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Abstract

In this thesis we study superstring theory on AdS5 × S5, AdS3 × S3 and AdS4 ×CP33. A
shared feature of each theory is that their corresponding symmetry algebras allows for
a decomposition under a Z4 grading. The grading can be realized through an automor-
phism which allows for a convenient construction of the string Lagrangians directly in
terms of graded components. We adopt a uniform light-cone gauge and expand in a near
plane wave limit, or equivalently, an expansion in transverse string coordinates. With a
main focus on the two critical string theories, we perform a perturbative quantization up
to quartic order in the number of fields. Each string theory is, through holographic de-
scriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures
imply that the conformal dimensions of single trace operators in gauge theory should
be equal to the energy of string states. What is more, through the use of integrable
methods, one can write down a set of Bethe equations whose solutions encode the full
spectral problem. One main theme of this thesis is to match the predictions of these
equations, written in a language suitable for the light-cone gauge we employ, against
explicit string theory calculations. We do this for a large class of string states and the
perfect agreement we find lends strong support for the validity of the conjectures.
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Zusammenfassung

Um das mikroskopische Verhalten der Gravitation zu beschreiben, ist es n"otig, Quan-
tenfeldtheorie und allgemeine Relativit"atstheorie in einer vereinheitlichten Sprache zu
formulieren. Eine M"oglichkeit dieses Problem anzugehen ist es, die Punktteilchen der
Quantenfeldtheorie durch fadenf"ormige Strings zu ersetzen. Allerdings erfordert die
mathematische Konsistenz, dass sich die String in h"oherdimensionalen Raum-Zeiten
bewegen; dies macht es jedoch sehr schwer, physikalische Konsequenzen zu extrahieren.
Eine m"ogliche L"osung dieses Problems ist die Verwendung von String-Dualit"aten,
welche die Stringtheorie mittels holographischer Beschreibungen mit Eichtheorien auf
dem Rand der Raum-Zeit verbinden. Die Dualit"aten sind begr"undete Vermutungen,
die die String- und Eichtheorie bei unterschiedlichen Werten der Kopplung gleichset-
zen. Nicht zuletzt deshalb ist eine direkte "Uberpr"ufung der Dualit"aten schwierig
durchf"uhrbar. Hier hilft jedoch die sehr bemerkenswerte Tatsache, dass eine verbor-
gene Eigenschaft der Vermutungen Integrabilit"at zu sein scheint, welche eine Extrap-
olation zwischen starker und schwacher Kopplung erm"oglicht. Desweiteren kann das
gesamte Spektrum, in gewissen vereinfachenden Grenzf"allen, durch einen kompakten
Satz von Bethe-Gleichungen ausgedr"uckt werden. Die Bethe-Gleichungen, welche aus
Eichtheorierechnungen hergeleitet und geraten werden, bieten ein exzellentes Hilfsmit-
tel, die vermuteten Dualit"aten zu pr"ufen. Durch das Vergleichen der Vorhersagen
der Gleichungen und expliziten Berechnungen in der Stringtheorie erh"alt man starke
Argumente f"ur die G"ultigkeit der Vermutung und der angenommenen Integrabilit"at.

Aufgrund der hohen Komplexit"at der Stringtheorien muss man vereinfachende Lim-
ites betrachten, um das Spektralproblem zu l"osen. Ein besonders zweckm"a"siger Limes
ist die sogenannte near plane wave Entwicklung. Diese reduziert sich zu einer Entwick-
lung in der Anzahl der transversalen Anregungen der Stringkoordinaten. In dieser Dis-
sertation untersuchen wir detialliert die Dynamik und das Spektrum des near plane wave
Limes von Stringtheorien, die in einer Vielzahl von Eich-/String-Dualit"aten auftreten;
besonderes Augenmerk legen wir hierbei auf den AdS5×S5- und AdS4×CP3-Superstring.
Der near plane wave Limes ist im Wesentlichen der Grenzwert gro"ser ’t Hooft-Kopplung,
bei dem man zus"atzlich den Lichtkegelimpuls P+, welcher zu einer der Lichtkegelkoordi-
naten konjugiert ist, so skaliert, dass sein Verh"altnis zur Kopplung konstant bleibt. In-
dem wir perturbative Rechnungen erster und zweiter Ordnung durchf"uhren, zeigen wir,
wie die spektralen Informationen f"ur eine gro"se Klasse von Stringzust"anden, sowohl
f"ur AdS5×S5- als auch AdS4×CP3-Superstrings, erlangt werden k"onnen. Die berech-
net Energiekorrekturen werden von uns mit den Vorhersagen der Bethe-Gleichungen
vergleichen, wobei wir eine perfekte "Ubereinstimmung finden.
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1 Introduction

Theoretical physics can pride itself with two major achievements in the last century,
quantum mechanics and general relativity. Quantum mechanics explains the intricate
microscopic behavior of the subatomic world while the theory of general relativity de-
scribes the interplay between gravity and space-time itself. General relativity, initially
developed by Einstein in the early twenties, describes the complicated interplay between
mass and gravity. The discovery has far reaching consequences for our understanding of
the world we observe since in order to keep the speed of light at a fixed value, and at
the same time incorporate the effects of gravity, the notion of a static space and time
has to be abandoned. Space itself is allowed to bend and twist in the vicinity of massive
objects. On the other hand, quantum mechanics deals with the microscopic behavior
of small and light objects, such as photons and electrons. In quantum mechanics the
role of the observer becomes fundamental, and in order to describe the subatomic world
one has to make use of a mathematical language based on probabilities which render
the exact knowledge of position and energy impossible. The prior world of Newtonian
determinism now has to be given up for a richer world of quantum uncertainties where
the exact time evolution of a system is unattainable.

Both theories are well fortified in a host of experimental data and it is certain that
they, within their limits of validity, are true. Quantum mechanics, or quantum field
theories which are a slight generalization to incorporate special relativity1, is a unified
language of all subatomic and electric forces and thus describes everything we believe
to know except gravity. Even though gravity is the force we have everyday experience
with, its strength is nevertheless drastically weaker than that of the subatomic forces.
For example, the force that keeps the Hadronic matter, such as Protons and Neutrons,
together is so much stronger than gravity in force so, in comparison, the latter does
almost not exist. Nevertheless, there are situations where both descriptions are needed.
For example, in the close vicinity of a black hole. A black hole is an object so dense that
it has collapsed under its own gravitational potential and everything trapped within it,
beyond its so called event horizon, is doomed to remain there for all eternity. Another
example is in the early universe where the energy density of space were so high that
quantum and gravitational effects were comparable in strength. To describe these two
examples one would need a unified language of quantum mechanics and general relativity.
This is the question of quantum gravity.

Unfortunately, quantum gravity is very hard. For example, in quantum field theories
one has operators that commute on all space-like separated points, reflecting the casual
structure of the theory demanded by special relativity. To define a space-like interval,

1Special relativity is, as it sounds, a special case of general relativity in the sense that all gravitational
effects are ignored but one keeps the speed of light fixed in all inertial frames.
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1 Introduction

one needs the metric which provides information for how to relate separated points
in space. However, in the quantum theory the metric needs to be computed and is
thus part of the dynamical problem. What is more, the metric being a dynamical field
implies that it fluctuates quantum mechanically and thus it is not clear how to define
space-like separation in a well defined way. Of course, one can try to treat the problem
through perturbation theory as is the case for most quantum field theoretic calculations
anyway, however, since Newtons constant has dimension (length)2, one find by simple
power counting that the ultra violet (UV) divergences increases with each loop order in
perturbation theory. In order to remove these in a renormalization process one would
need to add an ever increasing number of counter terms rendering the process both
unphysical and practically impossible.

The infinities that one encounters in the UV are effects at very small distances and one
possible remedy could be to introduce some sort of cut off parameter for short distances.
For particles there is no geometrical minimal length since they are zero dimensional
with no extension in space. However, what if one were to consider something else than
particles? For example, an infinite number of particles aligned continuously to form
either a closed or an open string. Taking strings as the fundamental building blocks
introduces a minimal length scale and thus could be a solution of the problem with UV
infinities. This theory of strings, or string theory, will be the main focus of this thesis.

The strings are very small and if one looks at them from distance they resemble point
particles, see figure 1.1. Since distance is inversely proportional to energy, the parti-
cle description means that only the lightest excitations of the string are of importance.
Remarkably, if one goes through with the process of quantization, one of the light vi-
brational modes of the string is a massless spin two particle which can be identified with
the graviton! That is, gravity seem to somehow be incorporated in string theory from
the very beginning. What is more, one can also show that the theory is free from UV
divergences to the first few orders in perturbation theory and the belief is that this re-
main true to all orders. Thus, simply replacing particles with strings automatically gives
a quantum theory that by itself generates gravity. This, together with the cancellation
of anomaly terms, was discovered by Green and Schwarz back in the early eighties and
denotes what is called the first string revolution.

Unfortunately, not everything works out as remarkably as the graviton in the spec-
trum. As it turns out, mathematical consistency demands that the strings oscillate in a
ten dimensional space-time, six more than what we are used to! What is more, string
theory makes heavy use of the mathematical language developed in theoretical high en-
ergy physics and can in one sense be seen as a mathematical generalization of it. This
naturally gives a resulting theory with a very self consistent mathematical formulation
but also gives a somewhat general theory. That is, since the theory is formulated at
such high energies and with the extra dimensions of space, one can by taking various
limits almost obtain any consistent four dimensional model2 rendering the predictive
power of the theory very poor. Nevertheless, the theory and the consequences of it have
been very well studied over the last three decades and a remarkable host of different

2With or with out the observed properties of our world.

2



Energy

Figure 1.1: Illustration of a closed string under a microscope. At a distance it resembles
a particle and only at short distances, with high energy, can one see its true
shape.

mathematical structures has emerged. With the simple input of strings, objects such
as higher dimensional branes, cosmological models, supersymmetry3, black hole models,
dualities and more emerge.

From a bit more philosophical point of view one can view string theory as an attempt
to build a theory on a mathematical language invented to describe particle physics.
That is, in the latter part of the twentieth century remarkable progress in high energy
physics were made which culminated in the so called Standard Model of particle physics.
The Standard Model unites all the three fundamental forces of weak, strong and electro-
magnetism into an unified mathematical language. This remarkable achievement is based
on the formalism of gauge theories which are defined through the symmetries they enjoy.
In a technical language the symmetry of the Standard Model can be grouped together
in SU(3) × SU(2) × U(1), where each esoteric SU(3), SU(2) and U(1) denotes the
symmetry of the strong, weak and electro magnetic theories4. The remarkable success of
the Standard Model leads one to believe that its mathematical language is one of nature
and that a more fundamental theory should be described using the same formalism.
However, this is an assumption and it might not be true. Even though the success of the
standard model in terms of experimental evidence is unquestionable, its mathematical
formulation might not be since even the Standard Model is suffering from infinities in the
UV. In contrast to perturbative quantum gravity, these can however be removed through

3A symmetry relating bosonic and fermionic vibrational modes of the string.
4Very loosely speaking, U(N) denotes a symmetry with N2 symmetry directions and adding the S just

means we take one direction away.
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1 Introduction

a renormalization process. The renormalization process means that one, in a more or less
random way, add counter terms with the property that they exactly cancel the divergent
expressions. Even though this can be done, and physical quantities can be calculated5

it could nevertheless signal some sort of inconsistency or incompleteness of the theory.
Of course, it could be that the fundamental laws of Nature has to be described in this
way but then, on the other hand, at some level most physicists share the belief that the
laws of nature should exhibit beauty and simplicity, not the opposite. For this reason,
taking the wisdom of gauge theory and generalizing into a theory of strings might be the
wrong way to approach the problem of quantizing gravity. Thus, even though quantizing
gravity is a very important problem of modern physics, it could be that we, as of yet,
have not developed the correct tools or understanding for it. Perhaps the correct theory
of quantum gravity is not built on gauge theory at all, but some, yet to be discovered,
more fundamental mathematical description of nature. Maybe similar breakthroughs as
that of general relativity and quantum mechanics are needed before we can construct
a theory of quantum gravity. Basically the way to proceed is not known, and without
the experimental input (which string theory seem incapable of providing) the right way
might be hard to find.

The above might seem like a rather gloomy, and naturally somewhat subjective, pic-
ture of string theory as a unifying language of gravity and quantum mechanics. However,
there is more to string theory than just an attempt to describe quantum gravity. In the
late nineties Juan Maldacena proposed that a ten dimensional string theory in a specific
gravitational field, or background, could be identified with a four dimensional quantum
field theory ?. That is, through a holographic description, all the dynamical data of the
string theory are equivalent to another, and drastically different, four dimensional parti-
cle theory! The proposal, which comes in the form of a conjecture, is rather remarkable
since, at first glance, how can a higher dimensional theory of extended objects such as
strings describe the same physics as a four dimensional quantum field theory? If it is
true, and by now a very large set of independent tests have been performed in favor of
the conjecture6, it leads string theory research in a new direction since the duality is
of the character that the string theory is solvable (perturbatively) when the quantum
theory is not and vice versa. Thus, instead of thinking of string theory as an attempt
to reconcile quantum mechanics with gravity one can adopt a more modest approach
and try to solve a strongly coupled quantum field theory exactly7. Perhaps this seems
somewhat modest in comparison with quantizing gravity but, nevertheless, finding the
strong coupling dynamics of a quantum field theory is something highly non trivial.
This becomes even more important because, as it turns out, the gauge theory side in
one of the correspondences8 is rather similar to the theory of strong interactions. For
the theory of strong interactions perturbative analysis is only possible in the high energy
regime, but there are many important, non perturbative, physical effects also such as

5At least perturbatively.
6Every time the word test, check or confirmation is used in relation to the conjecture it is meant as a

theoretical test. Not experimental.
7Strongly coupled just means that it can not be treated perturbatively.
8By now there are a few and in this thesis we will study two in detail and touch briefly upon a third.
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quark confinement and chiral symmetry breaking. At the moment, low energy physics of
the strong interactions can only be studied through lattice simulations, but the existence
of gauge / string dualities might open up for analytical solutions in the future.

Due to the strong / weak coupling nature of the dualities, it is very hard to prove
them rigorously since in order to verify them one needs to calculate the corresponding
quantities on each side of the duality to see if they agree. That is, if for example the
string theory is open for perturbative calculations then the gauge theory is not and it
is, in general, very hard to obtain analytical answers. At first glance this seems like
a major set back since how can one verify the correspondence? Remarkably, and very
luckily, something completely unexpected enters the game; The appearance of integrable
structures! Integrable structures are hidden symmetries that allows one to obtain ana-
lytical solutions regardless the value of the coupling. Thus, one can calculate something
at weak coupling in, for example, the gauge theory, extrapolate the value to strong cou-
pling and match it against the corresponding string theory calculation. What is more,
the emergence of integrability also allows one to write down the spectrum of energies
into a very compact set of equations, so called Bethe equations. Thus, from integrability
alone, it seems that one can prove large parts of the dualities analytically9

In this thesis we will study light-cone string theory on Anti de-Sitter backgrounds. The
name light-cone is meant to indicate that one combines two, out of the ten, coordinates
in a specific linear combination. This is convenient because one can then align the two
internal coordinates of the string, one time and one that parameterize the length of the
string, relative to one of the light-cone coordinates which results in a simplified theory.
This specific way of combining the coordinates is called light-cone gauge and will be a
central theme all through out the thesis. The Anti de-Sitter background is a specific
geometry on which the string propagates and it has the characteristic property that
parallel lines, in contrast to a sphere for example, tend to diverge when extended. In total
we will study three different string theories, each propagating on different background
geometries but where parts of it always is of an Anti de-Sitter type.

An especially important theme of this thesis is the verification of the proposed set of
Bethe equations. These equations are derived in the gauge theory for small sectors and
then conjectured for the full model to all orders in perturbation theory. In order to verify
the equations we calculate energies for a large set of string configurations in a strong
coupling limit and match these against the predictions coming from the Bethe equations.
This is important since it shows that, at least to the relevant order in perturbation theory,
integrability is indeed a manifest feature of the theory.

9Here a few comments are in order. First of all, integrability is only manifest for certain limits of the
problem. Second, not all operators allow for their energies, or spectral parameters, to be encoded in
Bethe equations. It is only so called long operators that exhibit this feature and these operators will
be the ones studied in this thesis.
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1 Introduction

1.1 Outline of the thesis

Before we turn to the main text it might be illuminating to summarize and outline the
structure of the thesis. The main text is divided into two separate parts. Part I is gen-
erally introductory and introduces the concepts of Anti de-Sitter space, gauge theories,
gauge / string dualities and light-cone string theory in general. Due to the enormous
scope of each subject, most of the text will be rather brief and we will frequently point
the reader to relevant references and review articles. Only in the last chapter, on light-
cone string theory, will we present the material in full detail since later parts of the thesis
uses this as a starting point for explicit calculations. A nice feature is that, even though
we will study three different string theories, the construction of the string Lagrangian10

can be done algebraically without reference to a specific model.
In part II we study three different string theories on AdS3×S3 , AdS5×S5 and AdS4 ×

CP33, written in increasing order of complexity. Each theory is highly non linear and in
order to extract physical quantities we consider a strong coupling expansion. One central
theme in part II is the calculation of energies of large classes of string configurations. As
we have mentioned, these energies are also encoded in Bethe equations, and for the two
critical string theories, AdS5×S5 and AdS4 × CP33, we explicitly match them against
the Bethe equations.

The outline is as follows; In part I we start out with a short review of Anti de-Sitter
space and the gauge theories that appear in the various gauge / string dualities. Having
described the field theory part we then turn to present the dualities relating them to the
higher dimensional string theories. Once again we will be rather brief and only present
the details necessary for the upcoming analysis. One very important ingredient is the
emergence of integrable structures and we show how they come about and, especially,
how to encode the spectral problem in terms of Bethe equations. These equations are
very compact and encode the spectrum of conformal dimensions11 which we later want
to compare against energies of string states.

We then turn to a discussion of light-cone string theory. Since the subject is rather
involved we begin this part with a review of the bosonic string. Even though much
simpler, the model is nevertheless similar to the full supersymmetric theory. In this
section we also provide a few examples of strings in different geometries or backgrounds
together with a detailed explanation about light-cone gauge fixing and its physical con-
sequences. After this introductory section we move on to the full string theory with
fermions included. This rather lengthy section begins with a review of the symmetry
algebras of each theory where an important concept is that they all can be realized in
terms of super matrices. Starting from the algebra one can construct group elements
which are the fundamental building blocks of the string Lagrangian. We show how to
construct the Lagrangian in detail and then turn to discuss its physical consequences
where an especially important point is the fixing of a fermionic κ symmetry which allows
10A Lagrangian is a very central concept in theoretical physics and is basically the sum of all possible

paths a particle, or string, can take. In one sense it can be seen as the definition of a theory.
11The conformal dimension is an important observable that can be used to classify the operators of a

field theory with a special scaling, or conformal, symmetry.
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1.1 Outline of the thesis

one to make space-time supersymmetry manifest. The culmination of this chapter is the
full string Lagrangian, and its corresponding Hamiltonian, in a notation suitable for a
strong coupling expansion.

The second part of the thesis deals with strong coupling expansions of the three string
models. This part, which is by far the most technical, is based on the authors research
papers ?, ? and ? together with unpublished work on the AdS3×S3 and AdS5×S5

superstring.
The first paper, ?, written together with A. Hentschel and J. Plefka provides a very

detailed check of the validity of the Bethe equations for a string propagating in AdS5×S5.
In the paper we calculate energy shifts for a very large class of string configurations and
show that they precisely match the predictions of the conjectured Bethe equations.

The second paper, ?, written by the author alone, deals with the bosonic aspects of
a string propagating on AdS4 × CP33. This theory, vastly more complicated than the
AdS5×S5 string, has received a lot of attention lately due to its recent appearance in a
gauge / string duality. As was also the case for the AdS5×S5 string, one can conjecture
a set of Bethe equations and in the paper it is explicitly verified that they reproduce the
string result for a certain set of string configurations.

The third and most technical paper, ?, which also is written by the author alone,
introduces the full supersymmetric AdS4 × CP33 string. Having established the dy-
namical theory in a strong coupling regime, two separate calculations are performed.
First, a further explicit check of the Bethe equations is provided by matching energies
of fermionic operators. Second, a novel feature with the AdS4 × CP33 string is that the
excitations come with different masses. We perform a detailed analysis and show that
all the massive bosonic operators are, in fact, composite states of two lighter excitations.
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2 AdS / CFT dualities

This chapter will be devoted to the tantalizing dualities relating string theories with
conformal field theories (CFT). It is a remarkable fact, discovered and investigated
over the last decade, that one can circumvent the complications in a strongly coupled
quantum field theory (QFT) by solving a weakly coupled string theory. Since the string
theories, which propagate in higher dimensional space-times, at first glance have nothing
in common with a lower dimensional QFT we will devote this chapter to provide some
basic arguments for why the dualities can be true. All the dualities come in the form
of conjectures and to prove them one need to calculate the corresponding quantities
on each side of the duality to see if they match. However, since the gauge theory
is strongly coupled when the string is weakly coupled and vice versa, it is hard to
perform a calculation on both sides simultaneously. This problem can be tackled with
the help of hidden integrable structures which we also will review. This will be important
because a significant part of the thesis later chapters is devoted to the spectral problem
of vibrating strings. The spectral problem can, through the existence of integrability,
be reduced to solving a set of so called Bethe equations, and matching these against
explicit string theory calculations lends strong support for the validity of the gauge /
string correspondences.

In this thesis we study three different string theories appearing in different gauge /
string dualities; the AdS5×S5 string dual to N = 4 SYM in four dimensions which will
be the main focus of this chapter, the AdS3×S3 ×T 4 string dual to a two dimensional
CFT1 and, finally, the AdS4 × CP33 string dual to a three dimensional Chern-Simons
(CS) theory. In each duality the gauge theory lives on the boundary of the Anti de-Sitter
(AdS) space and for that reason we start this chapter by reviewing some basic facts about
AdS spaces in general. We will then turn to present some of the characterizing properties
of the gauge theories with a focus on the existence of integrable structures. We end the
chapter with a short review of how one can map the spectral problem of conformal
dimensions to that of solving a one dimensional spin chain Hamiltonian.

2.1 The structure of Anti de-Sitter space
An AdS space in p+ 2 dimensions is defined through the metric and the constraint

ds2 = −dx2
0 − dx2

p+2 +
p+1∑
i=1

dx2
i , x2

0 + x2
p+2 −

p+1∑
i=1

x2
i = R2, (2.1)

1We will solely focus on the non linear six dimensional part and we will not review the two dimensional
gauge theory at all, but for the interested reader we point to ?, ? and ?.

9



2 AdS / CFT dualities

τ

|ρ| = ∞ |ρ| = ∞

Figure 2.1: The well known picture of AdSp+2 embedded in R2,p+1. The time coordi-
nate is compact, and thus the geometry exhibits closed time like curves for
the coordinate τ . Usually one considers the universal covering space and
decompactify the time coordinate.

which by construction is SO(2,p+1) symmetric. The constraint can be solved through,

x0 = R cosh ρ cos τ, xp+2 = R cosh ρ sin τ, (2.2)

xi = R sinh ρΩi,
p+1∑
i=1

Ω2
i = 1,

where the Ωi parameterize Sp. The choice ρ ≤ 0 and τ ∈ [0, 2π] covers the entire
hyperboloid once and thus (τ, ρ,Ωi) are global coordinates, see figure 2.1. Substituting
these coordinates in (2.1) gives

ds2 = R2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
p

)
, (2.3)

which, from ρ ∼ 0, can be seen to have the topology of S1 × Rp+1. The maximal
compact subgroups are SO(2)×SO(p+1) where SO(2) generates constant shifts in τ and
the SO(p+1) rotates the transverse Sp.

To obtain a casual space one can decompactify the time coordinate to take values on
the real line [−∞,∞]. For a compactified time coordinate, the energy eigenvalues would
come in integer values which is not the case for either string or gauge theory. Thus,
what one considers is in fact the universal cover of the AdS space, so perhaps a better
notation would be CAdS / CFT correspondences, with the C denoting the cover of the
AdS.

To study the casual structure of AdSp+2, it is convenient to change to coordinates
that map the boundary to a finite value. Introducing

tan θ = sinh ρ, θ ∈ [0, 2π), (2.4)

10



2.2 The AdS5 / CFT4 duality

gives that

ds2 = R2

cos2 θ

(
− dτ2 + dθ2 + sin2 θ dΩ2

p

)
. (2.5)

This has the topology of R × Bp+1 which one can visualize as a solid cylinder. At the
boundary θ = π/2, which is the spatial infinity of the CAdS, the geometry is that of
R × Sp. Thus, the (conformal) boundary of AdSp+2 has the geometry of R × Sp. This
will turn out to be important because, as we will see, one can connect this with the flat
Minkowski space in p+ 1 dimensions. If we start with

ds2 = −dt2 + dr2 + r2dΩ2
p−1,

and introduce

t± r = tan[1
2

(τ ± θ)] = tan u±, (2.6)

we find

ds2 = 1
4 cos2 u+ cos2 u−

(
− dτ2 + dθ2 + sin2 θ dΩ2

p−1
)
, (2.7)

where the range of the coordinates is 0 < θ < π and τ extends over the entire real line.
From this we see that flat p+ 1 dimensional Minkowski space is conformally equivalent
to R × Sp, which is nothing else than the conformal boundary of the AdSp+2 space.
Thus, the conformal boundary of AdSp+2 is the same as conformally compactified p+ 1-
dimensional Minkowski space! This is one important observation for the existence of
dualities relating AdS spaces with boundary gauge theories.

Having established some basic facts about AdS spaces in general, we now turn to
review some of the AdS / CFT dualities studied in this thesis. The main focus will be
on the simplest, and perhaps most interesting, AdS5/ CFT4 duality.

2.2 The AdS5 / CFT4 duality

In ? it was proposed that a four dimensional gauge theory, namely N = 4 super Yang-
Mills (SYM) is dual to type IIB string theory on AdS5×S5. In this section we will review
some aspects of this duality with a focus on the existence of integrable structures. In-
tegrability, which is basically the answer to the question when something can be solved
analytically, has proven to play an extremely important role in classifying the spectrum
of observables on both sides of the duality. Since the duality is a strong / weak du-
ality, meaning that when the gauge theory is weakly coupled then the string theory is
strongly coupled and vice versa, it is hard to prove the validity of the correspondence.
However, integrability often allows one to solve for something perturbatively in a weakly
coupled regime and then extrapolate the result, in a well defined way, to strong coupling
and, therefore, provides a tool for proving the correspondence. We will not review the
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2 AdS / CFT dualities

remarkable progress in AdS / CFT with the help of integrability, but rather present a
consistent whole which will give us enough background information to understand the
calculations in later parts of this thesis. For a few renowned papers see ? ? ? and for
nice reviews see ? and ?.

We start out with reviewing some basic facts about N =4 SYM.

2.2.1 N = 4 Super Yang-Mills

Four dimensional N = 4 super Yang-Mills is a maximally symmetric conformal theory.
It is the boundary theory of the AdS5 / CFT4 correspondence and in this section we
will outline some of its general features. Since we will be rather brief, we point to ? and
? for details and reviews.

The dynamical part of the theory is governed by the fields

X = {Fµν , ψa α, ψ̇
a
α̇, ϕ

I}, (2.8)

where the field strength given by

Fµν = i g−1
Y M [Dµ, Dν ] = ∂[µAν] − i gY M [Aµ, Aν ], Dµ = ∂µ − i gY M Aµ,

where gY M is the Yang-Mills coupling. The index notation is as follows; a = 1, 2, 3, 4
is a supersymmetry index parameter, α, α̇ = 1, 2 are so(1, 3) = su(2) × ṡu(2) indices, µ
is a Lorentz index and I is a SO(6) vector index. The Greek indices correspond to the
Lorentz algebra while Latin indices correspond to spinor and vector representations of
SO(6).

All fields are assumed to be in the adjoint of the gauge group, U(N), so under a local
transformation g(x) ∈ U(N)

Aµ → g(x)Aµ g(x)−1 − i g−1
Y M ∂µg(x) g(x)−1, X → g(x)X g(x)−1

The action is given by

SN =4 =
∫
d4xTr

[1
4
F 2 + 1

2
(Dµ ϕ

I)2 − g2
Y M

4
([ϕI , ϕJ ])2 (2.9)

+ ψ̇ γµD
µ ψ − i gY M

(
ψ γI [ϕI , ψ] + ψ̇ γI [ϕI , ψ̇]

)]
,

where γµ and γI are the four and six dimensional Gamma matrices respectively.
The Lagrangian is invariant under a large class of symmetries. The bosonic symmetries

are generated by

QB = {Pµ,Mµν , D,Kµ, T
I} (2.10)

Where Pµ andMµν are the four dimensional Poincare generators andD andKµ generates
dilatation and special conformal transformations. The dilatations are rigid shifts of the
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2.2 The AdS5 / CFT4 duality

space-time coordinates

D : xµ → αxµ,

for some real constant α. Under these shifts, the classical fields transform as

D ·X(xµ) → α∆0 X(αxµ), (2.11)

where ∆0 is the classical scaling, or mass, dimension for the fields,

[Fµν ] = 2, [ϕI ] = 1, [ψa
α] = [ψ̇a

α̇] = 3
2
.

The scaling dimensions are in general not protected quantities and receive corrections
in the quantum theory. The special conformal transformations are similar to the dilata-
tions, in the sense of shifting the coordinates, but they act in a more complicated way
through

Kµ : xµ → xµ + αµ x
2

1 + 2xν αν + α2x2 .

Combining the generators of Poincare, Dilatation and special conformal transformations
one forms the conformal group SO(2,4), which as we saw also is the isometry group of
AdS5.

The final set of generators in (2.10) are the generators of the R-symmetry that rotates
the six scalars and the supersymmetry index of the fermions. These generators taken
together generate the lie algebra of SO(6). The complete set of all bosonic generators
form the algebra of SO(2,4)×SO(6).

The bosonic symmetries are augmented by the sixteen (complex) fermionic charges

QF = {Qa
α, Q̇

a
α̇, S

a
α, Ṡ

a
α̇},

combining these with the bosonic charges, QB, enlarge the conformal group to the pro-
jective superconformal group PSU(2,2|4). In section 4.2.1 we will outline the specific
representations of PSU(2,2|4) in more detail.

Ordinary Yang-Mills theory, and QCD with zero quark mass, also exhibits classical
conformal invariance. However, when going beyond the classical regime the Dilatation
symmetry develops an anomaly with the consequence that the beta function, β(gY M ),
becomes non zero and breaks the conformal symmetry. Luckily, for the more symmetric
N = 4 SYM, supersymmetry guarantees that the beta function remains zero even at the
quantum level. This means that the dimensionless coupling, gY M , does not run, i.e. it
has no energy dependence, which signals that the conformal SO(2,4) symmetry survives
the quantization process, see ? and ?.

In a conformal field theory, the most natural observables are correlation functions of
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2 AdS / CFT dualities

local and gauge invariant operators built out of the fields in (2.8). For example,

O1 = TrN

(
ϕI ϕJ Dµψ

a
α

)
, O2 = TrN

(
ψa

α ψ̇
b
α̇

)
Tr(Fµν ϕ

J), (2.12)

and so forth. In general, generic correlation functions are constructed by introducing
sources Ji(x) for each operator in the exponent of the path integral as

⟨Ô1(x1) Ô2(x2)...Ôn(xn)⟩ = δn

δJ1(x1) δJ2(x2) ... δJn(xn)
Z[J ], (2.13)

with

Z[J ] =
∫
dψ dψ̄ dϕ dA exp

[
i

∫
d4x

(
L +

n∑
i=1

Ji(x) Ôi
)]
, (2.14)

which for a general quantum field theory is of a rather involved structure. However, for
a field theory with an unbroken conformal symmetry, the form of the correlation func-
tions is severely constrained. Focusing on two point functions, the Poincare invariance
demands that

⟨Ô1(x1) Ô2(x2)⟩ = f12(x1 − x2),

for an arbitrary scalar function f12. Abbreviating gY M = g for now, the conformal
symmetry further restricts the two point function to

⟨Ô1(x1) Ô2(x2)⟩ = C12(g)
|x1 − x2|2 ∆(g) ,

where ∆(g) is the scaling dimension which has an expansion as

∆(g) = ∆0 + γ(g), (2.15)

where ∆0 is the classical dimension and γ(g) contains the quantum corrections and
is called the anomalous dimension. Note that there are certain classes of operators,
denoted chiral primaries, that do not receive any corrections to their classical scaling
dimensions in the quantum theory.

As a brief example, if we pick the simple case Ô = TrN (ϕn), which naturally have
∆0 = n, then to leading order

⟨O(x) O(y)⟩ ∼ 1
|x− y|2n

.

Also the three point functions get fully constrained by the conformal symmetry to a
rather simple form, for details see ?. However for n-point functions with, n > 3, the
form is not fully fixed by the conformal symmetry alone and one has to use standard
techniques to calculate them.

Beyond tree level, one normally encounters UV divergences in the correlation functions
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2.2 The AdS5 / CFT4 duality

which, following standard field theory methods, can be regularized through

Ôren = Z(Λ) · Ôbare, (2.16)

where Z is a mixing matrix and Λ is some cut off parameter. This matrix is essentially
given by the quantum part of the Dilatation operator, δD, through

δD = Z−1 dZ
d log Λ

(2.17)

and as we will see later, this operator will play a very crucial role in finding the exact
spectrum of the theory.

To fully classify the theory one need to solve the spectral problem for the operators.
The operators are classified according to their Cartan labels, that is, by the conserved
U(1) charges, which for N = 4 SYM are,(

∆(g), S1, S2, J1, J2, J3
)
, (2.18)

where Si are conformal spins and Ji are three commuting R charges. Except the scaling
dimension, these all correspond to compact subgroups of the bosonic SO(2,4)×SO(6)
symmetry and therefore come in integer units.

2.2.2 Planar limit

For QCD, where N = 3 and the coupling has an energy dependence, perturbation
theory only applies in the UV. On the other hand, low energy physics, which describes
important physical processes such as chiral symmetry breaking and quark confinement,
is non perturbative and one has to resort to Lattice simulations or other non perturbative
methods to calculate physical quantities. However, there exist a special limit, proposed
by ’t Hooft in 1979, where one take the rank of the gauge group to infinity and let the
coupling be small so that

N → ∞, λ = g2
Y M N = finite. (2.19)

The upshot with this limit is that if one considers a perturbation in 1/N , one finds
that only planar diagram survives, or equivalently, only the single trace correlation
functions are relevant. We can understand this if we look at a schematic expansion of
the Lagrangian (2.9), which together with a rescaling of all fields Xi → 1

gY M
Xi, look like

L ∼ 1
g2

Y M

Tr
[
dXi dXi + αijkXiXj Xk + βijklXiXj Xk Xl

]
, (2.20)

where Xi can be any of the fields in the adjoint. At first glance this seems like a rather
odd limit since the coefficient of the Lagrangian diverges, but as we will see, factors
of N pops up from the matrix valued fields making actual computations significantly
simplified.
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X
ab̄
:

a

b̄

Figure 2.2: Double line notation of fundamental and anti fundamental indices.

Figure 2.3: Adjoint fields with interaction points on the left and the diagram in ’t Hooft
double line notation to the right.

A convenient way to rewrite Feynman diagrams involving adjoint fields is to introduce
a double line notation. In this notation one substitute the line denoting an adjoint
field with a double line corresponding to the fundamental and anti fundamental indices
hidden in the adjoint representation. For a SU(N) theory one has

⟨Xab̄
i Xcd̄

i ⟩ ∼ δad̄ δbc̄ − 1
N
δab̄ δcd̄. (2.21)

For each fundamental index one writes an incoming arrow and for each anti fundamental
index an outgoing arrow, see figure 2.2. Since we are interested in gauge invariant opera-
tors, all indices has to be contracted, and thus each diagram is a closed two dimensional
surface as shown in figure 2.3.

From the symbolical expansion (2.20), one can figure out the scaling of a generic
diagram. For each vertex we get a factor of N/λ, for each propagator a factor λ/N and
for each closed loop a factor of N from the trace. Thus, for a vacuum diagram with
E number of propagators (edges), V number of vertices and F loops (faces), we have a
coefficient scaling as

( λ
N

)E (N
λ

)V
NF = Nχ λE−V , (2.22)

where we introduced χ = V − E + F which is the Euler number for a closed surface.
If we add a point at infinity, then the surfaces corresponding to the diagrams become
compact and the Euler number can be written as χ = 2 − 2g, where g is the number of
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2.2 The AdS5 / CFT4 duality

handles. For a correlation functions, or a generic physical quantity, it then follows that
it admits a perturbative expansion as

∞∑
g=0

N2−2g
∞∑

i=0
fi,g λ

i = Z0 +
∞∑

g=1
N2−2g Zg(λ), (2.23)

where Z0 is the purely classical contribution. In the large N limit, the dominating terms
are the ones with the minimal number of handles. These diagrams are called planar
diagrams, indicating that they can be drawn on a plane. Non planar diagrams are
suppressed by additional factors of 1/N2 which simplifies the calculations since multi
trace operators, as the second one in (2.12), are suppressed.

2.2.3 The duality

Having reviewed some basic facts about AdS spaces and N = 4 SYM we are now in
position to present the full duality as presented by Maldacena in ?,

N = 4, SYM ↔ Type IIB string theory on AdS5×S5. (2.24)

We have already provided a few observations to why this duality could be true. As
we saw earlier, the conformal boundary of the AdS space coincides with a conformal
compactification of Minkowski space in one dimension lower. Thus, for the AdS5 case
we have the possibility of a flat four dimensional boundary theory. We also learned
that the isometry group of the AdS-space, at least for the d = 4 case, coincided with
the group of conformal symmetries for a four dimensional CFT. Including the compact
product space, S5, we get another SO(6) group which coincides with the R-symmetry
group of the gauge theory. Thus, in principle, we can have a four dimensional gauge
theory on the boundary of the AdS5 with the same symmetry group as the full AdS5×S5

product space.
Further hints for the duality can be found if we consider a stack of N D3-banes.

D-branes are solutions of supergravity with two distinct kind of excitations. On the D-
branes themselves, open strings end which endpoints carry U(N) Chan-Paton factors. In
the bulk, the space-time region outside the brane, closed strings propagate. If we consider
an energy scale well below l−1

s ∼
√
α′−1, the dynamics are schematically described as

S = Sint + Sbulk + Sbrane. (2.25)

The brane theory is that of N = 4 SYM in four dimension plus higher order derivative
terms and the low energy bulk theory is IIB supergravity. The interaction theory, which
incorporates effects such as Hawking radiation, contains general interactions between
bulk and brane excitations. The leading order contribution of the interaction term can
be obtained by covariantizing the world volume theory and it is proportional to gs α

′2,
where gs is the string coupling. Therefore, in the low energy limit, the interaction terms
can be neglected and the physics is described by two decoupled theories, a N = 4 SYM
world volume theory and type IIB supergravity in the bulk.
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2 AdS / CFT dualities

N D3− branes

Figure 2.4: A stack of N D3-branes with open string excitations and closed strings in
the bulk.

Next we view the same system from a geometrical point of view. Since D-branes
carry both charge and mass, they curve the geometry. For N D3-branes, they have
supergravity solutions with the line segment ?

ds2 = h(r)−1/2ηµνdx
µ dxν + h(r)1/2(dr2 + dΩ2

5), (2.26)

where

h(r) = 1 + R4

r4 , R4 = 4π gs α
′2N. (2.27)

The string coupling is obtained through the Dilaton field2 and is, for general Dp-branes,
given by

eϕ = gsH(r)
3−p

4 , H(r) = 1 + α

r7−p
, (2.28)

where the constant α depends on both the coupling and the string length. What is
important is that for the case p = 3, the Dilaton field is constant and the string coupling
is just given by the exponent of the Dilaton. This is the string analog of the vanishing
β-function in the gauge theory.

Since we have a h(r) dependence in front of dt2 in (2.26), the energy measured by

2Not to be confused with the Dilatation operator in the gauge theory.
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2.2 The AdS5 / CFT4 duality

observers at separated space-time intervals will differ. Especially, if we consider an
object at a fixed position r from the horizon, then the energy difference measured by an
observer at infinity is related through the redshift factor as

E = h(r)−1/2Er, (2.29)

where E is the energy measured by the observer at infinity. Thus, for objects close to
the horizon, the energy measured at infinity will be highly redshifted.

