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Zusammenfassung Abstract

Zusammenfassung

Diese Arbeit gibt einen Überblick über die SL(2,R)-WZNW-Theorie und ihre
Coset-Modelle. Ein neuer Apekt der Arbeit ist die Analyse des elliptische Sektors,
der gebundend Zustände beschreibt. Es werden Ungleichzeitige Poissonklammern
im elliptischen Sektor für die SL(2,R)-WZNW-Theorie und das SL(2,R)/U(1)-
Modell berechnet. Die Ergebnisse verallgemeinern frühere Resultate für den hyper-
bolischen Sektor and deuten auf eine monodromieunabhängige Poissonklammer-
Struktur hin. Der Vertexoperator des SL(2,R)/U(1)-Modells wird im hyperboli-
schen Sektor konstruiert mit Hilfe der Parametrisierung durch freie Felder und des
Moyal-Formalismus. Der kausal Kommutator zweier Verteyoperatoren erhält die
lokale Struktur des ungleichzeitigen Poissonklammer, mit einer konsistenten Quan-
tendeformation. Die Reflektionsamplitude wird aus der Struktur des Vertexopera-
tors in einlaufenden und auslaufenden Feldern hergeleitet. Das diskrete Spektrum
des elliptischen Sektors wird durch die Nullstellen der Reflektionsamplitude auf der
imaginären Achse des einlaufenden Impulses bestimmt.

Abstract

The thesis reviews the SL(2,R) WZNW theory and its coset models. A new point
of the review is the analysis of the elliptic sector, which describes bound states.
Non-equal time Poisson brackets in the elliptic sector are calculated for the SL(2,R)
WZNW theory and the SL(2,R)/U(1) black hole model. These calculations gen-
eralize the earlier obtaind results for the hyperbolic monodromy and indicate that
the causal Poisson bracket structure is monodromy independent. The vertex op-
erator of the SL(2,R)/U(1) model is constructed in the hyperbolic sector using a
free-field parameterization and the Moyal formalism. The causal commutator of
the vertex operators preserves the local form of the non-equal time Poisson brack-
ets with a consistent quantum deformation. The reflection amplitude is derived
from the structure of the vertex operator in terms of incoming and outgoing fields.
The discrete spectrum of the elliptic sector is found by the zeros of the reflection
amplitude on the imaginary axis of the analytically continued incoming momentum.
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I

Introduction

The standard model describes the dynamics of elementary particles under the
influence of the fundamental forces, except gravity. The main tool of the standard
model is quantum field theory [1]. It makes predictions for scattering processes,
which have been verified experimentally to a high precision. However, the deriva-
tion of these predictions relies on a perturbative treatment of the interaction terms,
which does not work for strong coupling regimes of the theory. The perturbative ap-
proach also fails for bound states, which is an important missing point, since their
accurate treatment is essential for the understanding of the structure of matter.
Furthermore, the inclusion of gravity into the standard model renders it unrenor-
malizable. Therefore, in spite of the great success with experimental data, the
standard model is not treated as a fundamental theory, and one has to look for an
alternative one.

String theory [2] seems to be one of the most promising candidates in this
respect. Here, the elementary particles are no longer represented by point like ob-
jects but rather by one dimensional strings, thus removing some of the divergences
encountered in field theory.

A non-perturbative treatment of physical phenomena usually requires existence
of integrable structures. The investigation of such structure for AdS5 × S5 string
theory is one of the most actively discussed topics in theoretical physics today [3, 4].
Wess-Zumino-Novikov-Witten (WZNW) theory and its cosets play an important
role for understanding of non-perturbative integrable structures both in quantum
field and string theory.

WZNW theory [5, 6, 7] is a fascinating 2-dimensional interacting conformal field
theory, which is completely integrable due to the additional Kac-Moody symmetry.
The target space of WZNW theory is a semi-simple Lie group and the general
solution is given as a product of chiral and antichiral fields. The invariance of
the general solution under the left and right multiplication is just the Kac-Moody
symmetry, which is a non-abelian analog of the Weyl symmetry for free-field theory.

The Poisson bracket algebra of the chiral fields is a basic result for any WZNW
theory [8, 9, 10]. Piecing together the chiral and anti-chiral brackets one finds sur-
prisingly simple causal (and local) non-equal time Poisson brackets for the SL(2,R)
WZNW field [11].

The chiral fields of the periodic SL(2,R) WZNW theory are only quasi-periodic
and they split into three different monodromy classes, called hyperbolic, parabolic
and elliptic. The time dependent behavior of the WZNW-field essentially depends
on the class of monodromy. The above mentioned chiral Poisson brackets are
monodromy dependent as well. The calculation of the causal brackets in [11] was
done for the hyperbolic monodromy only. One can expect that the causal Poisson
bracket structure is monodromy independent, but to check this statement one needs
a similar calculation in the other sectors.

The coset models, obtained from WZNW theory by a gauging procedure [12, 13],
form an important class of integrable theories. An outstanding example is the
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Chapter 1: Introduction

SL(2,R) WZNW theory. Its cosets are Liouville theory [12, 14] and various black
hole models [15, 16], with interesting target space geometries [17]. The different
cosets are derived by gauging the SL(2,R) WZNW model with respect to one
parameter subgroups. In the Hamiltonian formulation the gauging procedure cor-
responds to constraints imposed on the Kac-Moody currents. There are three dif-
ferent types of subgroups related to the signature of the Killing form of the sl(2,R)
algebra. Liouville theory arises from the nilpotent (light-like) gauging, which leads
to first class constraints, whereas the constraints for the black hole models are of
the second class. Therefore, the target space of the black hole models is two dimen-
sional. The different cosets are mutually related, and Liouville theory is not only
the simplest and well investigated, but it is also fundamental for understanding the
other cosets.

Liouville theory has wide applications in different areas of physics and mathe-
matics such as non-critical strings [18], 2d gravity [19, 20], quantum groups [21], or
the dynamics of branes [22, 23, 24]. Its complete integrability directly follows from
the conformal symmetry. Among the remarkable results obtained in Liouville the-
ory one has to mention the calculation of the Virasoro central charge [25], exchange
algebra [21], the construction of the vertex operators [26, 27, 28], 3-point correla-
tion function [29, 30, 31], correlation functions for boundary theory [22, 23, 32], a
local form of the causal commutator [33, 34] and others. The coset interpretation
gave a new insight to various aspects of Liouville theory. The thesis reviews only
some of them, which are relevant for generalizations to other cosets. (for a general
review of Liouville theory see [28].)

Reduction of the hyperbolic sector leads to regular Liouville fields [35], while the
elliptic and parabolic sector corresponds to singular configurations. The hyperbolic
sector has a smooth behavior at the time asymptotics, which allows to define the
in and out free-fields. One can express the Liouville field through the in- (or out-
)field and establish an explicit relation between the asymptotic fields. The free-
field parameterization allows canonical quantization of Liouville theory in the Fock
space related to the in-states. The operator ordering ambiguity for the Liouville
field exponentials (vertex operators) can be fixed by the symmetries of the theory.
Then, the relation between the asymptotic fields defines the S-matrix.

The elliptic sector comes into the game only for boundary Liouville theory
[36, 21]. It describes bound states, which are analytically related to the scattering
states of the hyperbolic sector. The parameter for the analytical continuation is
the in-coming momentum, which in scattering sector is positive and in the elliptic
sector becomes purely imaginary. Then the discrete spectrum of the elliptic sector
can be obtained by the zeros of the reflection amplitude on the negative imaginary
axis [32, 37, 38].

For the SL(2,R)/U(1) model, unlike for Liouville theory, the 2d conformal
symmetry is not sufficient for the complete integrability. Nevertheless, the general
solution of the model, found in [39] in terms of chiral and antichiral fields, can be
written in a form quite similar to Liouville theory. Namely, as a canonical map
from free-fields to the interacting SL(2,R)/U(1) field [40, 41]. The parameterizing
free-field is now complex, and the SL(2,R)/U(1) field can be seen as a complex
version of the Liouville exponential. Then, one can apply a similar quantization
scheme as in Liouville theory, based on the free-field parameterization.

The first quantum deformations, related to the parafermionic algebra of the
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coset currents, were calculated in [42]. The construction of the vertex operator for
the SL(2,R)/U(1)-field was done in [43] and the reflection amplitude was calculated
there as well (see also [44]).

The free-field parameterization of the SL(2,R)/U(1) model used in [42, 43, 44]
corresponds to the hyperbolic monodromy. The case of the elliptic and parabolic
sectors is not discussed in the literature, though they describe regular field con-
figurations. The parabolic monodromy can be treated as an intermediate between
the hyperbolic and elliptic sector, and the corresponding field configurations can
be reached by a limiting procedure from the hyperbolic or elliptic solutions. A spe-
cial interest is to the elliptic monodromy since, similarly to the boundary Liouville
theory, this sector can describe bound states.

It is the aim of this work to extend the analysis of the SL(2,R) WZNW theory
and its cosets from the hyperbolic to the elliptic sector and give a joint treatment
of the monodromy classes. At the same time we intend to fill on some gaps in the
constructions, providing a consisten description of the field.
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Chapter 1: Introduction

Outline

In chapter 2 we introduce the language of symplectic geometry and show how it
can be used to quantize canonically constrained classical (field) theories. Then we
discuss symplectic and Poisson bracket structures on the space of motions and con-
sider 2d massless free-field theory as an example to demonstrate the corresponding
calculations. Free-field theory is also used to introduce infinite dimensional sym-
metry groups related to 2d conformal transformations and translations of the space
of solutions.

Chapter 3 discusses the structure of the SL(2,R) group, which is the target
space of the SL(2,R) WZNW theory. Furthemore, particle dynamics on this man-
ifold and its cosets is studied. Here we introduce the left-right symmetries on the
group manifold and the corresponding gaugings, which are generalized to WZNW
theory in a field theoretical treatment later.

In chapter 4 we turn to the SL(2,R) WZNW theory. We provide the general
solution and describe its symmetries. We introduce the chiral symplectic form.
By its inversion we define the basic chiral Poisson brackets. Then, we calculate
the causal Poisson brackets for the full SL(2,R) WZNW-field and, finally, describe
gaugings of the Kac-Moody symmetries.

Chapter 5 is devoted to classical Liouville theory as it arises by Hamiltonian
reduction from the SL(2,R) WZNW model. We give a parameterization of the
general solution in terms of free-fields and establish the Poisson bracket structure
on the space of solutions. Then, the symmetries of Liouville theory are discussed
and the origin of the improved term in the energy-momentum tensor is investigated.

In chapter 6 we study the SL(2,R)/U(1) model. The general solution is derived
by reduction of the space of solutions, both in the hyperbolic and elliptic sector.
We relate the two sectors by an analytical continuation and show that the elliptic
sector corresponds to bound states, while the hyperbolic one describes scattering
processes. Causal Poisson brackets for both sectors are calculated with the help of
Dirac brackets.

Chapter 7 reviews some aspects of quantum Liouville theory. Here, we construct
the vertex operator in the Moyal formalism, based on the free-field parameterization
and the symmetries of the theory. At the end of the chapter the reflection amplitude
is calculated.

In chapter 8 the quantization of the hyperbolic sector of the SL(2,R)/U(1)
model is carried out in the Moyal formalism, similarly to Liouville theory. We con-
struct the vertex operator and calculate the causal commutator in the fundamental
domain. Furthermore, the scattering amplitude is calculated and by zeros of its
analytical continuation the discrete spectrum in the bound sector is found.

The last chapter summarizes the results and gives an outlook.
The three appendices contain technical details.
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II

Quantizing Classical Systems

In this chapter we introduce the language of symplectic geometry, which is
a helpful tool to analyze constrained dynamical systems and find their canonical
coordinates. These coordinates can then be used to quantize the reduced system
canonically. We discuss symplectic and Poisson bracket structures on the space of
motions. As an example we consider 2d massless free-field theory to demonstrate
the corresponding calculations. At the end of the chapter we discuss the conformal
and Weyl symmetries of free-field theory. These infinite dimensional symmetries
play an important role in our further constructions.

2.1 Symplectic Geometry

We start our considerations with a Lagrange function L(q, q̇) on the tangent bundle
TM of an n dimensional configuration manifold M . The equations of motion are

∂L

∂qi
− ∂t

∂L

∂q̇i
= 0 . (2.1)

If the Lagrangian is regular, i. e. det ∂2L
∂q̇i∂q̇j 6= 0, one can pass to the Hamiltonian

formulation through a Legendre transformation. The Lagrangian is then replaced
by the Hamilton function

H(p, q) =

n
∑

i=1

piq̇
i − L(q, q̇) , where pi ≡

∂L

∂q̇i
, (2.2)

which is now a function on the phase space T ∗M parameterized by p and q, and
the equations of motion are given by

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.3)

An elegant way of expressing these equations of motion is by use of the Poisson
brackets

{f, g} ≡
n
∑

i=1

(

∂f

∂pi

∂g

∂qi
− ∂g

∂pi

∂f

∂qi

)

, (2.4)

with which (2.3) can be written as

q̇i = {H, qi}, ṗi = {H, pi} . (2.5)

The formalism up to this point was developed with respect to specific phase
space coordinates, the canonical coordinates. There exists, however, a way of
deriving the same equations in coordinate independent notation. A point on T ∗M

5



Chapter 2: Quantizing Classical Systems

consists of a point q on M and a covector p ∈ T ∗
qM . One can now construct a

canonical 1-form on T ∗M , given by

θ =

n
∑

i=1

pi dq
i . (2.6)

The outer derivative of this 1-form θ is called the canonical symplectic form ω ≡
dθ. In arbitrary local coordinates it can be written as an antisymmetric tensor,
ω = 1

2ωµνdx
µ ∧ dxν , and in the canonical coordinate system from above it becomes

ω =

n
∑

i=1

dpi ∧ dqi . (2.7)

One can use this 2-form to assign every function a vector field on T ∗M by demand-
ing that for a function f and its vector field Xf the equation

df +Xf ⌋ω = 0 (2.8)

holds. The vector field is then

Xi
f = ωij∂jf , (2.9)

where ω with upper indices denotes the inverse matrix ωij ≡ (ω−1)ij . One can now
make an alternative definition of the Poisson bracket

{f(x), g(x)} ≡ ω(Xf ,Xg) = ωij∂jf(x)∂ig(x) , (2.10)

which for canonical coordinates p, q coincides with the previous definition (2.4).
Note that the Poisson bracket is a derivation,

{f(x), g(x)} = Xf (g(x)). (2.11)

This property can be used to extract the Poisson bracket of two functions directly
from (2.8) without constructing the vector fields explicitly. The Poisson bracket is
antisymmetric and obeys the Jacobi identity

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 , (2.12)

which is due to the fact that the symplectic form is closed, dω = 0.
The coordinate independent formulation of Hamiltonian mechanics allows a

generalization of mechanics to a phase space manifold: Consider a manifold M
equipped with a non-degenerate, closed 2-form ω, i.e. a symplectic manifold. Be-
cause of the non-degeneracy one can invert the 2-form and thus define a relation
between functions and vector fields by (2.8) and a Poisson bracket as in (2.10). Fur-
thermore, this Poisson bracket obeys the Jacobi identity (2.12), since ω is closed.
Given a Hamiltonian H we can then determine the time evolution of an observable
f through

df

dt
= {H, f}+ ∂tf . (2.13)

By Darboux’s theorem one can always find a transformation to canonical variables,
such that locally the symplectic form takes on the form of (2.7) and the equations
of motion are given by (2.3). However, it is, in general, not possible to find a global
transformation to such coordinates.

6



2.2 Hamiltonian Reduction

2.2 Hamiltonian Reduction

The reason we discuss symplectic geometry here is the fact that it provides a con-
venient way to describe a constrained system. Constrained systems arise when
the Lagrangian is not regular and therefore the velocities cannot be written as a
function of independent momenta. This is actually the case for many physically rel-
evant problems like electrodynamics. In the following we will present the approach
to this problem proposed by Faddeev and Jackiw [45, 46].

The first point to note is that any Lagrangian L̃(q, q̇) can be written in linear
form as

L(p, q, v) = pi(q̇
i − vi) + L̃(q, v) . (2.14)

Variation with respect to pi implies vi = q̇i, and substituting this into the new
Lagrangian L yields the original Lagrangian L̃. On the other hand the variation
with respect to vi implies

pi =
∂L(q, v)

∂vi
, (2.15)

and with the usual definition of the Hamiltonian H(p, q, v) ≡ piv
i − L(q, v) the

Lagrangian can be written as

L(p, q, v) = piq̇
i −H(p, q, v) . (2.16)

If the Lagrangian is regular we can express the velocities v in terms of the mo-
menta p and thus arrive at the usual Hamiltonian formulation. If, however, the
Lagrangian is irregular then there arise constraints. These cases will be discussed
in the following.

