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Einstein Gravity

Einstein gravity (m = 0, s = 2) is a well-studied theory of gravitation,

I Many interesting features (Geometry, Black Holes, Symmetries,
Relation to Yang-Mills,...),

I Supersymmetric extensions,

I Well-tested experimentally (GPS,...)

I . . .

Fortunately for us: many problems and properties still not completely
understood.

I UV completion at tree level? Unitarity?

I Quantum understanding of BH?

I (Renormalizability at loop level?)

I . . .
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Unitarity at Tree Level in Gravity

Known: Gravity scattering amplitudes grow like s (center of mass energy)

⇒ violation of (perturbative) unitarity at s = M2
P .

Wilsonian UV completion: regulate by integrating-in weakly-coupled
degrees of freedom of shorter and shorter wave-lengths.

Consequences for gravity: at energies s > M2
P UV-completion achieved

by new quantum degrees of freedom of wavelength shorter than Planck
length.
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UV Completion and Classicalization

But: Gravity has a smallest length scale – the Planck length (area
actually). Cannot go beyond this length since black holes will inevitably
form, i.e. Wilsonian UV completion does not make sense anymore.

Based on this [Dvali, Gómez] argued that gravity is UV complete by itself
through classical black hole formation – called classicalization.

Basic idea of UV completion by classicalization is that

short-scale UV physics→ long-scale IR physics

by formation of classical object at large energies – black holes dominate

In other words: gravity protects itself at high energies by BH formation.

Without doubt: better quantum understanding of black holes
needed.
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Black Hole N Portrait

Developments towards this in a program of work entitled Quantum Black
Hole corpuscular N-portrait.

[Dvali, Gómez], [Dvali, Gómez, Kehagias], [Dvali, Gómez, Lüst]

Quantum black hole
=

collection of N self-bound gravitons at quantum critical point
(Bose-Einstein condensate)

I interaction strength of gravitons α = 1
N at this point

I BH fully characterized by the number N

I BH mass MBH =
√
NMP , BH radius RBH =

√
NLP , entropy S = N

I Black hole physics → condensed matter physics
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Black Hole N Portrait

Reproduce semi-classical behavior via mean-field approximation

N →∞ and Lp → 0 with ~ 6= 0

Used to pinpoint quantum origin of semi-classical properties:

I Bekenstein entropy ↔ quantum degeneracy of states at critical point

I Hawking radiation ↔ quantum depletion and leakage of condensate

Can think about classicalization as large N quantum physics.
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UV Completion, Classicalization, and the N portrait

Consequently: there are two interconnected claims:

I Einstein gravity is UV complete by classicalization (i.e. black hole
formation) at tree level

I Black holes are a Bose-Einstein graviton condensate at a quantum
critical point

In the language of classicalization and N portrait:

I Black hole formation process should correspond to graviton scattering

2→ N with pin ∼
√
s and pout ∼

√
s/N with N � 1

via

ABH ∼
∑

j

|〈2|S |N〉|2P |〈N|BH〉|2NP with |〈N|BH〉|2NP ∼ exp{N}

I Moreover, black hole formation should be dominating

I Need to supplement perturbative result with non-perturbative input.
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This Talk

Investigate the question of UV completion and black hole formation in
(Einstein) gravity at tree level.

Input from classicalization and the N-portrait

VS

High energy behavior of scattering amplitudes in relevant kinematics.
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This Talk

Plan of the talk:

1.) Non-perturbative input from the N-portrait

2.) Scattering amplitudes in FT and ST at high energies

3.) Interpretation of high energy behavior in light of N-portrait

4.) Some further observations / comments
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1.) Non-perturbative Input from the N-portrait
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Black Hole N Portrait: Regimes of αN

Different regimes of αN (i.e. the self coupling of the graviton condensate)

I αN = 1 black hole formation: exponential degeneracy of states
(N Bogolyubov modes become gapless) ∼ exp{N}.

I αN < 1 free graviton Bose gas: can be approximated by perturbative
methods. No exponential degeneracy.

I αN > 1 unphysical region: Excluded, not a viable S −matrix state
(Bogolyubov frequencies complex → positive Lyapunov exponents).
Region where unitarity would be violated.
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Black Hole N Portrait: Regimes of αN

Different regimes of αN (i.e. the self coupling of the graviton condensate)

black hole

excluded region

1

z }| {

energy levels

↵N
| {z }
weakly coupled graviton  

Bose-Einstein condensate

R. S. Isermann (LMU) Jan 28, 2015 12 / 40



2.) Scattering amplitudes in FT and ST at high energies
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How to actually compute amplitudes in gravity?