As before we want to study low energy regime of (2.26). From the point of view
of the observer at infinity, we can have two distinct type of excitations; Massless long
wavelength modes in the bulk and excitations that we bring close to the horizon, r ∼ 0.
These two type of excitations decouple from each other. The wavelength of the massless
bulk modes is much larger than the gravitational size of the brane and excitations close
to r = 0 do not have enough energy to climb the gravitational potential. For the massless
modes in the bulk, the dynamics are well described by type IIB supergravity. For the
modes close to the branes, the metric becomes

ds2 = r2

R2 ηµνdx
µ dxν + R2

r2
(
dr2 + r2 dΩ2

5
)
, (2.30)

which of course is nothing than the AdS5×S5 metric. Thus, we relate string theory on
AdS5×S5 with type IIB supergravity. Above we related N = 4 SYM to the supergravity,
so it is therefore natural to relate the two other theories with each other, leading us the
conjecture (2.24).

2.2.4 Matching of parameters

We have now provided quite a few independent arguments for why the duality (2.24)
could be true. What remains to be done is to match the various parameters that occur
in the different theories. First of all, the rank of the gauge group, N , is related to the
flux of the Ramond-Ramond five form field through S5∫

S5
F5 = N, (2.31)

where the five form is the field strength of the brane3, which in the case of a D3-brane
is also self dual.

The coupling constants of the two theories are related as

gs = g2
Y M

4π
,

R2

α′ =
√
g2

Y M N =
√
λ, (2.32)

and the matching of the couplings is rather easy to understand. The open strings gener-
ate gauge potentials on the world volume of the D3-branes where each gauge potential,
Aµ, comes with a coupling gY M . From string perturbation theory we know that two

3In general, a p + 1 extended charged object give rise to a p + 3 field strength.
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gYM

gYM

gs

Figure 2.5: Two open strings on the brane joining to form a closed string in the bulk.

open strings can combine into a closed string. Since the coupling constant for the grav-
ity theory in the bulk is gs, the matching gs = g2

Y M comes very natural, see figure 2.5.

At first glance it might seem we have two unrelated parameters in the string theory, R
and α′. However, its only their combination R2

α′ that enters in the string Lagrangian, so
effectively, the string tension is given by

√
λ. The region of validity for the string theory

is when the curvature is much larger than the string length,
√
α

′, which boils down to√
λ >> 1. However, for perturbation theory to make sense in the gauge theory, we must

have
√
λ << 1 and thus (2.24) is a strong / weak coupling duality.

SYM : λ << 1, AdS5×S5 : λ >> 1.

In the ’t Hooft limit, where N → ∞ with λ fixed, we see that gs ∼ 1
N , so planar N = 4

SYM correspond to free AdS5×S5 string theory. In this thesis we will exclusively discuss
free, or planar limit, strings.

2.2.5 Observables

From the arguments above it almost seem like the duality is proven. However, all
arguments provided were for low energy dynamics and nothing at all in the discussions
related to higher order effects such as quantum loops etc. A priori there is nothing
that says that the two theories should be equal beyond the classical low energy regime.
However, the conjecture relates full N = 4 SYM and type IIB AdS5×S5 super string
theory for all values of gY M and N . Naturally, since the string theory is tractable for
large values of the ’t Hooft coupling while the gauge theory is reliable for small values,
the conjecture is very hard to prove.
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As we saw in (2.18), the correlation functions of the gauge theory are classified ac-
cording to their scaling dimension and Cartan labels of PSU(2,2|4). In the string theory,
we have two commuting spins, S1 and S2 from the AdS5 space and three commuting Ji

charges of the S5. There is also a sixth charge, E, related to the constant shift of the
global AdS time coordinate. Thus, for the AdS5×S5 string, each string mode is labelled
by

(E,S1, S2, J1, J2, J3),

where the Cartan labels take integer values. Thus, one proof, at least in the sense of
theoretical physics, would be to match the spectrum of conformal dimensions with the
energies of string states as,

∆(gY M , N) = E(gs,
R2

α′ ). (2.33)

However, with the current level of computational technology, it is not very feasible that
one can tackle the problem beyond the planar limit. Thus, in practise, what usually is
matched on both sides of the correspondence is

∆(gY M ,∞) = E(0,
√
λ). (2.34)

Since the validity of each side of the correspondence is for different values of the coupling,
matching the calculated observables seem very hard. However, as it turns out, there are
integrable structures hiding in the planar theories which make the problem feasible.

2.3 The AdS4 / CFT3 duality
In this section we will very briefly outline a new tantalizing gauge / string correspon-
dence. The original incarnation of a AdS / CFT duality, namely AdS5 / CFT4 was
presented by Maldacena in ’97 and since it relates a four dimensional gauge theory with
strings, it naturally stirred a lot of research interest. Since then, a spectacular host
of results have been obtained, where perhaps the most remarkable is, albeit somewhat
conjectural, a complete solution for the large N asymptotic spectrum ?.

However, the story does not end with AdS5 / CFT4. In ? Aharony, Bergman, Jafferis
and, once again, Maldacena (ABJM) proposed that, following ?????????, the effective
world volume theory of a stack of N M2 branes, with N large, could be identified with
a three dimensional superconformal SU(N) × SU(N) Chern-Simons (CS) theory with M
theory on AdS4×S7/Zk as a gravitational dual. On the gauge theory side, the parameter
k enters as the level4 and it take opposite values for the two SU(N) groups.

In contrast to N = 4 SYM with manifest SO(6) R-symmetry, the CS theory only has
a manifest SU(2)×SU(2)×U(1) R-symmetry which, however, is enhanced to SO(6) for
k > 2. The theory also has two sets of scalar fields, each transforming under one of the

4The level of a CS theory can be thought of as the inverse of the gauge coupling constant, see equation
(2.38).
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SU(2)’s where both are in the bi-fundamental representation of SU(N). Denoting the
two sets of scalars as Aa and Bȧ, then Aa transform in (N, N̄) while Bȧ transform in
(N̄ ,N).

It is convenient to group the scalars into SU(4) ≃ SO(6) multiplets, Y A, as

Y A =
(
A1, A2, B

†
1̇, B

†
2̇
)
, (2.35)

which allows one to easily construct single trace gauge invariants as

O = Tr
(
Y A1 Y †

B1
Y A2 Y †

B2
... Y An Y †

Bn

)
χB1 ... Bn

A1 ... An
. (2.36)

If the matrix χB1 ... Bn
A1 ... An

is traceless and symmetric in all indices, then O is a chiral primary
operator and do not receive corrections to the anomalous dimension ?. If the operator
is not a chiral primary, the anomalous dimension receives quantum corrections and, in
contrast to N = 4 SYM, these additional contributions starts at second loop order in
perturbation theory. Of course, these operators will in general suffer from UV divergences
which can be renormalized as in (2.16) through

Oren = Z · Obare, (2.37)

where Λ is some cut of parameter and the mixing matrix Z can be determined through
the quantum part of the Dilatation operator.

The action of N = 6 superconformal CS is given by

S = (2.38)
k

4π

∫
d3x Tr

[
εµνλ

(
Aµ∂νAλ + 2

3
AµAνAλ − Âµ∂νÂλ − 2

3
ÂµÂνÂλ

+DµY
†

AD
µY A + 1

12
Y AY †

AY
BY †

BY
CY †

C + 1
12
Y AY †YBY

BY †
CY

CY †
A

− 1
2
Y AY †

AY
BY †

CY
CY †

B + 1
3
Y AY †

BY
CY †

AY
BY †

C + fermions
]
,

where DµY
A = ∂µY

A − Aµ Y − Y Aµ. A characteristic of a CS theory is that there are
no kinetic terms for the gauge fields as ∂A · ∂A. We will not present the fermionic part
of the action, but note that it has fermionic interaction terms of the type Y 2 Ψ2. The
action, including the fermions, is invariant under OSP(2, 2|6) which even part coincides
with SO(2,3)×SO(6).

As was the case for N = 4 SYM, one can introduce a ’t Hooft coupling,

λ = N

k
, (2.39)

kept fixed in the large N and k limit.
As can be seen from the above, the action (2.38) is rather more involved than its four

dimensional SYM counterpart in (2.9). Nevertheless, as we will show in the upcoming,
integrability seem to survive to the quantum level, and the problem of obtaining the
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AdS4 × S7

N = 8, SO(8),M2− branes

k ∼ N1/5

λ >> N4/5 1 << λ << k4 λ << 1

AdS4 × S7/Zk

k ∼ N

AdS4 × CP3

Weakly coupledCS theory

k

k = 1

λ = N/k

Figure 2.6: The parameter space of the level k in relation to the rank N of the gauge
group.

spectrum of conformal dimensions can be mapped to that of diagonalizing a spin-chain
Hamiltonian.

We should mention that since the ’t Hooft coupling is a ratio between two parameters
the physics are best described with different theories depending on the values of N and
k. What we will mostly be concerned with is a large λ in the interval 1 << λ << k4. For
these values of λ the M-theory can be described by type IIA string theory on AdS4×CP33,
thus

N = 6,D=3, CS theory ↔ Type IIA super string theory on AdS4 × CP33,

with the identification
√
λ = R2

α′ , (2.40)

where R is the radius of the AdS space. We will not review the reduction here, but see
? for details. For some other ranges of N and k, see figure 2.6.

One way to prove the correspondence is to match the observables of each respective
theory. As before, the set of observables are as those in (2.34) and in later chapters
of this thesis we will spend some considerable effort on matching a large set of these
observables.
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One of the remarkable facts with the AdS / CFT correspondence is that both the string
and gauge theory seem to contain hidden integrable structures. What is integrabil-
ity? Integrability is the existence of constants of motion along a particle, or system of
particles, trajectories that allows the dynamics to be solved analytically.

If we consider a classical system, then we can be a little more precise when defining
integrability. If we have a 2N dimensional phase-space, then the dynamics can be solved
for through

q̇i = {H(q, p), qi}, ṗi = {H(q, p), pi}, (3.1)

with i = 1, 2..., N and the Poisson bracket is given by

{A,B} =
N∑

i=1

(∂A
∂pi

∂B

∂qi
− ∂A

∂qi

∂B

∂pi

)
. (3.2)

To have the complete dynamical solutions of the system, one need to solve for all qi

and pi with initial data qi(0) and pi(0). Since these are coupled nonlinear differential
equations it is in general hard to obtain the analytical solutions. Generally, in situations
where one can obtain analytical solutions, it is usually closely connected to conserved
constants of motions. Or equivalently, when the problem contains enough symmetry.
Through the existence of conserved charges, we define integrability for a classical system
as

Definition. A (classical) Hamiltonian system of 2N degrees of freedom is called
integrable iff there exist N independent constants of motion, Qi, such that

{Qi, Qj} = 0, {H,Qi} = 0, ∀ i, j. (3.3)

To obtain the spectrum for a dynamical system with enough isometries, one can fall
back on a famous theorem by Liouville which states that given (3.3), then the system
can be solved analytically through the methods of quadratures.

When moving from a classical to a quantum system, the standard procedure is to
promote the fields to operators and exchange the phase-space by a Hilbert space as

qi → q̂i, pi → p̂i, {, } → i [, ].

A natural extension of the definition for quantum integrability would be to take the
definition above and promote the charges to N commuting operators. However, for a
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3 Integrability in AdS / CFT dualities

J J1 J2

X 0 1 0
Y 0 0 1
Z 1 0 0

Table 3.1: The U(1) charge of the complex combinations of the scalars ϕI . Note that we
relabelled the charges to J, J1 and J2 compared Ji as in (2.18).

quantum system, this is sadly not enough because as one can show, see for example ?, the
commuting operators can be algebraically dependent. However, having N commuting
charges is nevertheless a necessary, but not sufficient, condition for integrability.

For the quantum theory, where one can not resort to the theorem of Liouville, one
has to use other methods. One such method, and one we will discuss extensively in this
thesis, is the so called Bethe ansatz ?. The Bethe ansatz, named after Hans Bethe who
used it to solve the Ferro magnet problem in 1931, maps the spectral problem to that
of an integrable spin chain, or equivalently a one dimensional lattice model.

3.1 Integrability in N = 4 SYM

We will review some basic facts about integrability in field theory by focusing mainly on
N = 4 SYM and for simplicity, mostly focus on certain subsectors of the theory.

First we introduce the following complex combinations of the scalars, ϕI , to make the
action of the three U(1) subgroups of SO(6) manifest, see tabular 3.1,

X = ϕ1 + i ϕ2, Y = ϕ3 + i ϕ4, Z = ϕ5 + i ϕ6, (3.4)

We will pick the Z fields as the building blocks of a reference operator1

OJ ∼ TrN ZJ , (3.5)

which is a chiral primary operator so its scalar dimension does not receive any quantum
corrections. Thus, to all orders in gY M , the scalar dimension for OJ is merely ∆ = J .
The idea now is to consider other fields as excitations on this reference state. If we for
simplicity only focus on a SU(2) subsector constituted of Y and Z fields, then

OZY ∼ TrN Z Z ... Y ... Z ...Y ... Z Y ...Z, (3.6)

and so on. If we take J number of Z fields and M number of Y fields, then the classical
dimension is simply ∆ZJ

0 = J +M .
We are interested in the spectrum of anomalous dimensions which are the eigenvalues

of the Dilatation operator, D = i∆0+δD. The eigenvalues enters through the correlation

1We can of course pick any of the three scalars X, Y or Z as the reference state.
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= OZY

Figure 3.1: Spin chain picture of the SU(2) operator OZY .

functions as

⟨OI
ren(x),OJ

ren(y)⟩ = CZY (λ)
|x− y|DIJ

, (3.7)

which in general give quite complicated expressions since the renormalization procedure
(2.16) will induce mixing with other operators from the same subsector,

OI
ZY,ren = ZIJ · OJ

ZY,bare

where the indices I, J runs over all possible SU(2) states. To find the complete spectrum
is in general very hard, but however, one can understand this problem in an alternate
and much simpler way. In the seminal paper ? from 2002, Minahan and Zarembo
showed that the one-loop piece of the Dilatation operator could be understood as the
Hamiltonian of a one dimensional spin chain2. The spin chain picture emerges rather
naturally if we associate each of the Z and Y with down and up spins

Z = ↓, Y = ↑, (3.8)

so the state (3.6) is written as

OZY = TrN ↓ ↓ ... ↑ ... ↓ ... ↑ ... ↓ ↑ ... ↓,

since the trace is cyclic, we can associate the above with a closed spin chain of length
L = J+M as in figure 3.1. As it turns out, the one-loop piece of the Dilatation operator
then act as ?

δD = λ

8π2 Ĥ + O(λ2) (3.9)

where Ĥ is a spin chain Hamiltonian given by

Ĥ =
L∑

l=1

(
1l,l+1 − Pl,l+1

)
, (3.10)

2For a nice review see ?.
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3 Integrability in AdS / CFT dualities

with P a permutation operator

Pl,l+1 · |... ↑l ↓l+1 ...⟩ = |... ↓l ↑l+1 ...⟩. (3.11)

Thus, in this language, the problem is reduced to diagonalizing a spin chain Hamiltonian.
Somewhat surprising, the chain that we consider with a Z vacuum and Y impurity spin
flips is in fact nothing else than the XXX 1

2
spin chain, or the Ferro magnet, diagonalized

by Bethe in 1931 ?. Below we will briefly outline the method.

3.1.1 The Bethe equations

The state consisting of only downspins we will denote the vacuum and since it is pro-
tected, it has trivially Ĥ · |↓ ... ↓⟩ = 0. For a state with M spin flips at positions yi we
write |y1 y2... yM ⟩ where y1 < y2 < ... < yM . So for example, |↑ ↓ ↑⟩ = |1 3⟩L=3 and so
on. First we consider a state with just one spin flip which is almost trivially diagonalized
by a plane wave ansatz

|ψ(p1)⟩ =
L∑

y=1
ei p1 y|y⟩, (3.12)

which using (3.9) and (3.10) gives

D · |ψ(p1)⟩ = (3.13)(
L+ λ

8π2 (2 − ei p1 − e−i p1)
)
|ψ(p1)⟩ =

(
L+ 4 λ

8π2 sin2 p1
2
)
|ψ(p1)⟩,

so |ψ(p1)⟩ is an eigenstate of the Dilatation operator. The periodicity condition |y + L⟩ =
|y⟩ implies that the momentum of the magnons, which is just another fancy word for
the spin flips, is quantized, p1 = 2πn

L for n ∈ Z.
Next we make an ansatz for the two magnon state as

|ψ(p1, p2)⟩ =
∑

1≤y1<y2≤L

ψ(y1, y2)|y1, y2⟩, (3.14)

since we want it to be an eigenstate of the one loop Dilatation Hamiltonian Ĥ in δD, it
has to satisfy

Ĥ · |ψ(p1, p2)⟩ = E1 |ψ(p1, p2)⟩, (3.15)

which, depending on if the excitations lie next to each other or not, leads to two sets of
equations

y2 > y1 + 1, E1 ψ(y1, y2) = 2ψ(y1, y2) − ψ(y1 + 1, y2) (3.16)
− ψ(y1 − 1, y2) + 2ψ(y1, y2) − ψ(y1, y2 + 1) − ψ(y1, y2 − 1),
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3.1 Integrability in N = 4 SYM

together with

y2 = y1 + 1, E1 ψ(y1, y2) = 2ψ(y1, y2) − ψ(y1, y2 − 1) (3.17)
− ψ(y1 − 1, y2).

This is the equation that was solved by Bethe in ? using a superposition of an incoming
and outgoing plane wave,

ψ(y1, y2) = ei(p1 y1+p2 y2) + S(p2, p1) ei(p2 y1+p1 y2), (3.18)

where S(p2, p1) is a two particle S-matrix. The first equation, (3.16), leaves S(p2, p1)
arbitrary ? and give that the energy is just the sum of two one-magnon excitations

E1 = 4
(

sin2 p1
2

+ sin2 p2
2
)
. (3.19)

The second equation, (3.17), determines the S-matrix to be ?

S(p1, p2) = ϕ(p1) − ϕ(p2) + i

ϕ(p1) − ϕ(p2) − i
, ϕ(pk) = 1

2
cot pk

2
, (3.20)

which satisfy

S(p1, p2)−1 = S(p2, p1). (3.21)

For a finite length spin chain, the imposing of periodic boundary conditions

ψ(y1, y2) = ψ(y2, y1 + L), (3.22)

leads to a set of Bethe equations

ei p1 L = S(p1, p2), ei p2 L = S(p2, p1), (3.23)

which from (3.21) are augmented with

p1 + p2 = 2πm (3.24)

for an arbitrary integer m.

Thus, for the two excitation spin chain of length L, one obtains the one loop anomalous
dimension by solving the algebraic equation (3.23) and using the solution for the quasi
momenta pk in (3.19). This gives the spectrum for an operator with two Y fields and an
arbitrary number of Z fields ? ?.

Now the full machinery of integrability kicks in; The information above is all that is
needed to solve the full N-body problem! This phenomena, denoted factorized scatter-
ing, implies that the multi-particle scattering factorizes into a sequence of two-particle
interactions. Thus, for an arbitrary SU(2) spin chain, with M number of spin flips, the
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Bethe equations are given by3 ?

eipkL =
M∏

j ̸=k

S(pk, pj) =
M∏

j ̸=k

ϕ(pk) − ϕ(pj) + i

ϕ(pk) − ϕ(pj) − i
,

M∏
j=1

eipjL = 1, (3.25)

where ϕ(pk) = 1
2 cot pk

2 and the total one-loop energy is

E1 = 4
M∑

j=1
sin2 pj

2
, (3.26)

where, for physical operators, the momentas need to satisfy

M∑
j=1

pj = 0. (3.27)

Let us pause and ponder what we have established so far. Through the power of inte-
grability, we have been able to map the full spectral problem of an arbitrary operator
consisting of Z and Y fields into a compact set of Bethe equations (3.25) which solutions
in (3.26), augmented with (3.27), give us the anomalous dimension for any given SU(2)
operator. For readers acquainted with the corresponding field theoretic calculation using
ordinary methods, the above set of compact equations is truly remarkable.

So far we have only considered states in a closed SU(2) sector. However, by using
the method of nested Bethe ansatz, the SU(2) equations can be extended to the full
PSU(2, 2|4) supergroup. The nested Bethe ansatz works through the introduction of
extra, auxiliary, spin chains that enlarge the original set of equations. Then by solving
each equation in turn, one can determine the spectrum for any given operator constructed
from the fields in (2.8). For a nice review, see ?.

What is more, by now there is a compelling amount of evidence that integrability
extends to the full quantum theory, or at least in the limit of a very long spin chain
which allows one to define asymptotic states in the scattering theory. Over the last
years an outstanding research effort has been directed toward finding all loop Bethe
equations and, remarkably, the problem now seem to be fully solved, see ? ? ? and
?. We will not provide a review nor present the full set of equations here4, but only
comment on the all loop generalization of the already described SU(2) sector. As it turns
out, the supersymmetry puts severe constraints on the form of the Bethe equations and
generalizing the results of ?, it was shown in ? that the Bethe equations and the
dispersion relation could be fully determined, up to a scalar phase factor, by symmetry
arguments alone. As for the one loop case, the energy is just a sum over the individual

3Since we are dealing with an infinite dimensional system, one might wonder where the corresponding
tower of commuting charges, related to the integrability of the model, are hiding. As can be shown,
see for example ?, these can be expressed through various combinations of the rapidity functions
ϕ(pk).

4They will, however, be presented in later chapters of this thesis when we match the equations against
explicit string theory calculations.
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magnon energies, where each contribute as

E(pk) = λ

8π2
(√

1 + λ

π2 sin2 pk

2
− 1

)
, (3.28)

which leading order piece precisely coincides with the individual parts of (3.26). The
two body S-matrix entering in the Bethe equations now take the form

S(pk, pj) = u(pk) − u(pj) + i

u(pk) − u(pj) − i
× S2

0(pk, pj), (3.29)

where the rapidity functions, u(pk), now includes higher loop corrections

u(pk) = 1
2

cot pk

2

√
1 + λ

π2 sin2 pk

2
= ϕ(pk) + O(λ). (3.30)

The function S2
0(pk, pj) is the scalar phase, or dressing phase, not determined by the

symmetry algebra alone. It starts contributing at four loop order in perturbation theory
and it will be presented later5 in section 5.3. It should be mentioned that the dressing
factor, or phase, is rather involved and at the moment its full form is only conjectural,
see ?. However, by now it is probably safe to say that the conjecture is correct since it
has passed a large number of independent tests, see ? and references therein for details.
Putting it all together, the all loop Bethe equations for the SU(2) sector reads

eipkL =
M∏

i̸=k

u(pk) − u(pj) + i

u(pk) − u(pj) − i
× S2

0(pk, pj),
M∏

j=1
eipjL = 1. (3.31)

As a concluding remark we would like to comment on the range of validity for the above
SU(2) equations. As we remember, the Dilatation operator could be identified with a
nearest neighbor spin-chain at one loop. At two loop the interactions reach the next to
nearest neighbor and at three loops the third and so forth. Therefore, if one considers a
finite length chain, then at some point the range of interaction will extend beyond the
length of the spin-chain, i.e., one need to consider some sort of self interaction. These
self interactions are called wrapping effects, starting at order O(λL), and it has been
shown ? that the effects from these are not incorporated in the asymptotic equations
(3.25).

An especially suitable sector of the theory, which is manifestly free from the wrapping
effects, is a so called BMN sector ?. The BMN sector is constituted of states with
J >> M , so the length of the spin-chain is much greater than the number of impurities.
This sector, corresponding to a plane wave string configuration, is what we solely will
focus on in the upcoming analysis in later chapters of this thesis.

5For the impatient reader, jump to equation (5.49).
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3.2 Integrability in ABJM theory

Remarkably it seems that quantum integrability is a quantum property also in the AdS4
/ CFT3 correspondence ?. What is more, it seems to manifest itself in ways that are
surprisingly similar to the well studied AdS / CFT case. Not only can one map the
Dilatation operator to an integrable spin-chain Hamiltonian, but one can also diagonalize
it in terms of Bethe equations that look almost identical to the PSU(2, 2|4) case.

The mixing operator in (2.37), or equivalently the quantum part of the Dilatation
operator, acts on a Hilbert space of the form (V ⊗ V̄ )⊗L, where V, V̄ is the 4 or 4̄ of
SU(4) and L is the length of the operator. The Dilatation operator can be identified
with the Hamiltonian for a length 2L spin-chain through ?

δD = λ2

4

2L∑
l=1

Ĥl,l+1,l+2, (3.32)

where the spin-chain states, or spin flips, are the physical fields of the theory, see (2.38).
Using (2.38) one can deduce that the spin-chain Hamiltonian equals ?

δD = λ2

2

2L∑
l=1

(
2 − 2Pl,l+2 + Pl,l+2Kl,l+1 +Kl,l+1 Pl,l+2

)
, (3.33)

where P stand for permutation and K for trace. An odd feature with this Hamiltonian
is that it exhibits no sole nearest neighbor interactions and thus have an interacting
theory starting at two loops in perturbation theory.

Through a Bethe ansatz one can construct a set of Bethe equations that diagonalize
the Hamiltonian and the derivation is very similar to N = 4 SYM ? so we will not
present the derivation here but just mention a few key facts. First of all, one identify a
chiral primary operator using (2.35) for the ground state, which we take to be

|0⟩ = Tr
(
Y 1 Y †

4
)L
. (3.34)

For impurities Y 2 and Y †
3 one has a closed SU(2)×SU(2) subsector6 consisting of two

decoupled Heinsenberg SU(2) spin chains, which to leading order in perturbation theory,
is only related through the momentum constraint.

Rather remarkably, as was the case for the PSU(2, 2|4) equations, one can guess the
(asymptotic) all loop Bethe equations from the leading order ones. In ?, closely following

6Later we will construct a similar closed subsector out of fermionic excitations.
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?, a proposal was made which for the two scalar excitations above reads

eipkL =
M∏

k ̸=j

S(pk, pj)
M∏

j=1
S0(pk, pj)

N∏
j=1

S0(pk, qj) (3.35)

eiqkL =
N∏

k ̸=j

S(qk, qj)
N∏

j=1
S0(qk, pj)

M∏
j=1

S0(qk, pj),
M,N∏
j,l=1

ei(pj+ql)L = 1,

where M and N counts the number of Y 2 and Y †
3 excitations and the S-matrix and

S0(pk, pj) is of the same structure as in (3.29)

S(pk, pj) = u(pk) − u(pj) + i

u(pk) − u(pj) − i
. (3.36)

The rapidity functions in (3.35) differ compared to (3.30)

u(pk) = cot pk

2

√
1
4

+ 4h(λ)2 sin2 pk

2
, (3.37)

in the sense that there is an undetermined scaling function h(λ) which interpolates
between λ for small values of the ’t Hooft coupling and

√
λ/2 for large values ??. Its

full form is currently unknown, but for some perturbative results see ?, ? and ?.
If one put either M or N to zero, then somewhat surprisingly, (3.35) is very similar

to the SU(2) equation in (3.31). The only difference lies in the form of the interpolating
function h(λ) (which is constant in the former case) and the phase factor. The structural
form of the phase factor is the same in both cases, but as can be seen from (3.29) they
enter with different powers ?, linear for the SU(2) × SU(2) CS and squared for the SYM
SU(2). This also generalizes to the complete all loop asymptotic OSP(2, 2|6) equations.

As for SYM, the momentum variables of the rapidities, pk and qk, has to satisfy a
momentum constraint

M∑
i=1

pk +
N∑

j=1
qj = 0, (3.38)

which couples the two SU(2)’s. Also, and as before, the total energy is just the sum of
each separate magnon energy as

E =
M∑

j=1

√
1
4

+ 4h(λ)2 sin2 pj

2
+

N∑
j=1

√
1
4

+ 4h(λ)2 sin2 qj

2
. (3.39)

As a summary, we presented a set of conjectured all loop Bethe equations which de-
scribes the spectrum of conformal dimensions for a closed subsector of OSP(2, 2|6). The
equations are very similar to that of N = 4 SYM, which is rather remarkable since the
action (2.38) is significantly more complicated than the four dimensional action in (2.9).
Later in this thesis, we will explicitly match the energies from the conjectured all loop
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equations, or a generalization of them, against string theory calculations.
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4 Light-cone String theory

As was outlined in the introductional chapter, the research presented in this thesis
mainly concern different aspects of the string theories appearing in various gauge /
string dualities. The theories studied are of a rather different nature, but nevertheless
the construction exhibits many shared features. For this reason we will outline in some
detail how to do this construction generally for each of the three cases. As far as possible
we will try to present the discussion in general and only when absolutely necessary discuss
each theory separately. Before tackling the full supersymmetric strings, lets start with
something simpler.

4.1 Warm up and introduction - Bosonic string theory

String theory is hard. Very hard. It is a theory which mixes a wide array of different
disciplines both from physics and advanced topics in modern mathematics; ranging from
Einstein’s general relativity and theoretical particle physics to representation theory and
differential geometry. Thus, as a warm up, it might be wise to start with a simpler
model than the full supersymmetric theories appearing in the various gauge / string
dualities. For this reason we choose to embark on our journey in the world of strings
with a thorough description of the bosonic string propagating on a smoothly curved
background. Even though a much simpler model, it nevertheless shares many features
with the full supersymmetric theory.

The starting point of our analysis will be the string action which is essentially just an
integral over the area, denoted the worldsheet, swept out by an open or closed string
when propagating in space-time. To parameterize the worldsheet we introduce two
coordinates τ, σ where the first is a time coordinate and the second a length parameter
of the string. The embedding of the worldsheet into space-time is done by the embedding
functions, or string coordinates, xM (τ, σ), where M = 0, 1, .., D, see figure 4.1.

By pulling back the space-time metric to the worldsheet and taking the square root,
one gets the Nambu-Goto action,

S = 1
α′

∫
dτ dσ

√
−det

(
∂α x · ∂βx

)
, (4.1)

where σ takes values in some finite interval, σ ∈ [−r, r] and the scalar product is with the
background metric GMN . Throughout the thesis we will use Greek letters for worldsheet
indices. The parameter α′ ∼ l2s defines the energy, or equivalently, the length scale of
the theory.

The action above is rather cumbersome due to its square root structure, and a nice
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τ

σ

xM(τ, σ)

Figure 4.1: The string worldsheet of an open string

way to avoid this difficulty is to introduce an auxiliary worldsheet metric, hα β , which
allows us to rewrite the action in a simpler form

S =
∫
dτ L = −g

2

∫
dτ dσ

√
−hhα β GMN ∂α x

M ∂β x
N , (4.2)

where we also introduced a string coupling constant g ∼ α′−1. This action will be the
starting point for the bosonic analysis of this chapter. First of all, and perhaps most
important, what symmetries does it possess?

Space-time diffeomorphisms: The action is invariant under the full symmetry of the
background metric GMN . For example, for the case of flat space, the string is invariant
under global Poincare transformations as

δxM = aM
N xN + bM , δhα β = 0.

Worldsheet diffeomorphisms: Since the worldsheet coordinates are arbitrary, the string
is invariant under general two dimensional coordinate transformations,

σα → fα(σ), hα β → ∂fρ

∂σα

∂fγ

∂σβ
hρ γ .

Weyl transformations: In two dimensions, scale transformations of the worldsheet met-
ric as,

hα β → eΛ(τ,σ) hα β , δxM = 0,

leaves the combination
√

−hhα β invariant. For this reason it is convenient to introduce
the notation γα β =

√
−hhα β, which obeys det γ = −1 due to the Weyl symmetry. A

consequence of the Weyl symmetry is that the stress energy tensor is traceless.
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4.1 Warm up and introduction - Bosonic string theory

4.1.1 Gauge fixing

Since hα β, or equivalently γα β , has no physical origin, the action has to be supplemented
with the Virasoro constraints,

δS

δγα β
= 0 → Tα β = ∂αX · ∂β X − 1

2
γα β ∂γ X · ∂γ X = 0. (4.3)

Since the action is rather involved, it is convenient to gauge fix some of the worldsheet
symmetries. Perhaps the most intuitive gauge is to use the reparameterization invariance
to fix

hα β → eΛ(τ,σ) ηα β,

and then remove the scale factor through a Weyl transformation, which gives

S = −g

2

∫
dσ+ dσ− ∂+x · ∂−x, T±± = 0 (4.4)

where we introduced conformal worldsheet coordinates σ± = 1√
2(τ ± σ).

This gauge, which hold for any sensible background metric GMN , is called the confor-
mal gauge. However, even after the conformal gauge, the theory is still invariant under
right / left moving conformal transformations

σ± → f±(σ±).

This remaining symmetry can be fixed in various ways and the approach employed in
this thesis is a gauge where one combines two of the space-time coordinates x0 and xD−1

into a light-cone pair as

x± = x0 ± xD−1

and then use the residual symmetry to fix

x+ ∼ τ. (4.5)

However, its only for very specific sets of backgrounds that this gauge is consistent with
the conformal gauge. Basically the background space-time has to be of a product form
R1,1 × Md−2 for the gauge to be admissible ? ?. In general, and if one insist on a
light-cone gauge, one has to add corrections to the worldsheet metric so that the gauge
is consistent with the equation of motion for the light-cone coordinates, see ? and ?.

We can fix the light-cone gauge without reference to the worldsheet metric if we work
in a first order formalism. The velocities can be expressed in terms of conjugate variables
if we calculate the momentas of xM (with respect to τ)

pM = γ0 αGMN ∂α x
N . (4.6)
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4 Light-cone String theory

This allows us to write the phase space Lagrangian as

L = −g
(
p · ẋ− H(p, x, x′)

)
. (4.7)

where the Hamiltonian is just a sum of two constraints

H = 1
2 γ00

(
p · p+ x′ · x′)− γ01

γ00 x
′ · p, (4.8)

so the worldsheet metric only enters as Lagrange multipliers.
If we now impose the light-cone gauge together with a subsidiary uniform gauge as ?

x+ = τ, p+ = Constant, (4.9)

where p+ is the conjugate momentum density to ẋ−, we find that up to a total derivative

L = g
(
pa ẋ

a + p−
)
, (4.10)

where the lower case Latin indices denotes transverse directions. This gauge is denoted
uniform light-cone gauge in the literature since p+ is uniformly spread out over the string
(i.e., independent of σ). In this gauge the conjugate momenta to ẋ+ correspond to the
gauge fixed Hamiltonian, −p−. That is, −p− is the phase space function that generates
τ translations in the transverse coordinates xa and pb.

Since the light-cone gauge eliminates one space-time coordinate and the second Hamil-
tonian constraint allow us to express x− in terms of transverse coordinates, the gauge
fixed string exhibits D − 2 (bosonic) degrees of freedom and the physics is described in
terms of transverse vibrations only.

In the light-cone gauge, the two Hamiltonian constraints in (4.8) turn into

C1 : p+ x
− + pa x

′a = 0, (4.11)
C2 : p · p+G−−(x′−)2 +Ga b x

′a x′b = 0.

The first constraint, C1, allows us to express the light-cone coordinate x′− in terms
of transverse fields and integrating the constraint gives the so-called level matching
condition which enforces that the mode numbers of string oscillators sums up to zero.
The second constraint, C2, gives an algebraic equation for the light-cone Hamiltonian
−p−,

p− = (4.12)

− p+G
+−

G−− ± 1
G−−

√(
p+G+−)2 −G−−(Ga b pa pb +G++ p2

+ + x′ · x′),
where we need to pick the minus solution to have the energy spectrum bounded from
below.

For a general curved background metric, the light-cone Hamiltonian above is highly
non trivial. To extract any sensible results from it one need to consider simple back-
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4.1 Warm up and introduction - Bosonic string theory

grounds or various simplifying limits. To illustrate the procedure we give provide simple
examples below.

Example one - Flat space

For a flat target space where GMN = ηMN , we have the almost trivial result

p− = − 1
4p+

(
p2

a − (x′a)2). (4.13)

In the conventions we use, it is convenient to put p+ = 2 and rescale all the fields with
1/√g which gives

L = pa ẋ
a − 1

2
(
p2

a + (x′a)2), (4.14)

which describes a free theory of D − 2 massless worldsheet scalars, exact for all values
of the coupling g.

Example two - Bosonic AdS5×S5

A more interesting example is to take the background metric to be AdS5×S5, which line
segment is just a sum of (2.3), with p = 3, and the S5 metric

ds2 = R2
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + dθ2 + sin2 θ dΩ̃2

3

)
. (4.15)

Since we want to expand the theory around a light-like geodesic defined by t = ϕ and
ρ = θ = 0, it is convenient to introduce the coordinates

cosh ρ =
1 + 1

4z
2

1 − 1
4z

2 , cos θ =
1 − 1

4y
2

1 + 1
4y

2 ,

where z2 = z2
1 + z2

2 + z2
3 + z2

4 and y2 = y2
1 + y2

2 + y2
3 + y2

4. This gives the metric

1
R2 ds

2 = −
(1 + z2

4
1 − z2

4

)2
dt2 +

(1 − y2

4

1 + y2

4

)2
dϕ2 + dz2

i(
1 − z2

4
)2 + dy2

a(
1 + y2

4
)2 , (4.16)

where R is the radius of the AdS5 and S5 space.
On the AdS space, t is the time coordinate while ϕ is an angle coordinate on the S5.

Both these coordinates are invariant under constant shifts, giving rise to two conserved
charges E and J ,

E = −
∫ r

−r
dσ pt, J =

∫ r

−r
dσ pϕ, (4.17)

where r is the radius of the worldsheet. Additionally, each space has four transverse zi

and ya directions invariant under SO(4) × SO(4) rotations. For the upcoming gauge
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fixing, it is convenient to combine the time and angle coordinate into a light-cone pair

x± = ϕ± t P± = ±E + J. (4.18)

As can be seen from the form of (4.16), the full light-cone Lagrangian will be more
complicated than the flat space case considered above. What is more, in general the
AdS5×S5 background is not consistent with the gauge γαβ = ηαβ and x+ = τ . At
quadratic level they are compatible but beyond leading order, one finds that the gauge
needs to be modified. If one insist on a second order formalism, then depending on taste,
one needs to choose one of the two gauges and then add perturbative corrections to the
other. The form of the corrections are found by demanding that p+ = constant remains
consistent with the equations of motion for x±.

However, if we stick to the first order formalism, then we do not need to worry about
the worldsheet metric at all. Doing that and imposing the uniform light-cone gauge (4.9)
and, for simplicity, only keeping the leading order part, in a g, P+ → ∞ expansion, gives

1
g
p− = − 1

p+
p2

m − p+
4
x2

m − 1
p+

(x′
m)2 + ..., (4.19)

where the m index runs over both transverse AdS and S5 coordinates. The corresponding
Lagrangian is

L = g
(
pm ẋm − 1

p+
p2

m − p+
4
x2

m − 1
p+

(x′
m)2)+ O(χ4). (4.20)

If we scale pm →
√

p+
2 and xm →

√
2

p+
and write the full space-time Lagrangian we find

L = g

∫
dσ
(
pm ẋm − 1

2
p2

m − 1
2
x2

m − 2
p2

+
(x′

m)2)+ O(χ4). (4.21)

To put this in a canonical form we need to rescale σ → 1
gσ which, together with an

effective coupling constant λ′ = 4 g2

p2
+

, gives

L =
∫
dσ
(
pm ẋm − 1

2
p2

m − 1
2
x2

m − λ′

2
(x′

m)2)+ O(χ4), (4.22)

so we see that the leading order quadratic fluctuations describe, in contrast to the flat
space case, a free theory of 8 massive coordinates.

From cylinder to plane

The above expansion looks rather complicated. Not only did we scale the transverse
phase space fluctuations differently but we also had to perform a rescaling of the length
parameter of the string to obtain a canonical leading order piece. However, the expan-
sion can be understood in simpler terms. The expansion, denoted plane wave or BMN
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σ

τ

P+ → ∞

−∞ +∞σ

τ

1

2
P+

Figure 4.2: Decompactification of the string worldsheet

expansion ?, can be defined through

g, P+ → ∞, g/P+ = Constant, (4.23)

and by direct computation the relationship between P+ and g are given from

P+ = g

∫ r

−r
dσ p+, (4.24)

which gives

r = P+
2 g p+

,

so we see that the radius of the worldsheet gets related to p+ and g. From (4.21) we saw
that in order to obtain a canonical quadratic theory we had to scale σ with 1/g implying

r = P+
2 p+

, (4.25)

which has the effect that P+ becomes infinite. For the special case of p+ = 1 see figure
4.2.