Let us consider an arbitrary linear Lagrangian on an N dimensional phase space
with coordinates ξi

L(ξ) = ai(ξ)ξ̇
i −H(ξ) (2.17)

The equations of motion are then

fij(ξ)ξ̇
j =

∂H(ξ)

∂ξi
(2.18)

where f is the fieldstrength to the vector potential ai(ξ)dξ
i:

fij(ξ) ≡ ∂iaj(ξ)− ∂jai(ξ) . (2.19)

One now has to distinguish two cases:
Suppose first the matrix fij(ξ) is invertible, i.e. fkifij = δkj , which is only

possible if the phase space is even dimensional, hence N = 2n. Then the equations
of motions simply become

ξ̇j = f ji(ξ)
∂H(ξ)

∂ξi
. (2.20)

Here, there are no constraints and the equations of motion can also be written in
the Poisson formalism as

ξ̇j = {H(ξ), ξj} , (2.21)

if we define the basic Poisson bracket as

{ξi, ξj} = −f ij(ξ) . (2.22)

7
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This Poisson bracket obeys the Jacobi identity due to the Bianchi identity for fij.
For two functions g, h the Poisson bracket is then

{g(ξ), h(ξ)} = f ij∂jg(ξ)∂ih(ξ) (2.23)

and comparison with (2.10) shows that f ij corresponds to ωij . Therefore the 1-
form ai(ξ)dξ

i in (2.17) can be identified with the 1-form θ. This can be used to
extract the symplectic form of a Lagrangian without constructing the canonical
momenta explicitly. Afterwards one can then apply Darboux’s theorem to find
local canonical coordinates.

Let us now consider the case that fij(ξ) is not invertible and therefore there

exist m zero modes, fijz
j
α = 0 with α = 1, . . . ,m. From (2.20) we then get the m

constraints

0 = ziα
∂H(ξ)

∂ξi
. (2.24)

By Darboux’s theorem one can locally find coordinates such that the zero modes
are separated from the other N −m = 2n variables and these remaining variables
are canonical ones. The Lagrangian thus becomes

L =
1

2
ωijξ

iξ̇j −H(ξ, z) , (2.25)

where i and j now range from 0 to 2n, and the m constraints are

∂

∂zα
H(ξ, z) = 0 . (2.26)

If H(ξ, z) is non-linear in some zα then this results in an algebraic equation for zα.
The solution of this in terms of the other variables z and ξ can then be inserted
back into H to find the reduced Hamiltonian. The linearly occurring zα’s however
give constraints on the other variables z and ξ. Some of these can be solved for
another zβ , which can thus be eliminated from the Hamiltonian. The remaining
linearly occurring z’s can be interpreted as Lagrange multipliers λ

L =
1

2
ωijξ

iξ̇j −H(ξ)− λkΦk(ξ) . (2.27)

To incorporate the constraints Φk = 0 we construct a parameterization of the
constrained surface. Inserting this parameterization into the Lagrangian of course
results in a new Hamiltonian and a new 2-form, which can possibly again contain
zero modes. One then has repeat the procedure stated above.

The method can be summarized in the the following steps:

• Identify the zero modes of the 2-form fij.

• Find new coordinates that separate zero modes zα from other variables.

• Solve the new constraints ∂H
∂zα

= 0 for as many zα as possible.

• Construct a parameterization that satisfies the remaining constraints and
substitute it back into L.

8



2.4 Free-Field Theory

These steps have to be repeated until one ends up with a non-singular 2-form. For
the infinite dimensional case encountered in field theory it is not certain, that this
will happen after a finite number of steps, but for many cases it does. Specifically
for purely first class constraints, which have vanishing Poisson brackets with each
other and with the Hamiltonian, or for second class constraints, where the matrix
{Φi,Φj} is invertible, the procedure terminates after one step. Of course, it is
possible that one cannot find a parameterization of the constrained surface. Or it
may not be possible to find global canonical coordinates.

2.3 The Symplectic Form on the Space of Motions

Let us consider a Hamiltonian system with the canonical symplectic form (2.7) and
assume that the dynamical equations (2.5) are completely integrable in the form

qi = qi(t, xµ) , pi = pi(t, x
µ) , µ = 1, . . . , 2n , (2.28)

The parameters xµ usually are dynamical integrals of the system. Equation (2.28)
defines the space of motions parameterized by xµ. Since the time evolution is a
canonical transformation the symplectic form (2.7) is time independent. Therefore,
inserting (2.28) into (2.7) we find

ω̃ =
1

2
ωµνdx

µ ∧ dxν , where ωµν(x) =

n
∑

i=1

(

∂pi
∂xµ

∂qi

∂xν
− ∂pi
∂xν

∂qi

∂xµ

)

. (2.29)

In this way we get a symplectic form on the space of solutions.

Due to Darboux’s theorem one can pass from xµ to some canonical coordinates
xµ → (p̃i, q̃

i). Equation (2.28) then becomes

qi = qi(t, q̃, p̃) , pi = pi(t, q̃, p̃) , (2.30)

and one can apply canonical quantization in the new coordinates (p̃, q̃). The quan-
tum version of (2.30) has to provide the Heisenberg operators p̂i(t), q̂

i(t). But, in
general, if the transformation p̃, q̃ → p, q is non-linear we have an ordering problem
and therefore an ambiguity in the definition of these Heisenberg operators. In order
to fix this ambiguity one can use equations of motion or symmetry properties of
the corresponding operators.

If one imposes constraints on the space of motions it will reduce the symplectic
form (2.29) in way discussed in the previous section.

2.4 Free-Field Theory

2.4.1 Free-Field Theory on a Strip

As an instructive example, and also because we will refer back to the formulas
throughout this work, we now carry out the quantization of a free scalar field on a
Minkowskian strip (τ, σ) given on R× [0, π]. The Lagrangian of a free field is

L =
1

2

(

Φ̇2(τ, σ)− Φ′2(τ, σ)
)

, (2.31)

9
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where the dot denotes differentiation with respect to τ and the prime denotes
differentiation with respect to σ. Here we will consider the boundary conditions
Φ′(τ, 0) = Φ′(τ, π) = 0. In the light-cone (chiral) coordinates

x = τ + σ , ∂x =
1

2
(∂τ + ∂σ) ,

x̄ = τ − σ , ∂x̄ =
1

2
(∂τ − ∂σ) ,

(2.32)

the equation of motion takes the form

∂x∂x̄Φ(x, x̄) = 0 . (2.33)

The general solution of this equation is given by the sum of an arbitrary chiral
and an antichiral function. The boundary condition at σ = 0 implies that the two
functions can differ only by a constant, which without loss of generality can be
chosen to be zero. Thus, the solution is

Φ(x, x̄) = φ(x) + φ(x̄) . (2.34)

From the boundary condition at σ = π follows that the function φ′ must be periodic,
i.e. φ′(x+ 2π) = φ′(x), and it can therefore be written as a discrete Fourier series.
Integration then leads to

φ(x) = q +
p

4π
x+

i√
4π

∑

n 6=0

an
n
e−inx , (2.35)

where a∗n = a−n, so that φ is real. With this we have constructed a parameterization
of the space of motions of the system.

We will now determine the canonical 2-form on the space of motions. The
canonical symplectic form and the Hamiltonian of the system (2.31) are

ω =

∫ π

0
dσ dΠ(τ, σ) ∧ dΦ(τ, σ) , (2.36)

H =
1

2

∫ π

0
dσ
(

Φ̇2(τ, σ) + Φ′(τ, σ)
)

, (2.37)

where the canonical momentum Π(τ, σ) of the theory is given by

Π(τ, σ) ≡ ∂L
∂Φ̇

= Φ̇(τ, σ) . (2.38)

With the help of (2.34) we then obtain the induced symplectic from on the space
of motions

ω̃ =
1

2
dp ∧ dφ(0) +

∫ 2π

0
dx dφ′(x) ∧ dφ(x) , (2.39)

where p is the momentum zero mode, which is a monodromy parameter for φ(x),
i.e.

φ(σ + 2π) =
p

2
+ φ(σ) . (2.40)

In a further step one can insert the Fourier decomposition (2.35), which results in

ω̃ = dp ∧ dq +
1

2

∑

n 6=0

i

n
da−n ∧ dan , (2.41)

H =
1

8π
p2 +

∑

n>0

|an|2 . (2.42)
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It is obvious that p, q and an are canonical coordinates, and indeed (2.8) yields the
Poisson brackets

{p, q} = 1, {am, an} = inδn+m, {p, an} = {q, an} = 0 . (2.43)

We can now also calculate the Poisson brackets of the field itself

{φ′(x), φ(y)} =
1

2
δ(x− y), {φ(x), φ(y)} =

1

4
ǫ(x− y) . (2.44)

where δ is the periodic δ-distribution and ǫ is the stair-step function: ǫ(x) = 1 for
0 < x < 2π and ǫ(x+ k2π) = 2k + ǫ(x) for k ∈ Z.

The quantization of this system is straightforward as the solution is linear in
the canonical coordinates. In order to have a ground state with zero energy the
operator Ĥ is chosen to be the normal ordered operator

Ĥ =
1

8π
p̂2 +

∑

n>0

â†nân . (2.45)

With these operators it is possible to determine the time evolution of all observables
and their expectation values.

2.4.2 Free-Field Theory on a Cylinder

We will later study the SL(2,R) WZNW model on a Minkowskian cylinder. It
is therefore useful to analyze the free-field also on the cylinder. The Lagrangian
and the equations of motion in light-cone coordinates are here also given by (2.31)
and (2.33). The general solution is therefore the sum of a chiral and an antichiral
function

Φ(x, x̄) = φ(x) + φ̄(x̄) . (2.46)

The periodicity condition Φ(t, σ + 2π) = Φ(τ, σ) implies that the derivatives of
these functions are periodic and by integration of their Fourier decomposition we
find

φ(x) =
q

2
+

p

4π
x+

i√
4π

∑

n 6=0

an
n
e−inx , φ̄(x̄) =

q

2
+

p

4π
x̄+

i√
4π

∑

n 6=0

ān
n
e−inx̄ .

(2.47)

Note that in contrast to the strip here the chiral and antichiral function have
absolutely independent non-zero modes an, ān. The Hamiltonian of this system in
terms of the Fourier modes is

H =
1

2

∫ 2π

0
dσ
(

Φ̇2(τ, σ) + Φ′2(τ, σ)
)

=
p2

4π
+
∑

n 6=0

(

|an|2 + |ān|2
)

. (2.48)

The symplectic form on the space of motions can be obtained by inserting the
momentum Π(x, x̄) = Φ̇(x, x̄) and the solution (2.46) into the canonical symplectic
form, which yields

ω̃ =

∫ 2π

0
dσ dΠ(τ, σ) ∧ dΦ(τ, σ)

=

∫ 2π

0
dσ
(

dφ′(x) + dφ̄′(x̄)
)

∧
(

dφ(x) + dφ̄(x̄)
)

.

(2.49)
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After integration by parts using the monodromy behavior of the functions, we find

ω̃ =
1

2
dp ∧ dφ(0) +

∫ 2π

0
dx dφ′(x) ∧ dφ(x)

+
1

2
dp ∧ dφ̄(0) +

∫ 2π

0
dx̄ dφ̄′(x̄) ∧ dφ̄(x̄) .

(2.50)

Here we have used the τ independence of the first and second line by itself to change
the integration variables while keeping the same limits. Inserting the Fourier series
one obtains

ω̃ = dp ∧ dq +
1

2

∑

n 6=0

i

n
da−n ∧ dan +

1

2

∑

n 6=0

i

n
dā−n ∧ dān . (2.51)

Application of (2.8) yields as the only non-vanishing Poisson brackets

{p, q} = 1 , {am, an} = imδn+m , {ām, ān} = imδn+m . (2.52)

From these relations one then finds the basic Poisson brackets

{φ′(x), φ(y)} = {φ̄′(x), φ̄(y)} =
1

2
δ(x − y)− 1

8π
, {φ(x), φ̄(y)} =

1

8π
(x− y) .

(2.53)

We have thus inverted the symplectic form for the free-field theory on the
cylinder. It would, however, be easier for calculations if one could manage to
have commuting chiral and antichiral parts. This can be achieved with the so-
called Veneziano-Fubini trick [47]: We expand the phase space of zero modes and
introduce a new symplectic form ω = ωL + ωR with

ωL =
1

2
dpL ∧ dφ(0) +

∫ 2π

0
dx dφ′(x) ∧ dφ(x) ,

ωR =
1

2
dpR ∧ dφ̄(0) +

∫ 2π

0
dx̄ dφ̄′(x̄) ∧ dφ̄(x̄)

(2.54)

and a new Hamiltonian H = HL +HR with

HL =
p2
L

8π
+
∑

n 6=0

|an|2 , HL =
p2
R

8π
+
∑

n 6=0

|ān|2 . (2.55)

The Poisson brackets are then (2.43) for each field. Brackets between chiral and
antichiral objects vanish. The important point is now that on the physical subspace
pL = pR the Poisson brackets of functions that only depend on the sum q = qL+qR,
but not their difference, are identical to their Poisson brackets in the original space
because

{pL, (qL + qR)} = {pR, (qL + qR)} = {p, q} = 1 . (2.56)

Note that the Hamiltonian (2.55) is gauge invariant, and on the reduced space
it is equal to the original Hamiltonian (2.48). The dynamics of the new system
are therefore equivalent to those of the original one. The problem has thus been
reduced to two separate free-fields. This can be understood in a more general
context as a reduction by a first class constraint (see Appendix A).
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2.4.3 Symmetries

The free-field theory has a conformal symmetry, since the transformation

φ(x)→ φ(ξ(x)) , φ̄(x̄)→ φ̄(ξ̄(x̄)) (2.57)

with ξ′(x) > 0 and ξ(x+ 2π) = ξ(x) leaves the action constructed from (2.31) and
the space of motions (2.46) invariant. By Noether’s theorem one obtains the cor-
responding conserved quantity, the energy-momentum tensor, which has vanishing
diagonal components and the off-diagonal elements

T (x) ≡ T x̄x(x) = φ′2(x) , T (x̄) ≡ T xx̄(x̄) = φ̄′2(x̄) . (2.58)

This tensor in turn generates conformal transformations, since

{T (x), φ(y)} = φ′(x)δ(x − y) (2.59)

is the infinitesimal version of the transformation (2.57), φ(x) → φ(x) + ǫ(x)φ′(x)
with

ξ(x) = eǫ(x)∂xx = x+ ǫ(x) +O(ǫ2) . (2.60)

Furthermore the translation on the space of motions, φ(x) → φ(x) + h(x), is
also a symmetry (in the sense of a symplectomorphism), which is generated by
φ′(x) since

e
R 2π

0
dz2h(z){φ′(z), · }φ(x) = φ(x) + h(x) . (2.61)

These generators of the group of symmetry transformations form a Lie algebra

{φ′(x), φ′(y)} = −1

2
δ′(x− y) , (2.62a)

{T (x), φ′(y)} = φ′′(y)δ(x − y)− φ′(y)δ′(x− y) , (2.62b)

{T (x), T (y)} = T ′(y)δ(x − y)− 2T (y)δ′(x− y) . (2.62c)

For the quantum objects one can show that this algebra is modified by a central
extension

[T̂ (x), T̂ (y)] = T̂ ′(y)δ(x − y)− 2T̂ (y)δ′(x− y) +
~

24π
(δ′(x− y) + δ′′′(x− y)) ,

(2.63)

with the normal ordered operator T̂ (x) ≡: φ̂′2(x) :. The central extension of the
symmetry algebra on the quantum level is a general effect, which has to be taken
into account for a consistent quantization.
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III

Target Space Structure

The SL(2,R) WZNW theory describes a field that takes values in the Lie group
SL(2,R). It is therefore useful to discuss the geometric structure of this target
space. Furthermore, we study the dynamics of a free particle on the SL(2,R) group
manifold and its cosets. These mechanical systems play the role of toy models for
our field theoretical constructions later.

3.1 The SL(2,R) Group

The SL(2,R) group is the set of all real 2×2 matrices with unit determinant,
where the group multiplication is the standard matrix multiplication. An element
g ∈ SL(2,R) and its inverse g−1 can be written as

g =

(

a b
c d

)

, g−1 =

(

d −b
−c a

)

, (3.1)

with the restriction

ad− bc = 1 . (3.2)

The group can be understood as the level set in the four dimensional vector space
of real 2×2 matrices given by ad − bc = 1. Because the gradient of this function
is never zero on the set, it is a regular surface and can be described as a manifold.
Condition (3.2) also guarantees that the multiplication is a diffeomorphism. Thus
the group is a Lie group.