Textbook approach: scattering amplitudes =
∑

Feynman diagrams.
However: Feynman rules of gravity horribly complicated!

[DeWitt]
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How to compute amplitudes in gravity?

Example: 4 points tree level. Feynman diagrams give O(100) terms.
Result extremely simple:

M(1−, 2−, 3+, 4+) =
〈12〉7[12]

〈13〉〈14〉〈23〉〈24〉〈34〉2

with [ij ] and 〈ij〉 roughly ∼
√
|sij | (spinor helicity formalism).

What’s the meaning of this?

I Huge cancellations in sum over terms; Feynman diagrams not the
correct way to compute (offshell, unphysical information!)

I Missed a symmetry?

I Alternative methods?
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KLT relations (1986) [Kawai, Lewellen, Tye]

I N graviton amplitude ∼ sum of squares of N gluon amplitudes

I Can be derived most easily in string theory
(closed string ∼ open string × open string)

MN =
(
−κ

2

)N−2 ∑

σ,γ∈SN−3

AN(1, σ(2, ...,N − 2),N − 1,N)

S [γ(2, ...,N − 2), σ(2, ...,N − 2)]N−1AN(1,N − 1, σ(2, ...,N − 2),N)

[Bern, Dixon, Perelstein, Rozowsky]

[Bjerrum-Bohr, Damgaard, Sondergaard, Vanhove]

I S [..., ...] called momentum kernel. Roughly S ∼ sN−3
ij

I AN(...) color-ordered Yang-Mills amplitude

I Example:
M4 = s12A4(1, 2, 3, 4)A4(2, 1, 3, 4)
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Scattering Equations (2013) [Cachazo, He, Yuan]

I Tree-level S-matrix of massless particles with spin 0,1,2 (and also
mixed amplitudes) in arbitrary spacetime dimension given by integral
over punctures on a sphere.

MN,s =

∫
dN σ

vol SL(2,C)

∏

a

′δ(
∑

b 6=a

sab
σa − σb

)

(
Tr(T a1 ...T aN )

(σ1 − σ2)(σ2 − σ3)...
+ ...

)2−s

(Pf ′Ψ)s

I Kinematic part independent of theories, given by a system of
equations called scattering equations

n∑

b=1,b 6=a

sab
σa − σb

= 0, a = 1, ..., n

I (N-3)! solutions to these equations determine position of n points on
sphere, localizes integral.

I Caveat: extremely hard to solve in general for arbitrary kinematics.
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Classicalization Regime

I Energy regime in 2→ N scattering according to classicalization
corresponds to

pin ∼
√
s and pout ∼

√
s

N

⇒ sij = (pi + pj)
2 ∼





s, {i , j} ∈ {1,N}
− s

N , i ∈ {1,N}, j /∈ {1,N}
s
N2 , {i , j} /∈ {1,N}

I Defined particles 1 and N incoming, rest outgoing.
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Classicalization Regime and Scattering Equations

Rewrite this regime as (in units of s
N2 ) introducing two parameter a, b,

with −1 < a, b < 0, s.t.

s1,N =
1

2
(N − a− b) sij = 1, i , j = {2, ...N − 2}

sN−1,N = −1

2
(N − 3)(2− b) s1,N−1 = −1

2
(N − 3)(2− a)

s1,i = −1

2
(N − 2− b) si,N = −1

2
(N − 2− a)

sN−1,i =
1

4
(4− a− b)

I Similar setup studied by [Kalousios]:

I Solutions degenerate: only (N − 3) instead of (N − 3)! indep. sold.

I Solutions to scattering eqs = zeros of Jacobi polynomials P
(a,b)
N−3

I P
(α,β)
n (x) = (−1)n

2nn! (1− x)−α(1 + x)−β dn

dxn

[
(1− x)α+n(1 + x)β+n

]
.
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Classicalization Regime

Use Kalousios’ insights to obtain N-point gravity amplitude in
classicalization regime:

MN = −κN−2 28−N s

N2
[(N − 3)!!]2 Γ

(
a
2

)
Γ
(

3
2 + b−N

2

)
Γ
(

1−N+a+b
2

)

Γ
(
1 + a−N

2

)
Γ
(
b−1

2

)
Γ
(
a+b−3

2

)

×
Γ
(

3
2 + a−N

2

)
Γ
(
b
2

)
Γ
(
a+b−2

2

)

Γ
(
1 + b−N

2

)
Γ
(
a−1

2

)
Γ
(
a+b−N

2

) HN(a, b)2

with HN(a, b) encoding polarisation (but constant in N).