As we mentioned, the expansion is rather complicated, and from a computational point
of view, also rather cumbersome. However, one can express the expansion in terms of
the momentum density p+ and the coupling g alone by sending,

χ → χ
√
g
, g → ∞, σ ∈ {−∞,∞}, p+ = Constant, (4.26)

where χ denotes all of the transverse coordinates, including the momenta variables which
is equivalent to (4.23) with λ′ = 11.

With this we end our exposition of bosonic string theory. Hopefully the reader (who
did not have it before) have acquired a rudimentary feeling for how the gauge fixing and

1One can always choose p+ so that λ′ is eliminated and is thus not a fundamental parameter.
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light-cone Hamiltonian is obtained. In the upcoming chapters we will introduce fermions
which complicate things drastically, but nevertheless, gauge fixing and Hamiltonian con-
straints are obtained and solved in more or less the same fashion.

4.2 Full story - Supersymmetric theory and its properties
In the previous section we introduced the reader to some general aspects of bosonic
strings on various background manifolds. Even though we restricted the exhibition to
bosonic strings only, we discussed several general features that behave similarly, but
naturally more involved, in the full supersymmetric theory.

In this thesis we will concern ourself with three different supersymmetric string theo-
ries, each one describing the bulk theory of a specific AdS / CFT correspondence,

• Type IIB superstring on AdS5×S5

• Type IIA superstring on AdS4 × CP33

• Type IIB superstring on AdS3×S3×T4

In this section we will outline how to construct each of these theories in detail. Even
though each string theory is rather different, it turns out that the construction is very
similar in each case.

Historically, one of the first non trivial and supersymmetric string theories studied were
the AdS5×S5string ?. Not long after the same authors considered the construction of the
supersymmetric AdS3×S3×T4 string using the same approach ?. For the AdS4 × CP33
string, it is only in later years it has enjoyed an interest due to the recent incarnation of
the AdS / CFT duality ?. Using modern approaches, which we will outline in detail in
the upcoming, it has been fully constructed in ? and ?.

The outline of this rather lengthy section is as follows; We start out by reviewing some
basic facts about the superalgebras, and especially their matrix realizations, that occur
in each string theory. Each algebra allows for a decomposition under a Z4 grading, and
by constructing a flat, we show how to obtain the string Lagrangian directly in terms
of the graded components of the current. The superspace that the strings propagate
on is of a quotient manifold type G/H, where G is the global isometry group and H
local Lorentz transformations / rotations, see table 4.1. Having obtained the string
Lagrangian, we then turn to a discussion of some of its properties such as classical inte-
grability, bosonic and fermionic gauge fixing and conserved charges2. Actual calculations
of physical properties will be postponed to the last part of this thesis.

4.2.1 Matrix realization of superalgebras

One of the most beautiful ways to describe a physical theory is through the use of its
symmetries. The string theories we will consider exhibits a large degree of symmetry, and
as it turns out, the construction of the theories can be done directly from their symmetry

2For references see, ?, ?, ?, ?, ? and for a beautiful review see ?.
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G H
AdS5×S5 PSU(2,2|4) SO(1,4)×SO(5)

AdS4 × CP33 OSP(2,2|6) SO(1,3)×U(3)
AdS3×S3×T4 PSU(1,1|2)2× sP(T4) SO(1,2)×SO(3)

Table 4.1: The group entering in the various coset models. Note that the critical
AdS3×S3×T4 string do not allow for a simple coset construction, so the H
here only denotes the six dimensional AdS3×S3 part.

groups alone, see table 4.1. For this reason we will review each of the symmetry algebras
in some detail utilizing a matrix representation of them. The review of the two algebras
from the ten dimensional strings closely follow the notation and outline of ? and ?
separately.

The psu(2, 2|4) algebra

All the super algebras under consideration, can be expressed in terms of super matrices.
If we introduce

M =
(
X4×4 θ4×4
η4×4 Y4×4

)
, M ∈ g = su(2, 2|4),

where the block matrices X and Y have even matrix elements and satisfy StrM =
TrX − Tr Y = 0, while the off diagonal blocks θ and η are odd in the sense of having
Grassmannian entries, and impose the constraint

M † H + HM = 0, (4.27)

where H and Σ are Hermitian and of the form

H =
(

Σ 0
0 14

)
, Σ =

(
12 0
0 −12

)
,

then we single out the superalgebra su(2, 2|4) where the projective algebra in 4.1 is given
by psu(2, 2|4) ⊕ u(1) = su(2, 2|4). Note that the projective algebra have no realization in
terms of super matrices since the u(1) is central and commute with everything in (4.27).
Later we will gauge away this extra u(1) by demanding that the current, from where we
construct the string Lagrangian, is traceless.

From (4.27) we find that the blocks in M satisfy

X† = −ΣX Σ, Y † = −Y, η = −θ† Σ, (4.28)

so the bosonic part of M is3

su(2, 2) ⊕ su(4). (4.29)

3Up to an irrelevant u(1).
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The odd part consist of 32 complex fermions which gets reduced by a factor of half
through a Majorana like condition.

As advocated, the algebra can be endowed with a Z4 structure

M = M (0) +M (2) +M (1) +M (3), (4.30)

which can be realized through an automorphism of the form

Ω : M → Ω(M), Ω(M) = −ΥM st Υ−1, (4.31)

where Υ is a constant matrix

Υ =
(
K4 0
0 K4

)
, K4 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,
with K2

4 = −14 and the supertranspose is defined as

M st =
(
Xt −ηt

θt Y t

)
.

Each graded component of M can be decomposed as

M (k) = 1
4
(
M + i3kΩ(M) + i2kΩ2(M) + ikΩ3(M)

)
, (4.32)

where each M (k) is an eigenstate of Ω

Ω(M (k)) = ikM (k). (4.33)

In matrix form, we can express the even part of M as

M (0) = 1
2

(
X −K4X

tK−1
4 0

0 Y −K4 Y
tK−1

4

)
,

M (2) = 1
2

(
X +K4X

tK−1
4 0

0 Y +K4 Y
tK−1

4

)
.

Since each string theory is defined on a quotient manifold G/H we need to find a way
to isolate H, or h, from G. For the AdS5×S5 string, the quotient is

G/H = PSU(2, 2|4)
SO(1, 4) × SO(5)

,

and the zero graded projection, M (0), of M coincides with h which we want to mod out.
If we expand X and Y in a basis of real γ-matrices as X = x ·γ and Y = y ·γ, then from
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the expansion of M (0) above we see that an orthogonal basis is one with the property

(γi)t = K4 γ
iK−1

4 . (4.34)

The SO(5) γ-matrices are defined as,

γ1 =


0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

 , γ2 =


0 0 0 i
0 0 i 0
0 −i 0 0

−i 0 0 0

 , γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

γ4 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 , γ0 = −γ1 γ2 γ3 γ4 = Σ. (4.35)

In this basis a general algebra element in M (2) can be written as

M (2) = i x+Σ+ + i x−Σ− +
(
zi γ

i 0
0 i yi γ

i

)
+ i18, (4.36)

and where we introduced a light-cone basis for the pair x± as

Σ± =
(

±Σ 0
0 Σ

)
. (4.37)

With this we have found a nice parametrization of the algebra elements that will be the
basic building blocks of the string Lagrangian.

The psu(1, 1|2) ⊕ psu(1, 1|2) algebra

In this section we focus on the isometry algebra for the non critical AdS3×S3 string.
For a 4 × 4 supermatrix

m =
(

x θ2
η2 y

)
,

the su(1, 1|2) algebra is singled out by the conditions

hm+m† h = 0, Trx− Tr y = 0, (4.38)

where

h =
(
σ3 0
0 12

)
, σ3 =

(
1 0
0 −1

)
.

This implies the conjugation rules,

x† = −σ3 xσ3, η = −θ†σ3, y† = −y. (4.39)
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The full isometry algebra su(1, 1|2) ⊕ s̃u(1, 1|2) algebra can be combined into an 8 × 8
supermatrix as4,

M =


x 0 θ2 0
0 x̃ 0 θ̃2
η2 0 y 0
0 η̃2 0 ỹ

 =
(
X θ
η Y

)
.

obeying the conditions5

HM +M †H = 0, TrX − TrY = 0, (4.40)

where

H =


σ3 0 0 0
0 σ3 0 0
0 0 12 0
0 0 0 12

 =
(

Σ 0
0 14

)
.

The 4 × 4 version of (4.39) then becomes

X† = −ΣX Σ, Y † = −Y, η = −θ† Σ, (4.41)

showing that X and Y describe the bosonic isometry groups of AdS3× S3

X = su(1, 1) ⊕ su(1, 1) ≃ so(2, 2), Y = su(2) ⊕ su(2) ≃ so(4).

Each of the copies of the su(1, 1|2) algebras allow for a Z4 grading and it is convenient
to realize the grading in a way that mixes the two copies of su(1, 1|2). This can be done
with the automorphism

Ω(M) = −ΥM st Υ−1, (4.42)

with Υ2 = −18 and

Υ =
(
K̃4 0
0 K̃4

)
, K̃4 =

(
0 −12
12 0

)
,

which is similar but not identical to the automorphism that realized the Z4 grading of
the su(2, 2|4) algebra. Note that Υ takes values in sl(4|4) and not su(1, 1|2) ⊕ su(1, 1|2).
The automorphism (4.42) flips the two copies of su(1, 1|2) as can be seen from

−ΥM st Υ−1 =


−x̃t 0 η̃t 0

0 −xt 0 ηt

−θ̃t 0 −ỹt 0
0 −θt 0 −yt

 ∈ su(1, 1|2) ⊕ su(1, 1|2).

4Naturally we can write the direct sum in many different, equivalent, ways.
5In fact, since x and y takes values from su(1, 1) and su(2) respectively, they are both separately

traceless (and similar for x̃ and ỹ).
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As in (4.32), each component of M is an eigenstate of Ω

Ω(M (k)) = ik M (k), (4.43)

and can be decomposed as in (4.30).
As earlier we introduce γi matrices as a basis for M (2),

Σ = γ0 =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , γ1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , γ2 =


0 i 0 0

−i 0 0 0
0 0 0 −i
0 0 i 0

 ,
which all obeys K̃4 γ

t
a K̃

−1
4 = γi. It was to obtain this feature that we picked an auto-

morphism which mixes the two copies of su(1, 1|2). A generic element in M (2) can now
be written as

M (2) = i x+Σ+ + i x−Σ− +
(
γa za 0

0 i γs ys

)
+ i18, (4.44)

where as for the ten dimensional case, Σ± = ±Σ ⊕ Σ.

The osp(2, 2|6) algebra

Now we turn to the isometry algebra of the AdS4 × CP33 string. The basic building
blocks are 10 × 10 matrices as

M =
(
X4×4 θ4×6
η6×4 Y6×6

)

where as before X and Y are even matrices whereas θ and η are Grassmannian odd.
The super algebra osp(2, 2|6) is singled out through,

M st

(
C4 0
0 16

)
+
(
C4 0
0 16

)
M = 0

M †
(

Γ0 0
0 −16×6

)
+
(

Γ0 0
0 −16×6

)
M = 0

where the charge conjugation matrix satisfies C2
4 = −14×4 and Γ0 is one of the AdS4

Γ-matrices,

Γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,Γ1 =


0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

 ,Γ2 =


0 0 0 −i
0 0 i 0
0 i 0 0

−i 0 0 0

 ,
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Γ3 =


0 0 1 0
0 0 0 −1

−1 0 0 0
0 1 0 0

 , C4 = iΓ0 Γ2 =


0 0 0 1
0 0 −1 0
0 1 0 0

−1 0 0 0

 .
satisfying {Γµ,Γν} = 2ηµν with signature (+,-,-,-).

The above reality and transposition rules imply

Xt = −C4X C−1
4 Y t = −Y, η = −θtC4, θ∗ = Γ0C4 θ, (4.45)

so the even X and Y block correspond to usp(2, 2) and so(6) of the AdS4 and CP33
respectively. The odd blocks are related by conjugation and constitute 24 real spinor
variables. The reality condition on the fermionic block θ relates6

θ4,i = θ̄1,i, θ3,i = −θ̄2,i. (4.46)

For a critical string theory one would expect 32 real fermions, i.e. eight more than in
the present case. However, later we will show how one can perform a partial fermionic
gauge fixing that leaves the spectrum with the expected fermionic degrees of freedoms.

As for the other super algebras, osp(2, 2|6) admits a Z4 decomposition as in (4.30)
and we want to construct an automorphism such that its stationary point coincides with
so(1, 3) ⊕ u(3). This can be done with the two matrices K4 and K6, where K6 is given
by

K6 =



0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


which, as K4, satisfy K2

6 = −1. These two matrices together with the charge conjugation
matrix allows us to define an automorphism as ?

Ω(M) =
(
K4C4 0

0 −K6

)
M

(
K4C4 0

0 −K6

)−1

= ΥM Υ−1,

which can be used to construct the different Z4 components as in (4.32), where as before
each component M (k) is an eigenstate of Ω,

Ω(M (k)) = ikM (k). (4.47)

The stationary subalgebra, M (0), coincides with h = so(1, 3) ⊕ u(3) which is the part of
osp(2, 2|6) we want to divide out.

The orthogonal complement M (2) is spanned by matrices satisfying ΥM Υ−1 = −M ,

6To avoid cluttering the notation to much, we denote conjugated objects with bar.
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4.2 Full story - Supersymmetric theory and its properties

which boils down to the conditions

{X,Γ5} = 0, {Y,K6} = 0. (4.48)

These two equations can be solved by

X = xµΓµ, Y = yiTi, (4.49)

where the six Ti matrices are generators of so(6) along CP33 and are given by

T1 = E13 − E31 − E24 + E42, T2 = E14 − E41 + E23 − E32, (4.50)
T3 = E15 − E51 − E26 + E62, T2 = E16 − E61 + E25 − E52,

T5 = E35 − E53 − E46 + E64, T2 = E36 − E63 + E45 − E54,

where Eij is the 6 × 6 matrix with all elements zero except the i, j’th component which
is unity. The normalization is as follows,

Tr(Ti Tj) = −4 δij . (4.51)

The Ti matrices satisfy the following important properties,

{T1, T2} = 0, {T3, T4} = 0, {T5, T6} = 0. (4.52)

In the text we frequently make use of the complex combinations,

τ1 = 1
2
(
T1 − i T2

)
, τ2 = 1

2
(
T3 − i T4

)
, (4.53)

and τ̄i for conjugated combinations.

The first solution in (4.48) parameterize SO(3,2)/SO(1,3) and the second parameterize
SO(6)/U(3). As in the previous cases, we can write M (2) as

M (2) = x+Σ+ + x−Σ− +
(
xiΓi 0

0 y T5 + ωa τa + ω̄a τ̄a

)
, (4.54)

where i = 1, 2, 3 and the light-cone basis is given by

Σ± =
(

±Γ0 0
0 −i T6

)
.

Note that we have a natural splitting of the transverse CP3 coordinates. We have two
complex ωi and one real coordinate y. Later in this thesis we will spend some time
investigating the physical meaning of this coordinate. But for now, just note that the
transverse directions are not uniform as in the AdS5 and AdS3 case.

With this we conclude the short summary and review of the various super algebras.
As have been seen, the AdS5 and AdS3 strings are rather similar while the symmetry
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algebra of the AdS4 string is a little bit more involved.

4.2.2 String Lagrangian in terms of a flat current

In the previous section we reviewed some general properties of the super algebras that
occur in the various string theories under consideration. To promote the algebra elements
to group elements, we basically use the exponential map, g → exp g. Even though the
form of the group element will vary slightly in each separate string theory, its general
structure will be the same.

If we take a g ∈ G we can build the following current

Aα = A(0)
α + A(2)

α + A(1)
α + A(3)

α = −g−1 ∂α g, (4.55)

which basically is the pullback of a group element to its respective (super) lie-algebra.
For clarity, we also made the Z4 decomposition of the current explicit. Almost by direct
inspection we see that the current satisfy the following flatness condition

∂α Aβ − ∂β Aα − [Aα,Aβ] = 0. (4.56)

By using the different graded components of the current we will later construct the
string action. Before we present it, let us go through the properties it should fulfil. First
of all, it should naturally be invariant under global transformations from G. However,
since the string propagates on the super manifold G/H, which is only defined up to a
H rotation, the action needs to be invariant under local H transformations. Following
? we introduce, or to be more precise, we postulate the string Lagrangian

L = −g

2
γα β StrA(2)

α A(2)
β − κ

g

2
ϵα β StrA(1)

α A(3)
β , (4.57)

where the constant in front of the WZ term satisfy κ2 = 1 and ϵ01 = 1.
As before, the Lagrangian needs to be augmented with the vanishing of the stress

energy tensor. The super symmetric equivalence of (4.3) is

Tαβ = StrA(2)
α A(2)

β − 1
2
γαβ γ

δρ StrA(2)
δ A(2)

ρ = 0. (4.58)

Local transformations from h ∈ H acts from the right on the group element as

g → g · h, (4.59)

which from (4.55) gives that

A(0) → h−1 A(0) h− h−1 dh, A(k) → h−1 A(k) h, k ̸= 0, (4.60)

which shows that (4.57) is invariant under local transformations from H. Global trans-
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4.2 Full story - Supersymmetric theory and its properties

formations from G act on the group element from the left as

G · g → g′ · h, (4.61)

where h is a compensating transformation from H, which, using (4.60), leaves the string
action (4.57) invariant.

Under a shift δA the Lagrangian density transform as

δL = −g γα βStr δA(2)
α A(2)

β − κ
g

2
ϵαβStr

(
δA(1)

α A(3)
β + A(1)

α δA(3)
β

)
, (4.62)

using the identity

StrM1 Ω4−k(M2) = StrΩk(M1)M2,

the variation can be written as

δL = −Str δAα S
α = −

(
g−1δgAα + g−1 δ(∂α g)

)
Sα, (4.63)

with Sα given by

Sα = g
(
γαβA(2)

β − κ

2
ϵαβ(A(1)

β − A(3)
β )
)
. (4.64)

Up to a total derivative (4.63) can be rewritten as

δL = −Str
(
g−1δ g(∂α S

α − [Aα, S
α])
)
,

which gives the following equations of motion7

∂α S
α − [Aα, S

α] = 0. (4.65)

From this we can construct the following current

Jα = g Sα g−1, (4.66)

which is conserved due to the equations of motion (4.65)

∂α J
α = g

(
∂α S

α − [Aα, S
α]
)
g−1 = 0.

The Jα is the conserved current from the global G symmetry with corresponding Noether
charge

Q =
∫ r

−r
dσ J0. (4.67)

To single out the specific charges corresponding to boosts, rotations and suchlike one

7For the projective algebras this equation is defined up to an U(1) which divided away naturally restricts
to psu(2, 2|4) or psu(1, 1|2) ⊕ psu(1, 1|2).
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multiply the above with an appropriate basis element M ∈ g and take the super trace

QM = Str QM. (4.68)

The Poisson bracket between two charges can conveniently be written as

{Q1, Q2} = (−1)η1 η2 Str Q [M1,M2]± + C(M1,M2), (4.69)

where ηi is the parity of the super matrices and the ± denotes that the commutator is
graded. The function C(M1,M2) is a possible central extension which for purely bosonic
generators Mi is zero.

We have now established the full string Lagrangian invariant under global G and local
H transformations. One can also show that the Lagrangian is invariant under parity
and time transversal. Since this analysis is not directly relevant for the theme of this
thesis we point the interested reader to ?.

4.2.3 Fermionic local symmetry

The Lagrangian is also invariant under another hidden8 local symmetry denoted κ sym-
metry ?. This is a fermionic symmetry, in the sense of having a Grassmann valued
transformation parameter, which was first discovered for the flat super string. This
symmetry can be used to reduce the number of fermionic degrees of freedom which is
important since the covariant action, i.e. non gauge fixed, generally exhibits a mismatch
in the number of fermionic and bosonic coordinates.

The global action of G on the group element g were realized through multiplication
from the left. In contrast, a local fermionic κ symmetry transformation can be realized
through multiplication from the right as ?

g → g · eχ, (4.70)

where χ is the fermionic transformation parameter. Under this transformation the cur-
rent transform as

δAα = ∂α χ+ [Aα, χ] + O(χ2). (4.71)

For general χ this transformation does not leave the Lagrangian (4.57) invariant; It is
only for a specific choice of transformation parameter that the variation is a symmetry
and in the below we will outline how to find the precise form of the transformation.
With the natural assumption that χ = χ(1) +χ(3), the Z4 decomposition of the variation

8Hidden in the sense of being far from obvious.
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(4.71) is

δχA(1) = −dχ(1) + [A(0), χ(1)] + [A(2), χ(3)], (4.72)
δχA(3) = −dχ(3) + [A(0), χ(3)] + [A(2), χ(1)],
δχA(0) = [A(3), χ(1)] + [A(1), χ(3)], δχA(2) = [A(3), χ(3)] + [A(1), χ(1)],

which, together with the flatness condition (4.56), can be used to deduce that the vari-
ation of (4.57) becomes

δχL = (4.73)

− g

2
(
δγαβStrA(2)

α A(2)
β − 4Str

(
Pαβ

+ [A(1)
β ,A(2)

α ]χ(1) + Pαβ
− [A(3)

β ,A(2)
α ]χ(3)),

where we also introduced the projection operators

Pαβ
± = 1

2
(
γαβ ± κϵαβ), Pαβ

± P γ
± β = Pαγ

± , Pαβ
± P γ

∓ β = 0. (4.74)

A worldsheet vector can be projected with these through

V α
± = Pαβ

± Vβ,

which shows that the projected components of A± are related as

Aτ,± = −γτσ ∓ κ

γττ
Aσ,±. (4.75)

Up till this point the derivation of κ symmetry is identical for all the three string models.
However, we will make an ansatz for the transformation parameter which form differs in
the various models. For this reason we will go through the derivation for the different
models separately.

Deriving κ symmetry for the AdS5×S5 and AdS3×S3 string

For the AdS5 and AdS3 string the derivation of κ symmetry is almost identical and we
will start out with describing these two theories. As before, we closely follow the outline
in ?.

As mentioned, it is only for a specific choice of χ that the variation (4.73) leaves the
Lagrangian invariant. An appropriate ansatz for the transformation parameter is9 ?

χ(1) = {A(2)
α,−, κ

(3),α
+ }, χ(3) = {A(2)

α,+, κ
(1),α
− }, (4.76)

where we introduced new independent transformation parameters κ(i),α
± . For χ to take

values in su(2, 2|4) or su(1, 1|2)⊕su(1, 1|2), depending on the theory, the new parameters
9Note that we use a different convention compared to ?. Our convention is chosen so that to highlight

the explicit grading of the terms in χ.
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need to satisfy the ’conjugated’ reality conditions

H κ(i) − (κ(i))†H = 0,

i.e. with a relative sign flip compared to (4.27) and (4.40).
The two components A± can, as explained earlier, be parameterized as

A± =
(
xµ

± γ
µ 0

0 i yµ
± γ

µ

)
,

where µ = 0, 1, 2, 3, 4 for AdS5 and µ = 0, 1, 2 for AdS3. Note that x0
± is purely imaginary

while all other coordinates are real. Using this we find

A(2)
α,± A(2)

α,± = 1
8

ΥStrA(2)
α,± A(2)

α,± + cαβ18, (4.77)

where cαβ is a smooth function of the coordinates xµ
± and yµ

±. With this (4.73) becomes

δχL = −g

2
(
δγαβStrA(2)

α A(2)
β − 1

2
StrA(2)

α,− A(2)
β,− Str

(
Υ[κ(3),β

+ ,A(1),α
+ ]

)
− 1

2
StrA(2)

α,+ A(2)
β,+ Str

(
Υ[κ(1),β

− ,A(3),α
− ]

))
,

where the unspecified function cαβ does not contribute due to the properties of the super
trace. By using the identity Pαγ

± P βδ
± = P βγ

± Pαδ
± , one can show that for the variation to

be a symmetry, one has to assume the following variation of the worldsheet metric

δγαβ = 1
2
Tr
(
[κ3,α

+ ,A1,β
+ ] + [κ1,α

− ,A3,β
− ]
)
. (4.78)

By using the reality conditions for Aα and κ one can show that δγαβ is purely real and
satisfy γαβδγ

αβ = 0, where the latter need to hold for the classical Weyl scaling to be
manifest. The above expression, through the orthogonality of the projection operators,
also imply that the κ parameter in front of the WZ term has to fulfil, κ2 = 1.

Now, the interesting question to ask is naturally - how many fermionic degrees of
freedom does the κ symmetry allow us to remove? We do not loose any generality by
assuming that the transverse bosonic fluctuations are suppressed so

A(2) =
(
i x0 Σ 0

0 i y0 Σ

)
. (4.79)

If we go on shell, in the sense of solving the Virasoro constraint in (4.58) with γαβ = ηαβ ,
we find (x0)2 = (y0)2, so

A(2) = i x0 Σ±, (4.80)

where the plus / minus is specified by which solution of ±x0 one picks. Thus, from
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4.2 Full story - Supersymmetric theory and its properties

(4.76) we find that

ϵ(1) = i x0 {Σ±, κ̂
(1)}, ϵ(3) = i x0 {Σ±, κ̂

(3)}, (4.81)

where κ̂(i) is a linear combination of χ(i)’s. From this, and writing M (1) +M (3) = η, one
find that a suitable gauge can be imposed as

{η,Σ+} = 0, (4.82)

which eliminates half of the fermionic degrees of freedom for the AdS5 and AdS3 string.
For the ten dimensional string, this gauge was first imposed in ?. It is worth noting
that this is the first time it is shown that a similar gauge choice can be done for the non
critical AdS3 string.

The form of the gauge fixed fermionic block matrices will be presented later when we
investigate the physical properties of each string theory.

Deriving κ symmetry for the AdS4 × CP33 string

The derivation of κ symmetry invariance for the AdS4 × CP33 string is very similar to
the other two theories outlined above and for that reason we will be rather brief and
point the interested reader to ?.

The ansatz for the κ symmetry is however a bit more complicated

χ(1) = (4.83)

A(2)
α,− A(2)

β,− κ
αβ
++ + καβ

++ A(2)
α,− A(2)

β,− + A(2)
α,− κ

αβ
++ A(2)

β,− − 1
8
Str

(
Σ̂ A(2)

α,− A(2)
β,−
)
καβ

++,

χ(3) =

A(2)
α,+ A(2)

β,+ κ
αβ
−− + καβ

−− A(2)
α,+ A(2)

β,+ + A(2)
α,+ κ

αβ
−− A(2)

β,+ − 1
8
Str

(
Σ̂ A(2)

α,+ A(2)
β,+
)
καβ

−−,

where Σ̂ =Diag(14,−14) and the undetermined parameters καβ
±± takes values in osp(2, 2|6).

Using various identities of the super algebra, see the appendix of ? for details, one can
show that together with the metric variation

δγαβ = 1
2
Str Σ̂

(
A(2)

δ,−[καβ
++,A

1,δ
+ ] + A(2)

δ,+[καβ
−−,A

3,δ
− ]
)
, (4.84)

the action (4.57) is invariant under the transformation. As before, the parameter in
front of the WZ term is forced to satisfy κ2 = 1.

Unfortunately one can not impose as nice a κ gauge as in (4.82). However, one can
impose something similar. For a general η one can fix

{Σ+, η} = ηg.f , (4.85)

where ηg.f is a kappa gauge fixed fermionic matrix. In general, the gauge is capable of
removing four complex fermions leaving us with the desired eight complex. However,
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it should be noted that if one considers strings moving only in the AdS4 space, then,
somewhat surprisingly, the ansatz (4.83) is in fact zero. In general this feature is not
properly understood at the moment, but it is probably related to the coset formalism
somehow. For more details, see the discussion at the end of section 3 of ?.

The exact form of ηg.f will be presented when we consider the AdS4 × CP33 string in
full detail.

4.2.4 Parametrization of the group element

To be order to extract the physics out of the string theories one naturally needs to
specify the form of the group element g ∈ G from which we constructed the current
(4.55). Naturally, one can choose this representation in many different ways and we will
use one which is especially convenient in the light-cone language. Since each theory is
different, the exact form of g vary but, nevertheless, the general form of the element we
will choose is the same

g = Λ(x+, x−) f(η)Gt ∈ G. (4.86)

To the left we have a function only dependent on the light-cone pair x± and their
respective basis elements as

Λ(x+, x−) = exp[ i
2

(x+Σ+ + x−Σ−)], (4.87)

whereas in the middle we sandwich the fermionic dependence of g through

f(η) = η +
√
1 + η2, (4.88)

where η = M (1) + M (3). To the far right we have the dependence on the transverse
bosonic coordinates, which differs in each theory. For example, if we restrict to the
purely bosonic case, i.e. f(η) = 1, and consider the AdS5×S5 string, then we choose
a representation of Gt so that StrA(2)

α A(2)
β coincides with the line segment for the

background (4.16).

Using (4.86) we see that the current splits up as

Aα = −G−1
t

(
f(η)−1 ∂α Λ f(η) + f(η)−1 ∂α f(η)

)
Gt −G−1

t ∂αGt, (4.89)

where we used that [dΛ,Λ] = 0. For later use, it will also be convenient to split the
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current up in even and odd parts respectively

Aeven
α = −G−1

t ∂αGt (4.90)

−G−1
t

(
− η ∂α Λ η +

√
1 + η2 ∂α Λ

√
1 + η2 − η ∂α η +

√
1 + η2 ∂α

√
1 + η2

)
Gt,

Aodd
α =

−G−1
t

(
η ∂α Λ

√
1 + η2 −

√
1 + η2 ∂α Λ η + η ∂α

√
1 + η2 −

√
1 + η2 ∂α η

)
Gt.

A desirable feature with the group parametrization (4.86) is that the kinetic term of the
bosons enter without the fermions which, when we later introduce a first order formalism,
will turn out to be rather convenient.

From the form of (4.86), it should be clear that shifts in x± are generated by Σ± as

α+ Σ+ · g = Λ(x+ + α+, x
−) f(η)Gt, α− Σ− · g = Λ(x+, x− + α−) f(η)Gt,

thus, using (4.68), the conserved charges P± should be given by

P± ∼
∫ r

−r
dσ Str J0 Σ∓, (4.91)

where the normalization in front can be fixed by direct inspection of the quadratic
theory. A desirable feature of the group element we work with is that the transverse
fields, bosonic as well as fermionic, are uncharged under the two U(1) shifts Σ±. Or, in
other words, the separate fields are not charged under E and J .

The time evolution is naturally generated by the Hamiltonian through

dQM
dt

= ∂QM
∂t

+ {H,QM},

so conserved charges Poisson commute with the Hamiltonian. After gauge fixing, the
subalgebra that commutes with the light-cone Hamiltonian is given by

J : [M,Σ+] = 0, (4.92)

which is the algebra that remains after the gauge fixing procedure. We should also
investigate how the fields transform under the bosonic part of J , which is given by

JB : [M,Σ±] = 0. (4.93)

Since any element gB ∈ JB commutes with Σ± it is easy to see that a corresponding
group element acts as

GB · g = Λ(x+, x−) ·GB f(η)G−1
B ·GB GtG

−1
B ·GB, (4.94)

so the element GB itself acts as the compensating transformation from H. This implies
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G J JB

PSU(2,2|4) SU(2|2)2 SU(2)4

OSP(2,2|6) SU(2|2)×U(1) SU(2)2×U(1)
PSU(1,1|2)2 SU(1|1)2 U(1)4

Table 4.2: The subalgebras that commute with Σ+, J , and the subalgebras that commute
with both Σ±, JB, for each supergroup under consideration.

that the fields transform in the adjoint with respect to the bosonic symmetries as

f(η) → GB f(η)G−1
B , Gt → GB GtG

−1
B , GB ∈ H (4.95)

Later, when we introduce the exact form of each Gt and η, it is very convenient to label
the fields so that they transform covariantly under the bosonic symmetries.

In table 4.2, each subgroup J and JB is presented for three supergroups PSU(2,2|4),
OSP(2,2|6) and PSU(1,1|2)2.

4.3 Gauge fixed theory

As for the bosonic theory, the supersymmetric Lagrangian (4.57) exhibits worldsheet
Weyl and diffeomorphism invariance. In the bosonic theory we went to a first order for-
malism and gauge fixed these non perturbatively, i.e. without reference to the worldsheet
metric. A natural question to ask is if there exist an equivalent first order formalism
for the Lagrangian expressed in terms of super currents? Naturally one can invert all
the velocities by hand and reexpress them in terms of phase space variables, but judg-
ing from the complexity of (4.57) this seems rather cumbersome. A better way is to
introduce an auxiliary fields, π, as

π = π+Σ+ + π−Σ− + πt, (4.96)

where πt is expressed in an basis over all the transverse directions, i.e, eight or four inde-
pendent components depending on which theory we consider. From the automorphism
that realize the Z4 grading, it is an easy exercise to verify that

Strπ A(2)
α = Strπ Aeven

α , (4.97)

which in the upcoming analysis simplify a few expressions.
The idea now is to eliminate the quadratic A(2) dependence in the kinetic term of

(4.57) with something linear in A(2)
0 and π. This can be done with the Lagrangian

L = −g Str
(
π A(2)

0 + γ01

γ00 π A(2)
1 − 1

2γ00
(
π2 + (A(2)

1 )2)+W.Z
)
, (4.98)

where the WZ term is identical to the one in (4.57). The above action is classically
equivalent to the second order Lagrangian which can be seen from the equations of
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motion for π

π = γ0αA(2)
α . (4.99)

The nice feature with (4.98) is that the worldsheet metric only enters as Lagrange mul-
tipliers giving rise to

C1 : Strπ A(2)
1 = 0, C2 : Str

(
π2 + (A(2)

1 )2) = 0, (4.100)

which of course is nothing else than the super current version of (4.11).
The on shell theory has no dependence on the metric components so imposing the

uniform light-cone gauge is straight forward. However, as compared to the bosonic
section, we choose to be a little bit more general now and impose

x+ = (1 − a)τ + aϕ, p+ = (1 − a)pϕ − a pt, (4.101)

where a is a parameter that parameterize there most general uniform light-cone gauge.
The choice a = 1

2 give standard light-cone gauge as used in (4.5).
The components of π in (4.96) are unknown so to specify the physical theory, we need

to solve for these. For the transverse, πt we know that

StrπG−1
t ∂0Gt = pm ẋm, (4.102)

which gives a perturbative, or exact depending on theory, solution for the transverse
components of π. The solution for π+ is generally a bit more complicated and it also
involves π−,

P+ = Constant → π+ = f(π−,πt, x
m, η, P+),

where the function f is at maximum linear in π− and allows for a perturbative expansion
in the coupling. The form of π+ will be presented when we study the expansion of each
theory in general.

To solve for the last component of π we use C2 in (4.100)

π+ π− StrΣ+ Σ− + Strπ2
t + Str (A(2)

1 )2 = 0,

which is quadratic in π− and thus give a solution similar to the bosonic one in (4.12).
Thus, as a quick summary, the gauge fixing is simplified by the introduction of an

auxiliary field, π, which can be thought of as a super matrix equivalence of the normal
first order phase-space procedure. As was also the case for the bosonic string, the
(matrix) first order formalism allows us to fix a light-cone gauge without reference to
the worldsheet metric. The auxiliary field comes in terms of unknown components which
one can reexpress in terms of physical variables through the conjugate momentas and
(4.100). Doing this, and enforcing the κ gauge, leaves us with the full, and exact, gauge
fixed string Lagrangian.

59



4 Light-cone String theory

4.4 Summary and outlook
Hopefully we have managed to convey a general picture for how the construction of
the string Lagrangian works. We started out by presenting a rather detailed discussion
about the various symmetry algebras and how to construct group elements from them.
A lot of the construction follows similar lines for the various models which is rather
surprising since the symmetry group in each specific case is rather different. By using
the group element we constructed a flat current whose components constituted the string
Lagrangian. A crucial ingredient were the existence of a Z4 grading which could be used
to isolate the relevant parts of the current that entered the Lagrangian.

After we obtained the Lagrangian we investigated its properties under local and global
symmetries. The global symmetries, which we denoted G, act through left multiplication
while the local H and κ symmetries act through right multiplication. Gauge fixing
the κ symmetry had the important effect that it allowed us to remove some of the
fermionic coordinates. As we will later see, this makes the string manifestly space-time
supersymmetric since the bosonic and fermionic degrees of freedom match.

Having explained the symmetries of the string, we turned to a discussion about the
gauge fixing procedure. We introduced an auxiliary matrix field which allowed us to
remove the explicit dependence of the worldsheet metric. As was also the case for the
bosonic string, this allowed us to impose an uniform light-cone gauge in an convenient
way. We fixed the gauge by aligning the worldsheet time coordinate along one of the
light-cone directions together with fixing the conjugated light-cone momentum to be
distributed uniformly along the string.

In the upcoming section of this thesis we will investigate each of the string theories in
some considerable detail. In all the cases we will consider strong coupling expansions, or
close cousins of them, and investigate the physical properties of the resulting theories.
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5 The AdS5×S5 string at strong coupling

In the last section we reviewed how to construct the string Lagrangian directly in terms
of the graded components of the current. The only explicit choice of representation we
made was that the current was of the form A = −g−1 dg and that the group element
were built out of different components as

G = Λ(x+, x−) f(η)Gt,

where the transverse bosonic part, Gt, was left unspecified. In the upcoming we will
pick an explicit representation for Gt, and by rescaling the fields appropriately, show how
the theory can be put in a form suitable for a large coupling expansion. The strongly
coupled AdS5×S5string allows for an even expansion in number of fields and we will
expand the theory up to quartic order in fields. The main focus will be on the light-cone
Hamiltonian, which will be used to calculate energy corrections to a large class of string
configurations.

Through the AdS / CFT correspondence, energies of string states should be dual to
conformal dimensions of the single trace operators on the gauge theory side. As we
described earlier, the spectrum of conformal dimensions can be mapped to an abstract
spin-chain ?, and ? for a review. The problem is then reduced to solving a set of Bethe
equations, whose solution encodes the spectrum of conformal dimensions. Remarkably,
in ?, a set of all loop asymptotic Bethe equations (ABE) were proposed, encoding the
conformal dimensions of all possible single trace operators.

We will rewrite the ABE in a language suitable for a large coupling, or equivalently
large light-cone momentum, expansion. This allows us to extract predictions for the
string energies which we will explicitly compare with the diagonalization of the light-
cone Hamiltonian. Since the string oscillators come in 8B+8B modes, the diagonalization
of the full string Hamiltonian is naturally very involved, so by necessity, we will restrict
to various subsectors of the theory. This analysis, mainly based on ?, is rather involved
and the bulk of this section will be devoted to this study.

The last topic we will touch upon for the strongly coupled AdS5×S5string is a so
called near flat space limit. This limit, originally presented in ?, is a very close cousins
of the BMN limit with the novel feature that the left and right moving worldsheet sectors
are scaled differently. The resulting theory is still quartic but nevertheless significantly
simpler than the full near BMN theory. We will show how one can obtain the near flat
space model directly from the near BMN theory.

The outline is as follows; We start out with the string Lagrangian, with a focus
on the light-cone Hamiltonian, and show how to obtain the strongly coupled quartic
theory. Having established this we turn our attention to the ABE and rewrite these set
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5 The AdS5×S5 string at strong coupling

of equations in a light-cone language. We then start a rather involved analysis where
we compare the ABE predictions with explicit string theory calculations, where the
comparison is done for a very large class of string oscillators constituted of both bosonic
and fermionic operators.

We end the section with a short summary of the near flat space model and then turn
to show how it can be obtained directly from the near BMN Hamiltonian.

5.1 Parametrization of the AdS5× S5 super string

The first thing we need to do is to pick a suitable representation of the group element
G ∈ PSU(2, 2|4) which is represented by an 8 × 8 super matrix with both odd and even
matrix entries.