The unit 2×2 matrix I together with the traceless matrices

T0 =

(

0 −1
1 0

)

, T1 =

(

0 1
1 0

)

, T2 =

(

1 0
0 −1

)

(3.3)

forms a basis of R2×2, and an element g ∈ SL(2,R) can be expanded in this basis

g = cI + unTn (3.4)

with real coefficients c and un. In matrix form this reads

g =

(

c+ u2 u1 − u0

u1 + u0 c− u2

)

, (3.5)

and condition (3.2) becomes

c2 +
(

u0
)2 −

(

u1
)2 −

(

u2
)2

= 1 . (3.6)

If we consider separately the planes (u1, u2) and (c, u0), then choosing a point on
the (u1, u2) plane fixes the radius on the (c, u0) plane by c2 + (u0)2 = 1 + (u1)2 +
(u2)2. The only freedom remains in the polar angle and hence the SL(2,R) is
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homeomorphic to R2 × S1. With this idea in mind we can also choose a different
parameterization

c = R cos(α) , u0 = R sin(α) ,

u1 = r cos(β) , u2 = r sin(β) ,
(3.7)

with r ∈ R+, R =
√
r2 + 1 and α, β ∈ [0, 2π].

3.2 The sl(2,R) Algebra

The left invariant vector fields on a Lie group together with the Lie bracket form
its Lie algebra. It is isomorphic to the tangent space at the unit element, which is
called the space of generators. For matrix groups the algebra multiplication is the
matrix commutator.

If one chooses un in (3.4) as local coordinates on SL(2,R), then c is given by

c = ±
√

1− (u0)2 + (u1)2 + (u2)2 , (3.8)

and the tangent vector space at the unit element g = I, which corresponds to
the coordinates (u0, u1, u2) = (0, 0, 0), is spanned by the partial derivatives with
respect to these coordinates, and by (3.5) ∂g

∂un = Tn. Thus, the generator space is
the set of all traceless 2× 2 matrices, which is also clear from the relation

det(eA) = etr(A) . (3.9)

The Tn satisfy the relation

TnTm = −ηnmI + ǫlnmTl , (3.10)

where ηnm = diag(+,−,−) is the metric tensor of the three dimensional Minkowski
space and ǫijk is the Levi-Civita tensor. Indices are raised and lowered by η. Using
relation (3.10) it is easy to calculate the commutator

[Tn, Tm] = 2ǫlnmTl , (3.11)

from which we read of the structure constants of the sl(2,R) algebra f ijk = 2ǫijk.

3.3 Metric Structure

The adjoint representation of a Lie algebra G is defined by

adA(B) ≡ [A,B] , (3.12)

for A,B ∈ G. The Jacobi identity of the Lie bracket ensures that

adA(adB)− adB(adA) = ad[A,B] (3.13)

and the map A 7→ adA is indeed a representation. In a fixed basis the operators
can be written as matrices, which are related to structure constants via

(adi)
n
m = fnim . (3.14)
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The Killing form of two vectors is defined by

K(Ti, Tj) = tr(adi adj) , (3.15)

and the Lie algebra is called semi-simple if the Killing form is non-degenerate.
In case of the sl(2,R) the structure constants are given by (3.11) and we have
K(Ti, Tj) = 4ǫnikǫ

k
jn. Using the identity ǫij

kǫkmn = ηimηjn − ηinηjm this can be
evaluated to

K(Ti, Tj) = −8ηij . (3.16)

Due to (3.10) we have tr(TiTj) = −2ηij , which is proportional to the Killing form.
For the sake of simplicity we define a normalized trace

〈·〉 ≡ −1

2
tr(·) , (3.17)

which realizes the scalar product in the sl(2,R), i.e. 〈TiTj〉 = ηij . We can now
identify T0 as a timelike vector, T1 and T2 as spacelike vectors, and the nilpotent
linear combinations

T± ≡ T0 ± T1 (3.18)

as lightlike vectors.
Since the square of any element of the sl(2,R) algebra is proportional to the

unit matrix the exponent of an arbitrary generator A ∈ sl(2,R) can be written as

eA = cosh(
√

−〈AA〉)I + sinh(−
√

〈AA〉) A
√

−〈AA〉
for 〈AA〉 < 0 (3.19)

eA = cos(
√

〈AA〉)I + sin(
√

〈AA〉) A
√

〈AA〉
for 〈AA〉 > 0 (3.20)

eA = I +A for 〈AA〉 = 0 . (3.21)

Thus, the SL(2,R) group has a compact subgroup generated by timelike vectors,
while the spacelike vectors generate non-compact subgroups. Explicitly, for T2, T0

and T+ we find

eθT2 =

(

eθ 0
0 e−θ

)

, eθT0 =

(

cos θ − sin θ
sin θ cos θ

)

, eθT+ =

(

1 0
2θ 1

)

. (3.22)

Because of the invariance of the trace with respect to cyclic permutation the
pullback of the scalar product (3.17) under the multiplication from the left is identi-
cal to that under the multiplication from the right. We can therefore unambiguously
define a metric G on SL(2,R) through

G(X,Y ) ≡ 〈g−1X(g)g−1Y (g)〉 . (3.23)

In coordinates (3.4) this metric becomes

G =

(

ηij +
1

c2
uiuj

)

dui ⊗ duj , (3.24)

which is identical to the metric of H3 of radius R = 1 in the standard coordinates
which arises from the embedding in R(2,2). Thus, the coordinates un realize an
isomorphism between SL(2,R) and H3.
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3.4 Lorentz Transformations

For every group element a in a Lie group G one can define a group automorphism

Ψa(b) ≡ aba−1 (3.25)

which maps the unit element I onto itself. The differential of this automorphism
at the unit element is a map from the generator algebra to itself, which is denoted
by Ada,

Ada : G → G , Ada(A) ≡ DΨa(A) . (3.26)

These operators on the Lie algebra realize a representation of the group, called the
adjoint representation.

For matrix groups like the SL(2,R) the map Ψg is already linear and the adjoint
representation is given by

Adg(A) = gAg−1 . (3.27)

Due to the invariance of the trace (3.17) with respect to cyclic permutations the
scalar product is invariant under this map

〈Adg(A)Adg(B)〉 = 〈AB〉 , (3.28)

and we can identify the map Adg with the Lorentz transformations in the sl(2,R).
The components of a vector A ∈ sl(2,R), given by An = 〈T nA〉, transform as

Ai → ΛnmA
m , where Λnm = 〈T ngTmg−1〉 . (3.29)

The matrix elements Λij can also be expressed in coordinates (3.5), and using the
identities

〈TlTmTn〉 = ǫlmn , (3.30)

〈TlTmTnTk〉 = ηlnηmk − ηlkηmn − ηlmηnk , (3.31)

one finds the expression

Λij(g) = (1− 2ukuk)ηij − 2ǫijkcu
k + 2uiuj . (3.32)

3.5 Particle Dynamics

Now we study the motion of a free particle on the SL(2,R) space. The particle
model is useful to get a basic understanding of dynamics on the group manifold.

3.5.1 Lagrangian Formulation

The standard Lagrangian of a free particle with mass m = 1 is given by

L = −1

2
Gµν q̇

µ(t)q̇ν(t) = −1

2
〈g−1(t)ġ(t)g−1(t)ġ(t)〉 . (3.33)

The equation of motion for this system is

g̈(t) = ġ(t)g−1(t)ġ(t) (3.34)

and one can immediately find its general solution

g(t) = g0e
(t−t0)R or g(t) = e(t−t0)Lg0 , (3.35)

with initial position g0 = g(t0) and initial ’velocity’ R = g−1(t0)ġ(t0) and L =
ġ(t0)g

−1(t0).
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3.5 Particle Dynamics

3.5.2 Hamiltonian Formulation

We now want to apply the first order formalism, that was described in section 2.2,
to obtain the Poisson structure of the system. First, note that the linear Lagrangian

L = −〈Rg−1ġ〉+ 1

2
〈RR〉 (3.36)

is equivalent to the free particle Lagrangian (3.33), since the equations of motion
for R imply

R = g−1ġ , (3.37)

insertion of which reproduces the original Lagrangian. Here one can identify the
first term with the 1-form θ and the second term with the Hamiltonian

θ = −〈Rg−1dg〉 , (3.38a)

H = −1

2
〈RR〉 . (3.38b)

The space of solutions given by (3.35) and (3.37) is parameterized by g0 and R.
The induced 2-form ω̃ = dθ on the space of motions is easily found to be

ω̃ = −〈dR ∧ g−1
0 dg0〉+ 〈Rg−1

0 dg0 ∧ g−1
0 dg0〉 . (3.39)

Using (2.8) we can extract the Poisson brackets of the system and find

{Rn, g0} = −g0Tn , {Rm, Rn} = −2ǫmn
kRk , {g0, g0} = 0 . (3.40)

For the function L = ġg−1 = g0Rg
−1
0 one finds similar Poisson brackets

{Lm, Ln} = −2ǫmn
kLk , {Ln, g0} = −Tng0 . (3.41)

The Poisson bracket between R and L vanishes

{Rm, Ln} = 0 . (3.42)

3.5.3 Gauged Systems

The Lagrangian (3.33) and the space of motions (3.35) are invariant under mul-
tiplication of g(t) from the left or right with arbitrary constant group elements
a, b ∈ SL(2,R). These transformations are generated by L and R, respectively.
One can now make a subgroup of this global symmetry local by the standard gaug-
ing procedure, i.e. by replacing the time derivative with the covariant derivative
ġ(t) → ġ(t) − A(t)δg, where δg is the infinitesimal transformation of g(t) under
the symmetry transformation. For the multiplication from the right with a group
element generated by Tn we have

g(t)→ g(t)eǫTn = g(t) + ǫg(t)Tn +O(ǫ2) . (3.43)

The gauged Lagrangian is therefore

L = −1

2
〈g−1(ġ −AgTn)g−1(ġ −AgTn)〉 . (3.44)
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Chapter 3: Target Space Structure

For a time- or spacelike vector Tn the algebraic equation of motion for A can be
solved

A(t) =
1

ηnn
〈Tng−1ġ〉 . (3.45)

Substituting this solution back into the Lagrangian we find the effective Lagrangian

L = −1

2

[

〈g−1ġg−1ġ〉 − 1

ηnn
〈Tng−1ġ〉2

]

. (3.46)

In terms of the gauge invariant variables xi ≡ 1
2〈T igTng−1〉 the Lagrangian can be

written as

L = − 1

2ηnn
ẋiẋ

i , (3.47)

which can be checked using the identities (3.30), (3.31) and

(Tn)ab(T
n)cd = δabδbc − 2δadδbc . (3.48)

Since the coordinates must also satisfy the constraint

xix
i =

ηnn
4

(3.49)

the solutions of the equations of motion are geodesics on this pseudo-sphere. The
action as well as the constraint are invariant under Lorentz transformations, and
from the Noether theorem we find the corresponding conserved quantities

Ln = ǫn
ijxiẋj . (3.50)

The vector L is orthogonal to the position x and the velocity ẋ, and thus the
trajectories are given by the intersection of the hyperboloid (3.49) and a plane
through the origin perpendicular to L.

The solutions can also be obtained by Hamiltonian reduction of the space of mo-
tions of the ungauged system. For that purpose we look at the gauged Lagrangian
(3.44) in the first order formalism

L = −〈Rg−1ġ〉+ 1

2
〈RR〉+A〈RTn)〉 . (3.51)

This is equivalent to the original Lagrangian with an additional Lagrange multiplier,
that imposes the constraint

Rn = 0 (3.52)

on the solution (3.35). The solution in terms of gauge invariant variables is therefore
given by

xi = 〈T ig0e(R
1T1+R2T2)(t−t0)Tne

−(R1T1+R2T2)(t−t0)g−1
0 〉 . (3.53)

As one can check the gauge invariant quantity L = 〈Tng0Rg−1
0 〉 is also orthogonal

to these coordinates
Lnx

n = 0 . (3.54)

The solutions found by Hamiltonian reduction therefore also give the geodesics on
the hyperboloid. Using (3.20) we find the explicit solution for g0 = I and n = 0

x0 =
1

2
(1 + 2 sinh2(|R|t)) , (3.55a)

x1 =
R2

|R| sinh(|R|t) cosh(|R|t) , (3.55b)

x2 = −R1

|R| sinh(|R|t) cosh(|R|t) . (3.55c)
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3.5 Particle Dynamics

with |R| =
√

R2
1 +R2

2. Solutions with arbitrary g0 are related to this one by the
Lorentz transformations (3.32).

3.5.4 Further Gaugings

Here we will study specific gaugings, which will become relevant for the WZNW
theory later. These are the axial gauging with respect to the transformation

g(t)→ eǫTng(t)eǫTn = g(t) + ǫ(Tng(t) + g(t)Tn) +O(ǫ2) , (3.56)

the vector gauging with respect to the transformation

g(t)→ eǫTng(t)e−ǫTn = g(t) + ǫ(Tng(t)− g(t)Tn) +O(ǫ2) (3.57)

and the nilpotent gauging with respect to two transformation generated by the
nilpotent matrix T+ from (3.18)

g(t)→ eǫ1T+g(t)eǫ2T+ = g(t) + ǫ1T+g(t) + ǫ2g(t)T+ +O(ǫ2) . (3.58)

Axial Gauging: The Lagrangian with the covariant derivative in place of the
regular one becomes

Lax
(n) = −1

2
〈g−1(ġ −A(Tng + gTn))g

−1(ġ −A(Tng + gTn))〉 , (3.59)

where we have suppressed the time dependence of the variables. Note that the
equation of motion for A(t) is purely algebraic. Substituting its solution

A(t) =
〈Tng−1ġ〉+ 〈Tnġg−1〉

2(ηnn + Λnn)
(3.60)

back into the Lagrangian (3.59) leads to the gauged expression

Lax
(n) = −1

2

[

〈g−1ġg−1ġ〉 − (〈Tng−1ġ〉+ 〈Tnġg−1〉)2
2(ηnn + Λnn)

]

. (3.61)

In order to write this Lagrangian only in terms of the gauge invariant variables we
go to coordinates (3.4) and thus arrive at

Lax
(n) = −1

2

[

u̇ku̇k + ċ2 − (cu̇n − unċ)2
ηnnc2 + u2

n

]

. (3.62)

For the gauging with respect to the compact subgroup generated by T0 we set
n = 0. The final gauged Lagrangian is then

Lax
(0) =

1

2

u̇2
1 + u̇2

2 + (u1u̇2 − u2u̇1)
2

1 + u2
1 + u2

2

. (3.63)

For n = 2, the gauging with respect to the con-compact subgroup, we get

Lax
(2) =

1

2

u̇2
0 − u̇2

1 + (u0u̇1 − u1u̇0)
2

u2
0 − u2

1 − 1
. (3.64)
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Vector Gauging: Similarly to the axial case the Lagrangian for the vector gaug-
ing

Lvec
(n) = −1

2
〈g−1(ġ −A(Tng − gTn))g−1(ġ −A(Tng − gTn))〉 (3.65)

leads to an algebraic equation for A(t)

A(t) =
〈Tng−1ġ〉 − 〈Tnġg−1〉

2(ηnn − Λnn)
. (3.66)

Substituting this solution back into (3.65) gives the reduced Lagrangian, which in
terms of coordinates (3.4) becomes

Lvec
(n) = −1

2

[

u̇ku̇k +
1

c2
uiu̇iu

ju̇j −
(ǫijnu

iu̇j)2

ηnnukuk − u2
n

]

. (3.67)

In the compact case n = 0 this leads to the final expression

Lvec
(0) =

1

2

u̇2
0 + ċ2 − (u1u̇2 − u2u̇1)

2

u2
0 + c2 − 1

. (3.68)

For the non-compact case n = 2 the Lagrangian is the same as for the axial gauge,
except in terms of c and u2.