For N � 1 Taylor expand and find

MN ∼ κN
s

N2
N!
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Graviton Scattering Amplitudes in Classicalization Regime

To obtain the physical probability i.e. the S-matrix element, have to
consider

d |〈2|S |N〉|2 ∼ 1

(N)!

N−1∏

i=2

dp4
i |MN |2δ4(Ptotal)

(Full cross section by integrating over momenta and summing over
helicities)

Plugging in classicalization regime gives (taking N � 1, κ = LP , and
Stirling’s formula)

|〈2|S |N〉|2 ∼
(
L2
P s

N2

)N
N! ∼ exp(−N) λN

Define λ =
L2
P s
N for later convenience (collective coupling).
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String Amplitudes

Known: High Energy behavior of open and / or closed string amplitudes
given by exponential fall-off. [Veneziano], [Gross, Mende], [Gross, Manes]

Thus no problem with unitarity at transplanckian energies.

I Example: 4-point closed string amplitude for α′ →∞

M4 ∼ κ2|A4|2 × 4πα′
st

u
exp

{
α′

2
(s ln |s|+ t ln t + u ln u)

}

I Note: State-of-the-art until our paper came out!
I Computation via Laplace’s saddle point method on world-sheet

integrals:

∫
g(x) exp{α′f (x)}dx ∼

√
2π

α′|f ′′(x0)|
g(x0) exp{α′f (x0)}+O(α′−1)

with x0 unique global maximum in interval of integration.
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High Energy Behavior of N-point String Amplitudes

I Shall see: High energy string behavior closely related to scattering
equations and their solutions

I Generic (open string) Koba-Nielsen factor given by

Z ∼
∫ ∏

i

dzi

N∏

i<j

|zij |α
′sij

I Koba-Nielsen factor can be written as

N∏

i<j

z
α′sij
ij = exp




α′

2

∑

i 6=j

sij ln|zi − zj |





I Then: condition for saddle point = scattering equations
∑

j 6=i

sij
zi − zj

= 0, i = 1, ...,N has (N − 3)! solutions in general
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High Energy Behavior of N-point Closed String Amplitudes

Based on scattering equations, leading term of N-point closed string for
α′ →∞ can be written as [CHY]

MN = κN−2 (4πα′)
N−3

(N−3)!∑

a=1

(
N∏
i<j

|z (a)
ij |

α′
2 sij

)

det
′

Φ(z (a))1/2 det
′

Φ(z (a))1/2
EN({k, ξ, z (a)})2

+O(α′−1)

I Sum runs over solutions to scattering equations

I EN encodes momenta and polarizations

I det′Φ comes from localizing the integrations δ(f (x)) =
∑

i
δ(x−xi )
|f ′(xi )|

I Note how high energy limit of string theory amplitude looks very
similar to field theory amplitude. Still not understood.

I Work out Koba-Nielsen factor above in classicalization regime now...
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Properties of Zeros of Jacobi Polynomials

Have seen close relationship to zeros of Jacobi polynomials P
(αβ)
N−3(x).

Study their properties [Szegö]:

(1.) Discriminant of Jacobi polynomials given by

∆N−3 := l2N−8
∏

1≤a<b≤N−3

(xa − xb)2

=
1

2(N−3)(N−4)

N−3∏

ν=1

(α + ν)ν−1 (β + ν)ν−1 (α + β + N − 3 + ν)N−3−ν

ν−(ν−2N+8)

with l is coefficient of highest term xN−3 of Jacobi polynomial P
(αβ)
N−3(x).

(2.)
N−3∏
a=1

(1− xa) = (N − 3)!
P

(αβ)
N−3 (1)

P
(αβ)(N−3)

N−3 (x)
= 2N−3

N−3∏
ν=1

(α + ν)

(α + β + N − 3 + ν)

(3.)
N−3∏
a=1

(1 + xa) = (−1)N+1(N − 3)!
P

(αβ)
N−3 (−1)

P
(αβ)(N−3)

N−3 (x)
= 2N−3

N−3∏
ν=1

(β + ν)

(α + β + N − 3 + ν)
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Koba-Nielsen Factors on Solutions of Scattering Equation

Solutions of the scattering equation in the classicalization regime given by
permutation πl ∈ SN−3, l = 1, ..., (N − 3)! acting on the N − 3 zeros xa via

{z li = xπl(i−1)
| i = 2, ...,N−2}. Gauge fix z

(l)
1 = −1, z

(l)
N−1 =∞, z(l)

N = 1.