It is convenient to choose the even part of G so that the bososnic Lagrangian coincides
with (4.16). Using (4.36) we can construct

Gt =

 1√
1− 1

4 z2

(
14 + 1

2ziγi
)

0

0 1√
1+ 1

4 y2

(
14 + i

2yiγi
)
 , (5.1)

where i = 1, 2, 3, 4, which together with (4.87) gives that

StrA(2)
α A(2)

β |even = GMN ∂αx
M ∂βx

N ,

where GMN is the AdS5×S5 metric (4.16).
The fermionic part f(η) are as before given by

f(η) = η +
√
18 + η2, f−1(η) = −η +

√
18 + η2

which due to the kappa symmetry gauge (4.82) satisfy the following important identity

Σ+ f(η) = f−1(η) Σ+, [f(η),Σ−] = 0. (5.2)

The kappa gauge amounts to reduce the number of fermionic degrees of freedom by one
half. Remember that the full fermionic matrix η is constituted of two 4 × 4 off diagonal
blocks θ4×4 and η4×4 = −θ†

4×4 Σ. Before the gauge fixing θ4×4 have a general form

θ4×4 =
(
θ1 θ2
θ3 θ4

)
,

where each θi is a 2 × 2 matrix. The kappa gauge (4.82) boils down to {θ4×4,Σ} = 0
which gives

θg.f =
(

0 θ2
θ3 0

)
= P+ ηa Γa + P−

(
θaΓa

)†
, (5.3)
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5.1 Parametrization of the AdS5× S5 super string

where we introduced the projection operators P± = 1
2
(
14 ± Σ

)
and

Γ1 = 1
2

(γ2 − i γ1), Γ2 = 1
2

(γ4 − i γ3), Γ3 = Γ†
2, Γ4 = Γ†

1. (5.4)

For PSU(2, 2|4), the subgroup that commutes with Σ± coincides with GB=SU(2)4 and it
is an easy task to show that the kappa gauge above is compatible with the transformation
(4.95).

With the kappa gauge imposed, the even and odd part of the current (4.90) becomes

Aeven = (5.5)

−G−1
t

( i
2
(
dx+ + (1

2
− a)dx−)+ Σ+(1 + η2) + i

2
dx−Σ−

)
Gt

−G−1
t

(√
1 + η2 d

√
1 + η2 − η dη

)
Gt −G−1

t dGt,

Aodd =

−G−1
t

(
i
(
dx+ + (1

2
− a)dx−)Σ+ η

√
1 + η2 +

√
1 + η2 dη − η d

√
1 + η2)Gt,

where we see that for the choice a = 1
2 , the odd part of the current is independent of

the light-cone coordinate x−. From now one this is the gauge we will choose. Also note
the pleasant feature that the light-cone coordinates only enters with derivatives.

It is convenient to normalize the auxiliary field π in (4.96) as

π = i

2
π+ Σ+ + i

4
π− Σ− + 1

2
πM ΣM , (5.6)

where the transverse part is found by demanding that, using (4.98) and (5.5),

g StrπG−1
t ∂0Gt = g pm ẋm, (5.7)

which gives

πM =
(
pa(1 − 1

4z
2) 0

0 ps(1 + 1
4y

2)

)
, (5.8)

with a denoting transverse AdS5 index and s denoting transverse S5 index.
The Lagrangian depends on two unknown variables π+ and π−. The first one is solved

for through the gauge constraint p+=constant and the second through the quadratic
constraint

Str
(
π2 + (A(2)

1 )2) = 0.

For π+ we get using (4.98), (4.97) and (5.5)

p+ = g
i

2
StrπG−1

t Σ−Gt ⇒ π+ = 1
G+

(
p+ + 1

2
G−π−

)
, (5.9)
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5 The AdS5×S5 string at strong coupling

where we introduced

G± = 1
2

(1 + 1
4z

2

1 − 1
4z

2 ±
1 − 1

4y
2

1 + 1
4y

2

)
. (5.10)

Using this in the quadratic constraint above, we see that we will get a polynomial of
degree two for π−,

2
G+

(
p+ +G− π−

)
π− + 1

4
Str

(
πM ΣM

)2 + Str
(
A(2)

1
)2 = 0. (5.11)

Naturally, only one of the two solutions is admissible and one picks the one which bounds
the spectrum of the Hamiltonian from below.

It is convenient to split up the Lagrangian according to its Hamiltonian, or p−, and
kinetic term as1

L = Lkin + p−, (5.12)

where Lkin contain all ∂0 derivatives. The two parts are given by

Lkin = (5.13)

g pm ẋm + g StrπG−1
t

(√
1 + η2 ∂0

√
1 + η2 − η ∂0 η

)
Gt

− g
i

2
κStr G−1

t

(√
1 + η2 ∂0 η − η ∂0

√
1 + η2)Gt

× Υ
(
G−1

t

(√
1 + η2 η′ − η ∂1

√
1 + η2)Gt

)st
Υ,

p− = g
i

2
StrπG−1

t Σ+
(
1 + 2η2)Gt − g

i

2
κStr G−1

t

(
iΣ+ η

√
1 + η2)Gt

× Υ
(
G−1

t

(√
1 + η2 η′ − η ∂1

√
1 + η2)Gt

)st
Υ,

where we made use of the identity

ϵαβStrA(1)
α A(3)

β = i StrAodd
0 Υ

(
Aodd

1
)stΥ, (5.14)

for the WZ contributions. As can be seen, the above expressions are rather involved and
some comments are in order. First of all, one need to substitute the expressions for π±
and (5.8) in π. Having done that, one have in principle the full gauge-fixed AdS5 × S5

Lagrangian. Secondly, the Lagrangian is very involved and one need to consider some
sort of simplifying limit which will be the study of the next section.

1Where we neglect the total derivative p+ ẋ− term.
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5.2 Strong coupling expansion

5.2 Strong coupling expansion

We are now in position to expand the Lagrangian utilizing a strong coupling expansion.
For example, scaling the fields as

xm → xm

√
g
, pm → xm√

g
, η → η

√
g
, g, r → ∞, p+ = 1 (5.15)

where r is the radius of the string worldsheet, gives an adequate expansion scheme. Or
we could consider an equivalent expansion by substituting g in favor for P+ as

xm →
√

2
P+

xm, pm →

√
P+
2
pm, η →

√
2
P+

η, (5.16)

λ̃ = 4 g
P 2

+
= fix, σ → 1

g
σ, P+ → ∞.

Both these expansion schemes are, as explained in section 4.1, equivalent and in practice
boils down to an expansion in even powers of the transverse fields ?. The rescaling of
the string length parameter in the second expansion, was done to eliminate the factor of
g in front of the Lagrangian. This allows us to establish a direct connection to the work
? which will be the starting point in the next section.

Using either of the two expansion parameters above, it is straight forward, but noto-
riously tedious, to expand the Lagrangian to any order in fields. However, the leading
order quadratic piece is rather easily obtained. If we introduce a complex combination
of the bosons, so that the invariance under four U(1) ⊂ SU(2)4 becomes manifest, as

X1 = x2 + ix1, X2 = x4 + ix3, X4 = X†
1, X3 = X†

2, (5.17)

P x
1 = 1

2
(px

2 + ipx
1), P x

2 = 1
2

(px
4 + ipx

3), P x
4 = (P x

1 )†, P x
3 = (P x

2 )†,

where x is either Z or Y , then the quadratic Lagrangian is given by

L2 = P z · Ż† + (P z)† · Ż + P y · Ẏ † + (P y)† · Ẏ + i
(
η†

a η̇a + θ†
a θ̇a

)
(5.18)

−
(
(P z)† · P z + (P y)† · P y + 1

4
Z† · Z + 1

4
Y † · Y + λ̃

4
Z ′† · Z ′ + λ̃

4
Y † · Y ′)

− 1
2

2∑
a=1

(
η†

a η5−a + θ†
a θ5−a + κ

√
λ̃

2
(ηa η

′
5−a + θa θ

′
5−a − η†

a η
′†
5−a − θ†

a θ
′†
5−a)

)
,

which is a free theory consisting of 8B + 8F massive excitations.
We also need to consider the constraint C1 in (4.100), which to quadratic order gives

∆x′− =
∫
dσ
(
pm x′m − i

2
StrΣ+η η

′) = 0, (5.19)

this is the so called level matching constraint enforces that the worldsheet momentum
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5 The AdS5×S5 string at strong coupling

is zero.

Having established the quadratic theory, we naturally want to extend the analysis
to higher orders in number of fields. However, we run into a problem immediately
by noticing that the kinetic term in (5.13) contains higher order fermionic derivatives.
Since we are about to calculate energy shifts of string configurations, the presence of
higher order kinetic terms is very unpleasant since they induce corrections to the Poisson
structure of the theory. A simple Poisson structure, which is promoted to commutation
relations in the quantum theory, is essential when evaluating the matrix elements of
the perturbation Hamiltonian. Having to deal with higher order corrections severely
involves the already involved computations, see for example ?. Luckily, one can avoid
this complication by performing a shift of the fermions. If we focus on the fermionic
part of the quadratic Lagrangian, written in terms of the matrix η, we have

L 2
F = i

2
StrΣ+ η̇ η − 1

2
Str η η + κ

2
StrΣ+ ηΥ η′st Υ. (5.20)

The idea is now to shift the fermions as

η → η + Φ, (5.21)

where Φ is cubic in fields, so that

i

2
StrΣ+

(
η̇Φ − Φ η̇

)
= −L 4

kin, (5.22)

and thus removes the higher order terms involving derivatives of the fermionic coor-
dinates. However, as is clear from the remaining quadratic terms, this shifts induces
additional quartic terms through

L 4
add = −StrΦ η + κStrΣ+ Φ Υ η′st Υ. (5.23)

We will not specify the exact form of these terms here but merely state that they actually
simplify the original quartic Hamiltonian in (5.13), for details see ?.

With the fermionic shift we now have a quadratic kinetic theory and the quartic
theory is fully governed by the light-cone Hamiltonian. Before we present it however,
lets introduce a field decomposition in terms of oscillators that diagonalizes the quadratic
Lagrangian.

For the eight complex bosonic fields, following the notation of ?, we use the following
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decompositions

Za(τ, σ) =
∑

n

einσZa,n(τ) P z
a (τ, σ) =

∑
n

einσP z
a,n(τ)

Za,n = 1
i
√
ωn

(β+
a,n − β−

5−a,−n) P z
a,n =

√
ωn

2
(β+

a,n + β−
5−a,−n)

Ya(τ, σ) =
∑

n

einσYa,n(τ) P y
a (τ, σ) =

∑
n

einσP y
a,n(τ)

Ya,n = 1
i
√
ωn

(α+
a,n − α−

5−a,−n) P y
a,n =

√
ωn

2
(α+

a,n + α−
5−a,−n) , (5.24)

where the frequency ωn is defined as

ωn =
√

1 + λ̃ n2 . (5.25)

The decomposition has been chosen so that the creation and annihilation operators obey
canonical commutation relations

[α−
a,n, α

+
b,m] = δa,b δn,m = [β−

a,n, β
+
b,m], (5.26)

where a ∈ {1, 2, 3, 4} is the flavor index and n,m are the mode numbers which, from
(5.19), are subject to the level matching condition

K4∑
j=1

mj = 0 , (5.27)

where K4 denotes the total number of excitations. The mode decompositions for the
fermions are

η(τ, σ) =
∑

n

einσηn(τ) θ(τ, σ) =
∑

n

einσθn(τ)

ηn =fnη
−
−n + ignη

+
n θn =fnθ

−
−n + ignθ

+
n (5.28)

with η−
k = η−

a,kΓ5−a , η+
k = η+

a,kΓa , θ−
k = η−

a,kΓ5−a , θ+
k = η+

a,kΓa . (5.29)

The functions fm and gm above are defined as

fm =
√

1
2

(1 + 1
ωm

), gm = κ
√
λ̃m

1 + ωm
fm. (5.30)

The anti-commutators between the fermionic mode operators are then

{η−
a,n, η

+
b,m} = δa,b δn,m = {θ−

a,n, θ
+
b,m} . (5.31)
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Using this oscillator representation, the leading order Hamiltonian becomes

H2 =
∑

n

ωn(θ+
a,nθ

−
a,n + η+

a,nη
−
a,n + β+

a,nβ
−
a,n + α+

a,nα
−
a,n) . (5.32)

It is a tedious but straight forward task to derive the quartic Hamiltonian from (5.13)
and it is given by2 ?

H4 = Hbb + Hbf + Hff (θ) − Hff (η), (5.33)

with

Hbb = λ̃

4
(Y ′

5−aY
′

aZ5−bZb − Y5−aYaZ
′
5−bZ

′
b + Z ′

5−aZ
′
aZ5−bZb − Y ′

5−aY
′

aY5−bYb)

(5.34)

Hbf = λ̃

4
tr
[

(Z5−aZa − Y5−aYa)(η′†η′ + θ′†θ′)

−Z ′
aZb[Γa,Γb]

(
P+(ηη′† − η′η†) − P−(θ†θ′ − θ′†θ)

)
+Y ′

aY
′

b [Γa,Γb]
(
−P−(η†η′ − η′†η) − P+(θθ′† − θ′θ†)

)
− iκ√

λ̃
(ZaP

z
b )′[Γa,Γb]

(
P+(η†η† + ηη) + P−(θ†θ† + θθ)

)
+ iκ√

λ̃
(YaP

y
b )′[Γa,Γb]

(
P−(η†η† + ηη) + P+(θ†θ† + θθ)

)
+8iZaYb

(
−P−Γaη

′Γbθ
′ + P+Γaθ

′†Γbη
′†
) ]

(5.35)

Hff (η) = λ̃

4
tr
[
Γ5
(
η′†ηη′†η + η†η′η†η′ + η′†η†η′†η† + η′ηη′η

) ]
. (5.36)

This is the Hamiltonian for which we will determine the energy shifts δP− of the free,
degenerate eigenstates |ψ0,n⟩ with H2 |ψ0,n⟩ = −(P−)0 |ψ0,n⟩ by diagonalizing the matrix
⟨ψ0,n| H4 |ψ0,m⟩. These will then be compared to the energies resulting from the proposed
light-cone Bethe equations. Due to the complexity of the Hamiltonian it is often hard
to obtain analytical results for these energy shifts in larger sectors with more than a few
number of excitations. We will then have to resort to numerical considerations.

5.3 The light-cone Bethe equations

In an inspiring paper ? the long range gauge and string theory Bethe equations were
proposed for the full psu(2, 2|4) sector, generalizing the equations for the SU(2) sector
in (3.23). This proposal was based on a coordinate space, nested Bethe ansatz of the
smaller su(1, 1|2) sector, a construction later on ? generalized to su(2|3).

2We have removed some quartic bosonic non derivative term through a canonical transformation. For
details, see either ? or ?.
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5.3 The light-cone Bethe equations

We shall start our analysis from the full set of psu(2, 2|4) Bethe equations proposed
in ? in table 5 and adapt them to a language suitable for the light-cone gauge and
large P+ expansion. This will set the basis for the subsequent comparison to the explicit
diagonalization of the worldsheet Hamiltonian (6.10).

The proposed set of Bethe equations for the spectral parameters xi,k of Beisert and
Staudacher ? for the full model can be brought into the form

1 =
K4∏
j=1

x+
4,k

x−
4,k

(5.37)

1 =
K2∏

j=1j ̸=k

u2,k − u2,j − iη1
u2,k − u2,j + iη1

K3+K1∏
j=1

u2,k − u3,j + i
2η1

u2,k − u3,j − i
2η1

(5.38)

1 =
K2∏
j=1

u3,k − u2,j + i
2η1

u3,k − u2,j − i
2η1

K4∏
j=1

x+η1
4,j − x3,k

x−η1
4,j − x3,k

(5.39)

1 =
(x−

4,k

x+
4,k

)L−η1K1−η2K7
K4∏

j=1j ̸=k

(x+η1
4,k − x−η1

4,j

x−η2
4,k − x+η2

4,j

1 − g2/(x+
4,kx

−
4,j)

1 − g2/(x−
4,kx

+
4,j)

S2
0

)

×
K3+K1∏

j=1

x−η1
4,k − x3,j

x+η1
4,k − x3,j

K5+K7∏
j=1

x−η2
4,k − x5,j

x+η2
4,k − x5,j

(5.40)

1 =
K6∏
j=1

u5,k − u6,j + i
2η2

u5,k − u6,j − i
2η2

K4∏
j=1

x+η2
4,j − x5,k

x−η2
4,j − x5,k

(5.41)

1 =
K6∏

j=1j ̸=k

u6,k − u6,j − iη2
u6,k − u6,j + iη2

K5+K7∏
j=1

u6,k − u5,j + i
2η2

u6,k − u5,j − i
2η2

. (5.42)

In the above the variables ui,k are defined by ui,k = xi,k + g2 1
xi,k

and the Bethe roots
xn,k come with the multiplicities

x2,k : k = 1, . . . ,K2 x3,k : k = 1, . . . , (K1 +K3) x±
4,k : k = 1, . . .K4

x5,k : k = 1, . . . , (K5 +K7) x6,k : k = 1, . . . ,K6 (5.43)

Moreover the spectral parameters x±
4,k are related to the magnon momenta pk via

x±
4,k = 1

4
(cot pk

2
± i)

(
1 +

√
1 + λ

π2 sin2 pk

2

)
, (5.44)

which relates to the coordinates used in (3.30) as

x± = x(u(pk) ± i

2
), (5.45)
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{η1, η2} = {+1,+1}: nK1 nK2 nK3 nK4 nK5 nK6 nK7

�@ �@ �@ �@− + −

{η1, η2} = {+1,−1}: n n n n n n n�@ �@ �@ �@ �@− +

{η1, η2} = {−1,+1}: n n n n n n n�@ �@ �@ �@ �@+ −

{η1, η2} = {−1,−1}: n n n n n n n�@ �@ �@ �@+ − +

Figure 5.1: Four different choices of Dynkin diagrams of su(2, 2|4) specified by the grad-
ing η1 and η2. The signs in the white nodes indicate the sign of the diagonal
elements of the Cartan matrix ?.

where

x(u) = 1
2
u(1 +

√
1 − 2g2

u2 ). (5.46)

In the above we have also rescaled the coupling as

g := g

4π
=

√
λ̃P+
8π

. (5.47)

Note that we have chosen to write down the Bethe equations in a more compact “dy-
namically” transformed language. In order to convert (5.37)-(5.42) to the form found in
table 5 of Beisert and Staudacher ? one introduces the K1 resp. K7 roots x1,k and x7,k

by splitting off the ‘upper’ x3,k and x5,k roots via

x1,k := g2/x3,K3+k k = 1, . . .K1 x7,k := g2/x5,K5+k k = 1, . . .K7 . (5.48)

This coordinate renaming unfolds the equations associated to the fermionic roots (5.38)
and (5.41) into two structurally new sets of K1 and K7 equations and removes the K1
and K7 dependent exponent in the central equation (5.40).

The first equation (5.37) of the form we will be using is the cyclicity constraint on the
total momentum of the spin chain. The following K2 +(K1 +K3)+K4 +(K5 +K7)+K6
equations in (5.38)-(5.42) determine the sets of Bethe roots {x2,k, x3,k, x

±
4,k, x5,k, x6,k}.

Let us stress once more that it is only the combinations (K1 + K3) and (K5 + K7)
which enter in the Bethe equations. Moreover the gradings η1 and η2 take the values ±1
corresponding to four different choices of Dynkin diagrams for psu(2, 2|4) as discussed
in ? see figure 1.

These four different choices of diagrams can be traced back to the derivation of the
nested Bethe ansatz in the su(1, 1|2) sector in the gauge theory spin chain language. In
this sector there are four distinct excitations placed on a vacuum of Z fields. These four
excitations are the two bosonic Y and DZ fields and the two fermionic U and U̇ fields.
In the nested Bethe ansatz ? one selects one out of these four excitations as a second
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5.3 The light-cone Bethe equations

effective vacuum of a shorter spin chain, after having eliminated all the sites Z from the
original chain. Depending on this choice η1, η2 take the values ±1.

Finally, the undetermined function S2
0 in (5.40) is the famous scalar dressing factor

which is conjectured to take the form S2
0 = S2

0(x4,k, x4,j) = e2iθ(x4,k,x4,j) ?, where

θ(x4,k, x4,j) =
∞∑

r=2

∞∑
s=r+1

cr,s(g)
[
qr(x±

4,k) qs(x±
4,j) − qr(x±

4,j) qs(x±
4,k)

]
(5.49)

with the local conserved charge densities

qr(x±) = i

r − 1
gr−1

[( 1
x+

)r−1
−
( 1
x−

)r−1
]

(5.50)

and to leading order
cr,s(g) = g

[
δr+1,s + O(1/g)

]
. (5.51)

In this thesis, we shall only be interested in this leading order contribution, the AFS
phase ?, where the phase factor may be summed ? to yield

θkj = (x+
j − x+

k )F (x+
k x

+
j ) + (x−

j − x−
k )F (x−

k x
−
j )

− (x+
j − x−

k )F (x−
k x

+
j ) − (x−

j − x+
k )F (x+

k x
−
j ) , (5.52)

with
F (a) = (1 − g2

a
) log(1 − g2

a
) . (5.53)

The string oscillator excitations are characterized by the values of four U(1) charges
(S+, S−, J+, J−) as introduced in ?. They are related to the two spins {S1, S2} on AdS5
and two angular momenta {J1, J2} on the S5 via S± = S1 ± S2 and J± = J1 ± J2. The
relationship between these and the excitation numbers {Ki} in the Bethe equations are3

S+ = η2 (K5 +K7) − (1 + η2)K6 + 1
2

(1 − η2)K4,

S− = η1 (K1 +K3) − (1 + η1)K2 + 1
2

(1 − η1)K4,

J+ = −η2 (K5 +K7) − (1 − η2)K6 + 1
2

(1 + η2)K4,

J− = −η1 (K1 +K3) − (1 − η1)K2 + 1
2

(1 + η1)K4.

Using these together with the (S+, S−, J+, J−) charge values for the string oscillators of
table 1 (see also ?) we can construct the excitation pattern for each oscillator, see table
5.1. For example, the excitations in the su(1, 1|2) sector correspond to the following

3To make a connection to ?, we have J− = q1, J+ = q2, S− = s1 and S+ = s2. The two other charges,
p and r are functions of the length of the spin chain, so in the large P+ limit these are infinite.
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K1 + K3 K2 K4 K6 K5 + K7 S+ S− J+ J−
α+

1 0 + 1
2(1 − η1) 0 1 0 1

2(1 − η2) + 0 0 0 1 1
α+

2
1
2(1 + η1) + 1 1 1 0 1

2(1 − η2) + 0 0 0 1 -1
α+

3 0 + 1
2(1 − η1) 0 1 1 1 + 1

2(1 + η2) 0 0 -1 1
α+

4
1
2(1 + η1) + 1 1 1 1 1 + 1

2(1 + η2) 0 0 -1 -1
β+

1 0 + 1
2(1 + η1) 0 1 0 1

2(1 + η2) + 0 1 1 0 0
β+

2
1
2(1 − η1) + 1 1 1 0 1

2(1 + η2) + 0 1 -1 0 0
β+

3 0 + 1
2(1 + η1) 0 1 1 1 + 1

2(1 − η2) -1 1 0 0
β+

4
1
2(1 − η1) + 1 1 1 1 1 + 1

2(1 − η2) -1 -1 0 0
θ+

1 0 + 1
2(1 + η1) 0 1 0 1

2(1 − η2) + 0 0 1 1 0
θ+

2
1
2(1 − η1) + 1 1 1 0 1

2(1 − η2) + 0 0 -1 1 0
θ+

3 0 + 1
2(1 + η1) 0 1 1 1 + 1

2(1 + η2) 0 1 -1 0
θ+

4
1
2(1 − η1) + 1 1 1 1 1 + 1

2(1 + η2) 0 -1 -1 0
η+

1 0 + 1
2(1 − η1) 0 1 0 1

2(1 + η2) + 0 1 0 0 1
η+

2
1
2(1 + η1) + 1 1 1 0 1

2(1 + η2) + 0 1 0 0 -1
η+

3 0 + 1
2(1 − η1) 0 1 1 1 + 1

2(1 − η2) -1 0 0 1
η+

4
1
2(1 + η1) + 1 1 1 1 1 + 1

2(1 − η2) -1 0 0 -1

Table 5.1: The translation scheme of string oscillator excitations to the Dynkin node
excitation numbers of the Bethe equations. We have also listed the space-
time U(1) charges J± and S± of the string oscillators. From this table we
easily see which operators represent the middle node for the different choices
of gradings. That is, (η1, η1) = (+,+) : α+

1 , (−,+) : θ+
1 , (+,−) : η+

1 and
(−,−) : β+

1 .

string oscillators,

Y
.= α+

1 , DZ
.= β+

1 , U .= θ+
1 , U̇ .= η+

1 . (5.54)

These are the four fields which are picked out as a new vacuum in the smaller spin chains
by specifying the values4 of the gradings η1 and η2. The vacuum of Z fields corresponds
to the string ground state |0⟩ with charge J .

Let us stress that in the dictionary of table 5.1 a single string oscillator excitation
does not corresponds to a single Dynkin node excitation, but rather to a five component
excitation vector, with uniformK4 = 1 entry. This is how the naive mismatch of 16 string
oscillators versus 7 (or better 4) Dynkin node excitations is resolved: One should think
of a string oscillator as being indexed by the space-time charge vector (S+, S−, J+, J−)
or by the Dynkin vector (K1 +K3,K2,K6,K5 +K7). These two labelling are equivalent
and the one-to-one map between them is given in (5.54).

There are several things we need to do in order to translate the Bethe equations (5.37)-

4The field that is picked as the second vacuum in the nested Bethe ansatz only excites the middle node
of the Dynkin diagram, so one immediately sees from the table which combinations of the gradings
correspond to which choice of vacuum.
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5.3 The light-cone Bethe equations

(5.42) into their light-cone form in order to make a direct comparison to uniform light-
cone gauged, near plane-wave string theory. First of all, since the light-cone Hamiltonian
is expanded in the large P+ limit we need to express L in (5.40) in terms of the light-cone
momenta. This can be done by using the expression for the eigenvalues of the dilatation
operator and the J charge of S5 ?,

J = L+ 1
2
η1(K3 −K1) − 1

4
(2 + η1 + η2)K4 + 1

2
η2(K5 −K7), (5.55)

D = L+ 1
2
η1(K3 −K1) + 1

4
(2 − η1 − η2)K4 + 1

2
η2(K5 −K7) + δD,

where the anomalous dimension δD reads

δD = 2g2
K4∑
j=1

( i

x+
4,j

− i

x−
4,j

)
, (5.56)

Using (5.55) we can write the light-cone momenta and energy as,

P+ = D + J (5.57)

= 2L+ η1(K3 −K1) − 1
2

(η1 + η2)K4 + η2(K5 −K7) + δD

P− = J −D = −K4 − δD .

Hence we see that the large P+ limit discussed in the previous section corresponds to
an infinitely long chain with a finite number of excitations. Using this, the central K4
Bethe equations (5.40) become

(x+
4,k

x−
4,k

) 1
2 P+

=
(x−

4,k

x+
4,k

) 1
2 ( 1

2 (η1+η2)K4−η1(K1+K3)−η2(K5+K7)−δD)
(5.58)

×
K4∏

j=1j ̸=k

(x+η1
4,k − x−η1

4,j

x−η2
4,k − x+η2

4,j

1 − g2/(x+
4,kx

−
4,j)

1 − g2/(x−
4,kx

+
4,j)

S2
0

)K3+K1∏
j=1

x−η1
4,k − x3,j

x+η1
4,k − x3,j

K5+K7∏
j=1

x−η2
4,k − x5,j

x+η2
4,k − x5,j

.

We want to compare the spectrum up to O( 1
P 2

+
) and to this order a nice thing happens.

As a matter of fact, one can show using only the leading AFS piece of (5.51) that

(x−
4,k

x+
4,k

)− 1
2 δD K4∏

j=1j ̸=k

(1 − g2/(x+
4,kx

−
4,j)

1 − g2/(x−
4,kx

+
4,j)

S2
0

)
= 1 + O( 1

P 3
+

) (5.59)

holds, once one inserts the large P+ expansion of pk (to be established in (5.61) and
(5.63)) as well as the relevant leading AFS contribution to the dressing factor S0 of
(5.51). Curiously enough, not only the 1/P+ contribution, but also the 1/P 2

+ term
vanishes in this expansion – the 1/P 3

+ term is nonvanishing though. Therefore, to the
order we are interested in, the light-cone Bethe equations are given by the previous
equations of (5.37)-(5.42) with the central node K4 Bethe equations (5.40) exchanged
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by the simpler dressing factor free form

(x+
4,k

x−
4,k

) 1
2 P+

=
(x−

4,k

x+
4,k

) 1
2 ( 1

2 (η1+η2)K4−η1(K1+K3)−η2(K5+K7))
(5.60)

×
K4∏

j=1j ̸=k

x+η1
4,k − x−η1

4,j

x−η2
4,k − x+η2

4,j

K3+K1∏
j=1

x−η1
4,k − x3,j

x+η1
4,k − x3,j

K5+K7∏
j=1

x−η2
4,k − x5,j

x+η2
4,k − x5,j

+ O( 1
P 2

+
) ,

Putting all Kj = 0, for j ̸= 4, we indeed reproduce the results for the rank one subsectors
presented in ?. This explains the simple form of the equations established there.

5.3.1 Large P+ expansion

We will now explicitly expand the Bethe equations in the large P+ limit. The mode
numbers of the string oscillators will enter in the equations as the zero mode of the
magnon momenta pk. However, depending on if we are looking at a state with confluent
mode numbers or not, the procedure is somewhat different. We will begin with the
simpler case where all mode numbers are distinct.

Non-confluent mode numbers

For distinct mode numbers one assumes an expansion of pk as ??

pk = p0
k

P+
+ p1

k

P 2
+
. (5.61)

Determining the analogous expansion of x±
4,k

x±
4,k = P+ x

0
4,k + x1,±

4,k + . . . , (5.62)

where

x0
4,k = 1 + ωk

2p0
k

, x1,±
4,k = 1

4
(1 + ωk)

(
± i− 2p1

k

(p0
k)2 ωk

)
, (5.63)

and ωk =
√

1 + λ̃
(p0

k
)2

16π2 . Consistency then implies that the spectral parameters x3,k and
x5,k have the expansion5

x3,k = P+ x
0
3,k + x1

3,k + . . . , x5,k = P+ x
0
5,k + x1

5,k + . . . . (5.64)

5The expansion of x3,k and x5,k remains the same in the case of confluent mode numbers, while the
expansion of x±

4,k differs.
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5.3 The light-cone Bethe equations

Taking the logarithm of (5.60) and expanding we find that the momentum at leading
order p0

k in (5.61) satisfy

p0
k = 4πmk, mk ∈ Z, (5.65)

the integer here is what will correspond to the mode numbers of the string oscillators.
Expanding (5.60) to the next order we find that the p1

k should satisfy

p1
k = 1

2
(η1 + η2)

K4∑
j=1j ̸=k

2 + ωk + ωj

x0
4,k − x0

4,j

− η1

K1+K3∑
j=1

1 + ωk

x0
4,k − x0

3,j

(5.66)

−η2

K5+K7∑
j=1

1 + ωk

x0
4,k − x0

5,j

− (1
2

(η1 + η2)K4 − η1(K1 +K3) − η2(K5 +K7))p0
k.

We also want to expand the light-cone energy (5.57), using (5.56) and (5.44) we find

P− = −
K4∑
k=1

ωk + δP−, (5.67)

where the energy shift, δP−, is given by

δP− = − λ̃

P+

1
16π2

K4∑
k=1

p0
kp

1
k

ωk
. (5.68)

Confluent mode numbers

For the case of confluent mode numbers we run into trouble because of the zero denom-
inator in (5.66), which is caused by the term

K4∏
j=1j ̸=k

x+η1
4,k − x−η1

4,j

x−η2
4,k − x+η2

4,j

(5.69)

of (5.60). One could try to only look at the case with the gradings chosen so that
±η1 = ∓η2. However, this would mean that we pick a fermionic vacuum in the nested
Bethe ansatz and since the rapidities x4,k are degenerate, we end up with zero. So for
the case of confluent mode numbers we are forced to pick η1 = η2.

The way to proceed is to assume an expansion of pk as ?,

pk = p0
k

P+
+
p1

k,lk

P
3/2
+

+
p2

k,lk

P 2
+
. (5.70)

Where we, following ?, denote the multiplicity of the degeneracy as νk so
∑K′

4
k=1 νk = K4

and
∑K′

4
k=1 νkmk = 0, where K ′

4 is the number of distinct mode numbers. The first order
term in (5.70) is degenerate for confluent mode numbers while for the higher order terms
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the degeneracy might be lifted (lk ∈ {1, 2, ..., νk}).

Using (5.70) the energy shift will decompose as

δP− =
K′

4∑
k=1

νk∑
lk=1

δP−,k,lk . (5.71)

The contribution from mode numbers mj with νj = 1 look the same as in (5.68) while
modes mk with νk > 1 will have contribution from p1

k,lk
. Using (5.70) and expanding

(5.69) we find that p1
k,lk

satisfy a Stieltjes equation ? of the form ?

p1
k,lk

= −2(η1 + η2)(p0
k)2ωk

νk∑
µk=1µk ̸=lk

1
p1

k,lk
− p1

k,µk

. (5.72)

It is useful to note that
∑νk

lk=1 p
1
k,lk

= 0. The momenta p1
k,lk

can be written as

(p1
k,lk

)2 = −2 (η1 + η2) (p0
k)2 ωk h

2
νk,lk

with lk = 1, ..., νk (5.73)

where hνk,lk are the νk roots of Hermite polynomials of degree νk. However, the explicit
solutions hνk,lk are not needed since when summing over k the following property applies

νk∑
lk=1

(hνk,lk)2 = νk(νk − 1)
2

. (5.74)

The expansion for the second order contribution p2
k,lk

in (5.70) is considerably more
complicated, we therefore refer only to its general structure

p2
k,lk

= p̃ 2
k +

νk∑
µk=1µk ̸=lk

fk(µk, lk) . (5.75)

We split p2
k,lk

into a part not depending on lk, which is equivalent to p1
k given in (5.66):

p̃ 2
k ≡ p1

k. The function fk has the property fk(µk, lk) = −fk(lk, µk) and thus the second
term drops out when summed over lk. The final expression for the energy shift becomes
then

δP− = − 1
P+

λ̃

16π2

K′
4∑

k=1

νk∑
lk=1

1
2(p1

k,lk
)2 + p0

kω
2
kp

2
k,lk

ω3
k

(5.76)

= − 1
P+

λ̃

32π2

K′
4∑

k=1
νkp

0
k

(2p̃2
kωk − (η1 + η2)p0

k(νk − 1)
ω2

k

)
.
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Bethe equations for the smaller spin chains

To be able to solve for p1
k it is clear from the form of (5.66) that we need the values of

the Bethe roots x3,k and x5,k at leading order in P+. Note that the variables uk scale as
uk = P+u

0
k + u1

k + . . .. Expanding (5.38), (5.39), (5.41) and (5.42) yields

0 =
K2∑

j=1j ̸=k

2
u0

2,j − u0
2,k

+
K1+K3∑

j=1

1
u0

2,k − (x0
3,j + λ̃

64π2
1

x0
3,j

)
,

0 = η1

K2∑
j=1

1
x0

3,k + λ̃
64π2

1
x0

3,k
− u0

2,j

+ 1
2

K4∑
j=1

1 + ωj

x0
4,j − x0

3,k

,

0 = η2

K6∑
j=1

1
x0

5,k + λ̃
64π2

1
x0

5,k
− u0

6,j

+ 1
2

K4∑
j=1

1 + ωj

x0
4,j − x0

5,k

,

0 =
K6∑

j=1j ̸=k

2
u0

6,j − u0
6,k

+
K5+K7∑

j=1

1
u0

6,k − (x0
5,j + λ̃

64π2
1

x0
5,j

)
, (5.77)

which determine the x0
2,k, x0

3,k, x0
5,k and x0

6,k in terms of x0
4,k. Note that the two sets of

the first two and the last two equations are decoupled and identical in structure.
Let us briefly discuss how one goes about solving these equations for a given excitation

sector. First one needs to commit oneself to a specific grading by specifying the numbers
η1,2 = ±1. Then one reads off the values for {Ki} in table 5.1 corresponding to the
excitation pattern in question. The four different choices of gradings can be grouped
into two classes, one with fermionic middle node, η1 = −η2, and one with bosonic
middle node, η1 = η2 in the associated Dynkin diagram. The difference between the two
is important in the case of confluent mode numbers. The K3 and K5 (and for η1 = −η2,
also K4) are fermionic nodes which means that the solutions for x0

3,k and similarly for
x0

5,k for different values of k are not allowed to be degenerate by the Pauli principle.
Consider for example the su(1, 1|2) sector containing only nonvanishing values for

{K3,K4,K5}. Then, due toK2 = 0 = K6, the equations (5.77) condense to two identical,
degree K4 polynomial equations for x0

3,k and x0
5,k yielding K4 solutions, including the

degenerate solution {x0
3/5,k → ∞}. These K4 solutions are then used once on each node

K3 and K5, each generating K4 (K4−1)×...×(K4−Kj)
Kj ! (with j = 3, 5) number of solutions.

For a bosonic node, however, we may pick the same solution repeatedly.
Having distributed the solutions for x0

3,k and x0
5,k one then determines p1

k from (5.66)
and finally solves for the energy shift using (5.68) or (5.76). The obtained value is what
we then compare with a direct diagonalization of the string Hamiltonian.

5.3.2 Comparing the Bethe equations with string theory

We have calculated the energy shifts (both analytically and numerically) for a large
number of states. The numerical results will be presented in appendix 2, while here in
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the main text we shall focus on the analytical results. On the string theory side one
studies the Hamiltonian in first order degenerate perturbation theory, which in practice
demands the diagonalization of the Hamiltonian in the relevant subsectors. In the near
plane-wave limit, this was first done in ? using a different gauge.

General structure of solutions

We will present analytical results for three different sectors, su(1|2), su(1, 1|2) and
su(2|3). The operators in each sector are

su(1|2) : {α+
1 , θ

+
1 }, su(1, 1|2) : {α+

1 , β
+
1 , θ

+
1 , η

+
1 }, su(2|3) : {α+

1 , α
+
2 , θ

+
1 , θ

+
2 }.

As we can see there is a mixing between the sectors, the su(1|2) is contained within
the larger su(2|3) sector and in su(1, 1|2), but the latter is not a part of su(2|3). When
calculating the energy shifts, things are straightforward for the first two sectors, su(1|2)
and su(1, 1|2). The excited nodes are K3, K4 and K5 and for these excitation numbers
(5.77) is significantly simplified since there are no u2,k roots. Each x3,k and x5,k satisfy a
K2 − ν degree polynomial equation, where ν is the number of confluent mode numbers,
which is the same for each value of k. However, this is not the case for the su(2|3) sector
where we have nonvanishing K2 excitations and a resulting set of coupled polynomial
equations for the x2,k and x3,k following from (5.77)

The su(1|2) sector

As stated, this sector is spanned by the oscillators α+
1 and θ+

1 . The contributing parts
from the string Hamiltonian are Hbb and Hbf . The explicit expression for the effec-
tive su(1|2) Hamiltonian can be found in (8). Let us count the number of solutions
for the grading η1 = η2 = 1. Then the only excited nodes of the Dynkin diagram in
this sector are K4 and K3, so the polynomials in (5.77) give K4 − ν solutions6. Two
of these solutions are always 0 and ∞ while the other K4 − 2 − ν are non-trivial. Be-
fore we perform the actual computation let us count the number of solutions. Say we
have a total of K3 θ

+
1 oscillators and K4 − K3 α

+
1 oscillators, then this state will yield

(K4−ν)×(K4−ν−1)×...×(K4−ν−K3+1)
K3! number of solutions. So, for all possible combinations

of a general K4 impurity state the number of solutions are

K4−ν∑
K3=0

(
K4 − ν

K3

)
= 2K4−ν . (5.78)

Since the worldsheet Hamiltonian is a 2K4−ν × 2K4−ν matrix, the number of solutions
matches.

6The number of confluent mode numbers must satisfy, ν ≤ K4 − K3 + 1 since we cannot have fermionic
excitations of the same flavor with confluent mode numbers.
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Two impurities: For the two impurity sector the perturbative string Hamiltonian is a
4 × 4 matrix, but we are only interested in a 2 × 2 submatrix since the other part falls
into the rank one sectors su(2) and su(1|1). The relevant matrix elements, with mode
numbers {q,−q}, are  α+

1,qθ
+
1,−q|0⟩ α+

1,−qθ
+
1,q|0⟩

⟨0|α−
1,qθ

−
1,−q Hbf Hbf

⟨0|α−
1,−qθ

−
1,q Hbf Hbf


The energy shifts are the non-zero values in (10). Now, the interesting question is of
course if we can reproduce this result from the Bethe equations. For the two impurity
state α+θ+|0⟩ it is easiest to work with the gradings7 η1 = −1 and η2 = 1 where we
have K4 = 2 and K3 = 1. From (5.77) wee see that the only solutions for x3,k are 0 and
∞. Since we have two roots, and one K3 excitation we get two solutions for p1

k. Solving
(5.66) gives p1

k = ±p0
k. Plugging these into (5.68) gives

δP− = ± λ̃

P+

2∑
j=1

q2
j

ωqj

= ±2 λ̃

P+

q2

ωq
=: κ2, (5.79)

which equals the non-zero values in (10).

Three impurities, distinct mode numbers: The full perturbative string Hamiltonian
is a 8×8 matrix but the relevant su(1|2) part splits up into two independent submatrices
coming from the Fermi-Fermi matrix elements ⟨0|α−

1 α
−
1 θ

−
1 (Hbb + Hbf )θ+

1 α
+
1 α

+
1 |0⟩ and

the Bose-Bose elements
⟨0|α−

1 θ
−
1 θ

−
1 (Hbf )θ+

1 θ
+
1 α

+
1 |0⟩. Schematically written we have, α+

1 α
+
1 θ

+
1 |0⟩ α+

1 θ
+
1 θ

+
1 |0⟩

⟨0|θ−
1 α

−
1 α

−
1 (Hbb + Hbf )3×3 03×3

⟨0|θ−
1 θ

−
1 α

−
1 03×3 H3×3

bf

 (5.80)

The eigenvalues of the Bose-Bose submatrix, the bottom right, is given in (11). To
reproduce these shifts from the Bethe equations we once again choose η1 = −1 and
η2 = 1 so K4 = 3 and K3 = 1. Solving (5.77) give, as before, x0

3,k = {0,∞} together
with a novel third solution

y =
(2 + ωq1 + ωq2)x0

4,3 + (2 + ωq2 + ωq3)x0
4,1 + (2 + ωq1 + ωq3)x0

4,2
3 + ωq1 + ωq2 + ωq3

. (5.81)

The first two solutions, 0 and ∞, give as before p1
k = ±p0

k. For generic values of K4, and
with K3 = 1, these two solutions will always appear. Using the third solution in (5.66)

7All choices of gradings of course give the same result, however, the calculation will be more or less
complicated depending on the choice.
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yields

p1
k = 1 + ωk

x0
4,k − y

− p0
k. (5.82)

Plugging this into (5.68), together with some algebra, gives the three solutions

δP− =
{

± λ̃

P+

3∑
j=1

q2
j

ωqj

,
λ̃

P+ωq1ωq2ωq3

3∑
j=1

q2
jωqj

}
=: Λ3 , (5.83)

which agrees with the string result obtained in (11).
Let us now focus on the Fermi-Fermi matrix elements, the upper left 3 × 3 block of

(5.80). First, (5.77) give the same three solutions as before, namely {0,∞, y} with the
same y as in (5.81). Since K3 = 2 we now, for each p1

k, use two of the solutions for x0
3,k

p1
k = (1 + ωp0

k
)
( 1
x0

4,k − x0
3,1

+ 1
x0

4,k − x0
3,2

)
− 2p0

k. (5.84)

The three possible distributions of the roots, {0,∞}, {0, y} and {y,∞}, give the three
solutions

δP− =
{

0, − λ̃

P+

1
16π2

K4∑
j=1

p0
k

ωk

(
( 1 + ωk

x0
4,k − y

− p0
k) ± p0

k

)}
=: Ω3 (5.85)

With a little bit of work one can show that these match the eigenvalues from the string
Hamiltonian in (12).

Three impurities, confluent mode numbers: For three impurities, with mode numbers
{q, q,−2q}, the only state that does not fall into the already checked rank one sectors
? are α+

1 α
+
1 θ

+
1 |0⟩ and α+

1 θ
+
1 θ

+
1 |0⟩. For the former, we get from (5.66) (with grading

η1 = η2 = 1)

p̃2
q = −2p0

q + 2ωq + ω2q

x0
4,q − x0

4,2q

− 1 + ωq

x0
4,q − x0

3
, p̃2

2q = −2p0
2q + 2 2ωq + ω2q

x0
4,2q − x0

4,q

− 1 + ω2q

x0
4,2q − x0

3
.

The polynomials in (5.77) give two solutions {0,∞} for x0
3,k. Using these in (5.76),

together with some algebra, gives

δP− = 2q2λ̃

P+ω2
qω2q

{3ω2q + (2ωq + ω2q)(4ωq(1 + ωq) + ω2q)
3 + 2ωq + ω2q

,

−
4ω2

q − (3 − 4ω2
q )ω2q − (1 − 2ωq)ω2

2q

3 + 2ωq + ω2q

}
. (5.86)

It is not immediately apparent that this equals the string Hamiltonian result (14) but
after some work one can show that these two solutions are equal.
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For the second state, α+
1 θ

+
1 θ

+
1 |0⟩, we have K3 = 2 and the two roots {0,∞} for x0

3,k

can only be distributed in one way. By doing analogously as above and using (5.66) in
(5.76), we find

δP− = 2q2λ̃

P+

(ωq + ω2q)
ωqω2q

, (5.87)

which reproduces the string Hamiltonian result of (13).

The su(1, 1|2) sector

Now we turn to the larger su(1, 1|2) sector. The procedure is the same as above but now
both sides of the Dynkin diagram gets excited and a general state has the three middle
nodes K3,K4 and K5 excited. We are allowed to pick the same solution, on the K3 and
K5 node, but as before we must put distinct solutions on the fermionic nodes. In this
sector a new feature appears: The states α+

1 β
+
1 and θ+

1 η
+
1 are allowed to mix. Also, in

the case of confluent mode numbers, it turns out that we have to make use of different
gradings on some states to generate all the solutions from the string Hamiltonian.

Let us first investigate if the number of solutions from the string Hamiltonian and
the Bethe equations match. A general su(1, 1|2) state with K4 excitations and distinct
mode numbers will yield a 22K4 × 22K4 matrix and thus 22K4 energy shifts. The total
number of solutions from the Bethe equations are just the square of (5.78), with ν = 0,
which equals the number of eigenvalues from the perturbative string Hamiltonian (15).

Two impurities: The Hamiltonian is a 16×16 matrix but it is only a 13×13 part which
lies outside the already calculated su(1|2) sector. There are seven different independent
submatrices where the largest is a 4×4 matrix and is generated by the base kets α+

1 β
+
1 |0⟩

and θ+
1 η

+
1 |0⟩. There are three 2 × 2 submatrices, α+

1 η
+
1 |0⟩, β+

1 θ
+
1 |0⟩ and β+

1 η
+
1 |0⟩. And

three are one valued β+
1 β

+
1 |0⟩, η+

1 η
+
1 |0⟩ and θ+

1 θ
+
1 |0⟩, these will give the same results

as presented in ? so these we will ignore. The only part with mixing is the subpart
generated by α+

1 β
+
1 |0⟩ and θ+

1 η
+
1 |0⟩. To calculate the energy shifts we start by solving

(5.77) and, as before, the two solutions are {0,∞}. With η1 = −1 and η2 = 1, so K4 = 3
and K5 = K3 = 1, we have

p1
k = (1 + ωk)

( 1
x0

4,k − x0
3,k

− 1
x0

4,k − x0
5,k

)
. (5.88)

Whenever we pick the same solution for x0
3,k and x0

5,k we get zero and since we can do
this in two ways we get two zero solutions. The other two solutions are obtained by
setting {x0

3,k, x
0
5,k} = {0,∞} and {∞, 0} which gives p1

k = ±2p0
k. Using this in (5.68)

gives

δP− = (0, 0,± 2λ̃
P+

2∑
j=1

q2
j

ωqj

), (5.89)
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{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{−,+} {2, 3, 0} {0, 1, 3, 2}α+

1 α+
1 θ+

1
Ω3

{+,−} {0, 3, 2} {1, 0, 2, 3}α+
1 α+

1 η+
1

−Ω3

{−,+} {0, 3, 2} {2, 3, 1, 0}β+
1 β+

1 θ+
1

Ω3

{+,−} {2, 3, 0} {3, 2, 0, 1}β+
1 β+

1 η+
1

−Ω3

{−,+} {1, 3, 0} {0, 2, 3, 1}θ+
1 θ+

1 α+
1

Λ3

{−,+} {0, 3, 1} {1, 3, 2, 0}θ+
1 θ+

1 β+
1

−Λ3

{+,−} {0, 3, 1} {2, 0, 1, 3}η+
1 η+

1 α+
1

Λ3

{+,−} {1, 3, 0} {3, 1, 0, 2}η+
1 η+

1 β+
1

−Λ3

Table 5.2: The states reproducing the 3 × 3 submatrices of the string Hamiltonian. Ω3
and Λ3, where the subscript indicate the number of solutions as given in (5.85)
for Ω3 and (5.83) for Λ3.

which is in agreement with the string Hamiltonian result in (16).
For the three parts α+η+|0⟩, β+θ+|0⟩ and β+η+|0⟩, we see that solving for the first

state is analogous to the discussion after (5.79) but with η1 = 1 and η2 = −1. For the
two other, the procedure will again be identical if we choose the opposite gradings. That
is, for β+θ+|0⟩ we pick η1 = 1 and η2 = −1, while for β+η+|0⟩ we choose η1 = −1 and
η2 = 1 which give the same set of solution for all three states

δP− = ± 2λ̃
P+

q2

ωq
, (5.90)

which is in agreement with (17).

Three impurities, distinct mode numbers: The full perturbative string Hamiltonian
will now be a 64 × 64 matrix with non trivial 3 × 3 and 9 × 9 subsectors. Since the
logic of solving the Bethe equation should be clear by now, we only present the obtained
results in tabular form. Also, to make the comparison with the string Hamiltonian more
transparent, we now also label the states by their charges {S+, S−, J+, J−}. The energy
shifts for the 3 × 3 parts are given in table 5.2 and for the larger 9 × 9 subparts in
table 5.3. For the larger sectors we have a mixing between states of different boson and
fermion number.

The functions Ω9 and Λ9 in table 5.3 depend on the mode numbers {q1, q2, q3} and
are given by

Ω9 = λ̃

P+

1
16π2

3∑
k=1

p0
qk

ωqk

( 3∑
j=1,j ̸=k

2 + ωqk
+ ωqj

x0
4,qk

− x0
4,qj

− 1 + ωqk

x0
4,qk

− x0
3

− 1 + ωqk

x0
4,qk

− x0
5
) − p0

qk

)
(5.91)

Λ9 = − λ̃

P+

1
16π2

3∑
k=1

p0
qk

ωqk

( 1 + ωqk

x0
4,qk

− x0
3

− 1 + ωqk

x0
4,qk

− x0
5

)
. (5.92)
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{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{+,+} {1, 3, 1} {1, 1, 2, 2}(α+

1 α+
1 β+

1 ),(α+
1 θ+

1 η+
1 ) Ω9

{−,−} {1, 3, 1} {2, 2, 1, 1}(α+
1 β+

1 β+
1 ),(β+

1 θ+
1 η+

1 ) −Ω9

{−,+} {1, 3, 1} {1, 2, 2, 1}(α+
1 β+

1 θ+
1 ),(θ+

1 θ+
1 η+

1 ) Λ9

{+,−} {1, 3, 1} {2, 1, 1, 2}(α+
1 β+

1 η+
1 ,(θ+

1 η+
1 η+

1 ) −Λ9

Table 5.3: The states reproducing the 9 × 9 submatrices of the string Hamiltonian. Ω9
and Λ9, where the subscript indicate the number of solutions, is given by
(5.91) and (5.92).

{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{+,+} {1, 3, 0} {0, 1, 3, 2}α+

1 α+
1 θ+

1
Ω̃2

{+,+} {0, 3, 1} {1, 0, 2, 3}α+
1 α+

1 η+
1

Ω̃2

{−,−} {0, 3, 1} {2, 3, 1, 0}β+
1 β+

1 θ+
1

−Ω̃2

{−,−} {1, 3, 0} {3, 2, 0, 1}β+
1 β+

1 η+
1

−Ω̃2

{+,+} {2, 3, 0} {0, 2, 3, 1}θ+
1 θ+

1 α+
1

Λ̃1

{−,−} {0, 3, 2} {1, 3, 2, 0}θ+
1 θ+

1 β+
1

−Λ̃1

{+,+} {0, 3, 2} {2, 0, 1, 3}η+
1 η+

1 α+
1

Λ̃1

{−,−} {2, 3, 0} {3, 1, 0, 2}η+
1 η+

1 β+
1

−Λ̃1

Table 5.4: The states reproducing the 2 × 2 submatrices for confluent mode numbers of
the string Hamiltonian. Ω̃2 and Λ̃2, where the subscript indicate the number
of solutions, is given by (5.86) and (5.87)

To obtain the nine solutions for Ω9 and Λ9 one has to insert one of the three roots
{0,∞, y} for each x0

3 and x0
5. We have not managed to match these results with the

perturbative string Hamiltonian (15) analytically, but tested the agreement extensively
numerically. The details of the numerical tests can be found in Appendix 2.

Three impurities, confluent mode numbers: We will now look at three impurities
with confluent mode numbers, {q, q,−2q}. With two distinct mode numbers we see
from (5.77) that we have the two standard solutions {0,∞} for x0

3,k and x0
5,k. The

sectors exhibiting mixing, i.e. the states that span the 9 × 9 subparts of the previous
section, now exhibit a new feature. The gradings are no longer equivalent and we will
be forced to use both to generate all the desired solutions. The simpler states, that do
not exhibit this feature, are presented in table5.4 and the states where different gradings
had to be used are presented in table 5.5. The energy shifts Γ4 and Γ̃1 appearing in

83



5 The AdS5×S5 string at strong coupling

{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{+,+} {1, 3, 1} {1, 1, 2, 2}(α+

1 α+
1 β+

1 ),(α+
1 θ+

1 η+
1

) Γ4

{−,−} {2, 3, 2} {1, 1, 2, 2}(α+
1 α+

1 β+
1 ),(α+

1 θ+
1 η+

1
) Γ̃1

{−,−} {1, 3, 1} {2, 2, 1, 1}(α+
1 β+

1 β+
1 ),(β+

1 θ+
1 η+

1 ) −Γ4

{+,+} {2, 3, 2} {2, 2, 1, 1}(α+
1 β+

1 β+
1 ),(β+

1 θ+
1 η+

1 ) −Γ̃1

{+,+} {2, 3, 1} {1, 2, 2, 1}(α+
1 β+

1 θ+
1 ),(θ+

1 θ+
1 η+

1 ) Ω̃2

{−,−} {1, 3, 2} {1, 2, 2, 1}(α+
1 β+

1 θ+
1 ),(θ+

1 θ+
1 η+

1 ) −Ω̃2

{−,−} {2, 3, 1} {2, 1, 1, 2}(α+
1 β+

1 η+
1 ,(θ+

1 η+
1 η+

1 ) −Ω̃2

{+,+} {1, 3, 2} {2, 1, 1, 2}(α+
1 β+

1 η+
1 ,(θ+

1 η+
1 η+

1 ) Ω̃2

Table 5.5: The states reproducing the larger submatrices, with confluent mode numbers,
of the string Hamiltonian. The functions Γ4 and Γ̃1 are given in (5.93) and
Ω̃2 is given in (5.86).

{S+, S−, J+, J−} State pattern Number of solutions
{2, 2, 2, 2} θ+

1 θ+
1 η+

1 η+
1 |0⟩, θ+

1 η+
1 β+

1 α+
1 |0⟩, β+

1 β+
1 α+

1 α+
1 |0⟩ 36 energy shifts

{2, 2, 3, 3} θ+
1 θ+

1 η+
1 η+

1 α+
1 |0⟩, θ+

1 η+
1 β+

1 α+
1 α+

1 |0⟩, β+
1 β+

1 α+
1 α+

1 α+
1 |0⟩ 100 energy shifts

Table 5.6: Checked 4 and 5 impurity states of su(1, 1|2).

table 5.5 are given by

Γ̃1 = 2q2λ̃

P+ω2
qω2q

( 1
ωq

+ 1
ω2q

)
,

Γ4 = − 2q2λ̃

P+ω2
qω2q

{
( 1
ωq

+ 1
ω2q

), ( 1
ωq

+ 1
ω2q

), 3ω2q + (2ωq + ω2q)(ω2q + ωq(7 + 6ωq + ω2q))
3 + 2ωq + ω2q

,

3ω2q − (2ωq + ω2q)(ωq(5 + 2ωq + 3ω2q) − ω2q)
3 + 2ωq + ω2q

}
. (5.93)

Again, for the comparison to the eigenvalues of the string Hamiltonian in this subsector
we had to resort to numerical verifications, see Appendix 2 for details.

Higher impurities: In going beyond three impurities numerical calculations on both
sides, the Bethe equations and the string Hamiltonian, have been performed for a number
of four and five impurity states. All numerical energy shifts match precisely, the tested
configurations are listed in table 5.6.

The su(2|3) sector

Now things become more complex. The polynomials (5.77) for a general state are highly
non-linear, coupled and involve several variables. For this reason we will not be as
thorough in our testing for the higher impurity cases as in the previous sections. The
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oscillators in this sector are α+
1 , α

+
2 , θ

+
1 and θ+

2 where there is a mixing between α+
1 α

+
2 |0⟩

and θ+
1 θ

+
2 |0⟩. The string Hamiltonian is given in (18).

Two impurities: The su(2|3) two impurity sector of the perturbative string Hamiltonian
(18) will be a 12×12 matrix. Let us begin with the largest subpart, the one with mixing
between α+

1 α
+
2 |0⟩ and θ+

1 θ
+
2 |0⟩. The excitation numbers, with grading η1 = η2 = 1,

for α+
1 α

+
2 |0⟩ are K1 = K2 = K3 = 1 and K4 = 2 while for θ+

1 θ
+
2 |0⟩ we have K2 = 1

and K3 = K4 = 2. Here the dynamically transformed version of the Bethe equations
is advantageous, as it makes explicit that the relevant combination K1 + K3 = 2 is the
same for these two states. This is how the Bethe equations take care of the mixing.
Solving for u0

2 in (5.77), and using u0
3,k = x0

3,k + λ̃
64π2

1
x0

3,k
, gives

u0
2 = 1

2
(x0

3,1 + x0
3,2 + λ̃

64π2 ( 1
x0

3,1
+ 1
x0

3,2
)).

Plugging this into the second line of (5.77) gives

1
x0

3,1 − x0
3,2 + λ̃

64π2 ( 1
x0

3,1
− 1

x0
3,2

)
+

2∑
j=1

1 + ωj

x0
4,j − x0

3,1
= 0, (5.94)

1
x0

3,2 − x0
3,1 + λ̃

64π2 ( 1
x0

3,2
− 1

x0
3,1

)
+

2∑
j=1

1 + ωj

x0
4,j − x0

3,2
= 0.

We can add these two equations above and see that four solutions are (x0
3,1, x

0
3,2) =

(0, 0), (0,∞), (∞, 0) and (∞,∞). This may at first glance seem strange since the seem-
ingly equivalent state θ+

1 θ
+
2 |0⟩ only has the K2 and K3 node excited, implying that we

can not pick the same solution twice for x0
3,k since K3 is fermionic. However, the correct

state to use is the α+
1 α

+
2 |0⟩ state. Here two different fermionic nodes K1 and K3 are

excited and because of this we can use the same solutions on both nodes simultaneously.
Let us now turn to the calculation of the energy shifts for the these four states. We

use the solutions from (5.94) in (5.66) and plug this into (5.68) which gives

δP− = {0, 0,± λ̃

P+

4q2

ωq
} =: χ4, (5.95)

which is in perfect agreement with (19). The energy shifts for the other states follows
immediately and we present the results in table 5.7. From this table we see that all the
energy shifts from (18), presented in (20) and (19), are reproduced.

Higher impurities: Due to the non linearity of the polynomials relating the Bethe
roots we will only present results for excitations with K2 = K3 = 1, corresponding
to states of the form α+

1 . . . α+
1 θ

+
2 |0⟩ with space-time charge vector {S+, S−, J+, J−} =
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{η1, η2} {K1 +K3,K2,K4} {S+, S−, J+, J−} δP−
{+,+} {2, 1, 2} {0, 0, 2, 0}(α+

1 α+
2 ),(θ+

1 θ+
2 ) χ4

{−,+} {1, 0, 2} {0, 1, 2, 1}α+
1 θ+

1
κ2

{−,+} {1, 0, 2} {0,−1, 2,−1}α+
2 θ+

2
κ2

{+,+} {1, 1, 2} {0,−1, 2, 1}α+
1 θ+

2
κ2

{+,+} {1, 1, 2} {0, 1, 2,−1}α+
2 θ+

1
κ2

Table 5.7: The two impurity states that fall into to the rank ≥ 1 sectors for su(2|3).
Here χ4 is given by (5.95) and κ2 is given by (5.79). For two of the states we
have permutated the space-time indices.

{η1, η2} {K1 +K3,K2,K4} {S+, S−, J+, J−} δP−
{+,+} {1, 1,K4} {0,−1,K4,K4 − 1}(α+

1 ... α+
1 θ+

2 ) ΛK4

Table 5.8: Higher impurity states from the su(2|3) sector for states of the form
α+

1 ... α
+
1 θ

+
2 |0⟩. The function ΛK4 , where K4 indicates the number of solu-

tions, is given in (5.97).

{0,−1,K4,K4 − 1}. From the first line in (5.77) we see that

1
u0

2 − (x0
3 + λ̃

64π2
1

x0
3
)

= 0,

and using this in the second line implies that the equation for x0
3 reduces to the familiar

form
K4∑
j=1

1 + ωj

x0
4,j − x0

3
= 0. (5.96)

Thus, the energy shift for this state is the same as for the α+
1 ... α

+
1 θ

+
1 |0⟩ states. For

K4 = 3, the energy shift is presented in (5.83). For K4 − 1 number of α+
1 excitations

and one θ+
2 excitation, the energy shift, with gradings {+,+}, is given by

ΛK4 = 1
16π2

K4∑
k=1

p0
k

ωk

( K4∑
j=1j ̸=k

2 + ωj + ωk

x0
4,k − x0

4,j

− 1 + ωk

x0
4,k − x0

3
− p0

k(K4 − 1)
)
. (5.97)

This prediction we have verified numerically for K4 ≤ 6 with the energy shifts obtained
by diagonalization of the string Hamiltonian (18).

5.3.3 Summary of results

In the last sections we have explored the quantum integrability of the AdS5 ×S5 super-
string by confronting the conjectured set of Bethe equations with an explicit diagonal-
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ization of the light-cone gauged string Hamiltonian.
For this we have presented the Bethe equations for the most general excitation pattern

of the uniform light-cone gauged AdS5 × S5 superstring in the near plane-wave limit.
Moreover, it was demonstrated how excited string states may be translated to distri-
butions of spectral parameters in the Bethe equations as given in table 1. Using this
we have explicitly compared the predictions from the light-cone Bethe equations with
direct diagonalization of the string Hamiltonian in perturbation theory at leading order
in 1/P+. For operators from the non dynamical sectors, we have verified the spectrum
for a large number of states giving us a strong confidence in the validity of the light-
cone Bethe equations for these classes of operators. For a generic su(1, 1|2) state, it is
much easier to calculate the energy shifts using the Bethe equations. The characteristic
polynomial from the perturbative string Hamiltonian is of degree 22K4 whereas the poly-
nomials needed to be solved in the Bethe equations (5.77) are of degree K4 − 2. Still,
one generically deals with polynomials of a high degree, making it hard to explicitly find
analytical results for states with large total excitation number K4.

When it comes to the dynamical sector su(2|2), a direct comparison is much more
difficult due to the non linearity and coupled structure of the Bethe equations in (5.77).
Here analytical results were established only for the two impurity case. Nevertheless,
tests up to impurity number six could be performed numerically.

5.4 The near flat space limit

In the last sections we considered the near BMN theory of the AdS5×S5 string, and its
corresponding light-cone Bethe equations, in detail. As is probably clear by now, the
theory is rather involved and it would be nice if one could find some sort of simpler,
but still non trivial, theory. One such limit is the so called near flat space limit (NFS)
introduced by Maldacena and Swanson in ? which resembles the BMN limit in the
sense that it is a large radius expansion, or, equivalently, a strong coupling expansion.
However, in contrast to the BMN expansion, the expansion scheme is now such that the
left and right moving sector of the theory is scaled differently.

5.4.1 Lightning review of the Maldacena Swanson approach

We start out by describing the original approach of ? for the bosonic case. The light-cone
and transverse bosonic coordinates are defined and scaled as

x+ = √
g σ+ + 1

√
g
U(σ+, σ−), x− = 1

√
g
V (σ+, σ−), xm√

g
, (5.98)

where m runs over the 4 + 4 transverse degrees of freedom and U and V are fluctuations
of the light-cone coordinates.

The limit we will take treats the left and right moving sector differently

σ± → g±1/2 σ±, g → ∞ (5.99)
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5 The AdS5×S5 string at strong coupling

where σ± = σ0 ± σ1.

Using the parametrization (4.16) of the background metric together with the conformal
gauge, gives that the Lagrangian expands to

− L = g ∂−V + ∂+z ∂−z + ∂+y ∂−y (5.100)

+ 1
2

(z2 − y2)∂−V − 1
2

(z2 + y2)∂−U + 1
2
(
∂+U∂−V + ∂−U∂+V

)
+ O(g−1).

Neglecting the total derivative term, we see that we have a quartic theory without any
coupling dependence and which is invariant under right moving conformal transforma-
tions

σ− → f(σ−).

In the conformal gauge, the two Virasoro constraints can be written as T±± = 0, which
to leading order equals

T−− = ∂−U∂−V + (∂−z)2 + (∂−y)2 = 0, (5.101)
T++ = 2∂+V − (z2 + y2) = 0.

It is tempting to fix the NFS analogue of light-cone gauge, x+ = σ0, by choosing U = σ−

so that

x+ = √
g σ+ + 1

√
g
σ−.

However, by investigating the equations of motion for U and V , one find that this gauge
is not consistent with the conformal gauge, which was also the case for the near BMN
string. This complication was cleverly avoided in ? by introducing new worldsheet
coordinates. Which coordinates to choose can be understood by looking at

∂−
(
∂+U + 1

2
(z2 − y2)

)
= 0, (5.102)

which comes from varying the action with respect to V . The trick now is to implement
a gauge which automatically solves the above. Thus, if one introduces

σ̃+ = σ+, σ̃− = U, (5.103)

which imply that the worldsheet derivatives transform as

∂+ = ∂̃+ − 1
2

(z2 − y2)∂̃−, ∂− = ∂−U∂̃−, (5.104)

we see that (5.102) is satisfied.
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5.4 The near flat space limit

In the new worldsheet coordinates, the Virasoro constraints becomes

T−− = ∂̃−V + (∂̃−z)2 + (∂̃−y)2 = 0, (5.105)
T++ = 2∂̃+V − (z2 − y2)∂̃−V − (z2 + y2) = 0,

which allows us to express ∂̃−V in terms of the transverse coordinates. Using this, the
gauge fixed version of (5.100) is now easily obtained

L ∼ (5.106)

∂̃+xm∂̃−xm − 1
2

(z2 − y2)
(
(∂̃−z)2 + (∂̃−y)2)− 1

2
(z2 + y2).

Thus we have an interacting theory with only right moving derivatives.
Naturally, one is interested in the full theory, including not only the bosonic but also

the fermionic interactions. We will not describe the procedure of ? for the fermions
explicitly, but only comment on the general structure. First, the fermions are split up
into their respective left and right moving components, η±, where each sector scale as

η± → g∓1/4 η±√
g
. (5.107)

The gauge (5.103) is the same also when the fermions are included, and expanding the
Lagrangian one finds quartic terms of the form

η− ∂−η− fab x
a xb, η2

− gab x
a xb, η4

−,

where the components fab and gab are constant. Thus we see that the higher order
theory is fully governed by the left moving excitations alone. The action supposedly
posses the full SU(2|2)2×R2 symmetry and it has been used to study higher loop effects
and factorization properties in ? ? and ?.

5.4.2 From BMN to NFS

In the above we shortly outlined the procedure of ?. However, if one investigates the
scalings of the physical parameters, one finds that P+ ∼ g as for the BMN scaling.
Thus, since the physical parameters are scaled in the same way, it should be possible
to go directly from the near BMN model, which includes the full excitation pattern of
the strongly coupled string, to the NFS Lagrangian. The up shoot is rather clear; one
simply starts with the first order near BMN Lagrangian, inverts the bosonic momentas,
scale the fermions appropriately and perform the limit (5.99) and (5.107).

For this analysis, it is very convenient to introduce an alternative parametrization of
η and Gt to the one presented in (5.1) and (5.3). The bosonic subgroup that leaves the
light-cone Hamiltonian is, as we remember, GB=SU(2)4 and it is very useful to introduce
a notation covariant under these transformations. A general element G ∈ GB can be
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5 The AdS5×S5 string at strong coupling

represented as a block diagonal matrix consited of independent SU(2)’s

G =


g1 0 0 0
0 g2 0 0
0 0 g3 0
0 0 0 g4

. (5.108)

If closely follow ? and denote indices corresponding to the first two SU(2)’s with normal
and dotted Greek indices, taking values in the set {3, 4} and {3̇, 4̇}, and the second two
SU(2) copies with normal and dotted Latin indices taking values in {1, 2} and {1̇, 2̇}
then if we introduce

X =



0 0 Z34̇ −Z33̇ 0 0 0 0
0 0 Z44̇ −Z43̇ 0 0 0 0

−Z43̇ Z33̇ 0 0 0 0 0 0
−Z44̇ Z34̇ 0 0 0 0 0 0

0 0 0 0 0 0 iY 12̇ −iY 11̇

0 0 0 0 0 0 iY 22̇ −iY 21̇

0 0 0 0 −iY 21̇ iY 11̇ 0 0
0 0 0 0 −iY 22̇ iY 12̇ 0 0


, (5.109)

then, see ? for details, we find that

Z ′α α̇ = gα
β g

α̇
β̇
Zβ β̇, Y ′a ȧ = ga

b g
ȧ
ḃ
Y b ḃ. (5.110)

Similarly we can introduce a covariant notation for the kappa gauge fixed fermions

η =



0 0 0 0 0 0 η32̇ −η31̇

0 0 0 0 0 0 η42̇ −η41̇

0 0 0 0 θ†
14̇ θ†

24̇ 0 0
0 0 0 0 −θ†

13̇ −θ†
23̇ 0 0

0 0 θ14̇ −θ13̇ 0 0 0 0
0 0 θ24̇ −θ23̇ 0 0 0 0

−η†
32̇ −η†

42̇ 0 0 0 0 0 0
η†

31̇ η†
41̇ 0 0 0 0 0 0


. (5.111)

Conjugation flips the indices through

(ηαȧ)⋆ = η†
αȧ, (θȧα)⋆ = η†

ȧα, (Zαβ̇)⋆ = Zαβ̇, (Y aḃ)⋆ = Yaḃ, (5.112)

and we raise and lower indices using ϵ-tensors as

XAḂ = ϵACϵḂḊXCḊ, (5.113)
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5.4 The near flat space limit

for generic field X and indices A, Ḃ. Thus, in total we have 2B + 2F fields transforming
in a bi fundamental representation of SU(2)×SU(2).

Utilizing the new covariant notation, the group element incorporating the transverse
bosons, Gt, in (5.1) can now be represented through

Gt = g(X) =

√
1 + X
1 − X

, (5.114)

and the fermionic element f(η) = η +
√
1 + η2 remains unchanged.

In this section we will use the expansion scheme (5.15), as compared to the earlier
section where we used (5.16). We apologize for this inconvenience and the reason we
choose to do it because the scalings of the NFS fermions are, as we shortly will see,
rather intricate and the notation is much simpler if we eliminate P+ in favor for g.

Expanding in inverse powers of g, gives to leading order the quadratic BMN La-
grangian as

L2 = Pαα̇ Ż
αα̇ + Paȧ Ẏ

aȧ + iη†
αȧ η̇

αȧ + iθ†
aα̇ θ̇

aα̇ (5.115)

− 1
4
Pαα̇ P

αα̇ − 1
4
Paȧ P

aȧ − Z ′
αα̇ Z

′αα̇ − Y ′
aȧ Y

′aȧ − Zαα̇ Z
αα̇ − Yaȧ Y

aȧ

− η†
αȧ η

αȧ − θ†
aα̇ θ

aα̇ − κ

2
(
η†αȧη′†

αȧ + θ†aα̇θ′†
aα̇ − ηαȧη′

αȧ − θaα̇θ′
aα̇

)
.

For simplicity we will not present the higher order contributions here, note however
that we do not perform the fermionic shift (5.21) since this will complicate the final
expressions8. However, note that we do perform the canonical transformation so all
higher non derivative terms are removed.

To implement the worldsheet scalings (5.99) we should invert the momentum variables
Pαα̇ and Paȧ in favor of the velocities. This is easily done using the equations of motion
for each respective conjugate variable which to leading order equals

Pαα̇ = 2Żαα̇ + O(g−1), Paȧ = 2Ẏaȧ + O(g−1). (5.116)

Having expressed the momentum variables in terms of velocities, we perform the shift
(5.99) which gives us to bosonic part of the NFS model. However, it remains to figure
out how to scale the fermions appropriately. As it turns out, the combinations η± will
roughly correspond to the respective graded components of η as

η+ ∼ η(1), η− ∼ η(3). (5.117)

If one implement this directly in the action (5.13), one finds, up to a fermionic shift, a
Lagrangian that resembles the full action of ?. However, equating η± directly with η(1)

and η(3), breaks the bosonic SU(2)4 invariance of the theory.
Luckily, we can introduce a linear combination of η so the bosonic symmetry is left

8This is easy to understand since we split up the derivatives ∂α in right and left moving parts and some
of the derivative terms in the kinetic and the p− term of (5.13) tend to cancel among themselves.
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5 The AdS5×S5 string at strong coupling

manifest. The right combinations can be found if we first split up the matrix elements
of η in real and complex part as

ηαk̇ = 1√
2
(
aαk̇ + i bαk̇), θk̇α = 1√

2
(
ck̇α + i dk̇α). (5.118)

The automorphism (4.30), implies that the graded components of η are

ηαk̇
(1) = 1√

2
(1
2

+ i

2
)
(
aαk̇ + bαk̇), θkα̇

(1) = 1√
2

(1
2

+ i

2
)
(
ckα̇ + dkα̇), (5.119)

ηαk̇
(3) = 1√

2
(1
2

− i

2
)
(
aαk̇ − bαk̇), θkα̇

(3) = 1√
2

(1
2

− i

2
)
(
ckα̇ − dkα̇),

then the fermions we want to scale are just the linear combinations of the real and
complex variables as

ηαk̇
± = 1√

2
(
aαk̇ ± bαk̇), θk̇α

± = 1√
2
(
ck̇α ± dk̇α). (5.120)

Since we will go from the near BMN to the NFS Lagrangian, where the original fermions
are already suppressed with a factor of 1/√g, the scalings of the new fermionic param-
eters should be

ηαȧ
± → g∓1/4ηαȧ

± , θaα̇
± → g∓1/4θaα̇

± . (5.121)

Having established the fermionic scalings and using the inverted bosonic coordinates, it
is straightforward to obtain the NFS Lagrangian from the gauge fixed Lagrangian (5.13).

Splitting up the contributions with respect to boson / fermion field content as LNF S =
LBB + LBF + LF F and picking κ = 1, we find

LF F = i η+αȧ∂−η
αȧ
+ + i θ+aα̇∂−θ

aα̇
+ + i η−αȧ∂+η

αȧ
− + i θ−aα̇∂+θ

aα̇
− (5.122)

− i η−αȧ η
αȧ
+ − i θ−aα̇ θ

aα̇
+ + 1

2
(
η−αȧη−γċ η

γȧ
+ ∂−η

αċ
− + θ−aα̇θ−cγ̇ θ

aγ̇
+ ∂−θ

cα̇
−
)
,

LBB = 4∂+Zαβ̇∂−Z
αβ̇ + 4∂+Yaḃ∂−Y

aḃ − Zαβ̇Z
αβ̇ − YaḃY

aḃ

+ 1
8
(
YaḃY

aḃ − Zαβ̇Z
αβ̇)(∂−Zγϵ̇∂−Z

γϵ̇ + ∂−Ycḋ∂−Y
cḋ),

LBF = i

2
(
θ−aβ̇∂−θ

aβ̇
− + η−βȧ∂−η

βȧ
−
)(
YbċY

bċ − Zγα̇Z
γα̇)+ i θ−aβ̇ θ

bβ̇
− Ybċ ∂−Y

aċ

+ i η−βȧ η
βḃ
− Ycḃ ∂−Y

cȧ − i θ−aα̇ θ
aβ̇
− Zγβ̇ ∂−Z

γα̇ − i η−αȧ η
βȧ
− Zβγ̇ ∂−Z

αγ̇

+ 2i θ−aγ̇ ∂−η
αċ
− Y a

ċ Z
γ̇
α − 2i η−γȧ ∂−θ

cα̇ Y ȧ
c Z

γ
α̇.

Naturally some comments are in order. First of all, the action is obviously invariant
under the bosonic SU(2)4 symmetry due to the covariant notation. It was to achieve
this that we had to pick such a complicated combination in (5.120). We also see that
the action is considerably simpler than the full near BMN action and except for two of
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5.4 The near flat space limit

the quartic LF F terms, the higher order interactions containing fermionic terms only
depend on η− and θ−. Except for these two term, the action is structurally the same as
the one presented in ?. To establish a precise connection with ?, we first note that the
quartic pure fermion terms can be written as

1
2
(
η−αȧη−γċ η

γȧ
+ ∂−η

αċ
− + θ−aα̇θ−cγ̇ θ

aγ̇
+ ∂−θ

cα̇
−
)

=

− 1
6
∂−
(
η−αȧη−γċ η

αċ
−
)
ηγȧ

+ − 1
6
∂−
(
θ−aα̇θ−cγ̇ η

cα̇
−
)
θaγ̇

+ .

Thus, if we were to shift the η+ and θ+ variables as

η+αȧ → η+αȧ + i

12
η−γȧη−αċ η

γċ
− , θ+aα̇ → θ+aα̇ + i

12
θ−aγ̇θ−cα̇ η

cγ̇
− , (5.123)

we can, up to a total derivative, remove the quartic terms involving η+ and θ+. Of
course, this induces additional quartic fermion interactions through the quadratic mass
terms and the shifted LF F equals

L shifted
F F = (5.124)

i η+αȧ∂−η
αȧ
+ + i θ+aα̇∂−θ

aα̇
+ + i η−αȧ∂+η

αȧ
− + i θ−aα̇∂+θ

aα̇
−

− i η−αȧ η
αȧ
+ − i θ−aα̇ θ

aα̇
+ + 1

12
(
η−αȧη

ȧ
−γη

α
−ċ η

γċ
− + θ−aα̇θ

a
−γ̇θ

α̇
−cθ

cγ̇
−
)
,

which is of the same form as the Lagrangian found in ?.

It is not very surprising that we find a quartic fermionic theory different than the one
found in ?. There the quartic fermions only involve η− and θ− without any derivatives.
However, since we have just shown how to get the NFS theory from the near BMN
string, whose quadratic part is known to incorporate the full supergravity dynamics,
it is rather odd to have a non derivative higher order term. The supergravity limit
can loosely speaking be defined as the σ → 0 limit, which for the NFS limit implies
∂− ∼ g−1 ∂+ and thus kills all higher order terms in (5.122). However, in the coordinates
of ? the L 4

F F ∼ η4
− term survives. To remove this term one would need to investigate

the first and second order constraints, or equivalently shift the fermions through an
unitary transformations, to obtain the correct particle limit, see ?, ? and ?. This
shift would probably introduce a term as the one we found in (5.122). However, from
a computational point of view the two Lagrangians are equivalent and, perhaps, it is
aesthetically more pleasing to have a higher order Lagrangian that does not mix in the
left moving fermions.