Nilpotent Gauging: Here we have to introduce two independent gauge fields
for the two separate transformations. The Lagrangian is then

L(+) = −1

2
〈g−1(ġ −AT+g −BgT+)g−1(ġ −AT+g −BgT+)〉 . (3.69)

The equations of motion for A and B are easily solved and we find

A =
〈T+g

−1ġ〉
Λ++

, B =
〈T+ġg

−1〉
Λ++

. (3.70)

Substituting these solutions into the Lagrangian we get the effective Lagrangian

L(+) = −1

2

[

〈g−1ġg−1ġ〉 − 2

Λ++
〈T+ġg

−1〉〈T+ġg
−1〉
]

. (3.71)

In order to eliminate all gauge dependent variables we insert the coordinates (3.4)
and finally get

L(+) =
u̇2

+

2u2
+

. (3.72)

Note that this Lagrangian is singular for u+(t) = 0 and the solutions must be
positive or negative for all times. We can therefore parameterize the trajectory by
u+(t) = ±ex(t). The Lagrangian in terms of this x(t) is then just

L(+) =
1

2
ẋ2(t) (3.73)

which describes a free particle in one dimension.
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3.5 Particle Dynamics

Hamiltonian Reduction: For the axial or vector gauged Lagrangian one can
write a linear Lagrangian in the same way as before

L
ax/vec
(n) = −〈Rg−1ġ〉+

(

1

2
〈RR〉+A〈Rg−1(Tng ± gTn)〉

)

. (3.74)

The gauge field A(t) appears here as a Lagrange multiplier which imposes the
constraint

〈Rg−1(Tng ± gTn)〉 = 0 . (3.75)

On the space of motions given by the solutions (3.35) and (3.37) this constraint
becomes

Ln ±Rn = 0 , (3.76)

which corresponds to a gauge choice A(t) = 0.
For the nilpotent gauging the linear Lagrangian is

L = −〈Rg−1ġ〉+
(

1

2
〈RR〉+A〈Rg−1T+g〉 +B〈RT+〉

)

. (3.77)

Here we see two Lagrange multipliers, which impose the conditions

R+ ≡ 〈T+R〉 = 0 , L+ ≡ 〈T+L〉 = 0 . (3.78)

3.5.5 Liouville Particle

We now want to study a reduction related to the nilpotent gauging. Consider the
constraints

R+ = −ρ , L+ = ρ (3.79)

on the space of motions. These are first class constraints, because by (3.40)-(3.42)
and (3.38b) the Poisson brackets of R+ and L+ with themselves, with each other
and with the Hamiltonian vanish. We then know that the Hamiltonian and the
symplectic form are gauge invariant with respect to transformations generated by
these constraints (see Appendix A). Therefore we impose an additional constraint,
that fixes the gauge

R2 = 0 , L2 = 0 . (3.80)

Writing the relation g0R = Lg0 in matrix form gives four equations, from which
we find

g0 =

(

a b
−1
ρR−b −a

)

(3.81)

with arbitrary parameters a, b. The unit determinant condition det(g0) = 1 fixes
R−

R− =
ρ

b2
(1 + a2) . (3.82)

We now substitute the parameterization (3.81) into the 1-form (3.38a) and the
Hamiltonian (3.38b) and obtain

θ̃ =
1

ρ
b da , (3.83)

H =
1

2
ρR− =

1

2

ρ2

b2
(1 + a2) . (3.84)
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Chapter 3: Target Space Structure

A reparameterization with a = 1
ρPe

−Q and b = e−Q leads to the canonical sym-

plectic form ω̃ = dθ̃ = dP ∧ dQ and to the Hamiltonian

H =
1

2

(

P 2 + ρ2e2Q
)

, (3.85)

which is that of a particle in the Liouville potential. To find the general solution we
substitute the parameterization (3.81) into the general solution of the unconstrained
system (3.35). Using (3.19) we obtain for the only gauge invariant component

e−Q(t) ≡ g12(t) = b cosh
(√

2Hρ t
)

+ a
ρ√
2H

sinh
(√

2Hρ t
)

. (3.86)

Here, b can be expressed in terms of a and the Hamiltonian (3.85)

b =
ρ√
2H

√

1 + a2 . (3.87)

With the definitions p ≡
√

2H and eq ≡
√

1 + a2 + a the solution can then be
written as

e−Q(t) =
ρ

2p

[

eq+pt + e−(q+pt)
]

. (3.88)

The Hamiltonian in the new variables is H = 1
2p

2, and one can check that these are
still canonical variables, i.e. ω = dp ∧ dq. We have thus found the general solution
of a particle in the Liouville potential in terms of a free particle. A similar strategy
will be used for the field theoretical model in chapter 5.
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IV

The WZNW Theory

In this chapter we turn to WZNW theory, using the formalism and the technique
established in the previous chapters. We provide both Lagrangian and Hamilto-
nian descriptions of the SL(2,R) WZNW theory, where we outline the Kac-Moody
and conformal symmetries of the general solution and give their Poisson bracket
realization. The basic Poisson bracket relations are obtained by the inversion of the
chiral symplectic form, which is monodromy dependent. Then we calculate non-
equal time Poisson brackets for the full WZNW-field and, finally, describe gaugings
of the Kac-Moody symmetries.

A new result for this chapter is the calculation of the non-equal time Poisson
brackets in the elliptic sector of the SL(2,R) WZNW theory. This calculation
generalizes the earlier obtained result of [11] for the hyperbolic monodromy and
indicates that the non-equal time Poisson bracket structure of the full WZNW-field
is monodromy independent.

4.1 The WZNW Action

The WZNW theory [5, 6, 7] is described by the action

SWZNW [g] = −k
2

∫

M

√
−hhµν 〈g−1∂µgg

−1∂νg〉 d2ξ + kIWZ [g] , (4.1)

which contains a sigma model part and the additional Wess-Zumino term

IWZ [g] =
1

3

∫

B

〈g−1dg ∧ g−1dg ∧ g−1dg〉 . (4.2)

Here, the world surface M is a cylinder (ξ0, ξ1) ∈ R×S1 with the Minkowski metric
hµν = diag(+,−), 〈·〉 denotes a normalized trace, B is a volume with the boundary
∂B = g(M), and g takes values in a semi-simple Lie group. In this work we will
consider only SL(2,R) valued fields, and 〈·〉 is given by (3.17). The coordinates
(ξ0, ξ1) we denote by (τ, σ) as for free-field theory and assume σ ∈ [0, 2π].

The first term is the Polyakov action of a string on H3 in the conformal gauge,
to which the general solution is not known. The second term, the Wess-Zumino
term, is a priori not given in the usual form of an integral over a Lagrangian.
However, the 3-form H = 1

3〈g−1dg ∧ g−1dg ∧ g−1dg〉 can be written as the outer
derivative H = dF(A,±) of the 2-form [42]

F(A,±) =
〈Adgg−1〉 ∧ 〈Ag−1dg〉
〈AgAg−1〉 ± 〈AA〉 , (4.3)

where A is a fixed non-zero element of the sl(2,R) algebra. Using then Stokes’
theorem, we can rewrite the Wess-Zumino term as

IWZ [g] =

∫

g(M)

F =

∫

M
F̃ , (4.4)
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M SL(2,R)
g

Figure 4.1: Embedding of the Minkowskian world sheet M into the 3 dimen-
sional Lie group SL(2,R).

where F̃ is the pullback of F on M . In the light cone coordinates (2.32) the metric
hµν and its inverse are

h =

(

0 1
2

1
2 0

)

h−1 =

(

0 2
2 0

)

, (4.5)

and the Lagrangian of the system becomes

L(A,±) = −k 〈g−1∂xgg
−1∂x̄g〉 − k

〈A∂xgg−1〉〈Ag−1∂x̄g〉 − 〈A∂x̄gg−1〉〈Ag−1∂xg〉
〈AgAg−1〉 ± 〈AA〉 .

(4.6)
The change of the sign in front of the F -term occurs because the coordinate trans-
formation from (τ, σ) to (x, x̄) inverts the orientation. Lagrangians with different
choices of A and the sign ± differ only by a total derivative, which does not affect
the equations of motion.

Using local coordinates un on the SL(2,R) group manifold, the action of the
system can be written as

S = −k
∫

dxdx̄ (Gmn(u) + Fmn(u)) ∂xu
m∂x̄u

n , (4.7)

where Gmn = 〈g−1∂mgg
−1∂ng〉 corresponds to the metric tensor (3.24), while the

antisymmetric Fmn stands for the 2-form (4.3).

4.2 Equation of Motion, Solutions and Monodromies

In order to derive the equations of motion from the Lagrangian (4.6) first note
that the part corresponding to the 2-form LA = Fmn∂xu

m∂x̄u
n can be expressed

in terms of the outer derivative

∂LA
∂un

− ∂x
∂LA

∂(∂xun)
− ∂x̄

∂LA
∂(∂x̄un)

= dF

(

Du(∂x),Du(∂x̄),
∂

∂un

)

. (4.8)

Here Du denotes the differential of u. Then the dynamical equation obtained from
(4.6) does not depend on the matrix A and it reads

∂x(g
−1∂x̄g) = 0 . (4.9a)

The multiplication of this equation from left and right by g and g−1, respectively,
yields the equivalent equation

∂x̄(∂xgg
−1) = 0 . (4.9b)
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The general solution of these equations is given by the product of chiral and an-
tichiral functions

g(x, x̄) = gL(x)gR(x̄) , gL, gR : R→ SL(2,R) . (4.10)

However, we must also take care of the boundary conditions, which imply period-
icity of the solution (4.10) in σ

g(τ, σ + 2π) = g(τ, σ) . (4.11)

This condition requires the following behavior of the chiral and antichiral parts
under the 2π shift of the arguments

gL(x+ 2π) = gL(x)M , gR(x̄− 2π) = M−1gR(x̄) . (4.12)

Here, M ∈ SL(2,R) is a monodromy matrix, which can be written in the exponen-
tial form M = eB , with some B ∈ sl(2,R). The transformation

gL(x)→ gL(x)N , gR(x̄)→ N−1gR(x̄) (4.13)

with N ∈ SL(2,R) obviously leaves the solution (4.10) invariant, but transforms
the monodromy matrix by

M → N−1MN = eN
−1BN . (4.14)

Since B → N−1BN corresponds to a Lorentz transformation of the coordinates
Bn = 〈TnB〉 (see (3.29)), the matrix B can be transformed to one of the following
forms

Bs = λT2 , Bt = λT0 , Bl = T+ , (4.15)

where T+ is the nilpotent element (3.18). Bs, Bt and Bl correspond to space-
like (0, 0, λ), timelike (λ, 0, 0) and lightlike (1, 1, 0) Minkowski vectors, respectively.
Thus, there are three different classes of monodromy, which are called

• hyperbolic: M = eλT2 , (4.16a)

• elliptic: M = eλT0 , λ ∈ (0, π) , (4.16b)

• and parabolic: M = eT+ . (4.16c)

We mostly consider the hyperbolic and elliptic monodromies. In these cases the
parameter λ becomes an important dynamical variable like the momentum zero
mode p in free-field theory (see (2.40)). Note that the parabolic monodromy has no
parameter λ. As we will see below, the symplectic form in that case is degenerate.
For more details about monodromies see [48].

4.3 Symmetries and Conserved Currents

The action (4.7) is invariant under the 2d conformal transformation

g(x, x̄)→ g(ξ(x), ξ̄(x̄)) (4.17)
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with functions ξ, ξ̄ as in (2.60). The corresponding conserved current constructed
from the Lagrangian (4.6) by the Noether theorem, the energy-momentum tensor,
has vanishing diagonal components T xx = T x̄x̄ = 0, and the off-diagonal compo-
nents are

T ≡ T x̄x = −k〈g−1∂xgg
−1∂xg〉 , (4.18a)

T ≡ T xx̄ = −k〈g−1∂x̄gg
−1∂x̄g〉 . (4.18b)

The local conservation law for the energy-momentum tensor then provides the
chirality conditions

∂xT = 0 , ∂x̄T = 0 . (4.19)

The dynamical equations (4.9a) and (4.9b) can also be written as the chirality
conditions

∂x̄J = 0 , ∂xJ̄ = 0 , (4.20)

where J and J̄ are sl(2,R) valued functions

J ≡ k ∂xgg−1 , J̄ ≡ k g−1∂x̄g , (4.21)

which are called Kac-Moody currents. Here, the coupling constant k is included in
the definition for further convenience. Introducing components of the Kac-Moody
currents in the basis Tn (3.3)

Jn(x) = 〈TnJ(x)〉 , J̄n(x̄) = 〈TnJ̄(x̄)〉 , (4.22)

we get the Sugawara form of the energy-momentum tensor (4.18a), (4.18b)

T (x) = −1

k
Jn(x)Jn(x) , T (x̄) = −1

k
J̄n(x̄)J̄n(x̄) . (4.23)

As it is shown below, the Kac-Moody currents are the generators of infinite dimen-
sional symmetry transformations

g(x, x̄)→ g̃(x, x̄) = h(x)g(x, x̄)h̄(x̄) (4.24)

with arbitrary SL(2,R) valued periodic functions h(x) and h̄(x̄). The equation
of motion (4.9a) and the space of solutions (4.10) are apparently invariant under
(4.24).

4.4 Symplectic Form

In order to extract the symplectic form of the SL(2,R) WZNW theory we pass to
the Hamiltonian formulation of the system given by the Lagrangian (4.6). Using the
(τ, σ) coordinates and applying the first order formalism, similarly to the particle
dynamics on the group manifold, we find the action

S = −k
∫

dτ

∫ 2π

0
dσ

(

〈Rg−1ġ〉 − 1

2

(

〈RR〉+ 〈g−1g′g−1g′〉
)

+ F̃ (∂σ , ∂τ )

)

, (4.25)
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where ġ ≡ ∂τg and g′ ≡ ∂σg. The variation of (4.25) with respect to R provides

R = g−1ġ , (4.26)

and inserting this R back into (4.25) we get the initial Lagrangian (4.6), which
confirms the equivalence of (4.25) and (4.6). Thus, in the Hamiltonian formulation
the phase space of the system is given as a set of functions R(σ) and g(σ) with
values in the sl(2,R) algebra and SL(2,R) group, respectively. The 1-form and
the Hamiltonian read

θ = −k
∫ 2π

0
dσ
(

〈Rg−1dg〉+ ∂σ⌋F̃
)

, (4.27a)

H = −k
2

∫ 2π

0
dσ
(

〈RR〉+ 〈g−1g′g−1g′〉
)

. (4.27b)

With the help of the identity d(V ⌋F̃ ) = LV F̃ − V ⌋dF̃ (see e.g. [49]), where V is
a vector field and LV denotes the corresponding Lie derivative, we calculate the
symplectic form ω = dθ and find

ω = −k
∫ 2π

0
dσ
(

〈dR ∧ g−1dg〉 − 〈Rg−1dg ∧ g−1dg〉 − ∂σ⌋dF̃ + L∂σ
F̃
)

. (4.28)

Since L∂σ
= ∂σ the last term can be integrated, and it vanishes due to the periodic-

ity of g. Inserting now the solutions (4.10) we obtain the symplectic form ω̃ on the
space of motions. Further simplification based on dF = 1

3〈g−1dg ∧ g−1dg ∧ g−1dg〉
leads to

ω̃(τ) = −k
[

∫ 2π

0
〈∂x(g−1

L dgL) ∧ g−1
L dgL〉+ 〈∂x̄(dgRg−1

R ) ∧ dgRg−1
R 〉dσ

+ 〈dMM−1 ∧ g−1
L dgL〉

∣

∣

σ=0
+ 〈dMM−1 ∧ dgRg−1

R 〉
∣

∣

σ=0

]

. (4.29)

Here the functions gL and gR depend on x and x̄ respectively and M is the mon-
odromy matrix (4.12). Since M can be reduced to one of the three monodromy
classes, we get for the hyperbolic (4.16a) and elliptic (4.16b) monodromies

dMM−1 = Tndλ , n = 2, 0 , (4.30)

and dMM−1 = 0 for the parabolic one (4.16c) (n = +).
The bulk part of the symplectic form (4.29) splits into the sum of a chiral and an

antichiral part, but the boundary terms are still coupled through the monodromy
parameter λ, like in free-field theory (2.50). Applying here the Veneziano-Fubini
trick we introduce two parameters λL, λR instead of λ and define a new symplectic
form, ωWZ ≡ ω̃L+ ω̃R, which is the sum of a chiral and an antichiral part [8, 9, 10]

ω̃L(τ) = −k
∫ 2π

0
dσ〈∂x(g−1

L dgL) ∧ g−1
L dgL〉 − kdλL ∧ 〈Tng−1

L dgL〉
∣

∣

σ=0
, (4.31a)

ω̃R(τ) = −k
∫ 2π

0
dσ〈∂x̄(dgRg−1

R ) ∧ dgRg−1
R 〉 − kdλR ∧ 〈TndgRg−1

R 〉
∣

∣

σ=0
. (4.31b)

Then, for gauge invariant functions (i.e. functions that have vanishing Poisson
brackets with λL − λR on the subspace λL = λR) the Poisson brackets calculated
from the symplectic forms ω̃ and ωWZ coincide (for details see Appendix A).
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Chapter 4: The WZNW Theory

A simple calculation shows that the chiral symplectic forms (4.31a) and (4.31b)
are time independent. Hence, we can change the integration variable to x and x̄
respectively, while keeping the limits 0 and 2π

ω̃L = −k
∫ 2π

0
dx〈∂x(g−1

L dgL) ∧ g−1
L dgL〉 − kdλL ∧ 〈Tng−1

L dgL〉
∣

∣

x=0
, (4.32a)

ω̃R = −k
∫ 2π

0
dx̄〈∂x̄(dgRg−1

R ) ∧ dgRg−1
R 〉 − kdλR ∧ 〈TndgRg−1

R 〉
∣

∣

x̄=0
. (4.32b)

The splitting into left and right parts also holds for the Hamiltonian (4.27b)

H = −k
∫ 2π

0
dσ
(

〈g′L(x)g−1
L g′L(x)g−1

L 〉+ 〈g′R(x̄)g−1
R g′R(x̄)g−1

R 〉
)

= HL +HR ,

(4.33)

which can be expressed through the energy-momentum tensor

HL =

∫ 2π

0
dx T (x) , HR =

∫ 2π

0
dx̄ T (x̄) . (4.34)

Thus in the Hamiltonian formulation the WZNW theory has a chiral structure
similar to free-field theory. Only the chiral symplectic form is not canonical and
one needs a certain labor to extract the Poisson brackets of the chiral fields.