∏

i<j

|z (l)
ij |

α′sij = 2α
′s1N

N−2∏

a=2

|z (l)
1 − z (l)

a |α
′s1a |z (l)

N − z (l)
a |α

′saN
∏

2≤a<b≤N−2

|z (l)
a − z

(l)
b |

α′sab

=
N−3∏

ν=1

(
νν (α + ν)α+ν (β + ν)β+ν

(α + β + N − 3 + ν)α+β+N−3+ν

)α′/2

I Note that independent on which permutation under consideration.
Each solution yields same Koba-Nielsen factor.
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N-point Closed String Amplitude in Classicalization Regime

I N-point closed tree amplitude becomes (permutation invariance)

MN = κN−2 (4πα′)
N−3




N∏

i<j

|z (a)
ij |

α′
2 sij




(N−3)!∑

a=1

EN({k , ξ, z (a)})2

det
′

Φ(z (a))1/2 det
′

Φ(z (a))1/2

I Solutions here real: det′ Φ(z (a))1/2 det′ Φ(z (a))1/2 = det′ Φ(z (a))

I
∑(N−3)!

a=1 ... = MFT
N . Computed some slides ago.

Final result:

MN = (4πα′)
N−3

N−3∏

ν=1

(
νν (α + ν)α+ν (β + ν)β+ν

(α + β + N − 3 + ν)α+β+N−3+ν

)α′/4

MFT
N +O(α′−1)

with a = α + N − 1 and b = β + N − 1.
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Comments and Further Results

MN = (4πα′)
N−3

N−3∏

ν=1

(
νν (α + ν)α+ν (β + ν)β+ν

(α + β + N − 3 + ν)α+β+N−3+ν

)α′/4

MFT
N +O(α′−1)

I Same analysis also holds in pure α′ →∞ regime (i.e. |sij | ∼ s).

MN ∼ κN−2α′N−3 s exp

{
−α
′

2
(N − 3)s ln(α′s)

}

I Can also consider a regime where s and N are large but s
N2 is below

string scale
MN → MFT

N

Conjectured by [Cheung, O’Connell, Wecht].

I Similar analyses can be done for open string tree amplitudes;
structure of results very similar (s. paper)
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3.) Interpretation of High Energy Behavior
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Interpretation of High Energy Behavior in light of
N-portrait & Classicalization

Field theory result:

|〈2|S |N〉|2 ∼
(
λ

N

)N

N! ∼ exp(−N) λN , λ ≡ αN =
L2
Ps

N

I Remember that in N-portrait: λ = αN and αN > 1 not allowed
(unitarity violation).

I At λ = 1, amplitude ∼ exp{−N} but has to be supplemented by bh
degeneracy of states ⇒ compensation

ABH ∼ |〈2|S |N〉|2|〈N|BH〉|2NP ∼
(

1

N

)N

N!× expN ∼ 1

I Close to λ . 1, degeneracy of states still countable, but another
suppression ∼ λN factor which is not compensated for.

I ⇒ dominance of BH final states over other possible multi-particle
final states.
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Interpretation of High Energy Behavior in light of
N-portrait & Classicalization

Field theory result:

|〈2|S |N〉|2 ∼
(
λ

N

)N

N! ∼ exp(−N) λN , λ ≡ αN =
L2
Ps

N

I Behavior of large
√
s smoothened out if N increases appropriately

⇒ core idea of classicalization.

I Smoothing out starts at N = sL2
P . “Unitarity threshold for given s”.

I In N-Portrait this is exactly entropy of a BH of mass
√
s

I Everything above unitarity threshold excluded by corpuscular picture
(by black hole formation)
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Interpretation of High Energy Behavior in light of
N-portrait & Classicalization

Planck and string length related. Identify two regimes:

I λ = g2
s N > 1: string effects relevant where outgoing gravitons

strongly coupled. Does it tame unitarity violation in FT?

I λ = g2
s N < 1: string effects become relevant before black hole

formation kicks in.
black holes

z }| {

excluded 
 region

z }| {

�

z }| {

1

field theory

z }| {

string theory

�Ng2
s

z }| {

1 Ng2
s

field theory string theory
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4.) Some further observations (and speculations...)
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On the point g 2
s N = 1

Threshold of string effects matches field theoretical critical point of black
hole formation.

gs =
1√
N

I point where string coupling of constituent quanta becomes equally
important as gravitational coupling

I corresponds to string-black hole correspondence,i.e.
black hole state ∼ state of strings and D-branes with same charges

[Horowitz, Polchinski], [Dvali, Gómez], [Dvali, Lüst]
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On GR = YM2

Gravity amplitudes can be expressed as sum over Yang Mills amplitudes
squared. Known for a long time, basis for many developments like recent
study of UV properties of N = 8 by [Bern et al] up to 5 loops.

I But: never used at any point information about color of Yang-Mills Nc

I Connection closed string open string coupling:

gs = g2
open

I At point of string-bh correspondence:

gs =
1√
N

I [’t Hooft]:

g2
open =

1

Nc

Thus naively: N = N2
c Interpretation?
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Summary

I Studied high energy behavior of graviton amplitudes at tree level.

I Established connection between transplanckian scattering amplitudes
and unitarization by BH formation (classicalization).

I Used classicalization and the BH corpuscular N portrait as a guide.

Findings in Field theory:

I Closed expressions for tree-level N-point graviton and gluon
amplitudes in classicalization regime

I Identify microscopic reason of BH dominance over other final states.

I Find that high-energy behavior of graviton FT amplitudes becomes
smoothened out when number N of produced gravitons is increased.

I Unitarity threshold at N = sL2
P for given s. Corresponds in N portrait

to BH of mass
√
s.

I Strong coupling regime excluded by corpuscular arguments.
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Summary

I Studied high energy behavior of graviton amplitudes at tree level.

I Established connection between transplanckian scattering amplitudes
in FT and ST and unitarization by BH formation (classicalization).

I Used classicalization and the BH corpuscular N portrait as a guide.

Findings in String theory:

I Closed expressions for tree-level N-point open and closed string
scattering at high energies.

I Beautiful connection to recent developments in FT (scattering
equations)

I Identify two regimes (not talked about today in detail)

I
√
s

N < Ms : String amplitudes agree with FT amplitudes at N-points

I
√
s

N > Ms : String effects become important
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Summary

I Could identify interplay between N portrait, black hole formation, and
scattering amplitudes in a field theory regime and string regime.

I Amplitudes reveal key features of the N portrait; perturbative
amplitudes already seem to know about non-perturbative physics.
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Outlook

I Precise the role of color in “GR = YM2”?

I Implications along the lines of AdS/CFT?

I Beyond tree level in light of classicalization and N-portrait? First
steps in [Kuhnel, Sandborg].

I Next: High energy behavior of amplitudes including gluons? Take as
inspiration [Dvali, Gómez, Lüst] and [Stieberger] (ST) or [Cachazo,
He, Yuan] in (FT) – work in progress.

Stay tuned...
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Your Questions Here?
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Extra slides
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Scattering Equations [Cachazo, He, Yuan]

Skipping most details, the final formula for the tree-level S-matrix of a
massless spin s particle is given by (σkl = σk − σl)

Mn,s =
∑

{σ}∈sol

(
Tr(T a1 ...T an)

σ12 . . . σn1
+ perms

)2−s (Pf′Ψ({k , ε, σ}))s

det′Φ(σ)

with Ψ a 2n × 2n skew-symmetric matrix given by Ψ =

(
A −CT

C B

)
with

Aab =

{
sab
σab
, a 6= b

0 , a = b
Bab =

{
2εa·εb
σab

, a 6= b

0 , a = b
Cab =

{
2εa·kb
σab

, a 6= b

−
∑

c 6=a
2εa·kc
σacs

, a = b

and Pf′Ψ = (−1)i+j

σij
Pf(Ψij

ij), 1 ≤ i < j ≤ n and Pf Ψij
ij =

√
detΨij

ij .

detΦ′ ≡
det(Φ)rstijk

σijσjkσkiσrsσstσtr
with Φab =


sab
σ2
ab
, a 6= b

−
∑

c 6=a
sac
σ2
ac
, a = b
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High Energy N-point Closed String Amplitude [CHY]

Closed-string amplitude can be written via (symmetric) KLT relations

MN(α′) =

∫
DN−3
α′ ziD

N−3
α′ z̄i

∑

τ,τ̃ ,ρ,ρ̃

S [ρ|τ ]S [ρ̃|τ̃ ]

z1,ρ(2)...zN−1,NzN,1z̄1,ρ̃(2)...z̄N,1
AYM(τ)AYM(τ̃)

I DN−3
α′ zi = dNzi

volSL(2,C)

∏
i<j |zij |α

′sij

I S [...|...] momentum kernel and τ, τ̃ , ρ, ρ̃ ∈ SN−3

Using and properties of scattering equation amplitudes on AYM

MN =

(N−3)!∑

a=1

(
N∏
i<j

|z (a)
ij |

α′
2 sij

)

det
′

Φ(z (a))1/2 det
′

Φ(z (a))1/2
EN({k , ξ, z (a)})2 +O(α′

−1
) .

with E 2
N = det ′Ψ.
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