Before we close this section we would like to point out another scaling of the fermions
that give a similar, but not equivalent9, theory. We now associate a, b, c and d in (5.118)

9Equivalent in the sense of containing the same symbolical expressions. It could be so that the physical
observables coincide.
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with η± and θ± directly as

ηαk̇
± = 1√

2
(
aαk̇ ± bαk̇), θk̇α

± = 1√
2
(
ck̇α ± dk̇α). (5.125)

Implementing the scalings (5.121) gives a quadratic theory identical to (5.122) and the
pure bosonic interaction terms naturally remains the same. However, now the higher
order BF and FF terms are symmetric in η± and θ±, that is, the action is symmetric
under the exchange

η± → η∓, θ± → θ∓.

We will not present the full Lagrangian here, but since it only contains right moving
derivatives, it is still simpler than the full near BMN Lagrangian. Also, somewhat
surprisingly, one can perform a fermionic shift and reexpress the quartic fermion terms
purely in terms of η− and θ−

10. However, one still have mixing between left and right
moving fermions in the BF part of the Lagrangian, and it seems that these terms can
not be removed through a fermionic shift. In this sense, this scaling of the fermions seem
to give a similar, but not identical theory. It is unclear to us what the physical content
of this theory is.

10Or equivalently, solely in terms of η+ and θ+.
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We now turn to the non critical AdS3×S3 superstring which, in many ways, is very
similar to the AdS5×S5 string. The main difference lie in the form of the symmetry
algebra which now is of a direct product type, PSU(1, 1|2)2. Even though different, it
turns out that one is able to construct a group element, as in (4.86), with a transverse
bosonic part almost identical to the ten dimensional case. Also, the fermionic matrix, η,
now consist of eight complex fermions, reduced by half through the κ gauge, and one can
decompose the fermions in a way similar to the η matrix of the AdS5×S5 string. This
allows one to immediately take expressions, as for example the near BMN Hamiltonian
in (5.34)-(5.36), and truncate them to the six dimensional string.

As we mentioned in part one, we will only study the non critical string. The reason for
this is that the AdS3×S3 string with the compact T 4 factor included, do not allow for a
simple coset construction1. To quadratic order, one can add the T 4 factor by hand, but
beyond leading order a non-trivial mixing between the six and four dimensional parts
occur2.

The presentation in this chapter should be viewed as an investigation of a non critical
(and highly non trivial) string theory and not a check of the AdS3 / CFT2 duality. For
this gauge / string correspondence a D1-D5 brane system wraps the T 4 factor and this
factor naturally needs to be included in the full analysis.

The outline of this chapter is as follows; We start the exposition with a construction
of the group element and how to obtain the quartic near BMN Hamiltonian. We rely
heavily on the former chapter, so for details, please refer to the main text there, especially
section 5.1 and 5.2. We then turn to an investigation of the symmetry algebra, which
after gauge fixing is SU(1|1)2. The form of the generators are in direct analogue to the
PSU(2, 2|4) case, and from ? it becomes more or less obvious that also the non critical
SU(1|1)2 gets centrally extended in a similar way.

6.1 Parametrization

As in the AdS5×S5 case we start out by building the group element, which as in (4.86),
is of the form

G = Λ(t, ϕ) f(η) g(x). (6.1)

1However, one can go from the AdS3×S3×S3×S1 string and construct a truncation such that the
resulting theory coincide with AdS3×S3 ×T 4, see ?.

2Also, it is not clear how to fix the κ gauge in a consistent way. At least not when starting directly
from the AdS3×S3 ×T 4 string, see ? for a discussion regarding this issue.
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The transverse part is basically just the truncation of two transverse coordinates in (5.1)

g(x) =
(
ga(z) 0

0 gs(y)

)

with

ga(z) = (1 − 1
4
z2)−1/2(1 + 1

2
zaγ

a), gs(y) = (1 + 1
4
y2)−1/2(1 + i

2
yaγ

a), (6.2)

where the γ matrices are those used in (4.44).

The light-cone coordinates enter as

Λ(t, ϕ) = exp
( i
2

(x+Σ+ + x−Σ−)
)

(6.3)

where

Σ± =
(

±Σ 0
0 Σ

)
,

and the fermionic contributions are incorporated through

f(η) = η +
√

1 + η2. (6.4)

As described in (4.82), the κ gauge can be defined as

{Σ+, η} = 0, (6.5)

which boils down to

{Σ, θ4×4} = 0, {Σ, η4×4} = 0, (6.6)

and reduces the number of fermions from eight to four complex ones. In matrix notation,
θg.f

4×4 equals

θg.f
4×4 =


0 θ12 0 0
θ21 0 0 0
0 0 0 θ34
0 0 θ43 0

 .
Introducing a complex combination of the Γ-matrices

Γ = 1
2

(γ2 − iγ1), Γ† = 1
2

(γ2 + iγ1), (6.7)

and noting that η is of the form

η =
(

0 θ4×4
η4×4 0

)
,
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allows us to expand each matrix in a basis of Γ’s as

θ4×4 = P+
(
θ†

1 + θ2
)

+ P−
(
η1 + η†

2
)
, η4×4 = P+ Σ

(
θ1 + θ†

2
)

+ P− Σ
(
η†

1 + η2
)
, (6.8)

where we introduced the projection operators

P+ =
(

12 0
0 0

)
, P− =

(
0 0
0 12

)
,

together with the notation θi = θi Γ, ηi = ηi Γ. In this notation, θi belongs to the first
and ηi to the second copy of su(1, 1|2). It is also convenient to introduce the notation

θ†
i = θi,†, η†

i = ηi,†, (6.9)

so the block matrices can be written as

θ4×4 =


0 i θ1,† 0 0

−i θ2 0 0 0
0 0 0 −i η1
0 0 i η2,† 0

 , η4×4 =


0 i θ2,† 0 0
i θ1 0 0 0
0 0 0 −i η2
0 0 −i η1,† 0

 .
We introduced the projection operators P± above so that we can establish a direct
connection with the quartic AdS5×S5 Hamiltonian in (5.34), (5.35) and (5.36). Using
that expression, we find that the quartic AdS3×S3 Hamiltonian equals

H4 = λ̃

2P+

[
2
(
y′2 z2 − z′2 y2 + z′2 z2 − y′2 y2) (6.10)

+ Str
((
z2 − y2) η′2 + 1

2
x′

m xn [Σm,Σn] [η, η′] − 2xm xn Σm η′ Σn η
′
)

+ i κ

√
λ̃

4
xm pn Str

(
[Σm,Σn] [Υ ηst Υ, η]′

)]
,

where the quartic fermionic dependence vanishes due to the simple form of the κ fixed
η matrix.

6.2 Transverse U(1) charges

There are in total four U(1) charges of SU(1, 1|1)2 and two survives when restricting to
the projective groups. The two surviving U(1) charges correspond to rotations in the
z1, z2 and y1, y2 plane. Or, for the complex combinations

Z = z2 + i z1, Y = y2 + i y1, Pz = 1
2

(pz
2 + i pz

1), Py = 1
2

(py
2 + i py

1), (6.11)

97



6 The AdS3× S3 string at strong coupling

they correspond to constant complex shifts of Z and Y . As we described in section 4.2.2,
a transformation on the group element (6.1) acts from the left

gG = G′ h, (6.12)

where h is a compensating transformation from so(1, 2)×so(3). Since we want to find the
elements that generate shifts in the transverse fields but leaves the light-cone directions
invariant, the transformations should take values in JB. For a g ∈ JB, its action on G
is

gG = Λ(t, ϕ) g f(η) g−1 g g g−1 g. (6.13)

If g obeys the property, −Υ gst Υ−1 = g, then g itself is the compensating transformation
from so(1, 2) × so(3) and f(η) and gt transform in the adjoint of g.

For g ∈ M (0), one finds from (4.39) that x = −x̃ and y = −ỹ so these transformations
constitute a u(1) ⊕ u(1) subgroup of JB and these are the charges that generate shifts
in the dynamical variables.

To figure out how the fields transform under the U(1)’s, we vary the group element
with respect to the shifts (which we denote ϕ from now)

δϕG = δΛ f g + Λ δf g + Λ f δg = [ϕ,Λ] f g + Λ [ϕ, f ] g + Λ f(ϕ g − g ϕc) + O(ϕ2)

where ϕc is the compensating SO(1,2)×SO(3) transformation. Thus,

δΛ = [ϕ,Λ], δf = [ϕ, f ], δg = ϕ g − g ϕc. (6.14)

Since g by construction belongs to M (2) it satisfies, δg = Υ δgst Υ−1 which, together
with the fact that ϕc ∈ M (0), gives

ϕ g − gK ϕst K−1 = ϕc g + g ϕc. (6.15)

Close to the identity we know that ϕc should take values in M (0) which implies that
ϕ = ϕc so

δϕ g = [ϕ, g]. (6.16)

One suitable representation for ϕ is

ϕ =
(
αS Φ 0

0 βJ Φ

)
, Φ = i

2


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , −Υϕst Υ−1 = ϕ, (6.17)
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6.3 Symmetry algebra

so that eϕ g e−ϕ generates the shifts

Z → eiα Z, Z† → e−iα Z†, (6.18)
Y → eiβ Y, Y † → e−iβ Y †.

From this we find the charge for the bosonic fields under the U(1) transformations. Of
course, how the bosonic fields transform is trivial and we do not need to construct the
specific matrix form of the charges. However, when we now turn to the construction of
all the charges of the symmetry algebra, then ϕ will turn out to be a convenient building
block.

6.3 Symmetry algebra

In general, the su(1, 1|2) ⊕ su(1, 1|2) algebra consist of charges of the form

su(1, 1|2) ⊕ su(1, 1|2) =


L 0 Q 0
0 L̇ 0 Q̇
Q 0 R 0
0 Q̇ 0 Ṙ

 , (6.19)

where Q = −Q†σ3, and similar for dotted ones. We are interested in the effective
symmetry algebra that leaves the light-cone Hamiltonian invariant which is defined by

J : g ∈ su(1, 1|2) ⊕ su(1, 1|2), [g,Σ+] = 0, (6.20)

implying that J is spanned by matrices of the form

M̃ =



x11 0 0 0 x15 0 0 0
0 −x11 0 0 0 x26 0 0
0 0 x̃33 0 0 0 x̃37 0
0 0 0 −x̃33 0 0 0 x̃48

−x†
15 0 0 0 y44 0 0 0

0 x†
26 0 0 0 −y44 0 0

0 0 −x̃†
37 0 0 0 ỹ55 0

0 0 0 x̃†
48 0 0 0 −ỹ55


, (6.21)

with purely imaginary diagonal elements. It is easy to see that M̃ takes values in
su(1|1) ⊕ su(1|1) with bosonic part u(1) ⊕ u(1) ⊕ u(1) ⊕ u(1) = JB.

As we explained earlier, the charges can be derived from the equations of motions, see
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6 The AdS3× S3 string at strong coupling

(4.67), and are given by a super matrix

Q = (6.22)∫
dσ Str

(
Λ(t, ϕ) f(η) g

(
π − κ

i

2

√
λ̃ gK ∂1η

st K−1 g−1
)
g−1 f−1(η) Λ(t, ϕ)−1

)
M,

where M is some constant matrix in su(1|1)⊕su(1|1) that single out the specific charges
corresponding to shifts and supersymmetry transformations.

For M = Σ± we have

H = − i

2
Str QΣ+, P+ = i

2
Str QΣ−, (6.23)

where by construction the Hamiltonian is central and to leading order its given by

H2 = 1
2

∫
d σ
{

4
(
P †

z Pz + P †
y Py

)
+ Z† Z + Y † Y + λ̃

(
Z ′† Z ′ + Y ′† Y ′) (6.24)

+ ηα,† ηα − θα,† θα + κ

√
λ̃
(
ηα,† θ′

α + θ′α,† ηα − η′α,† θα − θα,† η′
α

)}
,

where we also introduced the convenient notation

Q
α = −σαβ

3 Q†
β, Q̇

α = −σαβ
3 Q̇†

β, (6.25)

which also implies that the charge matrix in (6.22) equals

Q =
(
Q

1 0
0 Q2

)
, Q =

(
Q1 0
0 Q

2

)
, Q̇ =

(
Q̇1 0
0 Q̇

2

)
, Q =

(
Q̇

1 0
0 Q2

)
.

Only focusing of the undotted algebra3, we find that

{QαQ
β}P.B = −i

(
L + R

)
δβ

α, {Q̇α Q̇
β
}P.B = i

(
L̇ + Ṙ

)
δβ

α, (6.26)

and

[L + R, Qα]P.B = [L + R, Qα]P.B = 0, (6.27)

[L̇ + Ṙ, Q̇α] = [L̇ + Ṙ, Q̇
α
] = 0.

The bosonic charges are expressed as

L = P 2
+ ⊗

(
P+Φ

)
R = P 2

− ⊗
(
P+Φ

)
, (6.28)

L̇ = P 2
+ ⊗

(
P−Φ

)
Ṙ = P 2

− ⊗
(
P−Φ

)
,

3The other copy follows trivially.
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with Φ from (6.17) and P 2
± are projection operators

P 2
+ =

(
1 0
0 0

)
, P 2

− =
(

0 0
0 1

)
.

Note that the bosonic charges corresponding to the shifts commute with everything so
they are central.

With all this, and treating the x− vertex as a static object, we find that the quadratic
supercharges equal

Qα = (6.29)
1
2

∫
dσ ei dx−

(
ϵαβ

(
2Pz + i Z

)
θβ,† + i

(
2P †

y − i Y †) θα − κ

√
λ̃
(
i ϵαβ Z η

′β,† + Y † η′
α

))
,

Q
α =

− 1
2

∫
dσ e−i dx−

(
ϵαβ(2P †

z − i Z†) θβ − i
(
2Py + i Y

)
θα,† + κ

√
λ̃
(
i ϵαβ Z† η′

β − Y η′α,†)),
Q̇α =

− 1
2

∫
dσ ei dx−

(
ϵαβ

(
2Pz − i Z

)
ηβ,† − i

(
2P †

y + i Y †)ηα + κ

√
λ̃
(
i ϵαβ Z θ

′β,† − Y † θ′
α

))
,

Q̇
α

=
1
2

∫
dσ e−i dx−

(
ϵαβ(2P †

z + i Z†)ηβ + i
(
2Py − i Y

)
ηα,† − κ

√
λ̃
(
i ϵαβ Z† θ′

β + Y θ′α,†)).
For the bosonic charges, we combine them into the combinations L + L̇ and R + Ṙ
since these are the combinations that generate the complex shifts (6.18). Up to a total
derivative the combinations equal

L + L̇ =
∫
d σ
(
i
(
P †

z Z − Z† Pz
)

− 1
2
ηα,† ηα − 1

2
θα,† θα

)
, (6.30)

R + Ṙ =
∫
d σ
(
i
(
P †

y Y − Y † Py
)

− 1
2
ηα,† ηα − 1

2
θα,† θα

)
.

Now, if we postulate

[Pz(σ), Z†(σ′)] = −i δ(σ − σ′), [Py(σ), Y †(σ′)] = −i δ(σ − σ′), (6.31)
{ηα(σ), ηβ,†(σ′)} = δβ

α δ(σ − σ′), {θα(σ), θβ,†(σ′)} = δβ
α δ(σ − σ′),
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6 The AdS3× S3 string at strong coupling

then one finds that the charges in (6.29) satisfy the anti commutation relations

{QαQ
β} = −

(
L + R

)
δβ

α, {Q̇α Q̇
β
} =

(
L̇ + Ṙ

)
δβ

α, (6.32)

which indeed is the su(1|1)⊕ su(1|1) algebra. If we combine the bosonic charges, we find
that they correspond to the Hamiltonian

L + R − L̇ − Ṙ = H. (6.33)

Even though we have not performed the calculation in detail, the commutators between
the supercharges, {Q,Q} and {Q,Q}, should extend the quantum algebra with two cen-
tral charges proportional to the level matching constraint, see ? for a detailed discussion.

6.4 Outlook
A very interesting continuation of this work would be to calculate the central extensions
in more detail. Even though the outline is very similar to ?, where the central extension
of the AdS5×S5 string was derived, one should still do it in detail. Also, in all of
the analysis we ignored the T 4 factor since its inclusion severely complicates the coset
construction. it would be very interesting to investigate the symmetry algebra with this
factor included. Rather recently in ? it was shown that one can treat the AdS3×S3 ×T 4

string as a reduction from a coset model with an exceptional superalgebra as G. Using
this as a starting point, one should be able to investigate the gauge fixed symmetry
algebra in detail.
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7 The AdS4 × CP33 string at strong
coupling

In this chapter we will describe the strong coupling dynamics of the AdS4 ×CP33 string.
The discussion will be similar to section 5.2 but is much more involved since, rather
strangely perhaps, the AdS4 ×CP33 is significantly more complicated than its AdS5×S5

cousin. This is a bit surprising since we saw earlier that the symmetry group that
leaves the light-cone Hamiltonian invariant, namely SU(2|2)×U(1), is rather similar to
SU(2|2)2 of the AdS5×S5 string. However, one reason for the more complicated structure
can be found in the presence of cubic terms in the near BMN Lagrangian. Since we will
present a similar analysis as before, namely comparing energy shifts with light-cone
Bethe equations, it is crucial that we have a canonical Lagrangian both for bosons and
fermions which demands that we shift the fermions in an appropriate way. Due to the
cubic terms in the Lagrangian, this shift, in contrast to the AdS5×S5 case, severely
complicates the canonical theory. Nevertheless, it can be performed which allows one to
perform a perturbative analysis of the energy levels of string configurations.

We will start out this chapter by constructing the AdS4 × CP33 super string along
lines similar to section 5.2 with an emphasis on the light-cone Hamiltonian. The starting
point will be the supercoset model presented by Arutyunov and Frolov in ?, as described
in section 4.2.1, from which we derive the quartic string Lagrangian. As we mentioned
above, the situation becomes rather complicated due to the non canonical structure
of the fermions. We then calculate energy shifts for a large set of both bosonic and
fermionic string states following ? and ?. These shifts we match against a conjectured
set of asymptotic Bethe equations and find precise agreement.

7.1 Introduction and background

Recently strings on AdS4 × CP33 have enjoyed an increased interest due to the AdS4 /
CFT3 duality proposed in ?, ?, . The conjecture, nowadays dubbed ABJM duality in
the literature, states that a three dimensional N = 6 and SU(N) Chern Simons theory
living on the boundary of AdS4 are in certain limits dual to type IIA string theory on
AdS4 × CP33.

The duality exhibits many shared features with the well studied AdS5 / CFT4 cor-
respondence, where perhaps the most striking similarity is the emergence of integrable
structures ?, ?. On the gauge theory side, integrability was demonstrated for the two
loop Hamiltonian1 in ?. Quickly after, the algebraic curve encoding all the classical solu-

1The one loop piece vanishes trivially.
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7 The AdS4 × CP33 string at strong coupling

tions at strong and weak coupling together with the all loop asymptotic Bethe equations
were put forward in ?, ?, ?. There after, and under the assumptions of a SU(2|2)×U(1)
symmetry, the exact S matrix were proposed in ?. Following these findings, a host of
various checks and higher order calculations have been performed ?, ?, ?, ?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?.

That all this has been achieved with such a rapid progress is remarkable since in both
dualities the full dynamics can be constructed from symmetry arguments alone. For
ABJM, the symmetry group is OSP(2, 2|6), which differs quite much from the well known
PSU(2, 2|4) of AdS5 / CFT4. Nevertheless, planar integrability, all loop asymptotic
Bethe equations, SU(2|2) scattering and central extension occur in similar ways in both
dualities.

In this chapter we will perform a detailed study of the AdS4 × CP33 string. Starting
from the symmetry group we derive the full Lagrangian in a uniform light-cone gauge
following similar procedures as those outline in the AdS5×S5 section.

As has been demonstrated by Bykov in ?, the symmetry of the gauge fixed string
reduces from OSP(2, 2|6) to a centrally extended SU(2|2)×U(1). This is rather similar
to the superstring in AdS5×S5 which, as we saw in table 4.2 have a centrally extended
SU(2|2)2 algebra ?. Even though the gauge fixed subalgebras are rather similar, we find
that the general structure of the type IIA superstring is considerably more involved than
its AdS5×S5 cousin.

After we have established the exact string Lagrangian, covariant under SU(2|2)×U(1),
we turn to a perturbative expansion in the string coupling g. Taking the coupling large
we derive the full Hamiltonian up to quartic order in number of fields.

To avoid the rather severe complications of gauge fixing the worldsheet metric, we,
as in the AdS5×S5 case, work in a first order formalism. This has the upshot that the
metric components only enters as Lagrange multipliers. However, the theory exhibits
higher order fermionic worldsheet time derivatives and to preserve a canonical Poisson
structure we need to shift the fermions in a appropriate way. Unfortunately, and in
contrast to the AdS5×S5 string, this shift adds a ’self interacting’ term which is very
hard to remove. Not only is the structure complicated, but it also introduces corrections
to the bosonic momentas. The way we approach this problem is to only present the
canonical Hamiltonian for pure boson / fermion fields. For the reader interested in the
full dynamics of the theory, we present the full Hamiltonian, prior to the shift, in the
appendix.

Having established the first order theory to quartic order, we calculate energy correc-
tions to a certain set of bosonic and fermionic string states. Even though the general
structure of relevant parts of the Hamiltonian is rather involved, we find that the energy
shifts takes a remarkably simple form. As we did for the AdS5×S5 string, we then match
the energy shifts with the predictions coming from a conjectured set of Bethe equations
proposed in ?, and rewritten in a light-cone language in ? and ?.

After this we turn to investigate the role of the massive modes of the theory. At the
quadratic level the string oscillators come in 4F +4B heavy and light modes respectively.
From the point of view of the conjectured exact scattering theory ?, the fundamental
excitations in the S matrix are the light modes, leaving us with a miss match between

104



7.2 Group parameterization and string Lagrangian

the degrees of freedom.
In ? Zarembo calculated the loop corrections for a massive bosonic mode. There it

was found that when quantum corrections are taken into account, the analytic properties
of the propagator changes. What happens is that the pole gets shifted onto the branch
cut and vanishes. Therefore the heavy mode is not fundamental but rather a composite
continuum state of two light particles.

We continue this line of research by showing that exactly the same thing happens
with the remaining massive bosons. Even though we do not calculate it explicitly, we
also provide some general arguments for why the same thing should happen with the
remaining massive fermionic coordinates.

This chapter is organized as follows; We start out in section two by presenting some
general facts about the (super)matrix representation of the osp(2, 2|6) algebra. Then by
making use of the Z4 grading of the algebra, we construct the exact string Lagrangian in
a convenient kappa and light-cone gauge. In section three we expand the derived theory
in a strong coupling limit, equivalent to a near plane-wave expansion, to quartic order.
We find that the theory exhibits higher order time derivatives of the fermions, and thus
naively introduces a complicated Poisson structure. To tackle this problem, we follow ?
and introduce a fermionic shift with the property that it removes the higher order kinetic
terms. Sadly, this shift comes with the price of adding additional cubic and quartic terms
to the interacting Hamiltonian. In section four we turn to a perturbative analysis of the
string spectrum by calculating energy shifts for fermionic states. These we then match
with a set of uniform light-cone Bethe equations, finding perfect agreement. The last
analysis we perform is to calculate loop diagrams for the bosonic heavy modes in section
six. We show that all the massive bosonic modes dissolve into a two particle continuum,
and therefore, do not appear as fundamental excitations of the scattering theory.

7.2 Group parameterization and string Lagrangian
There are many ways to parameterize OSP(2,2|6) and they are all related through non
linear field transformations. In this thesis we will use a particulary suitable representa-
tion that allows us to fix the bosonic and fermionic worldsheet symmetries in a convenient
way ?.

The starting point is a group element of the form (4.86)

G = Λ(x+, x−) f(η)Gt, (7.1)

where the different components are given by

Λ(x+, x−) = exp i

2
(x+Σ+ + x−Σ−), Gt = Gy GAdS GCP ,

f(η) = η +
√
1 + η2.

As before, x± = ϕ± t are a light-cone pair constituted of the time and angle coordinate
of AdS4 and CP33 and Σ± is the corresponding basis element, Σ± = ±Γ0 ⊕ −i T6, see
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section 4.2.1.

The transverse bosonic degrees of freedom are described by Gt and differs somewhat
from the prior cases,

Gt =
(
GAdS 0

0 Gy GCP

)
.

The AdS4 part is parameterized by three transverse coordinates, zi

GAds =
1 + i

2ziΓi√
1 − z2

i
4

. (7.2)

and the Gy element is described by a single real coordinate, y, of the CP33,

Gy = ey T5 , (7.3)

which is a function of cos(y) and sin(y). For the upcoming perturbative analysis it is
convenient to relabel the trigonometric functions as

sin(y) → 1
2
y, cos(y) →

√
1 − 1

4
y2.

The last component of Gt is parameterized by two complex coordinates ωi (and its
conjugate ω̄i)

GCP = (7.4)

1 + 1√
1 + 1

4 |w|2
(
W + W̄

)
+ 4

√
1 + 1

4 |w|2 − 1

|w|2
√

1 + 1
4 |w|2

(
W · W̄ + W̄ ·W

)
,

where W = 1
2ωi τi and |w|2 = ωi ω̄i.

For the auxiliary field π that parameterize the first order Lagrangian (4.98), we in-
troduce a basis decomposition as in (4.96)

π = π+Σ+ + π−Σ− + πt, (7.5)

where

πt =
(

π(z)
i Γi 0
0 π(y) T5 + π(ω)

i τi + π̄(ω̄)
i τ̄i

)
Remember that the components of π does not directly correspond to the conjugate
momentas of the bosonic fields. In order to obtain the physical Hamiltonian, one have
to solve for these components and use the solutions in the Lagrangian (4.98).
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7.2.1 Gauge fixing and field content

As before we use the bosonic symmetries to fix a uniform light-cone gauge as

x+ = σ0 = τ, p+ = Constant, (7.6)

The super group OSP(2,2|6) contains 24 real fermions whereas supersymmetry demands
that the number of fermionic and bosonic excitations should be equal. At first glance,
this looks like a problem since common lore has is that kappa symmetry removes half of
the fermions, which in our case would leave us with to few fermions for supersymmetry
to be manifest. However, as we saw in section 4.2.3, the kappa symmetry for strings in
AdS4×CP33 is partial and only allows for eight real fermions to be removed ?. Therefore
the kappa fixed model has equal number of fermionic and bosonic excitations.

There are many ways to impose the kappa symmetry. In this thesis we will use an
especially convenient gauge introduced by Bykov which is compatible with the bosonic
part of the subgroup that commutes with the gauge-fixed string Hamiltonian2 ?.

As was explained in ?, a kappa gauge that transform covariantly under GB can be
constructed by first enforcing

θ1,5 = i θ1,4, θ1,6 = i θ1,3, θ2,5 = i θ2,4, θ2,6 = i θ2,3, (7.7)

which removes four complex fermions and thus leave us with a total of sixteen real ones as
desired3. As it stands, the gauge (7.7), does not transform covariantly under the bosonic
symmetries. However, if we augment the gauge with the following linear combinations
of the spinor components4

θ1,1 = κ+ 1 − κ+ 2, θ1,2 = −i(κ+ 1 + κ− 2), θ2,1 = κ+ 2 + κ− 1,

θ2,2 = −i(κ+ 2 − κ− 1), θ1,3 = 1
2

(s1
1̇ − s1

2̇), θ1,4 = − i

2
(s1

1̇ + s1
2̇),

θ2,3 = 1
2

(s2
1̇ − s2

2̇), θ2,4 = − i

2
(s2

1̇ + s2
2̇),

then the new variables transform under GB as

κ+,a → eiα ga
b κ

+ b, κ− a → e−iα gb
a κ− b, sa

ḃ
→ ga

b g
ȧ
ḃ
sb

ȧ, (7.8)

where ga
b ∈ SU(2)AdS , gȧ

ḃ
∈ SU(2)CP and e±iϕ ∈ U(1). Thus, in our notation, undotted

indices correspond to the SU(2) from the AdS space and dotted ones correspond to the
2For another covariant kappa gauge, see ?.
3One can also think about the kappa gauge in the following way; if we anticommute a generic, non

kappa gauge fixed odd matrix, with Σ+, one find that the resulting object has the form of a kappa
gauge fixed matrix. In one sense this can be seen as a defining property of the gauge. This is
very similar to the kappa gauge imposed in (4.82) where the gauge fixing was defined through a
commutation relation between a light-cone basis element and η.

4Note that the fermions denoted with κ± has no relation with the constant κ in front of the WZ term
in the Lagrangian. Also note that the ± denotes U(1) charge and should not be confused as sign of
the SU(2) index.
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SU(2) from CP33. In this notation it becomes clear that we have two set of spinors, κ±,
with opposite U(1) charge transforming under the AdS SU(2)5. There is also a spinor,
sa

ḃ
, uncharged under the U(1) but in a bifundamental representation of the two SU(2)’s.

We should also classify how the bosonic fields transform. Clearly, the zi coordinates
only transform under the SU(2) from the AdS space. The singlet y does not transform at
all, neither under any SU(2) or the U(1). The only bosonic fields charged under the U(1)
are the complex ωi and ω̄i which also transform under the SU(2) of CP33. A convenient
index notation is

ωi → ωȧ, ω̄i → ω̄ȧ, (7.9)

where lower index has the plus charge of the U(1) and vice versa.

Under conjugation, all indices changes place

(κ+ a)† = κ̄+ a = ϵab κ̄
+ b, (κ− a)† = κ̄− a = ϵab κ̄− b, (7.10)

(sa
ḃ
)† = s̄ḃ

a = ϵḃȧϵab s̄
b
ȧ, (ωȧ)† = ω̄ȧ = ϵȧḃ ωḃ, ϵab ϵ

bc = δc
a, ϵȧḃ ϵ

ḃċ = δċ
ȧ,

where we also introduced epsilon tensors to raise and lower indices, with the convention
ϵ01 = 1 = −ϵ01. It is convenient to let the ±, denoting U(1) charge of the unconjugated
spinors, travel with the SU(2) index. This imply that all lower ± have negative U(1)
while upper have positive.

The field content for the AdS4 × CP33 string splits up in a more complicated way
than for the AdS5×S5 string and this will complicate things rather severely as will be
seen in the upcoming.

7.2.2 Light-cone Lagrangian and Hamiltonian

Having imposed the bosonic and fermionic gauges, we are in position to start extracting
physical quantities from the string Lagrangian (4.98). As before, the main interest of
study is the string Hamiltonian. As we have seen, in the light-cone formalism it enters
in the natural way

L = pm ẋm + p− + Fermions, m ∈ {i, y, ȧ}.

where p− is a function of the physical fields and the auxiliary π.

5The spinor transforming with negative U(1) is in the conjugate representation of the SU(2) from AdS,
hence the lower index.
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The transverse components of π are solved for through (4.102)6

π(z)
i = 2i p(z)

i

4 + z2
i

, π(y) = 4 py

8 + y2 − ωȧ ω̄ȧ
, (7.11)

π(ω)
1̇ =

8 p1̇ + ω1̇ ω̄
2̇ π(ω)

2̇
8 − ω1̇ ω̄

1̇ − ωȧ ω̄ȧ
, π(ω)

2̇ =
8 p2̇ + ω2̇ ω̄

1̇ π(ω)
1̇

8 − ω2̇ ω̄
2̇ − ωȧ ω̄ȧ

.

The expressions for π± are considerably more complicated and for these components we
will only present the corresponding matrix equations7. To obtain π+ we solve for p+ in
a similar way as we did above, then use this solution in the quadratic constraint (4.100)
to solve for π−,

π+ = −π−
StrΣ−G−
StrΣ+G−

+ 1
StrΣ+G−

(
p+ − StrπtG−

)
, (7.12)

π− = p+ − StrπtG−
2StrΣ−G−

{
1 ±

√√√√√1 −

(
StrΣ−G−

)(
StrΣ+G−

)(
Strπ2

t + Str
(
A2

1
)2)

4
(
p+ − StrπtG−

)2 }

=

(
StrΣ+G−

)(
Strπ2

t + Str
(
A2

1
)2)

16
(
p+ − StrπtG−

) + ...

where we introduced the short hand notation G− for the even part of

i

2
G−1

t

(
f−1(η) Σ− f(η)

)
Gt

and p+ is

p+ = p+ − pW Z
+ = (7.13)

p+ − κ
i

2
Str

{
G−1

t

( i
2

√
1 + η2 Σ− η − i

2
ηΣ−

√
1 + η2

)
Gt Υ AOdd

1 Υ−1
}
,

where the last part is the contribution to p+ coming from the WZ term.

6As can be seen, the complex components mix within each other and one might be tempted to shift
the fields so this complication disappears. However, as it turns out this mixing enters only at quartic
order in number of fields so for the upcoming perturbative analysis this mixing is irrelevant.

7However, their quadratic part is needed to determine the upcoming fermionic shift, so these parts we
present in (25).
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The light-cone Hamiltonian is given by

− H = p− = δL

δẋ+ = (7.14)

i

2
StrπG−1

t

(
Σ+ − ηΣ+ η +

√
1 + η2 Σ+

√
1 + η2)Gt

− κ
i

2
Str

{
G−1

t

( i
2

√
1 + η2 Σ+ η − i

2
ηΣ+

√
1 + η2

)
Gt×

ΥG−1
t

(( i
2

√
1 + η2 Σ− η − i

2
ηΣ−

√
1 + η2)x′− +

√
1 + η2 η′ − η ∂1

√
1 + η2

)
Gt Υ−1

}
.

Note that this expressions is more involved than its AdS5×S5 counterpart in (5.13).
There we could choose a kappa gauge so that the odd part of the current were inde-
pendent of the light-cone coordinate x−. Unfortunately, this is not possible for the
AdS4 × CP33 string, and hence the more complicated expression above.

Combining everything we have so far, we can write the string Lagrangian as

L = (7.15)

p+ ẋ
− + pm ẋm + p− + StrπG−1

t

(
− η η̇ +

√
1 + η2 ∂0

√
1 + η2

)
Gt

+ i

2
κStr G−1

t

(√
1 + η2 ∂0η − η ∂0

√
1 + η2

)
Gt Υ AOdd

1 Υ−1.

Together with the solutions for π and the expression for p− in (7.14) this is the exact
gauge fixed string Lagrangian for the AdS4 × CP33 superstring. It will be the starting
point for a perturbative analysis in the next section. However, as was the case in the
AdS5×S5 section also, it should be clear that the terms involving time derivatives of the
fermions will have terms beyond quadratic order.

7.3 Strong coupling expansion

To be able to extract anything useful from (7.14) we have to consider some sort of
perturbative expansion. The standard way to proceed is to boost, spin or deform the
string in some way or another. As we did for the AdS5×S5 string, we will expand
around a point like string configuration moving on a null geodesic. Or equivalently,
a plane wave expansion ?. This BMN expansion boils down to (5.15), which we for
completeness present again

g → ∞, xm → xm√
g
, pm → pm√

g
, η → η

√
g
. (7.16)
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7.3 Strong coupling expansion

7.3.1 Leading order

It is a good idea to start out the perturbative analysis by fixing some of the constants
we encountered so far. First of all, from now on we will fix8

p+ = 1 κ = 1. (7.17)

What we choose to do with our parameter space is of course arbitrary and the physics we
want to extract is totally independent of numerical conventions. However, the choices
above are very convenient in terms of notation. Having factors of κ and p+ in the ex-
pressions makes things which are, and especially will become, complicated more involved
than necessary.

It is also desirable to have the Lagrangian in such a form that the field expansions
becomes as simple as possible. To achieve this we rescale the string length parameter as
σ → 2σ and send9 η → i η. Taking this into consideration, and taking the limit (7.16)
of (7.15) gives the leading order quadratic Lagrangian

1
2
L = pi żi + py ẏ + ẇȧ p̄

ȧ + ˙̄ωȧ pȧ + is̄ḃ
a ṡ

a
ḃ

+ iκ̄+ a κ̇
+ a + iκ̄− a κ̇− a (7.18)

− p2
i − 4p̄ȧ pȧ − p2

y − 1
4
(
y2 + z2

i + 1
4
ω̄ȧ ωȧ

)
− 1

4
(
z′2

i + y′2 + ω̄′ȧ ω′
ȧ

)
− s̄ḃ

a s
a
ḃ

− 1
2
(
κ̄+ a κ

+ a + κ̄− a κ− a
)

− i
(
κ− a κ

′+ a + κ̄+ a κ̄
′− a)

− i

2
(
sa

ḃ
(s′)ḃ

a + s̄ḃ
a (s̄′)a

ḃ

)
.

From this we find that the fields come in heavy and light multiplets,

M = 1; {sa
ḃ
, zi , y} M = 1

2
; {κ+ a , κ− a , ωȧ , ω̄

ȧ}.

This 4 1
2

+41 split of the masses is a novel feature for the AdS4 ×CP33 string. In the last
section of this thesis we will calculate loop corrections to propagators for the massive
modes. There it will be argued that the heavy excitations can be viewed as composite
states of light modes. For now though we view them as single excitations.

Already at the quadratic level, we get a hint of the complexity of this theory in contrast
to the quadratic AdS5×S5 theory in (5.115).

We can tidy up the notation a bit further by making the quadratic 2-d Lorentz symme-
try manifest. First we introduce, γ0 = σ3 and γ1 = −iσ2, which obeys {γα, γβ} = 2ηαβ

with (+,−) convention. We then combine the fermions into two spinors as

Ψ =
(
κ+ a

κ̄− a

)
, Ψ̄ = Ψ† γ0, χ =

(
sa

ḃ
s̄a

ḃ

)
, χ̄ = χ† γ0.

8Once again we stress that the κ here has nothing to do with the two fermions κ±.
9This is equivalent to defining the fermionic part of the group element as f(η) =

√
1 − η2 + i η.
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7 The AdS4 × CP33 string at strong coupling

Then the quadratic Lagrangian can be written as

1
2
L = pi żi + py ẏ + ẇȧ p̄

ȧ + ˙̄ωȧ pȧ (7.19)

− p2
i − 4p̄ȧ pȧ − p2

y − 1
4
(
y2 + z2

i + 1
4
ω̄ȧ ωȧ

)
− 1

4
(
z′2

i + y′2 + ω̄′ȧ ω′
ȧ

)
+ iΨ̄ γα ∂α Ψ + i

2
χ̄ γα ∂α χ− 1

2
Ψ̄ Ψ − 1

2
χ̄ χ.

Anticipating the quantization procedure we expand the fields in Fourier coefficients as

ωȧ = 1√
2π

∫
dp

1
√
ωp

(
aȧ eipσ + b̄ȧ e−ipσ

)
, pȧ = i√

2π

∫
dp

√
ωp

4

(
b̄ȧ e−ipσ − aȧ eipσ

)
,

y = 1√
2π

∫
dp

1√
2Ωp

(
y eipσ + ȳ e−ipσ

)
, py = 1

2
i√
2π

∫
dp

√
Ωp

2

(
ȳ e−ipσ − y eipσ

)
,

zi = 1√
2π

∫
dp

1√
2Ωp

(
zi e

ipσ + z̄i e
−ipσ

)
, pi = 1

2
i√
2π

∫
dp

√
Ωp

2

(
z̄i e

−ipσ − zi e
ipσ
)
,

sa
ḃ

= 1√
2π

∫
dp

1√
2Ωp

(
Fp χ

a
ḃ
eipσ −Hp χ̄

a
ḃ
e−ipσ

)
,

κ+ a = 1√
2π

∫
dp

1√
2ωp

(
fp c

a eipσ − hp d̄
a e−ipσ

)
,

κ− a = 1√
2π

∫
dp

1√
2ωp

(
fp da e

ipσ − hp c̄a e
−ipσ

)
,

and obvious ones for conjugated fields. The frequencies and the fermionic wave functions
are given by,

ωp =
√

1
4

+ p2, fp =

√
ωp + 1

2
2

, hp = p

2fp
, (7.20)

Ωp =
√

1 + p2, Fp =

√
Ωp + 1

2
, Hp = p

2Fp
,

where the wave functions satisfy the following important identities,

f2
p + h2

p = ωp, f2
p − h2

p = 1
2
, F 2

p +H2
p = Ωp, F 2

p −H2
p = 1.

If we now plug the field expansion into (7.18) and integrate over σ, we find

L =
∫
dp
(
i
(
b̄ḃ ḃḃ + āḃ ȧ

ḃ + ȳ ẏ + z̄i żi + χ̄ḃ
a χ̇

a
ḃ

+ c̄a ċ
a + d̄a ḋa

)
(7.21)

− ωp
(
b̄ḃ bḃ + āḃ a

ḃ + c̄ḃ c
a + d̄a da

)
− Ωp

(
ȳ y + z̄i zi + χ̄ḃ

a χ
a
ḃ

))
.
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7.3 Strong coupling expansion

We also need to consider the second constraint which give rise to

V =
∫
dp p

(
b̄ḃ bḃ + āḃ a

ḃ + ȳ y + z̄i zi + c̄ḃ c
a + d̄a da + χ̄ḃ

a χ
a
ḃ

)
. (7.22)

Which is the so called level matching constraint enforcing that the sum of all mode
numbers has to vanish for physical states. In the quantum theory this will be promoted
to an operator whose action on a physical state should project to zero.

Promoting the oscillators to operators is now down by imposing the equal time
(anti)commutators

[a(p, τ)ȧ, ā(p′, τ)ḃ] = 2π δȧ
ḃ
δ(p− p′), [b(p, τ)ȧ, b̄(p′, τ)ḃ] = 2π δḃ

ȧ δ(p− p′) (7.23)
[y(p, τ), ȳ(p′, τ)] = 2π δ(p− p′), [zi(p, τ), z̄j(p′, τ)] = 2π δijδ(p− p′),
{ca(p, τ), c̄b(p′, τ)} = {db(p, τ), d̄a(p′, τ)} = 2π δa

b δ(p− p′),

{χa
ȧ(p, τ), χ̄ḃ

b(p′, τ)} = 2π δa
b δ

ȧ
ḃ
δ(p− p′).

With this we have established the quadratic Lagrangian, including field expansions and
commutation relations. We would now like to proceed to the higher order contribu-
tions from (7.14). However, before extracting the sub leading terms in the light-cone
Hamiltonian, we have to take care of the higher order kinetic fermions. If these were
to be included then the anti commutation relations in (7.23) would receive higher order
corrections. In the next section we will describe how this complication can (partially)
be avoided by a appropriate shift of the fermions.

7.3.2 Canonical fermions

The focus of this section be will the piece of (7.15) that contains kinetic fermionic terms,

L η
Kinetic = (7.24)

1
2
StrπG−1

t

(
[η̇, η] + 1

4
[η2, {η̇, η}]

)
Gt

− i

2
κStr G−1

t

(
η̇ − 1

2
η η̇ η

)
Gt ΥG−1

t

( i
2

[Σ−, η]x′− + η′ − 1
2
η η′ η

)
Gt Υ−1 + O(η6),

from which it is clear that the anti commutation relations in (7.23) will receive higher
order contributions. In principle this is not a fundamental problem and it can be solved
explicitly by a careful analysis of the Poisson structure, see for example ?. However,
from a calculational point of view, it is rather cumbersome to deal with non trivial
commutation relations. For that reason we will try to avoid the problem by performing
a shift of the fermionic coordinates as we did for the AdS5×S5 string.

113



7 The AdS4 × CP33 string at strong coupling

By using the cyclicity of the super trace and the form of π+, we can write10

L η
Kinetic = i

4
StrΣ+ η̇ η + Str η̇ Φ̃(xm, pm, η), (7.25)

where Φ̃(xm, pm, η) is a complicated fermionic matrix, presented in (24), that can be
deduced from (7.24). It starts at quadratic order in number of fields and for the analysis
at hand we have to know it up to cubic order11

We will now show that most of the higher order terms can be removed by shift-
ing the fermions in an appropriate way. First we introduce a, so far arbitrary, func-
tion Φ(xm, pm, η). Since we are to expand the Hamiltonian up to quartic order, we
need this function to third order in number of fields. To simplify the notations we
split up Φ(xm, pm, η) in number of fields and leave the bosonic dependence implicit,
Φ(xm, pm, η) = Φ2(η) + Φ3(η). The idea is now to shift the fermionic matrix as

η → η + Φ(η). (7.26)

Performing the shift in (7.25) and writing, Φ̃(xm, pm, η) = Φ̃2(η) + Φ̃3(η), we find

L η
Kinetic = (7.27)

i

4
StrΣ+ η̇ η + Str η̇

(
Φ̃2(η) + Φ̃3(η)

)
+ i

4
Str η̇[Φ2(η) + Φ3(η),Σ+]

+ Str η̇ Φ̃2(η → Φ2) + Str Φ̇2(η) Φ̃2(η) + i

4
StrΣ+ Φ̇2(η) Φ2(η),

where Φ̃2(η → Φ2) is a cubic contribution from Φ̃ with Φ2 as argument.

To proceed, we need to find the form of Φ. We do this by recalling that a general kappa
gauge fixed fermionic element, which we again call η, can be written as a commutator,
η = [Σ+, χ] for some arbitrary, non kappa gauge fixed, fermionic matrix χ. This means
that a term of the form Str η̇ Φ̃, for arbitrary fermionic Φ̃, can be written Str χ̇ [Σ+, Φ̃].
This imply that for Φ to remove the higher order terms, it should satisfy the matrix
equation

[Σ+, [Φ,Σ+]] + [Σ+, Φ̃] = 0. (7.28)

Some trial and error shows that a solution for Φ in terms of Φ̃ is

Φ =
(

16×6 0
0 1

4 14×4

)
[Σ+, Φ̃]

(
16×6 0

0 1
4 14×4

)
= Γ [Σ+, Φ̃] Γ,

10π+ is the only component of the auxiliary field which has a constant leading order term.
11The observant reader might notice that (7.24) also has a second quadratic piece ∼ Str η̇ Υ η′ Υ−1.

This term is, however, a total derivative and can be neglected.
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7.3 Strong coupling expansion

which allows us to remove the Str η̇ Φ̃ terms in (7.27) by choosing,

Φ = −4iΓ [Σ+, Φ̃2 + Φ̃2(η → Φ2) + Φ̃3] Γ. (7.29)

This leaves us with

L η
Kin = i

4
StrΣ+ η̇ η + Str Φ̇2 Φ̃2 + i

4
StrΣ+ Φ̇2 Φ2, (7.30)

which can be rewritten using (7.29) to

L η
Kin = i

4
StrΣ+ η̇ η + 1

2
Str Φ̇2 Φ̃2. (7.31)

The last expression is unfortunately rather involved. It is of quartic order in number of
fields and introduce additional time derivatives of the bosonic fields since

Φ̃2 = 1
2
( i
4

[η, [G1
t ,Σ+]] + [η,π1

t ]
)

− i

2
(
[G1

t ,Υ] η′ Υ−1 + Υ η′ [G1
t ,Υ−1]

)
,

where G1
t and π1

t are the pieces of Gt and πt linear in fields. To remove the additional
fermionic kinetic terms induced by the shift, one needs to isolate the η̇ terms from (7.31)
and introduce a second shift, say Φ̂3, with the property i

4Str η̇[Φ̂3,Σ+] = −1
2StrΦ2 Φ̃2|η̇,

where the notation is meant to imply the η̇ dependent part of StrΦ2 Φ̃2. However, this
means that the η̇ independent part contains time derivatives of the bosonic fields, so
we find corrections to the transverse part of π in (7.11). Needless to say, this analysis
becomes rather involved. Not only will the additional fermionic shift, Φ̂3, complicate
things further, but the additional momentum terms also give rise to complications since
they will have a quadratic fermionic dependence12.

We will tackle this problem by simply ignoring it. Or, to be more precise, we assume
that the Φ̂3 shift is performed but do not determine the form of it, nor the additional mo-
mentum terms, allowing us to maintain the canonical Poisson structure for the fermions.
The reason we can do this is because StrΦ2 Φ̃2 contains two fermions and two bosons,
which implies that all additional terms, both from the shift and from πt, will end up in
the mixing part of the shifted Hamiltonian, HBF . This is acceptable since this part is
not needed for the upcoming analysis.

However, a nice feature of the shift is that the x′− dependence will cancel between
the shifted and the original quartic Hamiltonian13. Another nice consequence of the
shift is that it removes all fermionic non σ derivative terms from the relevant parts of
the Hamiltonian. This is important since the point particle dynamics should be fully
encoded in the quadratic fluctuations.

12One could try to change the form of the OSP(2, 2|6) group element as G = Λ Gt f(η) which simplifies
the fermionic kinetic term with the price of fermionic dependence in the bosonic conjugate momentas
from start. However, pushing through with the analysis one finds that in the end the complications
are more or less the same and the fermionic shift is still very involved.

13This is also true for the shifted HBF part. The additional contributions from the complicated Str Φ2 Φ̃2
does introduce any additional x− terms.

115



7 The AdS4 × CP33 string at strong coupling

To summarize what we have done; We introduced a fermionic shift Φ, which can be
expressed in terms of Φ̃, with the property that it removes all higher order fermionic
derivative terms. However, due to the presence of cubic terms in the Lagrangian, the shift
adds a ’self interaction’ term of the form StrΦ2 Φ̃2. This term is not only complicated,
but it also alters the transverse part of the auxiliary field π. Instead of determining this
term explicitly, we simply assume the shift is performed, which guarantees a canonical
Poisson structure. This is equivalent to put StrΦ2 Φ̃2 to zero by hand and accept that
we can not determine the mixing part, HBF , of the shifted Hamiltonian. It is a bit
surprising that the fermions are of such a complicated nature. As we saw earlier, for the
AdS5×S5 string the corresponding shift actually simplified the resulting theory, while
here it has the opposite effect. Perhaps it is related to the coset construction we use
which is not as rigorous as the AdS5 string, see ? and ? for a related discussion.

What we can determine though is the shifted part of the Hamiltonian containing only
bosons and fermions. This we will do in the next section. In the appendix we also present
the full unshifted Hamiltonian, which together with the full form of the fermionic shift
allows one to determine the shifted mixing Hamiltonian.

7.3.3 Higher order Hamiltonian

Having established the relevant form of the fermionic shift we are now in position to
derive the Hamiltonian (7.14) to quartic order in fields. The way to do this is a straight
forward, albeit somewhat tedious, multi step process. First we use the solution for π in
(7.14), impose the shift (7.26) and expand to quartic order. It should be obvious that
due to the complexity of both the Hamiltonian and the shift, it is very desirable to use
some sort of computer program that can handle symbolic manipulations.

Pushing through with the calculation one find that the Hamiltonian has cubic next
to leading order terms. This is another novel feature compared to the AdS5×S5 string
which subleading terms start at quartic order.

Before we present our findings we would like to introduce yet another convenient
notation,

Za
b =

∑
i

ziσ
a
i,b, Z2 = 1

2
Tr Za

b Z
b
c =

∑
i

z2
i (7.32)

P a
z,b =

∑
i

piσ
a
i,b, P 2

z = 1
2
Tr P a

z,b P
b
z,c =

∑
i

p2
i ,

where the Pauli matrices transform as σ → g σ gt under the AdS SU(2).

With all this, we are now in position to extract the full Hamiltonian. Starting out
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7.3 Strong coupling expansion

with the subleading cubic part, we find
√
gH3 = (7.33)(

Ψ̄a Ψb)′Za
b + i

(
Ψ̄ γ1 Ψ′ − Ψ̄′ γ1 Ψ

)b
a

(Z ′)a
b − 2i

(
Ψ̄′ γ0 Ψ − Ψ̄ γ0 Ψ′)b

a
P a

z,b

+ 2
((
χ̄aβ γ

1 Ψ′a − χ̄′
ab γ

1 Ψa)p̄β +
(
Ψ̄a γ

1 χ′a ḃ − Ψ̄′
a γ

1 χa ḃ) pβ

)
+ i

4

((
χ̄a ḃ γ

1 γ0 Ψa)′ω̄ḃ

+
(
Ψ̄a γ

0 γ1 χa ḃ)′ωḃ

)
+ 1

2
(
χ̄a ḃ γ

0 Ψ′a − χ̄′
a ḃ
γ0 Ψa)ω̄′ḃ + 1

2
(
Ψ̄a γ

0 χ′a ḃ − Ψ̄′
a γ

0 χa ḃ)ω′
ḃ

+ i y
(
p̄ḃ ωḃ − pḃ ω̄

ḃ).
A nice feature of the coordinate system we use is that the massive singlet do not mix
with any of the fermionic coordinates. Let us also remark that the fermionic shift (7.26)
induces additional terms already here in the cubic Hamiltonian.

We will split up the quartic Hamiltonian according to its bosonic / fermionic field
content gH4 = HBB + HBF + HF F . For the pure bosonic contribution, we find

g

2
HBB = (7.34)

1
4
Z2 Z ′2 − 3

4
p2

y y
2 + 1

16
y4 − 1

16
y2 y′2 − 1

16
ω̄ȧ ω̄′ḃ ωḃ ω

′
ȧ − 3

32
ω̄ȧ ω̄′ḃ ωȧ ω

′
ḃ

− 1
128

ω̄ȧ ω̄ḃ ωȧ ωḃ + 1
2
p̄ȧ ω̄ḃ pȧ ωḃ + p̄ȧ ω̄ḃ pḃ ωȧ − 1

8
ω̄′ȧ ω′

ȧ y
2 − 3

32
ω̄ȧ ωȧ y

′2

− 2 p̄ȧ pȧ y
2 + 1

8
p2

y ω̄
ȧ ωȧ − 1

2
y2 P 2

z − 1
8
ω̄ȧ ωȧ P

2
z + 2 p̄ȧ pȧ Z

2 + 1
8
ω̄′ȧ ω′

ȧ Z
2

− 1
32
ω̄ȧ ωȧ Z

′2 + 1
8
y′2 Z2 + 1

2
p2

y Z
2 − 1

8
y2 Z ′2,

which, for another more complicated coordinate system, was first calculated in ?.

117



7 The AdS4 × CP33 string at strong coupling

Next we turn to the purely fermionic part which is given by14,

gHF F = −i
(
κ− a κ̄+ b κ

+ a κ′+ b + κ− a κ
′
− b κ

+ a κ̄− b)− i

2
(
κ− a κ̄+ b κ

′+ a κ+ b (7.35)

+ κ− a κ
′
− b κ̄

− a κ+ b + κ− a κ̄
′
+ b κ̄

− a κ̄− b + κ̄+ a κ̄+ b κ
+ a κ̄′− b)+

(
κ− a κ̄+ b κ̄

′− a κ′+ b

+ κ− a κ− b κ
′+ a κ′+ b + κ̄+ a κ̄+ b κ̄

′− a κ̄′− b)− 5
2
(
κ− a κ− b κ̄

′− a κ̄′− b + κ̄+ a κ̄+ b κ
′+ a κ′+ b)

− 3κ− a κ̄
′
+ b κ̄

′− a κ+ b − 4
(
κ− a κ̄+ b κ

′+ a κ̄′− b − κ− a κ
′
− b κ

′+ a κ+ b + κ− a κ̄
′
+ b κ

+ a κ̄′− b

− κ− a κ
′
− b κ̄

− a κ̄′− b − κ̄+ a κ̄
′
+ b κ

+ a κ′+ b + κ− aκ̄
′
+ b κ

′+ a κ̄− b + κ̄+ a κ
′
− b κ̄

′− a κ+ b)
+ 5

(
κ− a κ

′
− b κ̄

′− a κ̄− b + κ̄+ a κ̄
′
+ b κ

′+ a κ+ b)+ 6κ− a κ
′
− b κ

+ a κ′+ b − 2
(
κ− a κ̄

′
+ b κ̄

− a κ′+ b

+ κ̄+ a κ
′
− b κ

+ a κ̄′− b)− 1
2

(s̄′)ȧ
a (s̄′)ḃ

b s
a
ḃ
sb

ȧ + 1
2
sa

ȧ s
b
ḃ
(s′)c,ḃ s′d ȧ(ϵa b ϵc d − ϵa d ϵc b

)
− i

4
(
κ− a κ

′+ a s̄ȧ
b s

b
ȧ − κ− a κ

′+ b s̄ḃ
a s

a
ȧ − κ′

− c κ
+ a s̄ȧ

a s
c
ȧ

)
− 1

2

(
κ̄′

+ c κ
+ c s̄ȧ

a (s′)a
ȧ − κ′

− c κ̄
′− c s̄ȧ

a s
a
ȧ

+ κ′
− c κ̄

′− a s̄ȧ
a s

c
ȧ + κ̄′

+ c κ
′+ a s̄ȧ

a s
c
ȧ + κ̄+ a κ

+ b (s̄′)ȧ
b (s′)a

ȧ − κ̄′
+ c κ

+ c (s̄′)ȧ
a s

a
ȧ − κ− a κ̄

′− a s̄ḃ
a (s′)b

ȧ

− κ− a κ̄
− a (s̄′)ȧ

b (s′)b
ȧ + κ− a κ̄

− b (s̄′)ȧ
b (s′)a

ȧ

)
+ κ− a κ̄

′− a (s̄′)ȧ
b s

b
ȧ − 3

2
(
κ− a κ̄

′− b (s̄′)ȧ
b s

a
ȧ

+ κ̄′
+ c κ

+ a (s̄′)ȧ
a s

c
ȧ

)
+ 1

4
ϵb d ϵȧ ḃ

(
i
(
κ− b κ̄

− a s̄ȧ
a (s̄′)ḃ

d − κ̄+ d κ
+ a s̄ȧ

b (s̄′)ḃ
a − 3κ− a κ̄

− a s̄ȧ
b (s̄′)ḃ

d

+ 3 κ̄+ a κ
+ a s̄ȧ

b (s̄′)ḃ
d

)
+ 2

(
κ− b κ

′+ a s̄ȧ
a (s̄′)ḃ

d − κ̄+ d κ̄
′− a s̄ȧ

b (s̄′)ḃ
a + κ′

− d κ
′+ a s̄ȧ

a s̄
ḃ
b

− κ− a κ
′+ a s̄ȧ

b (s̄′)ḃ
d − κ− b κ

+ a (s̄′)ȧ
a (s̄′)ḃ

d + κ′
− b κ

+ a s̄ȧ
a (s̄′)ḃ

d

)
+ 6

(
κ̄+ b κ̄

′− a s̄ȧ
a (s̄′)ḃ

d

− κ̄′
+ a κ̄

− a s̄ȧ
b (s̄′)ḃ

d

)
− 8 κ̄′

+ d κ̄
− a s̄ȧ

a (s̄′)ḃ
b

)
+ h.c.

Even though quite complicated, both HBB and HF F are definitely manageable expres-
sions. Note that the pure bosonic Hamiltonian suffers from non derivative terms while
the pure fermionic do not. For the latter, these were removed through the shift (7.26).
For the bosonic non derivative terms these can be removed through the use of a canonical
transformation as explained in ? and ?. However, for the upcoming analysis, these will
not have any effect on the calculations, so we choose to leave them as they stand.

As was explained in the previous section, the exact form of the fermionic shift relevant
for the mixing Hamiltonian has not been determined. In the appendix we present the
original Hamiltonian, prior to the fermionic shift, together with the form of Φ̃. The
brave reader interested in the full mixing Hamiltonian can from there determine the
exact form of the additional shift Φ̂3. Having established the full shift one can, together
with the corrections to the transverse part of π, determine the exact form of the shifted
HBF .

We have now obtained the relevant Hamiltonian up to quartic order in number of fields.
It is fully gauge fixed and posses the full SU(2|2)×U(1) symmetry of the theory. In the
next two sections we will perform explicit calculations with it, starting by calculating

14The expression is not simplified by using the two spinor notation so we choose to present it with the
sa

ḃ
and κ± terms explicit.
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7.4 Energy shifts and light-cone Bethe equations

the energy shift for closed bosonic and fermionic subsectors and matching these with a
set of light-cone Bethe equations.

7.4 Energy shifts and light-cone Bethe equations

In light of the AdS4/CFT3 correspondence, energies of string excitations should corre-
spond to anomalous dimensions of single trace operators in certain three dimensional
Chern-Simons theories ?. Based on integrability and the extensive knowledge from the
original AdS5/CFT4 correspondence ?, there has been a very rapid progress in under-
standing how to encode the spectral problem of both models in terms of Bethe equations.
In ? a all loop set of asymptotic Bethe equations were proposed for the full OSP(2, 2|6)
model which supposedly encode the energies of all possible (free) AdS4 × CP33 string
configurations. In ? and ? it was shown that the spectrum of string excitations in
a closed bosonic subsectors of the theory exactly match the predictions of the Bethe
equations from ?. In this section we will review the analysis of ? and ? and explicitly
match energy shifts against the light-cone Bethe equations. Not only will this be an
important consistency check of the derived Hamiltonian, but it will also lend support
to the assumed integrability of the full supersymmetric string model. It is also worth
mentioning that this is the first explicit calculation probing the higher order fermionic
sector of the duality.

Note that we will be rather brief in this section since all the details are spelled out in
section 5.3 and the papers ? and ?.

7.4.1 Strings in closed subsectors

In this section we will compute the energy shifts for a closed fermionic subsector con-
stituted of the fields κ±. Since we have cubic interaction terms in the Hamiltonian, the
standard way to obtain the energy shifts would be through second order perturbation
theory. However, this is quite an involved procedure since we have to sum over inter-
mediate zeroth order states. A much simpler approach is to remove the cubic terms
through a unitary transformation of the Hamiltonian ?, ?

H → ei V H e−i V , (7.36)

where the guiding principle for the construction of V is that it should obey

i[V,H2] = −H3, (7.37)

and thus removes the unwanted terms.
To find an appropriate generating functional we need the oscillator components of H3

√
gH3 = H+++ + H++− + h.c (7.38)

=
∫
dk dn dl

(
C(k, n, l)+++ X̄(k) Ȳ (n) Z̄(l) + C(k, n, l)++− X̄(k) Ȳ (n)Z(l)

)
+ h.c.
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7 The AdS4 × CP33 string at strong coupling

where the oscillators X,Y and Z takes values in the set of 8F + 8B oscillators. However,
since we want the energy shifts for κ± and ωȧ excitations, we only need the piece of H3
that depends quadratically on these excitations, that is, the first and last line of (7.33).
Considering only this part, we can construct a function V with the property (7.37) as ?

√
g V =

∫
dk dn dl

{
(7.39)

−iC(k, n, l)+++

wx(k) + wy(n) + wz(l)
X̄(k) Ȳ (n) Z̄(l) + −iC(k, n, l)++−

wx(k) + wy(n) − wz(l)
X̄(k) Ȳ (n)Z(l)

}
+ h.c,

where wi(m) is either ωm or Ωm depending on the mass of Z(l). It is straight forward,
albeit tedious, to check that this choice of V indeed removes the cubic terms. However,
from (7.36) it is clear the V commuted with the cubic part of the Hamiltonian will give
rise to additional quartic terms,

HAdd
4 = −1

2
{V 2,H2} + V H2 V = i

2
[V,H3]. (7.40)

Even though the precise form of HAdd
4 is quite complicated, evaluating its matrix elements

is nevertheless significantly simpler than performing second order perturbation theory
with the original Hamiltonian. Thus, after the unitary transformation, the Hamiltonian
is of the form

H = H2 + 1
g

(
H4 + HAdd

4
)

+ O(g−3/2), (7.41)

and this is the Hamiltonian we will use to calculate energy shifts in first order pertur-
bation theory.

However, before we move on to that analysis there is one important issue we should
comment on - namely, normal ordering. As was the case for the AdS5×S5 string, the
next to leading order piece, which is the cubic contribution in our case, can be assumed
to be normal ordered. The subleading piece can, however, not be assumed to be ordered.
This is quite clear since the resulting additional quartic terms from the unitary shift are
not ordered, and even though the precise prescription to order them is clear, the ordering
will result in quadratic and zeroth order terms and these terms should somehow combine
with an ordering prescription of the original quartic terms. This is an analysis that we
have not performed since to the order of our interest, the normal ordering ambiguities
can be addressed using ζ-function regularization, see ? and ?15

The states we calculate the energy shifts from will be of the form

F : |m1 ...mM n1 ... nN ⟩ = c̄1(m1) ... c̄1(mM ) d̄2(n1) ... d̄2(nN ) |0⟩, (7.42)

B : |k1 ... kM l1 ... lN ⟩ = ā1̇(k1) ... ā1̇(kM ) b̄2̇(l1) ... b̄2̇(lN ) |0⟩,

15From the point of view of the worldsheet theory, calculating energy shifts to the order we are doing is
basically a tree level calculation and the additional effects originating from the ordering terms enter
at loop level.

120



7.4 Energy shifts and light-cone Bethe equations

where the sum of the mode numbers has to equal zero,
∑M

i=1mi +
∑N

j=1 nj = 0. For
simplicity we only consider states where all mode numbers are distinct.

Before we move on with an explicit calculation of the energy shifts, let us comment
a bit on the normal ordering of the cubic and quartic Hamiltonian. As was the case
for the AdS5×S5 string, we can take the next to leading order contribution, in our
case H3, to be normal ordered. However, what about the quartic piece? If we were to
assume it to be ordered then the sum H3 + H4 is naturally also ordered. However, the
additional terms originating from the unitary transformation (7.36) would then not be
ordered and ordering them would result in additional zeroth and quadratic order terms.
When calculating the energy shifts these terms result in divergent sums which has to
be regularized using, for example, Zeta function regularization, see ? for a detailed
discussion. Even though it can be done and the resulting expressions are physical,
it is by all means an ugly method. The most rigorous way to proceed would be to
assume an ordered cubic piece but leave the quartic Hamiltonian unordered. Then
by ordering the quartic part in the most general way, namely symmetrized sums for
bosonic and antisymmetrized sums for fermionic modes, would allow one to order the
full Hamiltonian.

Nevertheless, for the calculation at hand we can extract the energy shifts without
ordering the full Hamiltonian. The resulting divergent expressions can then be shown
to vanish upon Zeta function regularization, very much as was the case in ?.

The full quartic Hamiltonian, including the additional terms from the unitary trans-
formation, have a general structure as

gH4 = (7.43)
1

(2π)2

∫
dk dn dl dmδ(m+ l − k − n)

{
F (k, n, l,m)11

11 c̄1(k) c̄1(n) c1(l) c1(m)

+ F (k, n, l,m)22
22 d̄

2(k) d̄2(n) d2(l) d2(m) + F (k, n, l,m)12
21 c̄1(k) d̄2(n) d2(l) c1(m)

G(k, n, l,m)1̇1̇
1̇1̇ ā1̇(k) ā1̇(n) a1̇(l) a1̇(m) +G(k, n, l,m)2̇2̇

2̇2̇ b̄
2̇(k) b̄2̇(n) b2̇(l) b2̇(m)

+G(k, n, l,m)1̇2̇
2̇1̇ ā1̇(k) b̄2̇(n) b2̇(l) a1̇(m)

}
+ Non relevant terms.

The components F (k, n, l,m)ab
cd and G(k, n, l,m)ȧḃ

ċḋ
are quite complicated functions of

the frequencies and the fermionic wave functions. Luckily, their form gets constrained
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7 The AdS4 × CP33 string at strong coupling

considerably when projected on the states (7.42),

∆EF = ⟨nN ... n1mM ...m1| H4 |m1 ...mM n1 ... nN ⟩ = (7.44)

1
g

{ 1
16

M∑
i,j=1

(
mi −mj

)2
ωmi ωmj

+ 1
16

N∑
i,j=1

(
ni − nj

)2
ωni ωnj

+ 1
8

M∑
i=1

N∑
j=1

(
mi + nj

)2 + 4mi nj

ωmi ωnj

}
,

∆EB = ⟨lN ... l1 kM ... k1| H4 |k1 ... kM l1 ... lN ⟩ =

N M

2 g
− 1

4 g

{ M∑
i=1

N∑
j=1

(ki − lj)2 + 2ωki
ωlj

ωki
ωlj

}

− 1
16 g

{ N∑
i,j
i ̸=j

6 Ω2
li+lj

− 4
(
1 + ω2

li
+ ω2

lj

)
ωli ωlj

+
M∑
i,j
i̸=j

6 Ω2
ki+kj

− 4
(
1 + ω2

ki
+ ω2

kj

)
ωki

ωkj

}
.

Since both the κ± and ωȧ part of (7.35) and the additional quartic terms are quite
complicated, it is a remarkable feature of the uniform light-cone and kappa gauge that
the energy shifts takes such a simple form.

In the next section we will show that these energy shifts are exactly reproduced from
the asymptotic Bethe equations of ? and ?.

7.4.2 Bethe equations

As we did for the AdS5×S5 string, it is convenient to rewrite the Bethe equations in a
form which make them more suitable for a large λ expansion. As in section 5.3, we start
by introducing the rapidity variables x± as16

x± + 1
x± = 1

h(λ)

(
u± i

2

)
, (7.45)

where u is given in (3.37) and express the spin chain length L in terms of M and N as

L = J + 1
2

(M +N), (7.46)

where J is the total charge of the ground state (3.34). We then combine the energy E
and the charge J into the light-cone pair as P± = ±E + J which allow us to write

J = 1
2

(P+ + P−). (7.47)

Using this to rewrite L together with the identity ?

u(pk) − u(pj) + i

u(pk) − u(pj) − i
= x+(pk) − x−(pj)
x−(pk) − x+(pj)

·
1 −

(
x+(pk)x−(pj)

)−1

1 −
(
x−(pk)x+(pj)

)−1 ,

16Note that these are not the same as for the AdS5×S5 equations since they now depend on the
interpolating scalar function h(λ).
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7.4 Energy shifts and light-cone Bethe equations

we can write (3.35) as

(x+(pk)
x−(pk)

) 1
2 (P++M+N)

= (7.48)

(x+(pk)
x−(pk)

)− 1
2 P−

M∏
k ̸=j

x+(pk) − x−(pj)
x−(pk) − x+(pj)

·
1 −

(
x+(pk)x−(pj)

)−1

1 −
(
x−(pk)x+(pj)

)−1

M∏
j=1

S0(pk, pj)
N∏

j=1
S0(pk, qj),

(x+(qk)
x−(qk)

) 1
2 (P++M+N)

=

(x+(qk)
x−(qk)

)− 1
2 P−

N∏
k ̸=j

x+(qk) − x−(qj)
x−(qk) − x+(qj)

·
1 −

(
x+(qk)x−(qj)

)−1

1 −
(
x−(qk)x+(qj)

)−1

N∏
j=1

S0(qk, pj)
M∏

j=1
S0(qk, pj).

At first glance this does not seem like a convenient reformulation of the equations at
all. However, in the strong coupling expansion, the current form will turn out to be
extremely convenient.

The equations are unknown functions in terms of the momenta pk and qk, the ex-
citation numbers M and N and the light-cone energy P− (we will shortly identify P+
with the coupling) and the dressing phase S0. For the dressing phase, we will only need
the leading order part ?, also presented in section 5.3, which can be written in terms of
conserved charges as

S0(pk, pj) = (7.49)

exp{2i
∞∑

r=0

(h(λ)2

4

)r+2(
Qr+2(pk)Qr+3(pj) −Qr+3(pk)Qr+2(pj)

)}
,

where the charges Qr(pk) are given by

Qr(pk) =
2 sin( r−1

2 pk)
r − 1

(√1
4 + 4h(λ)2 sin2 pk

2 − 1
2

h(λ)2 sin pk
2

)r−1
. (7.50)

The light-cone energy can be expressed, using (3.39), through the dispersion relation

∆ − J =
M∑

j=1

(√1
4

+ 4h(λ)2 sin2 pj

2
− 1

2

)
+

N∑
j=1

(√1
4

+ 4h(λ)2 sin2 qj

2
− 1

2

)
. (7.51)

The numbers M and N figuring above is the total number of oscillators, or equivalently,
the number of Y1 and Y †

3 or fermionic impurities in (2.36).

With the identifications P+ = 2g, which follows from p+ = 1, and the discussion at
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7 The AdS4 × CP33 string at strong coupling

Figure 7.1: Dynkin diagrams for the two choices of gradings, η = ±1

the end of section 5.3, we can rewrite the equations of (7.48), to order O(g−3), as

(x+(pk)
x−(pk)

) 1
2

(
2g+η(M+N)

)
= (7.52)

(x+(pk)
x−(pk)

)−g M∏
k ̸=j

(x+(pk) − x−(pj)
x−(pk) − x+(pj)

) 1
2 (1+η)

√√√√1 −
(
x+(pk)x−(pj)

)−1

1 −
(
x+(pj)x−(pk)

)−1 ×

N∏
j=1

(x+(pk) − x−(qj)
x−(pk) − x+(qj)

) 1
2 (1−η)

√√√√1 −
(
x+(qj)x−(pk)

)−1

1 −
(
x+(pk)x−(qj)

)−1 + O(g−3),

(x+(qk)
x−(qk)

) 1
2

(
2g+η(M+N)

)
=

(x+(qk)
x−(qk)

)−g M∏
k ̸=j

(x+(qk) − x−(qj)
x−(qk) − x+(qj)

) 1
2 (1+η)

√√√√1 −
(
x+(qk)x−(qj)

)−1

1 −
(
x+(qj)x−(qk)

)−1 ×

N∏
j=1

(x+(qk) − x−(pj)
x−(qk) − x+(pj)

) 1
2 (1−η)

√√√√1 −
(
x+(pj)x−(qk)

)−1

1 −
(
x+(qk)x−(pj)

)−1 + O(g−3).

In contrast to (7.48), we generalized the equations a bit by introducing the constant
η = ±1 which selects one of the two Dynkin diagrams in figure 7.1. The main difference
between the two diagrams is the statistics of the M and N nodes, where the integers
denote the number of oscillators. For η = 1 the basic spin flips in the two spin chains are
the purely bosonic {a1̇, b2̇} (corresponding to the closed SU(2) × SU(2) sector described
earlier) while for η = −1 they are the fermionic {c1, d2}. Since we are calculating energy
shifts for both bosonic and fermionic operators, we should pick the η = 1 for bosonic
states and η = −1 for fermionic states, see section 5.3 for a detailed discussion.

The spectral parameters x±(pk) can be solved for using (7.45), where u is given in
(3.37) and which we state again for completeness

u(pk) = cot pk

2

√
1
4

+ 4h(λ)2 sin2 pk

2
. (7.53)
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As we explained earlier, the function h(λ) is a novel feature for the AdS4 / CFT3 duality
and is, so far, only known perturbatively ?. It scales differently in the weak / strong
coupling regimes, where in our case we only need the leading order part of the strong
coupling expansion17

h(λ) =

√
λ

2
+ O(λ0), (7.54)

where the ’t Hooft coupling λ is related to g as

λ = g2

2π2 . (7.55)

The plan now is to assume a perturbative expansion for the rapidity momentas pk and
qk that enters through x±(pk) in the Bethe equations. Assuming an expansion as in
(5.61), and with the identification P+ = 2g, we have

pk = p0
k

2g
+ p1

k

(2g)2 , qk = q0
k

2g
+ q1

k

(2g)2 . (7.56)

Using (7.45) and the explicit representation for u(pk) in (3.37), we can expand the Bethe
equations (7.52) to the order of interest and solve explicitly for the components of pk

and qk. For the leading order contribution one finds

p0
k = 4πmk, q0

k = 4π nk. (7.57)

The higher order components p1
k and q1

k are a bit more involved but can straightforwardly
be deduced from (7.52). Having obtained both pk and qk one plugs the solution into
(7.51) and expands to correct order. Going through withe calculation, and picking η = 1

17The reason we could ignore the ordering issues of the light-cone Hamiltonian, is because they kick in
at order O(λ0) of h(λ), i.e. beyond the tree level approximation.
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7 The AdS4 × CP33 string at strong coupling

for the bosonic states and η = −1 for the fermions, one gets18

∆EF = (7.58)

1
4g

M∑
k=1

{(M +N)m2
k

ωk
+ 8m2

k

ωk

( M∑
j=1

mj(mk −mj)
(1 + 2ωk)(1 + 2ωj) − 4mk mj

−
N∑

j=1

nj(mk − nj)
(1 + 2ωk)(1 + 2ωj) − 4mk nj

−
N∑

j=1

nj(1 + ωj + ωk)
nj(1 + 2ωk) −mk(1 + 2ωj)

)}

+ 1
4g

N∑
k=1

{(M +N)n2
k

ωk
+ 8n2

k

ωk

( N∑
j=1

nj(nk − nj)
(1 + 2ωk)(1 + 2ωj) − 4nk nj

−
M∑

j=1

mj(nk −mj)
(1 + 2ωk)(1 + 2ωj) − 4nk mj

−
M∑

j=1

mj(1 + ωj + ωk)
mj(1 + 2ωk) − nk(1 + 2ωj)

)}
,

while the bosonic shifts with η = 1 are given by

∆EB = (7.59)

1
4 g

M∑
r=1

{
− (M +N) k2

r

ωr
+ 8 k2

r

ωr

( M∑
j ̸=r

kj(1 + ωr + ωj)
kj(1 + 2ωr) − kr(1 + 2ωj)

+
M∑

j=1

kj(kr − kj)
(1 + 2ωr)(1 + 2ωj) − 4 kr kj

−
N∑

j=1

lj(kr − lj)
(1 + 2ωr)(1 + 2ωj) − 4 kr lj

)}

+ 1
4 g

N∑
r=1

{
− (M +N) l2r

ωr
+ 8 l2r
ωr

( N∑
j ̸=r

lj(1 + ωr + ωj)
lj(1 + 2ωr) − lr(1 + 2ωj)

+
N∑

j=1

lj(lr − lj)
(1 + 2ωr)(1 + 2ωj) − 4 lr lj

−
M∑

j=1

kj(lr − kj)
(1 + 2ωr)(1 + 2ωj) − 4 lr kj

)}
.

both these sets should be augmented with the expanded cyclicity condition (3.38),

M∑
j=1

mj +
N∑

j=1
nj = 0. (7.60)

After enforcing this in the above one can show that the energy shifts calculated from the
Bethe equations (7.52) precisely matches the string energies obtained from diagonalizing
the string Hamiltonian in (7.44). However, it is quite tedious to show the algebraic
equivalence of the two expressions and the use of a computer program able to handle
symbolic manipulations is recommended.

The calculations here were the first to probe the factorization property on the string
theory side, ?. It was also the first the fermionic sectors of the theory were probed ?.
18We abbreviated ωmk = ωk and similar for the nk indices. Which excitation the index belong to should

be clear from the context.
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1a

1b

Figure 7.2: Self energy graphs.

Before we end this section let us also mention the result in ?. There the authors
constructed a fermionic reduction to a subsector identical to the SU(1|1) sector of the
AdS5×S5 string ? ?. However, this is not the sector we have studied since the form
of the Bethe equations are not the same as the SU(1|1) ⊂ PSU(2, 2|4) light-cone Bethe
equations in ?. The relation between the two sectors is unclear for us and it would be
nice to understand it further.

7.5 Quantum corrections to the heavy modes

The Bethe equations presented in the earlier section can be extended to the full symmetry
group OSP(2,2|6) in which the Bethe roots fall into short representations of SU(2|2), that
is, only 4F + 4B modes appear as fundamental excitation in the scattering matrix. At
leading order these have the magnon dispersion relation, ω =

√
1
4 + p2, so it is natural

to associate these with the 4F + 4B light string modes, κ± and ωȧ. However, as we have
seen, critical string theory exhibits 8F + 8B oscillatory degrees of freedom, so how are
we to understand the modes y, zi and sa

ḃ
? From the quadratic Lagrangian it certainly

seems like they are on an equal footing as the light modes, so why do they not appear
as excitations in the S-matrix?

By continuing a line of research initiated by Zarembo in ? we will try to address this
question in the upcoming section. We will do this by calculating loop corrections to the
propagators of the massive fields. As we will argue, the loop corrections have the effect
that the pole gets shifted beyond the energy threshold for pair production of two light
modes, so the heavy state dissolves into a two particle continuum.

From the analysis in the previous section, it is clear that the two type of relevant loop
diagrams are a three vertex loop from (7.33) and a tadpole diagram from the full quartic
Hamiltonian, see Figure 7.2. To calculate the corrections one would need to calculate
the full contribution from both types of diagram. However, for the question wetter the
heavy modes come as fundamental excitations or not, it is enough to focus our attention
on the propagators analytic properties close to the pole. For the pure quadratic theory,
at strictly infinite coupling, the massive propagators has a pole at k̄2 = 1. Incorporating
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7 The AdS4 × CP33 string at strong coupling

quantum corrections, it gets shifted as

∆(k) ∼
∫
d2k

Z(k)
k̄2 − 1 + 1

g δm+ iϵ
,

where, as we will show, the relevant part of the mass corrections are of the form

δm = C(k)
√

1 − 1
k̄2 . (7.61)

For values of k̄ such that the difference k̄2−1 is very small, the first term in the propagator
can be as important as the second one. Since the bare pole lies exactly at the branch
point for pair production of two light modes, the sign of C(k) may change the analytical
properties of ∆(k). If the sign is positive, then the one particle pole is shifted below
the threshold energy. If negative, however, the pole gets shifted beyond the threshold
energy and disappears. This means that this field does not exist as a physical excitation
for finite values of the coupling g.

As is well known, the behavior of a Feynman integral close to its pole is dominated by
its imaginary part. Thus, the behavior of the quantum corrected pole can be extracted
from the imaginary part of δm. This has the pleasant advantage that, for the calculation
at hand, we can neglect the tadpole diagrams. This is easy to understand if one takes a
look at the general structure of such a contribution,∫

d2k
G(k)

k̄2 −m2 + i ϵ
,

where g(k) is a even polynomial in k and m is the mass of the particle in the loop.
By direct inspection it is clear that there are no extra branch points associated to this
integral. Of course, there are however a lot of real terms, both finite and divergent,
resulting from the integral. It is however likely that supersymmetry guarantees that
these terms cancel among themselves19.

The analysis then boils down to isolating the imaginary part of the three vertex loops.
Since we will only focus on the massive bosonic coordinates, the relevant part of the
cubic Hamiltonian (7.33) is

√
gHloop

3 =
(
Ψ̄a Ψb)′Za

b + i
(
Ψ̄ γ1 Ψ′ − Ψ̄′ γ1 Ψ

)b
a

(Z ′)a
b − 2i

(
Ψ̄′ Ψ − Ψ̄ Ψ′)b

a
P a

z,b, (7.62)

from where its clear that the fields in the loops are ωȧ for the singlet and κ± for Za
b .

7.5.1 Massive singlet

We will start the analysis with the massive singlet y, already calculated by Zarembo in
?. The analysis basically boils down to determining the sign of the mass correction and
19The heavy modes are in a semi short representation of the SU(2|2) and should be BPS protected from

mass renormalizations ? ?.

128



7.5 Quantum corrections to the heavy modes

since we will encounter (complex) multi valued functions, some care is asked for when
determining which value to take as physical. For this reason we will be rather detailed
in this part of the calculation.

For the singlet we find that one loop corrected propagator equals

⟨Ω|T
(
y(x) y(y)

)
|Ω⟩ = i

(2π)2

∫
d2k

e−ik̄·(x̄−ȳ)

k̄2 − 1 + iϵ

(
1 − 1

k̄2 − 1 − iϵ
π00

)
, (7.63)

where the polarization tensor is given by

−π00 = i

2(2π)2

∫
d2p

(
2p0 − k0

)2(
p̄2 − 1

4 + iϵ
)(

(p̄− k̄)2 − 1
4 + iϵ

) (7.64)

Using the standard Feynman parametrization with q̄ = p̄ − k̄ z, a direct computation
gives

− π00 = (7.65)
1

4π

{1
η

− γ − log(π) −
∫ 1

0
dz
(

log
(1
4

− k̄2(1 − z)z + iϵ
)

+ (1 − 2z)2k2
0

2(1
4 − k̄2(1 − z)z + iϵ)

)}
,

where we used dimensional regularization to isolate the divergence. For a purely real
argument the logarithm develops a imaginary ±iπ part when k̄2 > 1, and to isolate it,
we integrate z over the interval 1

2(1 ±
√

1 − 1
k̄2 ). With the ϵ prescription included, we

find that it gives rise to a small positive imaginary contribution, so it is the iπ part of
Im (log) that we should use. Thus, for k̄2 > 1, its imaginary contribution is

Im
[ 1
4π

∫
log(1

4
− k̄2(1 − z)z)

]
= 1

4

√
1 − 1

k̄2 . (7.66)

If we introduce the short hand notation α = 1
2

√
1 − 1

k̄2 − 4 iϵ
k̄2 and shift z → y + 1

2 , the
last term in (7.65) can be written as

k2
0

4π k̄2

∫ 1
2

0
dy
(
4 + 2α

y − α
− 2α
y + α

)
. (7.67)

The imaginary part of this integral comes from the middle term, where the ϵ prescription
gives a negative imaginary contribution. To calculate the imaginary part of (7.67) we
introduce y − α = ϵ0 e

iθ, which gives

− k2
0

4 k̄2

√
1 − 1

k̄2 = −k2
0
4

√
1 − 1

k̄2 + O(1 − 1
k̄2 )

3
2 , (7.68)

where we assumed that k̄2 is close to the two particle threshold.
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7 The AdS4 × CP33 string at strong coupling

Combining the two results shows that

Im π00 = 1
4

(1 − k2
0)
√

1 − 1
k̄2 = −1

4
k2

1

√
1 − 1

k̄2 + O(1 − 1
k̄2 )

3
2 , (7.69)

which is negative definite close to the pole. This is almost what Zarembo calculated in
?. The difference lies in the form of the square root, which in ? was,

√
1 − k̄2, while we

have
√

1 − 1
k̄2 . This is related to the expansion scheme and has no physical consequence.

What is important is the presence of a positive definite function with the correct overall
sign in front.

7.5.2 Massive AdS coordinates

Having established what happens to the singlet when loop corrections are taken into
account we turn next to the remaining massive coordinates. The corrected propagator
we want to calculate is

⟨Ω|T
(
Zk

l (x)Zm
n (y)

)
|Ω⟩. (7.70)

For this calculation, it is convenient to write the relevant part of the cubic Hamiltonian,
(7.33), as

√
gH3 = i

(
Ψ̄ γ1 Ψ′ − Ψ̄′γ1 Ψ + i Ψ̄ · Ψ

)b
a
(Z ′)a

b − 2i
(
Ψ̄′ Ψ − Ψ̄ Ψ′)b

a
(Pz)a

b . (7.71)

Due to the fermions in the loop, we will encounter quadratic divergences along the way.
However, as was the case for the singlet, these will not contribute to the imaginary part.

Due to the more complicated cubic Hamiltonian, the calculation will be more involved.
However, pushing through with the calculation and using the Feynman parametrization
as before, gives that the relevant terms are of the form

δm =
∫
d2q

F0(k̄) + F2(k̄, q2
0, q

2
1) + F4(k̄, q2

0 q
2
1, q

4
1)

(q̄2 − k̄2(1 − z)z − 1
4 − i ϵ)2 , (7.72)

where the subscript denote the power of qi in the nominator.
To determine the form of the functions Fi, we repeat the same procedure as for the

singlet computation. Unfortunately they are rather involved so we will not present them
explicitly, but a straight forward, albeit somewhat tedious, calculation shows that

δm0 = −2 k2
1

√
1 − 1

k̄2 , δm2 = 1
3
(
k2

0 − k4
0 + 4k2

1 + k4
1)
√

1 − 1
k̄2 , (7.73)

δm4 = 1
3

(k̄2 − 1)(k2
0 + k2

1)
√

1 − 1
k̄2 ,
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which added together gives

δm = −k2
1

√
1 − 1

k̄2
(
2δk

n δ
m
l − δk

l δ
m
n

)
, (7.74)

which is strictly negative20 and exact for k̄2 > 1.
With this we conclude that all the massive bosons dissolve in a two particle continuum.

7.5.3 Massive fermions and comments

Even though we have not performed the calculation in detail, it is plausible that the
massive sb

ȧ fields exhibit the same property as the massive bosons. By direct inspection
of the cubic Hamiltonian it is clear that the fields in the loop will be the two light ωȧ and
κ±. Unfortunately, due to the rather entangled mixing between the sb

ȧ and κ± fields, the
imaginary part of the propagator is rather involved. Nevertheless, it is still of the form

C(k)
√

1 − 1
k̄2 + O(1 − 1

k̄2 )
3
2 ,

with a complicated C(k) which we have not determined. Instead of pursuing this line
of research, a much better way to approach the problem would be to calculate the
worldsheet scattering matrix and from there study the behavior of the massive fields.
Unfortunately, since it is only through loop corrections that the physical role of the
massive fields emerge, the calculation of the scattering matrix would be complicated.
In fact, not even for the AdS5×S5 case is the one loop BMN scattering matrix fully
known. This gives a rather grim outlook for the possibility of deriving the exact one
loop behavior of the AdS4 × CP33 BMN string.

7.6 Summary and closing comments

In this section we have presented a detailed discussion about the type IIA superstring
in AdS4 × CP33. By starting directly from the osp(2, 2|6) superalgebra we constructed
the string Lagrangian through its graded components. The string Lagrangian, covariant
under SU(2)×SU(2)×U(1), was the starting point for a perturbative analysis in a strong
coupling limit. We almost immediately ran into problem due to the presence of higher
order kinetic terms for the fermions. These had the sad effect that they complicated the
general structure of the theory to such an extent that we only presented parts of the
canonical Hamiltonian. Nevertheless, we proceeded with a calculation of energy shifts
for bosonic and fermionic string configurations built out of a arbitrary number of {a1̇, b2̇}
and {c1, d2} oscillators. These shifts we successfully matched with the prediction coming
from a conjectured set of light-cone Bethe equations.

We then moved on to an investigation of the role of the massive bosonic modes. By
20Or, to be precise, it is strictly negative when we restrict to the zi propagation, ⟨T (zi zj)⟩.
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7 The AdS4 × CP33 string at strong coupling

calculating loop corrections to the propagators of the massive fields we saw that the
massive modes dissolved into a two particle continuum.

We also provided an extensive appendix where the original Hamiltonian, including the
kinetic terms of the fermions were spelled out in detail.

All in all we have presented a rather thorough study of the AdS4 ×CP33 superstring.
Naturally a lot remains to be done, where perhaps the most stressing, at least from the
point of view of our analysis, is to establish the one loop scattering matrix for the heavy
modes. Even though we provided arguments for that the heavy modes dissolve in a
two particle continuum, it would be desirable to see it explicitly in terms of Feynman
diagrams. Unfortunately, due to the complexity of the theory, it does not seem very
plausible that one can achieve this through the use of the BMN string. Perhaps a better
way to approach the problem would be through the so called near flat space limit ?, ?.

Another interesting line of research would be to consider higher order corrections to
the interpolating function h(λ) that occurs in the magnon dispersion relation. It has
been extensively studied in ? ? ?, but its higher order structure remains unknown.
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8 Closing comments, summary and future
research

We are finally reaching the end of this thesis in theoretical physics. Hopefully we have
managed to convey a general picture of how string theory at strong coupling behaves.

As the reader might remember we embarked upon the journey with introductory
chapters reviewing the gauge theories occurring in the two AdS / CFT correspondences.
We paid careful attention to the existence of integrable structures and explained how
to encode the spectrum of conformal dimensions into compact sets of Bethe equations.
We then turned to describe general aspects of light-cone string theory where we began
with a thorough review of the bosonic aspects of the theory. Even though significantly
simpler, the bosonic strings still shared many features with the full supersymmetric
theory. After having established some familiarity with the formalism we introduced the
full supersymmetric theory where the starting point were the symmetry algebras of each
model. We then constructed the respective group elements and from there built a flat
current from which we could obtain the full string Lagrangian.

The second part of the thesis were in general devoted to strong coupling analysis of
the three string models, with an important focus on the light-cone Bethe equations. A
major emphasis has, except for the AdS3×S3 string, been to calculate string energies in
order to compare these with the light-cone Bethe equations. For all the cases compared,
we found a remarkable agreement.

The main output of this thesis is two fold. First, we have provided a rigorous study
of strongly coupled light-cone string theory. Even though the review article ? touched
upon the subject, that review mostly focused on the foundations of the coset construction
of the AdS5×S5 string. In this thesis we more or less took that review as a starting
point to perform a large coupling expansion beyond leading order in perturbation theory.
Second, we have provided quite a considerable amount of evidence for the validity of the
asymptotic Bethe equations of ? and ?.

Even though integrability is believed to be manifest in the AdS / CFT dualities, it is
nevertheless very important to put it on a solid footing. In the literature a huge host
of independent tests and checks have been performed and it has been a research field
populated by a large number of scientists. The authors contribution is naturally just
one small piece of the puzzle, but nevertheless, it lends argument for the existence of
integrability, even in highly non trivial sectors of the theories. This is important since, as
of now, the only hope to solve both sides of the AdS / CFT correspondences analytically,
is through the use of integrability. It is because of integrability that we can extrapolate
the values of the calculated observables and actually compare them on both sides of the
duality.
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8 Closing comments, summary and future research

8.1 Outlook

What to do next? If we start with the AdS5×S5 string a natural extension of the work
presented in this thesis would be to calculate finite size corrections to energies of string
states. As we remember, the strong coupling limit was equivalent to a decompactification
of the string worldsheet. This is a crucial fact when defining asymptotic states for the
scattering theory since without these, the spectral problem can not decomposed into
a set of Bethe equations ?. Thus, to write down the spectrum for any values of the
coupling, or J , would be very instructive indeed. For the string theory, this has been an
active research field lately which have culminated into a mirror model which supposedly
describe the energy of any operator at finite J . Since it is a rather complicated model
we have chosen not to presented it in this thesis, but for some recent results see ????.

In section 5.4 we studied the near flat space limit (NFS) of the AdS5×S5 string.
It would be interesting to see wetter the reduced NFS model is invariant under the
full centrally extended SU(2|2)2 group or only invariant under some truncated part.
However, since the model is obviously invariant under the bosonic SU(2)2, it is very
likely that it possess the full symmetry.

Another line of research would be to acquire a more fundamental understanding of
the AdS5×S5 sigma model. For example, could one invent a gauge in which the two
dimensional Lorentz symmetry is manifest even at higher order in perturbation theory?
As we remember, the light-cone gauge breaks the worldsheet Lorentz symmetry beyond
quadratic order. Perhaps the approach developed in ???? is an appropriate alterna-
tive. There the authors rewrite the sigma model as a gauged WZN-model whose two
dimensional Lorentz symmetry is manifest.

It would also be very interesting to study higher loop effects from the string theory
side. For example, deriving the full worldsheet scattering matrix of the near-BMN string
to, for example, one loop. However, as it turns out, the theory suffers from infinities and
at the moment it is not clear how to remove these1.

For the AdS3×S3 string its rather clear what needs to be done. First, one should
finish the analysis we initiated. That is, one should show in detail that the non critical
string is centrally extended in the same way as its ten dimensional AdS5×S5 cousin.
However, this is in one sense more or less trivial, since everything worked out exactly as
for the PSU(2, 2|4) string. Secondly, it would be much more interesting to study possible
off shell extensions for the full ten dimensional AdS3×S3 ×T 4 string. A natural starting
point for this analysis would be the paper ? where the authors constructed the theory
as a coset model with an exceptional superalgebra as G.

The most pressing issue for the AdS4 × CP33 string is to determine the higher order
contributions to the interpolating function h(λ). This function is only known to the
first few orders in perturbation theory and it would indeed be interesting to see how it
extrapolates between strong and weak coupling at higher loop order.

The analysis we provided for the AdS4 × CP33 string was rather hand wavy, at least
from a fundamental point of view. The Hamiltonian we derived, albeit classically sound,

1We thank T. McLoughlin for a discussion regarding this point.
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8.1 Outlook

suffered from normal ordering ambiguities in the quantum theory. This issue we did
not address properly and in order to present a more rigorous analysis, this issue should
definitely be addressed. For some recent results concerning this, please see ?.

The study of integrable structures in AdS / CFT correspondences is still a very active
research field and there is much to be done. It is the authors belief that the field is still
in its infancy and yet a lot of remarkable discoveries are to be found.
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The AdS5 × S5 string

1 Overview of the string results

To confront the proposed light-cone Bethe equations with the quantum string result ex-
tensive computer algebra computations have been performed to diagonalize the world-
sheet Hamiltonian perturbatively. For every considered subsector, i.e. su(2), sl(2),
su(1|1), su(1|2), su(1, 1|2) and su(2|3), we state the effective Hamiltonian and present
analytic results for its eigenvalues up to three impurities, whenever available. In some
cases we had to retreat to a numerical comparison with the Bethe equations, details of
these investigations are given in section 2.

As one sees in table 5.1 the total number of impurities (or string excitations) is given
by K4. We also allow for confluent mode numbers, where the index k = 1, ..,K ′

4 counts
the excitations with distinct modes, each with a multiplicity of νk, using the notation
of section 5.3.1. In uniform light-cone gauge the Hamiltonian eigenvalue −P− is then
given by

P− = −
K4∑
k=1

ωk + δP− = −
K′

4∑
k=1

νk ωk + δP− (1)

In order to classify the Hamiltonian eigenvalues we will make use of the U(1) charges
{S+, S−, J+, J−} introduced in ?. They are light-cone combinations of the two spins Si

of AdS5 and two angular momenta Ji on S5, viz. S± = S1 ± S2 and J± = J1 ± J2. The
charges of the string oscillators are spelled out in table 1.

1.1 The su(2) sector

This sector consists of states, which are composed only of α+
1,n creation operators. The

Hamiltonian (6.10) simplifies dramatically to the effective form

H(su(2))
4 = λ̃

∑
m1+m2

+m3+m4
=0

m2m4√
ωm1ωm2ωm3ωm4

α+
1,m1α

+
1,m2α

−
1,−m3α

−
1,−m4 . (2)

This sector is of rank one and the energy shifts −δP− for arbitrary modes m1, ...,mK4

can be evaluated to

δP
(su(2))
− = λ̃

2P+

K4∑
i,j=1
i̸=j

(mi +mj)2

ωmiωmj

− λ̃

P+

K′
4∑

k=1

m2
k

ω2
mk

νk (νk − 1) (3)
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S+ S− J+ J−

Y1, P y
1 , α+

1,m, α−
4,m 0 0 1 1

Y2, P y
2 , α+

2,m, α−
3,m 0 0 1 -1

Y3, P y
3 , α+

3,m, α−
2,m 0 0 -1 1

Y4, P y
4 , α+

4,m, α−
1,m 0 0 -1 -1

S+ S− J+ J−

Z1, P z
1 , β+

1,m, β−
4,m 1 1 0 0

Z2, P z
2 , β+

2,m, β−
3,m 1 -1 0 0

Z3, P z
3 , β+

3,m, β−
2,m -1 1 0 0

Z4, P z
4 , β+

4,m, β−
1,m -1 -1 0 0

S+ S− J+ J−

θ1, θ†
4, θ+

1,m, θ−
4,m 0 1 1 0

θ2, θ†
3, θ+

2,m, θ−
3,m 0 -1 1 0

θ3, θ†
2, θ+

3,m, θ−
2,m 0 1 -1 0

θ4, θ†
1, θ+

4,m, θ−
1,m 0 -1 -1 0

S+ S− J+ J−

η1, η†
4, η+

1,m, η−
4,m 1 0 0 1

η2, η†
3, η+

2,m, η−
3,m 1 0 0 -1

η3, η†
2, η+

3,m, η−
2,m -1 0 0 1

η4, η†
1, η+

4,m, η−
1,m -1 0 0 -1

Table 1: Charges of the annihilation and creation operators of the AdS5 × S5 string in
uniform light-cone gauge.

By rewriting this P− shift in terms of the global energy E and the BMN quantities J
and λ′ = λ/J2 using P± = J ± E, and then subsequently solving for E one obtains the
su(2) global energy, which precisely agrees with the results in ? and ?

E = J +
K4∑
k=1

ω̄k − λ′

4J

K4∑
k,j=1

m2
kω̄

2
j +m2

j ω̄
2
k

ω̄kω̄j
− λ′

4J

K4∑
i,j=1
i ̸=j

(mi +mj)2

ω̄iω̄j
+ λ′

2J

K′
4∑

i=1

m2
i

ω̄2
i

νk (νi − 1)

with ω̄k :=
√

1 + λ′m2
k . (4)

1.2 The sl(2) sector

The sl(2) states are composed of one flavor of β+
1,n operators. Since the structure of the

Hamiltonian is identical for α±
1,n and β±

1,n up to a minus sign one immediately has

H(sl(2))
4 = −λ̃

∑
m1+m2

+m3+m4
=0

m2m4√
ωm1ωm2ωm3ωm4

β+
1,m1β

+
1,m2β

−
1,−m3β

−
1,−m4 (5)

δP
(sl(2))
− = −δP (su(2))

− (6)

and the global energy shift follows immediately.

1.3 The su(1|1) sector

States of the su(1|1) sector are formed of θ+
1,n creation operators. As noted in ? the

restriction of the O(1/P+) string Hamiltonian (6.10) to the pure su(1|1) sector vanishes

H(su(1|1))
4 ≡ 0 , δP

(su(1|1))
− = 0 . (7)
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1 Overview of the string results

1.4 The su(1|2) sector

We now turn to the first larger rank sector su(1|2) being spanned by the creation oper-
ators θ+

1,n and α+
1,n of one flavor. The effective Hamiltonian is given by

H(su(1|2))
4 = H(su(2))

4 + λ̃
∑

m1+m2
+m3+m4

=0

X(m1,m2,m3,m4)
√
ωm3ωm4

θ+
1,m1θ

−
1,−m2α

+
1,m3α

−
1,−m4 . (8)

where X(m,n, k, l) is defined as

X(m,n, k, l) :=
[(
mn− (m− n)(k − l)

4

)
(fnfm + gngm)

− κ

4
√
λ̃

(k + l)(ωk + ωl)(fngm + fmgn)
]
, (9)

where κ = ±1.

Two impurities

For two impurity su(1|2) states carrying the modes m1 = −m2 the Hamiltonian H4
forms a 4 × 4 matrix with eigenvalues −δP− where

δP− =
{

± 2 λ̃

P+

m2
1

ω1
, 0, 0

}
. (10)

Three impurities with distinct modes

Considering the three impurity case with distinct mode numbers m1,m2,m3 the Hamil-
tonian is represented by an 8×8 matrix which decomposes into 4 non mixing submatrices,
where two fall into the rank one sectors su(2) and su(1|1). The remaining pieces are two
3 × 3 matrices.

Since string states only mix if they carry the same charges, we can classify the sub-
matrices and their eigenvalues by the charge of the corresponding states. One finds:
{S+, S−, J+, J−} = {0, 2, 3, 1}θ+

1 θ+
1 α+

1 |0⟩ :

δP− =
{

± λ̃

P+

3∑
j=1

m2
j

ωj
,

λ̃

P+ω1ω2ω3

3∑
j=1

m2
j ωj

}
(11)
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{S+, S−, J+, J−} = {0, 1, 3, 2}θ+
1 α+

1 α+
1 |0⟩ :

δP− =
{

0, λ̃

P+

m2
1ωm1 +m2

2ωm2 +m2
3ωm3 ± Ξm1,m2,m3

ωm1ωm2ωm3

}
(12)

with Ξa,b,c :=
√

4(ω2
aχ

2
b,c + ω2

bχ
2
a,c + ω2

cχ
2
a,b) + (ξa;b,c − ξb;a,c + ξc;a,b)2 − 4ξa;b,cξc;a,b

ξa;b,c := − a(bωb + cωc − aωa)

χa,b := − ab
λ̃ab− (1 + ωa)(1 + ωb)√

(1 + ωa)(1 + ωb)
.

Three impurities with confluent modes

In the case of confluent modes {m1,m2,m3} = {m,m,−2m} the submatrix with charges
{0, 2, 3, 1} collapses to a scalar whereas the submatrix of charge {0, 1, 3, 2} reduces to
2 × 2 matrix with energy shifts

{S+, S−, J+, J−} = {0, 2, 3, 1}θ+
1 θ+

1 α+
1 |0⟩ : δP− = λ̃

P+

2m2

ωm

( 1
ωm

+ 1
ω2m

)
(13)

{S+, S−, J+, J−} = {0, 1, 3, 2}θ+
1 α+

1 α+
1 |0⟩ : (14)

δP− = 2 λ̃q2

P+ω2
qω2q

(
ωq + ω2q ± ωq

√
3 + 2ω2

2q + 4ωqω2q

)

1.5 The su(1, 1|2) sector

States of the su(1, 1|2) sector are spanned by the set {θ+
1,n, η

+
1,n, β

+
1,n, α

+
1,n} of creation

operators. In this sector the effective Hamiltonian takes the form

H(su(1,1|2))
4 = λ̃

∑
k+l

+n+m
=0

kl
√
ωmωnωkωl

(α+
1,mα

−
1,−n − β+

1,mβ
−
1,−n)(α+

1,kα
−
1,−l + β+

1,kβ
−
1,−l)

+λ̃
∑

k+l
+n+m

=0

2 i fmfn − gmgn√
ωkωl

(θ+
1,mη

+
1,nβ

−
1,−kα

−
1,−l + θ−

1,−mη
−
1,−nβ

+
1,kα

+
1,l) (15)

+λ̃
∑

k+l
+n+m

=0

X(m,n, k, l)
√
ωkωl

(θ+
1,mθ

−
1,−n + η+

1,mη
−
1,−n)(α+

1,kα
−
1,−l − β+

1,kβ
−
1,−l) ,

where X(m,n, k, l) is given in (9).

Two impurities

The Hamiltonian matrix decomposes into several non mixing submatrices. The su(1, 1|2)
sector contains all previous discussed sectors, whose eigenvalues we do not state again.
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1 Overview of the string results

dimension d = 1
{S+, S−, J+, J−} State pattern Property δP−

{0, 0, 3, 3} α+
1 α+

1 α+
1 |0⟩ su(2) state (3)

{3, 3, 0, 0} β+
1 β+

1 β+
1 |0⟩ sl(2) state (6)

dimension d = 3
{S+, S−, J+, J−} State pattern Property δP−

{0, 2, 3, 1} θ+
1 θ+

1 α+
1 |0⟩ su(1|2) state δP

{0,2,3,1}
− see (11)

{2, 0, 1, 3} η+
1 η+

1 α+
1 |0⟩ property of (15) implies δP

{2,1,0,3}
− = +δP

{0,2,3,1}
−

{1, 3, 2, 0} θ+
1 θ+

1 β+
1 |0⟩ property of (15) implies δP

{1,3,2,0}
− = −δP

{0,2,3,1}
−

{3, 1, 0, 2} η+
1 η+

1 β+
1 |0⟩ property of (15) implies δP

{3,1,0,2}
− = −δP

{0,2,3,1}
−

{0, 1, 3, 2} θ+
1 α+

1 α+
1 |0⟩ su(1|2) state δP

{0,1,3,2}
− see (12)

{1, 0, 2, 3} η+
1 α+

1 α+
1 |0⟩ property of (15) implies δP

{1,0,2,3}
− = +δP

{0,1,3,2}
−

{2, 3, 1, 0} θ+
1 β+

1 β+
1 |0⟩ property of (15) implies δP

{2,3,1,0}
− = −δP

{0,1,3,2}
−

{3, 2, 0, 1} η+
1 β+

1 β+
1 |0⟩ property of (15) implies δP

{3,2,0,1}
− = −δP

{0,1,3,2}
−

Table 2: Analytically accessible three impurity, distinct su(1, 1|2) energy shifts.

For the two impurity case with mode numbers m1 = −m2 one obtains the new eigenval-
ues:

{1, 1, 1, 1}θ+
1 η+

1 |0⟩, β+
1 α+

1 |0⟩ : δP− =
{

± 4 λ̃

P+

m2
1

ω1
, 0, 0

}
(16)

{1, 2, 1, 0}θ+
1 β+

1 |0⟩, {0, 1, 2, 1}θ+
1 α+

1 |0⟩
{2, 1, 0, 1}η+

1 β+
1 |0⟩, {1, 0, 1, 2}η+

1 α+
1 |0⟩

δP− = ±2 λ̃

P+

m2
1

ω1
(17)

Three impurities with confluent modes

For higher impurities the situation becomes much more involved. Already the three
impurity su(1, 1|2) Hamiltonian for non-confluent modes becomes a 64 × 64 matrix with
submatrices of rank 9. We will classify the su(1, 1|2) submatrices with respect to their
charges and dimension d. Because su(1, 1|2) contains previously discussed sectors, we
can deduce most of the eigenvalues by using properties of the Hamiltonian H(su(1,1|2))

4 .
Our findings are collected in the table 2.

The structure of the 9 × 9 submatrices is a bit more involved. Under the oscillator
exchange θ1,m ↔ η1,m and α1,m ↔ β1,m the effective Hamiltonian H(su(1,1|2))

4 changes its
sign. This exchange translates a state with charge {1, 1, 2, 2} into one with {2, 2, 1, 1} or
a {1, 2, 2, 1} charged state into one with {2, 1, 1, 2} and vice versa with mutual energy
shifts of opposite signs. See table 3 for results.
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dimension d = 9
{S+, S−, J+, J−} State pattern δP−

{1, 1, 2, 2} β+
1 α+

1 α+
1 |0⟩, θ+

1 η+
1 α+

1 |0⟩ rank 9 matrix, numerical eigenvalues see table 4
{2, 2, 1, 1} β+

1 β+
1 α+

1 |0⟩, θ+
1 η+

1 β+
1 |0⟩ δP

{2,2,1,1}
− = −δP

{1,1,2,2}
−

{1, 2, 2, 1} θ+
1 θ+

1 η+
1 |0⟩, θ+

1 β+
1 α+

1 |0⟩ rank 6 matrix, numerical eigenvalues see table 4
{2, 1, 1, 2} θ+

1 η+
1 η+

1 |0⟩, η+
1 β+

1 α+
1 |0⟩ δP

{2,1,1,2}
− = −δP

{1,2,2,1}
−

Table 3: Remaining three impurity, distinct su(1, 1|2) shifts, which were compared
numerically.

1.6 The su(2|3) sector

Finally the su(2|3) sector is spanned by the operators θ+
1,n, θ

+
2,n, α

+
1,n, α

+
2,n. The effective

form of H4 in this closed subsector reads

H(su(2|3))
4 =

λ̃
∑

k+l
+n+m

=0

kl
√
ωmωnωkωl

(α+
1,mα

−
1,−n + α+

2,mα
−
2,−n)(α+

1,kα
−
1,−l + α+

2,kα
−
2,−l)

+λ̃
∑

k+l
+n+m

=0

X(m,n, k, l)
√
ωkωl

(θ+
1,mθ

−
1,−n + θ+

2,mθ
−
2,−n)(α+

1,kα
−
1,−l + α+

2,kα
−
2,−l) (18)

− λ̃

2
i

∑
k+l

+n+m
=0

1
√
ωkωl

(θ+
2,mθ

+
1,nα

−
2,−kα

−
1,−l + θ−

2,−mθ
−
1,−nα

+
2,kα

+
1,l)

×
[
(m− n)(k − l)(fngm − fngm) + κ√

λ̃
(k + l)(ωk − ωl)(fnfm − gmgn)

]

+λ̃
∑

k+l
+n+m

=0

 (fmgn + fngm)(fkgl + flgk)(mn+ kl)
+(fngk + fkgn)(fmgl + flgm)(nk +ml)
−(fnfl − gngl)(fmfk + gmgk)(nl +mk)

 θ+
2,mθ

−
2,−nθ

+
1,kθ

−
1,−l .

Two impurities

For two impurities with mode numbers m2 = −m1 we find the energy shifts

{0, 0, 2, 0}θ+
2 θ+

1 |0⟩, α+
2 α+

1 |0⟩ : δP− =
{

± 4 λ̃

P+

m2
1

ω1
, 0, 0

}
(19)

{0, 1, 2, 1}θ+
1 α+

1 |0⟩, {0, 1, 2,−1}θ+
1 α+

2 |0⟩
{0,−1, 2, 1}θ+

2 α+
1 |0⟩, {0,−1, 2,−1}θ+

2 α+
2 |0⟩

δP− = ±2 λ̃

P+

m2
1

ω1
(20)
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2 Numerical results

su(2|3) sector2

{S+, S−, J+, J−} eigenvalues −δP−

{0,0 ,3,±3} −0.0106324
{0,±2,3,±1} ±0.0108634 −0.0106324
{0,±1,3,±2} −0.0214958 0.000230962 0
{0,±1,3,0} 0.0217267 3 × −0.0214958 2 × 0.000230962 3 × 0
{0,0,3,±1} −0.0323591 0.0110943 2 × ±0.0108634 3 × −0.0106324
su(1, 1|2) sector
{S+, S−, J+, J−} eigenvalues −δP−

{1,1,2,2} −0.0323591 0.0110943 2 × ±0.0108634 2 × −0.0106324 0.0106324
{1,2,2,1}, {2,1,1,2} ±0.0217267 ±0.0214958 ±0.000230962 3 × 0
{2,2,1,1} 0.0323591 −0.0110943 2 × ±0.0108634 2 × 0.0106324 −0.0106324

Table 4: Numerical results for the first order correction in 1/P+ of the string energy
spectrum for three impurity states with distinct mode numbers m1 = 2,m2 =
1,m3 = −3. The number in front of some eigenvalues denotes their multiplicity
if unequal to one.

su(2|3) sector
{S+, S−, J+, J−} eigenvalues −δP−

{0,±1,3,0} 2 × −0.0454059 2 × 0.0142814
{0,0,3,±1} −0.0752496 0.044125 3 × −0.0155623
{0,±2,3,±1}, {0,0,3,±3} −0.0155623
{0,±1,3,±2} −0.0454059 0.0142814
su(1, 1|2) sector
{S+, S−, J+, J−} eigenvalues −δP−

{1,1,2,2} −0.0752496 0.044125 0.0155623 2 × −0.0155623
{1,2,2,1},{2,1,1,2} ±0.0454059 ±0.0142814
{2,2,1,1} 0.0752496 −0.044125 2 × 0.0155623 −0.0155623

Table 5: Numerical results for the first order correction in 1/P+ of the string energy
spectrum for three impurity states with confluent mode numbers m1 = m2 =
3,m3 = −6. The number in front of some eigenvalues denotes their multiplicity
if unequal to one.

2 Numerical results
Here we collect the numerical results, for this we dial explicit mode numbers and values
for the coupling constant λ′. The considered cases constitute certain three impurity
excitations in the su(1, 1|2) subsector with distinct and confluent mode numbers, as well
as all three impurity excitations (distinct and confluent) for the su(2|3) subsector. In
the tables below we state explicit results for the values λ̃ = 0.1 and P+ = 100 and
mode numbers (m1,m2,m3) = {(2, 1,−3), (3, 3,−6)}. All numerical energy shifts were
matched precisely with the result obtained from the Bethe equations.

2 The ± signs at some charges are just a short form of writing several charge combinations all with the
same eigenvalues. They are not related to the signatures of the eigenvalues in any sense.
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3 Mixing term of the original Hamiltonian

In this appendix we present the full, non shifted, quartic Hamiltonian, which combined
with the fermionic kinetic term in (7.24) encodes the full dynamics of the quartic theory.

We start out by presenting the original cubic Hamiltonian which is similar but not
identical to the shifted one,

√
gHns

3 = (21)(
Ψ̄′ · Ψ

)a
b
Zb

a +
(
Ψ̄ γ1 Ψ′)a

b
(Z ′)b

a + i y ωȧ p̄
ȧ + 3i (κ− a s̄

a ȧ − κ̄+ a s
a ȧ) pȧ

+
(3
8

(κ̄+ a s
a ȧ + κ− a s̄

a ȧ) + i(κ′
− a s

a ȧ − κ̄′
+ a s̄

a ȧ) + i

2
(κ̄+ a (s̄′)a ȧ − κ− a (s′)a ȧ)

)
ωȧ

+ 1
2
(
κ− a (s̄′)a ȧ − κ′

− a s̄
a ȧ − κ̄′

+ a s
a ȧ + κ̄+ a (s′)a ȧ)ω′

ȧ + h.c,

where the ns superscript denotes that this is the non shifted Hamiltonian.

Next we turn to the quartic interactions, where we as before split up the Hamiltonian
according to its field content. The pure bosonic part will naturally be identical to (7.34)
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so we will not present it again. For the pure fermionic part we find

gHns
F F = κ− a κ̄+ b κ

+ b κ̄− a − κ− a κ̄+ b κ
′+ a κ̄′− b − κ− a κ

′
− b κ

+ b κ′+ a (22)
− κ− a κ

′
− b κ̄

− b κ̄′− a − κ− a κ̄
′
+ b κ

+ b κ̄′− a − κ− a κ̄
′
+ b κ̄

− b κ′+ a − κ̄+ a κ
′
− b κ

+ b κ̄′− a

− κ̄+ a κ̄
′
+ b κ

+ b κ′+ a + 1
2
(
κ− a κ− b κ̄

− a κ̄− b − κ− a κ− b κ̄
′− a κ̄′− b + κ̄+ a κ̄+ b κ
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2
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κ− a κ− b κ
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− b κ
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2
(
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(
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7
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2
ϵȧ ḃ ϵa b

(
sa
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ȧ s
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c)
)
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ḃ
(κ− a κ̄

′− c

+ κ̄′
+ a κ

+ c − i

2
κ̄′

+ a κ̄
′− c) + 1

2
sb
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ḃ

(
i κ̄+ a κ

+ a − κ̄′
+ a κ̄

− a)− 1
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(
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+ b)+ h.c.
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4 Fermionic shift

The original mixing Hamiltonian is rather involved and is given by

− gHns
BF = (23)

i

2
y2 sa

ȧ (s′)ȧ
a − y sa

ȧ (s̄′)ȧ
b Z

b
a − i

4
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Note the slight asymmetry between the κ± fields. This is due to the fact that we have
not considered the kinetic terms of the fermions, with witch one should augment the non
shifted Hamiltonian.

4 Fermionic shift

The fermionic shift has to be implemented on the quadratic and cubic Hamiltonian in
(7.19) and (21). In order to attain this one need the explicit form of the fermionic shift.
Starting from (7.24), one can write

1
g
L η

Kin = 1
2
Str η̇

{
[η,Gt πG−1

t ] + 1
4
(
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(24)
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t
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t
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η η′ η
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t η
}

+ O(η6).
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Where the leading order term is the quadratic kinetic term and the higher order terms
are just the function Φ̃(η) introduced earlier, which together with its self interaction
terms constitute the fermionic shift.

Since we do a perturbative analysis up to quartic order, the presence of quadratic
fermionic terms in the above expressions imply that we need π± to quadratic order
only3, from (7.12) we find

gπ− = i

4

(
p2

y + 1
2
Tr(Pz · Pz) + 4 pȧ p̄

ȧ + ω′
ȧ (ω̄′)ȧ + y′2 + 1

2
Tr(Z ′ · Z ′)

)
, (25)

gπ+ = i

4
+ i

16

(
y2 − 1

2
Tr(Z · Z) + 1

4
ωȧ ω̄

ȧ
)

+ 1
4

(
Ψ̄′ γ1 Ψ − Ψ̄ γ1 Ψ′ − i

2
Ψ̄ · Ψ

)
.

Combining the solutions for π± and the transverse components of π in (7.11) one can
solve for the fermionic shift (7.29) explicitly. As should be clear, the explicit form in
components is quite complicated. Nevertheless, it is a straightforward task to obtain the
shift for each coordinates by inverting the expressions (7.8).

To obtain the full shift that also removes the StrΦ2 Φ̃2 term, one need to isolate
the η̇ part and add this contribution to (7.29). The terms from StrΦ2 Φ̃2 without a η̇
dependence will introduce corrections to πt which one also need to determine explic-
itly. Having done all this, one can implement the full shift in the original Hamiltonian,
together with the corrections to π, and determine the full mixing part of the shifted
Hamiltonian. Needless to say, all this will be a rather involved procedure and is beyond
the scope of this thesis.

3This is only true for the fermionic kinetic term. In the full Lagrangian π− is needed to quartic order.
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