4.5 Poisson Brackets

We are now going to invert the symplectic form of the system and calculate the
Poisson brackets on the space of solutions. The Poisson brackets between chiral
and antichiral functions vanish due to our extension. We first calculate the Poisson
brackets of the chiral functions {gL(x), gL(y)} using (4.32a) and (2.8). To simplify
expressions we suppress the index L whenever possible.

It is helpful to first introduce the following periodic field

f(x) ≡ g(x)e− 1

2π
λxTn , (4.35)

in terms of which the symplectic form (4.32a) then becomes

ω̃ = −k
∫ 2π

0
〈(f−1df)′ ∧ f−1df〉+ λ

2π
〈[f−1df, Tn] ∧ f−1df〉+ 1

π
dλ ∧ 〈Tnf−1df〉dx .

(4.36)

4.5.1 Hyperbolic Monodromy

Let us consider the hyperbolic monodromy (4.16a) and set n = 2 in (4.36). Ap-
plication of equation (2.8) to the symplectic form (4.36) and the function λ, after
partial integration yields

dλ− k
∫ 2π

0
dx

(

2〈A′f−1df〉+ λ

π
〈[A,T2]f

−1df〉 − 1

π
dλ〈T2A〉

)

= 0 , (4.37)
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4.5 Poisson Brackets

where A(x) ≡ f−1(x){λ, f(x)}. The differentials dλ and df(x) are independent and
from (4.37) we find two equations for A(x)

1 + k

∫ 2π

0
dx

1

π
〈T2A(x)〉 = 0 ,

λ

2π
[A(x), T2] +A′(x) = 0 . (4.38)

Since the Poisson bracket is a derivation we have A ∈ sl(2,R), and A is represented
as A(x) = An(x)Tn. The second equation of (4.38) together with the periodicity of
A(x) implies that A0 = A1 = 0 and A2 = C, where C is some constant. The first
equation fixes this constant A2 = 1

2k , and we find

{λ, f(x)} =
1

2k
(f(x)T2) , (4.39)

which by (4.35) yields

{λ, g(x)} =
1

2k

(

g(x)T2

)

. (4.40)

In order to determine the Poisson bracket {fab(x), fcd(y)} we need to solve
equation (2.8) for the function fab(x). Introducing

Aab(x, y) ≡ f−1(y){fab(x), f(y)} = Anab(x, y)Tn , (4.41)

we can write (2.8) as

dfab(x)− k
∫ 2π

0
dy
(

2∂yA
n
ab〈Tnf−1df〉+ λ

π
Anab〈[Tn, T2]f

−1df〉

+
1

π
{fab(x), λ}〈T2f

−1df〉 − 1

π
dλ〈T2A

n
abTn〉

)

= 0 . (4.42)

Inserting (4.40) and identifying the coefficients of the one forms dλ and 〈Tnf−1df〉,
we find the equations

0 =

∫ 2π

0
dy A2

ab , (4.43a)

0 = ∂yA
n
ab −

1

2k
δ(x − y)

(

f(y)T n
)

ab
− 1

4πk
δn2

(

f(x)T2

)

ab
+
λ

π
ǫk2

nAkab . (4.43b)

For n = 2 (4.43b) is a first order differential equation, which can be easily inte-
grated, and we get

A2
ab(x, y) =

1

4k

(

ǫ(x− y)− x− y
π

)

(

f(x)T2

)

ab
. (4.44)

The remaining equations can be decoupled by using the light-cone coordinates
A±
ab = 1

2(A0
ab ±A1

ab) and they take the form

(

∂y ±
λ

π

)

A±
ab =

1

2k
δ(x− y)(f(y)T±)ab . (4.45)

The Green’s function which inverts the operator
(

∂z + C
2π

)

for C 6= 0 in the class
of periodic functions, is given by

hC(z) ≡ e
C
2
h(z)

2 sinh(C2 )
, (4.46)
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Chapter 4: The WZNW Theory

where h(z) ≡ ǫ(z)− z
π is the sawtooth function. Thus, (4.45) can be written as

A±
ab(x, y) = − 1

2k

(

f(x)T±)
ab
h∓2λ(x− y) . (4.47)

Combining (4.44) and (4.47) we obtain the Poisson bracket

{fab(x), fcd(y)} =
1

4k

{

(

f(x)T2

)

ab

(

f(y)T2

)

cd

(

ǫ(x− y)− x− y
π

)

− (f(x)T−)ab(f(y)T+)cdh−2λ(x− y)− (f(x)T+)ab(f(y)T−)cdh2λ(x− y)
}

. (4.48)

Using equation (4.35), the tensorial structure of (4.48) and the identity

e−xT2T±e
xT2 = e±2xT± , (4.49)

we combine equations (4.40) and (4.48) in the form

{g(x),⊗g(y)} =
1

4k

{

ǫ(x− y)(g(x)T2)⊗ (g(y)T2)

− θ−2λ(x− y)(g(x)T−)⊗ (g(y)T+)− θ2λ(x− y)(g(x)T+)⊗ (g(y)T−)
}

, (4.50)

where

θ2λ(z) ≡
eλǫ(z)

2 sinh(λ)
. (4.51)

Note that this is the Green’s function which inverts the operator ∂z on the class of
functions A(z) with the monodromy A(z + 2π) = a2λA(z).

The calculation for the antichiral part is similar and it yields

{λR, gR(x̄)} =
1

2k

(

T2gR(x̄)
)

, (4.52)

and

{gR(x̄),⊗gR(ȳ)} =
1

4k

{

ǫ(x̄− ȳ)(T2gR(x̄))⊗ (T2gR(ȳ))

− θ2λ(x̄− ȳ)(T−gR(x̄))⊗ (T+gR(ȳ))− θ−2λ(x̄− ȳ)(T+gR(x̄))⊗ (T−gR(ȳ))
}

.

(4.53)

4.5.2 Elliptic Monodromy

We now turn to the elliptic monodromy (4.16b) and set n = 0 in (4.36).
The derivation of the Poisson bracket {λ, f(x)} is completely analogous to the

previous case and the result is

{λL, gL(x)} = − 1

2k

(

gL(x)T0

)

, {λR, gR(x̄)} = − 1

2k

(

T0gR(x̄)
)

. (4.54)

In order to obtain the Poisson bracket {f(x),⊗f(y)} we define three matrix
valued fields fields by An(x, y) ⊗ f(y)Tn ≡ {f(x),⊗f(y)}. Application of (2.8) to
the function f(x) as above leads to the equations

0 =

∫ 2π

0
dy A0 (4.55a)

0 = ∂yA
n − 1

2k
δ(x− y)f(y)T n +

1

4πk
f(x)T0δ

n
0 +

λ

π
ǫk0

nAk . (4.55b)
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For n = 0 this can be integrated and similarly to the hyperbolic case we get

A0(x, y) = − 1

4k

(

ǫ(x− y)− x− y
π

)

(

f(x)T0

)

. (4.56)

The remaining equations, however, decouple for the complex linear combination
Ã± = ±1

2(A2 ∓ iA1) in the form

(

∂y ± i
λ

π

)

Ã± =
1

2k
(f(x)T̃±) . (4.57)

The Green’s function (4.46) then provides

Ã±(x, y) = − 1

2k

(

f(x)T̃±)h∓2iλ(x− y) , (4.58)

where T̃± = iT1 ± T2. These solutions together with (4.56) lead to

{f(x),⊗f(y)} =
1

4k

{

(f(x)T0)⊗ (f(y)T0)

(

x− y
π
− ǫ(x− y)

)

− (f(x)T̃−)⊗ (f(y)T̃+)h−2iλ(x− y)− (f(x)T̃+)⊗ (f(y)T̃−)h2iλ

}

. (4.59)

Now we use the identity e−xT0 T̃±exT0 = T̃±e±2ix and similarly to (4.50) finally
obtain the Poisson bracket

{g(x),⊗g(y)} = − 1

4k

{

ǫ(x− y)(g(x)T0)⊗ (g(y)T0)

+ θ−2iλ(x− y)(g(x)T̃−)⊗ (g(y)T̃+) + θ2iλ(x− y)g(x)(T̃+)⊗ (g(y)T̃−)
}

, (4.60)

where θ±2iλ(z) is the Green’s function (4.51) with imaginary parameter.
The result for the antichiral part is similar

{gR(x̄),⊗gR(ȳ)} = − 1

4k

{

ǫ(x̄− ȳ)(T0gR(x̄))⊗ (T0gR(ȳ))

+ θ2iλ(x̄− ȳ)(T̃−gR(x̄))⊗ (T̃+gR(ȳ)) + θ−2iλ(x̄− ȳ)(T̃+gR(x))⊗ (T̃−gR(ȳ))
}

.

(4.61)

4.5.3 Parabolic Monodromy

The parabolic monodromy (4.16c) corresponds to setting Tn = T+ and λ = 1 in
(4.35). The 2-form (4.36) then becomes

ω̃ = −k
∫ 2π

0
〈(f−1df)′ ∧ f−1df〉+ 1

2π
〈[f−1df, T+] ∧ f−1df〉dx . (4.62)

One could already argue that for dimensional reasons this 2-form has to be sin-
gular. However, since for the infinite dimensional case this argument is not fully
convincing, we are going to show this explicitly. Applying (2.8) to dfab(x) results
in three equations for Aab ≡ f−1(y){fab(x), f(y)}

∂yA
n
ab −

1

2k
δ(x− y)(f(y)T n)ab +

1

π
(ǫk0

n + ǫk1
n)Akab = 0 . (4.63)
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For the linear combination A− ≡ 1
2 (A0 −A1) we find

∂yA
− =

1

2
δ(x− y)(f(y)T−) (4.64)

The solution of this equation is linear in the stair-step function ǫ(x − y), which is
not periodic. Therefore, the 2-form (4.62) has no inverse in the class of periodic
functions.

A more general treatment of the inversion of the WZNW chiral symplectic form
can be found in [10].

4.5.4 Symmetry Generators

Having established the basic Poisson brackets for g(x) and λ we are now ready to
derive the Poisson brackets of the conserved currents J(x) and T (x). With the
formulas from above it is easy to show that for both monodromy classes we have

{λL, Jn(x)} = 0 , {λR, J̄n(x̄)} = 0. (4.65)

The Poisson bracket {Jn(x), g(y)} can, in principle, also be derived from the basic
Poisson brackets, however, it is easier to apply equation (2.8) to (4.32a) for the
function Jn(x). Its differential is

dJn(x) = k〈g−1
L (x)TngL(x)

(

g−1
L (x)dgL(x)

)′〉 , (4.66)

which results in

{Jn(x), gL(y)} = −1

2
δ(x− y)

(

TngL(y)
)

, (4.67a)

{J̄n(x̄), gR(ȳ)} = −1

2
δ(x̄− ȳ)

(

gR(ȳ)Tn
)

. (4.67b)

This reveals that the currents J(x), J̄(x̄) are generators of the left and right mul-
tiplications

g(x, x̄)→ e−2
R 2π

0
dzfn(z){Jn(z), · }g(x, x̄) = ef

n(x)Tng(x, x̄) , (4.68a)

g(x, x̄)→ e−2
R

2π
0

dzfn(z̄){J̄n(z̄), · }g(x, x̄) = g(x, x̄)ef
n(x̄)Tn , (4.68b)

respectively.
The Poisson brackets for the Sugawara energy-momentum tensor (4.18a) follow

immediately

{T (x), gL(y)} = δ(x− y)gL′(x) , (4.69a)

{T (x̄), gR(ȳ)} = δ(x̄− ȳ)gR′(ȳ) , (4.69b)

and we can identify the energy momentum tensor as the generator of conformal
transformations.

g(x, x̄)→ e
R

2π
0

dz ǫ(z){T (z), · }g(x, x̄) = g(ξ(x), x̄) , (4.70a)

g(x, x̄)→ e
R 2π

0
dz ǭ(z̄){T (z̄), · }g(x, x̄) = g(x, ξ̄(x̄)) (4.70b)

with ξ(x) = x+ ǫ(x) +O(ǫ2).
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The calculation of the remaining Poisson brackets between the symmetry gen-
erators is straightforward and we obtain the Lie algebra

{Jm(x), Jn(y)} = δ(x− y)ǫmnlJl(x) +
k

2
δ′(x− y)ηmn , (4.71)

{T (x), Jn(y)} = J ′
n(y)δ(x − y)− Jn(y)δ′(x− y) , (4.72)

{T (x), T (y)} = T ′(y)δ(x − y)− 2T (y)δ′(x− y) . (4.73)

The last two equations show that J(x) and T (x) transform as conformal primaries
with conformal weight one and two, respectively. Equation (4.71) defines the Kac-
Moody algebra of the currents. It has a central term and can be treated as a
non-abelian generalization of the free-field algebra (2.62a).

4.5.5 Full WZNW Field

First, note that from the Poisson bracket relations of the chiral fields with λ (see
(4.40), (4.52) and (4.54)) follows that for both the hyperbolic and the elliptic mon-
odromy we have

{gL(x)gR(x̄), (λL − λR)} = 0 , (4.74)

which indicates that the full WZNW field g(x, x̄) = gL(x)gR(x̄) is gauge invariant
in the extended phase space. This implies that the Poisson brackets of the full field
g(x, x̄) determined in the extended space are equal to the ones in the physical space
λL = λR. The symmetry generators J(x) and T (x) can be written as functions of
the full field and they are, therefore, gauge invariant as well, which also trivially
follows from the vanishing Poisson bracket {J(x), λ}.

The relations (4.50), (4.53) or (4.60), (4.61) from above can thus be combined
to calculate the Poisson bracket of the full WZNW-fields

{g(x, x̄),⊗g(y, ȳ)} = (gL(x)⊗ gL(y)) · {gR(x̄),⊗gR(ȳ)}
+ {gL(x),⊗gL(y)} · (gR(x̄)⊗ gR(ȳ)) . (4.75)

For the elliptic monodromy the result written in the original basis is

{g(x, x̄),⊗g(y, ȳ)} = − 1

4k

{

(ǫ+ ǭ)
(

gL(x)T0gR(x̄)
)

⊗
(

gL(y)T0gR(ȳ)
)

− sin(λǫ) + sin(λǭ)

sinλ

[

(

gL(x)T1gR(x̄)
)

⊗
(

gL(y)T1gR(ȳ)
)

+
(

gL(x)T2gR(x̄)
)

⊗
(

gL(y)T2gR(ȳ)
)

]

+
cos(λǫ)− cos(λǭ)

sinhλ

[

(

gL(x)T2gR(x̄)
)

⊗
(

gL(y)T1gR(ȳ)
)

−
(

gL(x)T1gR(x̄)
)

⊗
(

gL(y)T2gR(ȳ)
)

]

}

, (4.76)

where ǫ ≡ ǫ(x − y) and ǭ ≡ ǫ(x̄ − ȳ). In the fundamental domain |x − y| < 2π,
|x̄ − ȳ| < 2π we have ǫ = ±1, ǭ = ±1 and the last term vanishes. The remaining
terms can be written in a covariant way as

{g(x, x̄),⊗g(y, ȳ)} = − 1

4k
(ǫ+ ǭ)

[

(gL(x)TngR(x̄))⊗ (gL(y)T ngR(ȳ))
]

. (4.77)
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(y, ȳ)

(x, x̄)

(y, x̄)

(x, ȳ)

Figure 4.2: Points in space-time that contribute to the Poisson bracket of the
full fields {g(x, x̄), g(y, ȳ)} in the fundamental domain

Giving up the tensorial structure we can use the identity (3.48) and rewrite the
Poisson bracket (4.77) in terms of the full fields

{gab(x, x̄), gcd(y, ȳ)} =
1

2k
Θ
[

2gad(x, ȳ)gcb(y, x̄)− gab(x, x̄)gcd(y, ȳ)
]

(4.78)

with

Θ ≡ 1

2
(ǫ(x− y) + ǫ(x̄− ȳ)) . (4.79)

Note that Θ = +1 if (x, x̄) is in the forward light cone of (y, ȳ), Θ = −1 if it is in
the backward light cone and Θ = 0 if the two points are separated by a space-like
distance. Hence, the non-equal time Poisson bracket (4.78) is causal. It has a local
structure as well, since the Poisson bracket at two differnet space time points is
expressed in terms of WZNW-fields at four points: The two original points plus
two more, obtained by exchanging the light-cone coordinates (see fig. 4.2). The
same result was obtained in [11] for the hyperbolic monodromy. Our calculations
show that the Poisson bracket structure is monodromy independent.

4.6 Gauged WZNW Models

Let us now consider gauged SL(2,R) models. The Lagrangian (4.6) is invariant
under left and right multiplications

g(x, x̄)→ eǫ1Ag(x, x̄)eǫ2A . (4.80)

One can make this global symmetry local by replacing the partial derivatives in
the Lagrangian with the covariant ones

∂µg → Dµg = ∂µg −Aµδg . (4.81)

Here, we consider two cases

• axial gauging: ǫ1 = ǫ2 = ǫ(x, x̄) g(x, x̄)→ eǫ(x,x̄)Ag(x, x̄)eǫ(x,x̄)A (4.82)

δg =Ag + gA

• vector gauging: ǫ1 = −ǫ2 = ǫ(x, x̄) g(x, x̄)→ eǫ(x,x̄)Ag(x, x̄)e−ǫ(x,x̄)A (4.83)

δg =Ag − gA

One can show that integrability of the reduced system is preserved only for these
two cases [50]. As we know from Chapter 3 (see eq. (3.19)-(3.21)), the character
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of the subgroup eǫA depends on whether A is time-like, space-like or light-like.
One can expect that the structure of the corresponding gauged Lagrangian also
depends on the metric properties of A. We show this explicitly in the next two
subsections, considering the cases A = T0, A = T2 and A = T+ as examples for
timelike, space-like and light-like generators. To simplify the analysis we use the
Lagrangians L(A,+) and L(A,−) for the axial and the vector gaugings, respectively.

4.6.1 Axial Gauging

Replacing the partial derivative according to (4.81) and (4.82) we construct the
gauged Lagrangian

Lax
(n)(g,A) ≡ L(Tn,+)(g, ∂xg −Ax(Tng + gTn), ∂x̄ −Ax̄(Tng + gTn)) . (4.84)

The equations of motion for the gauge field obtained from (4.84) are algebraic, since
there is no kinetic term containing derivatives of (Ax, Ax̄). From these equations
we get

Ax =
〈Tn∂xgg−1〉
ηnn + Λnn

, Ax̄ =
〈Tng−1∂x̄g〉
ηnn + Λnn

, (4.85)

Substituting this solution back into (4.84) we obtain the gauge invariant Lagrangian
expressed in terms of the g-field

Lax
(n)(g) = −k

[

〈g−1∂xgg
−1∂x̄g〉

− 〈Tn∂xgg
−1〉〈Tng−1∂x̄g〉+ 〈Tng−1∂xg〉〈Tn∂x̄gg−1〉

Λnn + ηnn

]

. (4.86)

As for the particle models, the Lagrangian (4.86) depends only on the gauge in-
variant components of g(x, x̄). To eliminate the gauge dependent variables we use
the parameterization (3.4), which leads to

Lax
(n)(u) = −k

[

∂xu
i∂x̄ui +

1

c2
ui∂xuiu

j∂x̄uj −
1

ηnn + (un)2

×
(

c2∂xun∂x̄un + un∂xunu
i∂x̄ui + un∂x̄unu

i∂xui

+
(un)

2

c2
ui∂xuiu

j∂x̄uj − ǫijnǫlmnuiul∂xuj∂x̄um
)

]

. (4.87)

Now we consider separately the cases n = 0, n = 2 and n = +. The first case cor-
responds to the compact subgroup generated by T0. The gauge invariant variables
then are u1 and u2. Setting n = 0 in (4.87) we find that the dependence on u0 is
indeed canceled and we arrive at

Lax
(0) = k

∂xu1∂x̄u1 + ∂xu2∂x̄u2

1 + (u1)2 + (u2)2
. (4.88)

This system is known as the SL(2,R)/U(1) black hole model [16], which we will
discuss in detail in chapters 6 and 8.

The case n = 2 corresponds to the gauging with respect to the non-compact
subgroup generated by T2. Here, the gauge invariant components are u0 and u1,
and (4.87) provides the Lagrangian of the 2d Minkowskian black hole model [16]

Lax
(2) = k

∂xu1∂x̄u1 − ∂xu0∂x̄u0

1 + (u1)2 − (u0)2
. (4.89)
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Finally, setting n = + in (4.87) leads to a Lagrangian with only one field

Lax
(+) =

∂xu+∂x̄u+

(u+)2
. (4.90)

This Lagrangian is singular at u+ = 0 and the solutions decompose into positive
and negative fields. Choosing the positive sector, with u+ = e−ϕ, we arrive at

Lax
(+) = k∂xϕ∂x̄ϕ , (4.91)

which is just the free-field Lagrangian discussed in chapter 2.

4.6.2 Vector Gauging

Similarly to the axial gauging we construct the new Lagrangian from (4.6) with
covariant derivatives in place of the partial derivatives using (4.81) and (4.83)

Lvec
n (g,A) ≡ L(Tn,−)(g, ∂xg −Ax(Tng − gTn), ∂x̄g −Ax̄(Tng − gTn)) . (4.92)

The equations of motion for the gauge field now yield

Ax =
〈Tn∂xgg−1〉
ηnn − Λnn

, Ax̄ =
〈Tng−1∂x̄g〉
Λnn − ηnn

, (4.93)

and its insertion back into (4.92) gives

Lvec
n (g) = −k

[

〈g−1∂xgg
−1∂x̄g〉

− 1

Λnn − ηnn
(

〈Tn∂xgg−1〉〈Tng−1∂x̄g〉 + 〈Tng−1∂xg〉〈Tn∂x̄gg−1〉
)

]

. (4.94)

Already at this stage one can see that for the nilpotent case n = + this Lagrangian
is identical to (4.86) because η++ = 0. The reduced Lagrangian is, therefore, given
by (4.91).

The Lagrangian (4.94) expressed in terms of un coordinates reads

Lvec
n (un) = −k

[

∂xu
i∂x̄ui + ∂xc∂x̄c−

1

u2
n − ηnnukuk

×
(

c2∂xun∂x̄un − un∂xunc∂x̄c− un∂x̄unc∂xc

+ u2
n∂xc∂x̄c− ǫijnǫlmnuiul∂xuj∂x̄um

)

]

. (4.95)

For n = 0 the gauge invariant components are u0, c, and we indeed find

Lvec
(0) = k

∂xu0∂x̄u0 + ∂xc∂x̄c

(u0)2 + c2 − 1
. (4.96)

This can be interpreted as a string on the infinite trumpet [17]. Note that this
Lagrangian becomes singular for (u0)

2 + c2 = 1.
Setting n = 2 in (4.95) yields the Lagrangian

Lvec
(2) = k

∂xu2∂x̄u2 − ∂xc∂x̄c
1 + (u2)2 − c2

, (4.97)
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which is the same as (4.89), only in terms of different components of g(x, x̄).
As we have seen in chapter 3, a gauging of the particle dynamics in the La-

grangian formulation is equivalent to imposing constraints in the Hamiltonian ap-
proach. Of course, this general statement is also valid for the gauged WZNW
models. In the next chapter we consider constraints imposed on the light-like com-
ponents J+ and J̄+ of the Kac-Moody currents, which similar to particle model
of subsection 3.5.5 can be regarded as a generalization of the nilpotent gauging.
In chapter 6 we show that the SL(2, R)/U(1) model is obtained by imposing con-
straints on the J0 and J̄0 components of the Kac-Moody currents.

The reduction of the WZNW theory to its coset models was first studied in
[12, 13, 14].
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V

Liouville Theory

In this chapter we review the classical Liouville Theory as it arises by Hamil-
tonian reduction from the SL(2,R) WZNW theory.

Liouville theory describes 2d scalar field dynamics with exponential self inter-
action. The Lagrangian is usually given by

L =
1

2

(

(∂τϕ(τ, σ))2 − (∂σϕ(τ, σ))2
)

− 4m2

γ2
e2γϕ(τ,σ) , (5.1)

where m and γ are positive coupling constants. We consider the periodic case
(τ, σ) ∈ R × S1. Using the light-cone coordinates (2.32), the general solution of
the equation of motion

∂2
xx̄ϕ(x, x̄) +

m2

γ
e2γϕ(x,x̄) = 0 (5.2)

can be written as

e2γϕ(x,x̄) =
A′(x)Ā′(x̄)

m2(1 +A(x)Ā(x̄))2
. (5.3)

This form of the general solution was found by Liouville in 1853 [51]. Later it was
realized that the Liouville equation (5.2) is invariant under 2d conformal transfor-
mations, which is the underlying symmetry for this compact form of the general
solution.

Here we reproduce (5.3) from the general solution of the SL(2,R) WZNW
theory by Hamiltonian reduction. We follow the reduction scheme described in
subsection 2.2. Namely, we calculate the reduced symplectic form and find its
canonical coordinates. As it turns out these coordinates are the Fourier modes of
the asymptotic in-field. The general solution (5.3) is then realized as a canonical
map from the in-field to the interacting Liouville field ϕ. We also discuss the
conformal and Weyl symmetries of Liouville theory.

A new point for this chapter is the analysis of the Kac-Moody and conformal
symmetries of the constrained surface. It is shown that a special linear combination
of the symmetry generators leave the constrained surface invariant. The reduction
of the corresponding generator on the space of gauge orbits coincides with the
energy-momentum tensor of Liouville theory. This observation gives a new insight
to the improved term of the energy-momentum tensor.

5.1 Hamiltonian Reduction

Let us introduce the light-like components of the Kac-Moody currents (4.22)

J±(x) ≡ J0(x)± J1(x) , (5.4)

and, like for the mechanical model (3.79), impose the constraints

J+(x) + ρ = 0 , J̄+(x)− ρ = 0 , (5.5)
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Chapter 5: Liouville Theory

where ρ is a non-zero constant. In order to apply the reduction scheme, one has to
parameterize the constrained surface (5.5).

5.1.1 The Chiral Part

We first consider the chiral part and, as before, suppress the index L whenever
possible. The Kac-Moody current (4.21) constrained by (5.5) can be written as

J(x) =

(

−J2(x) ρ
J−(x) J2(x)

)

, (5.6)

and from the definition J(x) = kg′(x)g−1(x) we find the following parameterization
of the chiral WZNW field

g(x) =

(

ψ(x) χ(x)
1
mψ

′(x) + 1
ρJ2(x)ψ(x) 1

mχ(x)′ + 1
ρJ2(x)χ(x)

)

, (5.7)

where m ≡ ρ
k and, since det(g) = 1, the components ψ(x) and χ(x) are related by

ψ(x)χ′(x)− ψ′(x)χ(x) = m. (5.8)

Here, we consider only the hyperbolic monodromy (4.16a). In this case the mon-
odromies of the chiral fields ψ(x) and χ(x) are

ψ(x+ 2π) = ψ(x)eλ , χ(x+ 2π) = χ(x)e−λ . (5.9)

In addition, we assume ψ(x) > 0 and λ < 0. Equation (5.8) then can be integrated
uniquely in the form

χ(x) = ψ(x)A(x) , (5.10)

where the so-called screening charge A(x) is obtained from

A′(x) =
m

ψ2(x)
(5.11)

as

A(x) =

∫ 2π

0
dz θ−2λ(x− z)

m

ψ2(z)
, (5.12)

with the Green’s function (4.46). Note that the conditions ψ(x) > 0 and λ < 0
provide regularity of the screening charge (5.12), which is apparently positive, and
therefore we have χ(x) > 0 as well. Later we will discuss the physical meaning of
the condition λ > 0.

From (4.71), (4.72) and (4.33) follows

{J+(x), J+(y)}
∣

∣

J+=−ρ = 0 , {J+(x),H}
∣

∣

J+=−ρ = 0 . (5.13)

Thus, (5.5) is a first class constraint and it generates gauge transformations. It is
important to note that ψ(x) and χ(x) are gauge invariant due to (4.67a). A non
gauge invariant part of the chiral field gL(x) (5.7) is given by J2(x), which due to
(4.71) has the following Poisson brackets with the constraints (5.5)

{J2(x), J+(y)}
∣

∣

J+=−ρ = 2ρδ(x − y) . (5.14)
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The constraints (5.5) and J2(x) = 0 together form second class constraints, and
J2(x) = 0 can be used as a gauge fixing condition. The parameterization (5.7) then
simplifies to

g(x) =

(

ψ(x) χ(x)
1
mψ

′(x) 1
mχ

′(x)

)

. (5.15)

Now the calculation of the reduced symplectic form (4.32a) is a straightforward
procedure, and with the help of (5.8) we arrive at

ω̃ = k

∫ 2π

0

dψ′(x)
ψ(x)

∧ dψ(x)

ψ(x)
dx+ kdλ ∧ dψ(0)

ψ(0)
. (5.16)

Of course, the same symplectic form is obtained from the parameterization (5.7)
without gauge fixing J2(x) = 0, but that calculation is rather lengthy.

Since ψ(x) > 0, we can parameterize it by

ψ(x) = e−γφ(x) , (5.17)

where γ ≡ k−
1

2 and φ(x) has the free-field monodromy (2.40) with p ≡ −2λγ−1.
The symplectic form (5.16) then takes the free-field form (2.39).

From the Wronskian condition (5.8) and the parameterization (5.15) we find

T (x) =
−1

γ2
〈g−1(x)g′(x)g−1(x)g′(x)〉 =

1

γ2

ψ′′(x)
ψ(x)

=
1

γ2

χ′′(x)
χ(x)

, (5.18)

where T (x) is the reduced energy-momentum tensor of the SL(2,R) WZNW theory
(4.18a). Therefore the reduced Hamiltonian also becomes free in terms of the φ-field

HL =
1

γ2

∫ 2π

0
dx

ψ′′(x)
ψ(x)

=

∫ 2π

0
dxφ′2(x) . (5.19)

In this way we obtain a free-field parameterization of the reduced system, and
using the mode expansion (2.35) one can pass to the canonical coordinates (p, q, an)
with the Poisson bracket relations (2.43).

5.1.2 The Antichiral Part

The reduction of the antichiral part is similar. The constrained Kac-Moody current
now is

J̄(x̄) =

(

−J̄2(x̄) −ρ
J̄−(x̄) J̄2(x̄)

)

, (5.20)

and together with J̄(x̄) = kg−1
R (x̄)g′R(x̄) we find the parameterization

gR(x̄) =

(

−m−1ψ̄′(x̄) + ρ−1J̄2(x̄)ψ̄(x̄) ψ̄(x̄)
−m−1χ̄′(x̄) + ρ−1J̄2(x̄)χ̄(x̄) χ̄(x̄)

)

. (5.21)

The gauge invariant antichiral functions ψ̄(x̄), χ̄(x̄) are related by a similar Wron-
skian condition

ψ̄(x̄)χ̄′(x̄)− ψ̄′(x̄)χ̄(x̄) = m (5.22)

and have the monodromies

ψ̄(x+ 2π) = ψ̄(x)eλR , χ̄(x+ 2π) = χ̄(x)e−λR . (5.23)
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The reduced symplectic form and the Hamiltonian again take the free-field form,
but now in terms of the antichiral function φ̄(x̄) defined by

ψ̄(x̄) = e−γφ̄(x̄) . (5.24)

To simplify the calculation of the reduced symplectic form here one can choose the
gauge fixing condition J̄2(x) = 0. As in the chiral case we assume ψ̄(x̄) > 0, which
for λ < 0 provides Ā(x̄) > 0 and χ̄(x̄) > 0.

5.1.3 The Liouville Field

The full SL(2,R) WZNW theory is obtained by setting λR = λL = λ. Then, the
reduced symplectic form of the system corresponds to the canonical 2-form of the
periodic free-field theory (2.50). The momentum zero mode p becomes canonically
conjugated to q = qL + qR, where qL and qR are the coordinate zero modes of φ(x)
and φ̄(x̄), respectively.

According to the parameterizations (5.7) and (5.21) the full WZNW-field g(x, x̄) =
gL(x)gR(x̄) has only one gauge invariant component V (x, x̄) ≡ g12(x, x̄), which is
a physical field of the system. Due to our assumptions this field is positive and one
can introduce its exponential parameterization

V (x, x̄) = ψ(x)ψ̄(x̄) + χ(x)χ̄(x̄) = e−γϕ(x,x̄) . (5.25)

Using the Wronskian conditions (5.8) and (5.22), it is easy to check that the field
ϕ(x, x̄) satisfies the Liouville equation (5.2). Expressing ψ, ψ̄, χ and χ̄ in terms
of the screening charges via (5.10) and (5.11) and their antichiral counterparts, we
recover from (5.25) the Liouville field just in the form of the general solution (5.3).
The parameterizing functions A(x), Ā(x̄) are monotonic and have the monodromy

A(x+ 2π) = A(x)eγp , Ā(x̄+ 2π) = Ā(x̄)eγp , (5.26)

with p > 0. One can show that this class of A(x), Ā(x̄) covers all regular periodic
Liouville fields [48, 28].

From (5.25) we also find a free-field parameterization of Liouville theory

e−γϕ(x,x̄) = e−γ(φ(x)+φ̄(x̄))(1 +A(x)Ā(x̄)) , (5.27)

where the product of screening charges is given by

A(x)Ā(x̄) =
m2e−γp

4 sinh2
(γp

2

)

∫ 2π

0
dz

∫ 2π

0
dz̄ e2γ(φ(z+x)+φ̄(x̄+z̄) . (5.28)

Here, we have used the periodicity of the integrand in (5.12) and shifted the argu-
ments z → z + x (z̄ → z̄ + x̄) without shifting the integration domain.

Since p > 0, we get the following behavior of the Liouville field exponential at
the time asymptotics:

e−γϕ(x,x̄) τ→−∞∼ e−γ(φ(x)+φ̄(x̄)) , (5.29a)

e−γϕ(x,x̄) τ→+∞∼ A(x)Ā(x̄)e−γ(φ(x)+φ̄(x̄)) . (5.29b)
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Hence, the field Φ(τ, σ) ≡ φ(x)+ φ̄(x̄) can be interpreted as the in-field of Liouville
theory, while the out-field is

Φout(τ, σ) = Φ(τ, σ)− 1

γ
log(A(x)Ā(x̄)) , (5.30)

and we get the relation

e−γϕ(x,x̄) = e−γΦin(τ,σ) + e−γΦout(τ,σ) . (5.31)

This structure of the Liouville field exponential can be used for the construction of
the S-matrix, an issue we discuss in chapter 7.

The parameterizing in-field Φ(τ, σ) can be expanded in Fourier modes

Φ(τ, σ) = q +
p

2π
τ +

i√
4π

∑

n 6=0

an
n
e−inx +

i√
4π

∑

n 6=0

ān
n
e−inx̄ , (5.32)

which become canonical coordinates with the Poisson bracket relations (2.52) of
the periodic free-field theory. The difference to the standard case discussed in
subsection 2.4.2 is that the zero mode sector of the Liouville in-field is given on the
half plane p > 0.

For vanishing non-zero modes (an = ān = 0) the Liouville field is σ independent

e−γϕ
∣

∣

an=ān=0
= e−γ(q+

pτ
2π

) +
4π2m2

γ2p2
eγ(q+

pτ
2π

) , (5.33)

and it describes particle dynamics in the exponential potential considered in section
3.5.5. The zero mode p becomes the momentum of the incoming particle, which
can be only positive, while the outgoing particle has a negative momentum. Thus,
we see that the choice λ < 0 (p > 0) corresponds to the parameterization of
Liouville theory in terms of the in-field. The change of sign of λ is equivalent to
the time reversal, i.e. to the out-field parameterization. In general, the analysis of
the mechanical model becomes quite helpful to understand the peculiarities of the
Liouville field dynamics both on the classical and quantum level [52, 53].

5.2 Poisson Brackets

Having established the canonical coordinates on the space of solutions we can now
calculate the Poisson bracket algebra of the chiral fields ψ(x), A(x), χ(x), which
are the building blocks of the Liouville fields. For the exponential ψ(x) = e−γφ(x)

one immediately finds

{ψ(x), ψ(y)} =
γ2

4
ǫ(x− y)ψ(x)ψ(y) . (5.34)

The calculation of other Poisson brackets {ψ(x), A(y)}, {ψ(x), χ(y)} is also
straightforward, but to find their algebraic form one has to apply special identities
satisfied by the stair-step function (see [11, 54]). Here, we simplify the procedure
and use the Poisson bracket structure of the SL(2,R) WZNW theory. Taking into
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account that ψ(x) and χ(x) are gauge invariant components of the chiral WZNW-
field (ψ(x) = (gL)11(x), χ(x) = (gL)12(y)), their Poisson bracket algebra is unde-
formed under the reduction. Since we are in the hyperbolic sector we apply (4.50)
for the components g11 and g22, and find (5.34) together with

{χ(x), χ(y)} =
γ2

4
ǫ(x− y)χ(x)χ(y) , (5.35)

{ψ(x), χ(y)} = γ2θ−γp(x− y)χ(x)ψ(y) − γ2

4
ǫ(x− y)ψ(x)χ(y) . (5.36)

From the definition of A(x) = χ(x)
ψ(x) we then get

{ψ(x), A(y)} = γ2

(

θγp(x− y)ψ(x)A(x) − 1

2
ǫ(x− y)ψ(x)A(y)

)

(5.37)

and

{A(x), A(y)} = γ2
(

ǫ(x− y)A(x)A(y) − θ−γp(x− y)A2(x)− θγp(x− y)A2(y)
)

.
(5.38)

The antichiral fields ψ̄(x̄) and Ā(x̄), χ̄(x̄) have the same Poisson bracket rela-
tions. The algebra of the building blocks of the general solution (5.25) provides
the following non-equal time Poisson bracket for the Liouville field exponential
V (x, x̄) = e−γϕ(x,x̄)

{V (x, x̄),V (y, ȳ)} = γ2
[1

4
(ǫ(x− y) + ǫ(x̄− ȳ))

(

ψ(x)ψ̄(x̄)ψ(y)ψ̄(ȳ)

+ χ(x)χ̄(x̄)χ(y)χ̄(ȳ)− ψ(x)ψ̄(x̄)χ(y)χ̄(ȳ)− χ(x)χ̄(x̄)ψ(y)ψ̄(ȳ)
)

+ (θ2λ(x− y) + θ−2λ(x̄− ȳ))ψ(y)ψ̄(x̄)χ(x)χ̄(ȳ)

+ (θ−2λ(x− y) + θ2λ(x̄− ȳ))ψ(x)ψ̄(ȳ)χ(y)χ̄(x̄)
]

. (5.39)

Then, similarly to the SL(2,R) WZNW model, in the ’fundamental’ domain, we
obtain

{V (x, x̄), V (y, ȳ)} =
γ2

2
Θ [2V (x, ȳ)V (y, x̄)− V (x, x̄)V (y, ȳ)] . (5.40)

Note that these results one can also read off from (4.78), because V (x, x̄) coincides
with the gauge invariant component g12(x, x̄) of the WZNW-field.

5.3 Symmetries

In this section we analyze the symmetries of the reduced system. Let us consider
the energy-momentum tensor T (x) of the SL(2,R) WZNW theory. By (4.72) one
has

{T (x), J+(y)}
∣

∣

J+=−ρ = ρ δ′(x− y) , (5.41)

and therefore T (x) is not gauge invariant. In the gauge J2 = 0 the energy-
momentum tensor is given by

T (x) =
1

γ2

ψ′′(x)
ψ(x)

= φ′2(x)− 1

γ
φ′′(x) . (5.42)
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Its Poisson bracket with a free-field exponential takes the form

{T (x), e2αγφ(y)} =
(

e2αγφ(x)
)′
δ(x − y)− α

(

e2αγφ(y)
)

δ′(x− y) , (5.43)

which is the infinitesimal version of a conformal transformation with conformal
weight ∆α = α

e2αγφ(x) → e
R

2π
0

dz ǫ(z){T (z), · }e2αγφ(x) =
(

ξ′(x)
)α
e2αγφ(ξ(x)) , (5.44)

where ξ(x) ≈ x+ ǫ(x). The integrand of the screening charge (5.12) has conformal
weight one and the conformal factor ξ′(z) becomes the Jacobian of a transformation
z → ξ(z). Since furthermore ǫ(x − z) = ǫ(ξ(x) − ξ(z)), the screening charge
transforms with zero conformal weight

A(x)→ A(ξ(x)) . (5.45)

From the Poisson brackets (5.43) and (5.45) we see that the chiral fields ψ(x) and
χ(x) have the same conformal weight ∆− 1

2

= −1
2 .

Introducing T̄ (x̄) in a similar way, we find that the Liouville field transforms as

ϕ(x, x̄)→ ϕ(ξ(x), ξ̄(x̄)) +
1

2
log(ξ′(x)) +

1

2
log(ξ̄′(x̄)) . (5.46)

It is easy to check that the transformed field still satisfies the Liouville equa-
tion (5.2). Thus, the reduced energy-momentum tensor (5.42) is the generator
of the conformal transformation (5.46), which is a symmetry of Liouville theory.
Therefore, (5.42) is identified with the energy-momentum tensor of Liouville theory
[55, 56].

The term proportional to φ′′(x) in (5.42) is responsible for the creation of con-
formal weights and it is called the improved term. To find its origin, let us analyze
the symmetries of the constrained surface J+ + ρ = 0 under the action of the
conformal and Kac-Moody transformation of WZNW theory. Considering a linear
combination of the symmetry generators one has to find solutions to the equation

∫ 2π

0
dx {ǫ(x)T (x) + ǫn(x)Jn(x), J+(y)}

∣

∣

J+=−ρ = 0 . (5.47)

Using the Poisson brackets (4.72) and (4.71) we get

ρ(ǫ′(y) + ǫ2(y)) + (ǫ0(y) + ǫ1(y))J2(y) +
k

2
(ǫ′0(y) + ǫ′1(y)) = 0 . (5.48)

In order to have the parameters gauge independent we set ǫ0(x)+ǫ1(x) ≡ 0 and im-
mediately get ǫ2(x) = −ǫ′(x), which corresponds to the gauge invariant symmetry
generator

T̃ (x) = T (x)− J ′
2(x) =

1

γ2

ψ′′(x)
ψ(x)

. (5.49)

It generates the following infinitesimal transformation of the WZNW-field

δg(x, x̄) = ǫ(x)∂xg(x, x̄)− 1

2
ǫ′(x)(T2g(x, x̄)) , (5.50)
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which after reduction on the constrained surface provides conformal weight of gauge
invariant components of the g-field.

Another symmetry transformation of the space of solutions is a periodic trans-
lation of φ(x), generated by φ′(x)

{φ′(x), e2αγφ(y)} = αγδ(x − y)e2αγφ(y) . (5.51)

This corresponds to a Weyl transformation of the free-field exponential

eγφ(x) → e
R 2π

0
dz f(x){φ′(x), · }eγφ(x) = eγφ(x)ef(x) . (5.52)

The Liouville energy-momentum tensor T (x) given by (5.42) and φ′(x) form
the following Lie algebra, similar to (2.62a)-(2.62c) but with central terms

{φ′(x), φ′(y)} = −1

2
δ′(x− y) , (5.53a)

{T (x), φ′(y)} = φ′′(y)δ(x − y)− φ′(y)δ′(x− y) +
1

2γ
δ′′(x− y) , (5.53b)

{T (x), T (y)} = T ′(y)δ(x − y)− 2T (y)δ′(x− y) +
1

2γ2
δ′′′(x− y) . (5.53c)

A consistent quantum theory has to provide realization of this algebra in a
Hilbert space.
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VI

The SL(2,R)/U(1) Model

Chapter 6 reviews the classical theory of the SL(2,R)/U(1) model. We show
that the gauged model can be treated as a constrained WZNW theory. Constraints
are imposed on the space of solutions, which in the Hamiltonian formulation cor-
responds to the constrained U(1) Kac-Moody currents. This picture enables us
to extract the general solution of the model and to carry out the Hamiltonian
reduction, as well.

A new result here is the calculation of the reduced symplectic form with a
detailed analysis of the zero mode sector. Then we describe the space of solutions
and calculate the Poisson bracket structure there. An important new point is
the analysis of the elliptic sector. We show that the solutions of this sector can
be interpreted as bound states, while the hyperbolic monodromy describes only
scattering processes. We relate the two sectors by an analytical continuation and
discuss the role of the winding number, which is an important characteristic of the
solutions.

Another new result for this chapter is the calculation of the non-equal time
Poisson bracket in the elliptic sector. Similarly to the SL(2,R) WZNW model, this
calculation indicates the monodromy independence of the Poisson bracket structure
for the full interacting field.

6.1 Lagrangian Description

As it was shown in section 4.6 the axial gauging of the SL(2,R) WZNW theory
with respect to the compact subgroup generated by T0 leads to the Lagrangian (see
(4.88))

L =
k

2

∂xu∂x̄u
∗ + ∂xu

∗∂x̄u
1 + |u|2 . (6.1)

where u is a complex valued field u ≡ u1 + iu2, u
∗ ≡ u1 − iu2. The equations of

motion for this gauged system are

∂2
xx̄u = u∗

∂xu∂x̄u

1 + |u|2 (6.2)

and its complex conjugate. This model is obviously conformal invariant, but in con-
trast to Liouville theory, the conformal symmetry is not sufficient for the complete
integrability of these equations. To find the general solution we apply a reduction
scheme to the space of solutions (4.10) of the SL(2,R) WZNW theory. Before
discussing this procedure we first describe a geometric interpretation of the model.

6.1.1 Embedding into Euclidean Space

The Lagrangian (6.1) provides a sigma model with the target space metric

ds2 =
du du∗

1 + |u|2 . (6.3)
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Figure 6.1: Tip of the “infinite cigar”, the target space of the SL(2,R)/U(1)
model embedded in Euclidean space

If one parameterizes u in terms of polar coordinates r and θ by

u =
r√

1− r2
eiθ , r < 1 , (6.4)

then the line element (6.3) becomes

ds2 =
dr2

(1− r2)2 + r2dθ2 . (6.5)

This can be interpreted as the induced metric on a rotational surface in R3 given
by

x = r cos(θ) , y = r sin(θ) , z = Z(r) , (6.6)

where the function Z(r) satisfies the equation

1 + Z ′2(r) =
1

(1− r2)2 . (6.7)

The solution of this equation with the choice Z ′(r) < 0 and Z(0) = 0 is given by

Z(r) =
√

2− r2 − 1

2
log

(√
2− r2 + 1√
2− r2 − 1

)

+
1

2
log

(√
2 + 1√
2− 1

)

−
√

2 . (6.8)

The resulting surface is called the “infinite cigar” (see fig. 6.1). For r → 1 (large
negative z) it takes the form of a cylinder and at r = 0 (z = 0) it is pinched to one
point.

This model was introduced in [16] and intensively studied in the 90’s [15, 17,
57, 36, 58].

6.1.2 Energy-Momentum Tensor

The energy-momentum tensor obtained from (6.1) has only off-diagonal compo-
nents

T (x) ≡ T x̄x =
∂xu∂xu

∗

1 + |u|2 , (6.9a)

T (x̄) ≡ T xx̄ =
∂x̄u∂x̄u

∗

1 + |u|2 , (6.9b)
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which are chiral and antichiral, respectively, due to the equations of motion (6.2).
The vanishing of the diagonal components T xx = T x̄x̄ = 0 shows that the energy-
momentum tensor is traceless, and confirms the conformal invariance of the theory.

6.2 General Solution

Let us recall that the initial Lagrangian (4.6) for our model is given by

L = −k 〈g−1∂xgg
−1∂x̄g〉 − k

〈T0∂xgg
−1〉〈T0g

−1∂x̄g〉 − 〈T0∂x̄gg
−1〉〈T0g

−1∂xg〉
1 + 〈T0gT0g−1〉 ,

(6.10)
and the corresponding gauged Lagrangian (4.84)

LG = L(g, ∂xg −Ax(T0g + gT0), ∂x̄ −Ax̄(T0g + gT0)) (6.11)

provides the solution for the gauge potential (4.85)

Ax =
〈T0∂xgg

−1〉
1 + 〈T0gT0g−1〉 , Ax̄ =

〈T0g
−1∂x̄g〉

1 + 〈T0gT0g−1〉 . (6.12)

6.2.1 Field Strength

In order to find the general solution of the SL(2,R)/U(1) model we first calculate
the field strength from (6.12)

Fµν = ∂µAν − ∂νAµ . (6.13)

Note that in the polar coordinates (3.7) the Lagrangian (6.1) takes the form

L =
k

1 + r2
(

(∂xr)(∂x̄r) + r2(∂xβ)(∂x̄β)
)

, (6.14)

and the variation with respect to the β-field yields the equation of motion

∂x

(

r2

1 + r2
∂x̄β

)

+ ∂x̄

(

r2

1 + r2
∂xβ

)

= 0 . (6.15)

The gauge field (6.12) in the polar coordinates is given by

Ax =
1

2
∂xα+

1

2

r2

1 + r2
∂xβ , Ax̄ =

1

2
∂x̄α−

1

2

r2

1 + r2
∂x̄β , (6.16)

and the field strength is then

Fx̄x =
1

2
∂x̄

(

r2

1 + r2
∂xβ

)

+
1

2
∂x

(

r2

1 + r2
∂x̄β

)

= 0 , (6.17)

which vanishes due to (6.15).
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6.2.2 Solutions

First note that for a vanishing gauge field the gauged Lagrangian (6.11) is equal
to the initial Lagrangian (6.10). Therefore, a solution with zero gauge field splits
into the product (4.10).

Let now (ĝ, Ax, Ax̄) be an arbitrary solution of the dynamical equations ob-
tained from the gauged Lagrangian (6.11). Expanding the gauge field components
Aτ = Ax +Ax̄ and Aσ = Ax −Ax̄ in Fourier modes

Aσ(τ, σ) = µ(τ) +
∑

n 6=0

cn(τ)e
−inσ , Aτ (τ, σ) = ν(τ) +

∑

n 6=0

dn(τ)e
−inσ , (6.18)

we find that the vanishing field strength implies

∂τcn(τ) + indn(τ) = 0 and ∂τµ(τ) = 0 . (6.19)

Then, a gauge transformation with the function

ǫ(τ, σ) ≡ −µσ +
∑

n 6=0

cn(τ)

in
e−inσ −

∫ τ

0
ν(t)dt (6.20)

transforms the ĝ-field according to

ĝ(τ, σ)→ g̃(τ, σ) = eǫ(τ,σ)T0 ĝ(τ, σ)eǫ(τ,σ)T0 (6.21)

and vanishes the gauge field

Aσ → Ãσ = Aσ + ∂σǫ = 0 , Aτ → Ãτ = Aτ + ∂τ ǫ = 0 . (6.22)

According to the remark above the solution is now given by the product g̃(x, x̄) =
g̃L(x)g̃R(x̄). However, it has to be noted that for µ 6= 0 the function (6.20) is not
periodic in σ, which leads to a non-periodic transformed solution g̃

g̃(τ, σ + 2π) = e−2πµT0 g̃(τ, σ)e−2πµT0 . (6.23)

The gauge invariant u-field can thus be written as

u(x, x̄) = 〈(T1 + iT2)g̃L(x)g̃R(x̄)〉 (6.24)

where due to (6.12) and the vanishing gauge potential the chiral fields are con-
strained by

〈T0∂xg̃L(x)g̃−1
L (x)〉 = 0 , 〈T0g̃

−1
R (x̄)∂x̄g̃R(x̄)〉 = 0 (6.25)

and must also satisfy condition (6.23).

Equation (6.23) and (6.25) can be interpreted as constraints on the chiral fields.
A proper parameterization of this constrained surface and its insertion into (6.24)
leads to the general solution of our model. In the next sections we will realize this
scheme in detail for the hyperbolic and elliptic monodromies separately.
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6.3 Hyperbolic Monodromy

In the hyperbolic sector (4.16a) the chiral and antichiral parts of the WZNW-field
(6.21) have the monodromy

g̃L(x+ 2π) = e−2πµT0 g̃L(x)eλT2 , g̃R(x̄+ 2π) = eλT2 g̃R(x̄)e2πµT0 . (6.26)

We parameterize these fields in terms of two complex fields ψ(x), χ(x) and ψ̄(x̄), χ̄(x̄)
by

g̃L(x) = −
√

2

(

Imψ(x) Imχ(x)
Reψ(x) Reχ(x)

)

, g̃R(x̄) =
√

2

(

Re ψ̄(x̄) − Im ψ̄(x̄)
Re χ̄(x̄) − Im χ̄(x̄)

)

.

(6.27)

This choice is motivated by the fact that the fields now each have a closed mon-
odromy behavior

ψ(x+ 2π) = ψ(x)eλ+i2πµ , χ(x+ 2π) = χ(x)e−λ+i2πµ , (6.28)

and the same for the antichiral parts. On these functions we have to impose two
conditions: Demanding a determinant equal to one immediately leads to

ψ(x)χ∗(x)− ψ∗(x)χ(x) = i . (6.29)

The constraint on the Kac-Moody current J0 = 0 can be expressed as

ψ′(x) = V (x)ψ∗(x) , χ′(x) = V (x)χ∗(x) , (6.30)

where we have defined

V (x) ≡ 1

i
〈(T1 + iT2)g̃

′
L(x)g̃−1

L (x)〉 . (6.31)

Combining these two conditions on ψ(x) and χ(x) yields the Wronskian

ψ(x)χ′(x)− ψ′(x)χ(x) = i
ψ′(x)
ψ∗ , (6.32)

and the ansatz χ(x) = ψ(x)A(x) results in the following equation for the screening
charge A(x)

A′(x) = i
ψ′(x)

|ψ(x)|2ψ(x)
. (6.33)

Taking into account the monodromy behavior which A inherits from ψ(x) and χ(x),
this can be integrated to

A(x) = i

∫ 2π

0
dz θ−2λ(x− z)

ψ′(z)
|ψ(z)|2ψ(z)

(6.34)

with the Green’s function (4.46).

For the antichiral fields ψ̄(x̄) and χ̄(x̄) the monodromy is the same and with

V̄ (x̄) ≡ i〈(T1 + iT2)g̃
−1
R (x̄)g̃′R(x̄)〉 (6.35)
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they also satisfy the corresponding relations (6.29) and (6.30). By the same argu-
ments as above we can therefore write χ̄(x̄) = ψ̄(x̄)Ā(x̄) with

Ā(x̄) = i

∫ 2π

0
dz̄ θ−2λ(x̄− z̄)

ψ̄′(z̄)

|ψ̄(z̄)|2ψ̄(z̄)
. (6.36)

Inserting these results into the solution (6.24) we obtain the general solution of
the SL(2,R)/U(1) model in the hyperbolic sector

u(x, x̄) = ψ(x)ψ̄(x̄) + χ(x)χ̄(x̄)

= ψ(x)ψ̄(x̄)
(

1 +A(x)Ā(x̄)
)

(6.37)

parameterized by two arbitrary chiral and antichiral fields ψ(x) and ψ̄(x̄) with
monodromies defined be (6.28).

6.3.1 Hamiltonian Reduction

Although we have already described the space of solutions of the SL(2,R)/U(1)
model in the hyperbolic sector we still do not know the Poisson bracket structure
there. In order to find this structure we perform the Hamiltonian reduction.

The solution (6.21) is not in the class of periodic functions, but one can remedy
this non-periodicity and define a new field

g(x, x̄) ≡ eµxT0 g̃(x, x̄)e−µx̄T0 . (6.38)

This g still has the structure of chiral times antichiral function and is also periodic.
It is therefore in the class of WZNW-fields. The zero component of its Kac-Moody
currents however is fixed by the original gauge fields zero mode

J0(x) = kµ , J̄0(x̄) = −kµ . (6.39)

The solutions of the SL(2,R)/U(1)-model are thus parameterized by the subclass
of WZNW-fields g with J0 = −J̄0 = const., and the final solution in terms of gauge
invariant variables is given by

u(x, x̄) = 〈(T1 + iT2)e
−µxT0g(x, x̄)eµx̄T0〉 . (6.40)

The chiral part of the periodic WZNW field is related to the fields ψ(x) and
χ(x) that parameterize the non-periodic solution by

gL(x) = eµxT0 g̃L(x) = −
√

2

(

Im(ψ(x)e−iµx) Im(χ(x)e−iµx)
Re(ψ(x)e−iµx) Re(χ(x)e−iµx)

)

. (6.41)

We now insert this parameterization into the symplectic form (4.32a) and find the
symplectic form on the subspace of solutions. Using the relations (6.29) and (6.30)
and the monodromy behavior we can eliminate χ(x) without using its explicit
solution in terms of ψ(x). The symplectic form then reads

ω =

∫ 2π

0
dx

1

2k

[(

dψ(x)

ψ(x)

)′
∧ dψ

∗(x)
ψ∗(x)

+

(

dψ∗(x)
ψ∗(x)

)′
∧ dψ(x)

ψ(x)

]

+
1

2k
dλ ∧

(

dψ(0)

ψ(0)
+
dψ∗(0)
ψ∗(x)

)

+
iπ

k
dµ ∧

(

dψ∗(0)
ψ ∗ (0)

− dψ(0)

ψ(0)

)

. (6.42)
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Due to the unit determinant condition (6.29) we have ψ(x) 6= 0 and ψ(x) can be
parameterized by

ψ(x) = eγφ1(x)+iγφ2(x) (6.43)

where φ1(x) and φ2(x) are two real fields and γ ≡ k−
1

2 . In order to reproduce the
monodromy (6.28) of ψ(x) the fields satisfy

φ1(x+ 2π) = φ1(x) +
p1

2
, φ2(x+ 2π) = φ2(x) +

p2

2
+ 2π

n

γ
, (6.44)

with p1 ≡ 2λ/γ, p2 ≡ 4πµ/γ and an arbitrary integer n ∈ Z. The symplectic form
then becomes

ω =

∫ 2π

0

(

dφ′1 ∧ dφ1 + dφ′2 ∧ dφ2

)

dx+
1

2
dp1 ∧ dφ1(0) +

1

2
dp2 ∧ dφ2(0) . (6.45)

This can be identified with two free-field symplectic forms (2.39), and therefore
φ1(x) and φ2(x) satisfy the canonical relations

{φi(x), φj(y)} = δij
1

4
ǫ(x− y) . (6.46)

On the antichiral side an analogous calculation can be done and for the param-
eterization

ψ̄(x̄) = eγ(φ̄1(x̄)+iφ̄2(x̄)) , (6.47)

where φ̄1 and φ̄2 have the monodromy

φ̄1(x̄+ 2π) = φ̄1(x̄) +
p̄1

2
, φ̄2(x̄+ 2π) = φ̄2(x̄) +

p2

2
+

2π

γ
n̄ (6.48)

with p̄1 ≡ 2λR/γ and another arbitrary integer n̄ ∈ Z we also find the standard
free-field symplectic form.

The full solution on the physical space pj = p̄j with the redefinition qj+ q̄j → qj
can now be written in free-field parameterization

u(x, x̄) = eγ(φ1(x)+φ̄1(x̄))+iγ(φ2(x)+φ̄2(x̄))
(

1 +A(x)Ā(x̄)
)

(6.49)

with

φ1(x) =
q1
2

+
p1

4π
x+

i√
4π

∑

n 6=0

an
n
e−inx , (6.50)

φ2(x) =
q2
2

+
p2

4π
x+

n

γ
x+

i√
4π

∑

n 6=0

bn
n
e−inx , (6.51)

A(x) =
−i

2 sinh(γp12 )

∫ 2π

0
dz e

γp1
2 e−2γφ1(x+z)γ(φ′1(x+ z) + iφ′2(x+ z)) (6.52)

and similarly for the antichiral part. The reduced energy-momentum tensor can be
calculated from (6.31) and (6.35)

T (x) =
1

γ2
|V |2 = φ′21 (x) + φ′22 (x) , T (x̄) =

1

γ2
|V̄ |2 = φ̄′21 (x̄) + φ̄′22 (x̄) , (6.53)
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and by integration we obtain the free-field Hamiltonian

H =
p2
1

4π
+
p2
2

4π
+
∑

n>0

(

|an|2 + |ān|2 + |bn|2 + |b̄n|2
)

. (6.54)

Since we have chosen p1 < 0 the asymptotic behavior of the field is

u(x, x̄)
τ→−∞∼ eγΦin(x,x̄) = eγ(φ1(x)+φ̄1(x̄)+i(φ2(x)+φ̄2(x̄))) , (6.55a)

u(x, x̄)
τ→+∞∼ eγΦout(x,x̄) = A(x)Ā(x̄)eγ(φ1(x)+φ̄1(x̄)+i(φ2(x)+φ̄2(x̄))) . (6.55b)

As in Liouville theory one can interpret

Φ1(x, x̄) + iΦ2(x, x̄) ≡ φ1(x) + φ̄1(x̄) + i(φ2(x) + φ̄2(x̄)) (6.56)

as the asymptotic in-field, which is mapped to the interacting field u.
Note that with a canonical transformation p2 +2π n+n̄

γ → p2 and with ν ≡ n− n̄
the phase factor of the in-field can be written as

eiγΦ2(x,x̄) = eiνσeiγ(q2+
p2
2π
τ+oscillators) . (6.57)

Here ν appears as a winding number of the string. Even though the target space is
simply connected the asymptotic in-field lives on the cylinder and ν describes the
winding of this in-field.

We now consider the vacuum solutions setting the oscillator modes equal to
zero. The fields are then

Φ1(τ, σ) = q1 +
p

2π
τ , Φ2(τ, σ) = q2 +

p2

2π
τ +

ν

γ
σ . (6.58)

For this simple configuration the screening charges can be integrated and we obtain
the vacuum solution

u(τ, σ) =eiγ(q2+
p2
2π
τ+ ν

γ
σ)
[

eγ(q1+
p1
2π
τ)

− e−γ(q1+
p1
2π
τ) 1

4p2
1

(

p1 + i

(

p2 + 2π
ν

γ

))(

p1 + i

(

p2 − 2π
ν

γ

))

]

.

(6.59)
For ν = 0 the u-field becomes σ independent and the corresponding mechanical
model is similar to (3.63).

6.3.2 Poisson Brackets

We now calculate the Poisson brackets between the chiral fields ψ(x) and χ(x).
Interestingly, the Poisson bracket of ψ(x) with itself vanishes due to the complex
structure

{ψ(x), ψ(y)} = {eγφ1(x)+iγφ2(x), eγφ1(y)+iγφ2(y)} = 0 . (6.60)

The remaining Poisson brackets can, in principle, also be calculated using the basic
relations of φ1 and φ2 (6.46). However, to simplify the calculations here we use the
method of Dirac brackets (see Appendix A).

As we have shown, the SL(2,R)/U(1) model can be treated as a reduced
WZNW theory, constrained to the surface (6.39), where µ is a constant dynamical
parameter. The constraints can also be written as

J ′
0(x) = 0 J̄ ′

0(x̄) = 0 (6.61a)
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and
∫ 2π

0
dx J0(x) +

∫ 2π

0
dx̄ J̄0(x̄) = 0 . (6.61b)

In terms of the Fourier modes J0(x) =
∑

k jke
ikx these constraints become

jk = 0 , j̄k = 0 for k 6= 0 , (6.62a)

and
j0 + j̄0 = 0 . (6.62b)

From (4.71) we have

{jm, jn} = i
m

4πγ2
δm+n . (6.63)

and similarly for the antichiral constraints. Therefore (6.62a) form second class
constraints, while (6.62b) is of the first class. To calculate the Poisson brackets in
the reduced space from the ones in the full space we have to use the Dirac brackets
(A.16). For this we need to invert {jm, jn} with m,n 6= 0, which is easily found to
be

({j, j})−1
lm = i

4πγ2

l
δl+m . (6.64)

According to (6.41) the fields ψ and χ are given by

ψ(x) =
1√
2
〈(T1 − T0 + i(T2 + I))gL(x)〉eiγ2j0x , (6.65)

χ(x) =
1√
2
〈(I − T2 + i(T1 + T0))gL(x)〉eiγ2j0x . (6.66)

From (4.67a) one can now extract the Poisson brackets of ψ(x) and χ(x) and con-
struct the Dirac brackets. This procedure and the results are given in Appendix B.
Finally, one arrives at the Dirac bracket of the full field

{u(x, x̄), u(y, ȳ)}D = γ2
[

(θ2λ(x− y) + θ−2λ(x̄− ȳ))χ(x)ψ̄(x̄)ψ(y)χ̄(ȳ)

+ (θ−2λ(x− y) + θ2λ(x̄− ȳ))ψ(x)χ̄(x̄)χ(y)ψ̄(ȳ)

−Θ
(

ψ(x)ψ̄(x̄)χ(y)χ̄(ȳ) + χ(x)χ̄(x̄)ψ(y)ψ̄(ȳ)
)

]

. (6.67)

In the fundamental domain we find

{u(x, x̄), u(y, ȳ)}D = γ2Θ [u(x, ȳ)u(y, x̄)− u(x, x̄)u(y, ȳ)] , (6.68)

which also has a causal structure and is given in terms of the full fields at the
intersection points of their light cones.

The Dirac bracket of u with its complex conjugate can be found to be

{u∗(x, x̄), u(y, ȳ)}D = γ2
[

Θ
(

ψ∗(x)ψ̄∗(x̄)ψ(y)ψ̄(ȳ) + χ∗(x)χ̄∗(x̄)χ(y)χ̄(ȳ)
)

+ (θ2λ(x− y) + θ−2λ(x̄− ȳ))χ∗(x)ψ̄∗(x̄)ψ(y)χ̄(ȳ)

+ (θ−2λ(x− y) + θ2λ(x̄− ȳ))ψ∗(x)χ̄∗(x̄)χ(y)ψ̄(ȳ)
]

.

(6.69)
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Note that even in the fundamental domain this cannot be written as an expression
of u and u∗. However, with the object

x(x, x̄) ