{i} D_{\alpha^{\prime}}^{N-3} \bar{z}_{i} \sum_{\tau, \tilde{\tau}, \rho, \tilde{\rho}} \frac{S[\rho \mid \tau] S[\tilde{\rho} \mid \tilde{\tau}]}{z_{1, \rho(2)} \ldots z_{N-1, N} z_{N, 1} \bar{z}_{1, \tilde{\rho}(2)} \ldots \bar{z}_{N, 1}} A_{Y M}(\tau) A_{Y M}(\tilde{\tau})$
$-D_{\alpha^{\prime}}^{N-3} z_{i}=\frac{d^{N} z_{i}}{\operatorname{volSL(2,\mathbb {C})}} \prod_{i<j}\left|z_{i j}\right|^{\alpha^{\prime} s_{i j}}$

- $S[\ldots \mid \ldots]$ momentum kernel and $\tau, \tilde{\tau}, \rho, \tilde{\rho} \in S_{N-3}$

Using and properties of scattering equation amplitudes on $A_{Y M}$

$$
M_{N}=\sum_{a=1}^{(N-3)!} \frac{\left(\prod_{i<j}^{N}\left|z_{i j}^{(a)}\right|^{\frac{\alpha^{\prime}}{2}} s_{i j}\right)}{\operatorname{det}^{\prime} \Phi\left(z^{(a)}\right)^{1 / 2} \operatorname{det}^{\prime} \Phi\left(\bar{z}^{(a)}\right)^{1 / 2}} E_{N}\left(\left\{k, \xi, z^{(a)}\right\}\right)^{2}+\mathcal{O}\left(\alpha^{\prime-1}\right)
$$

with $E_{N}^{2}=\operatorname{det}^{\prime} \Psi$.

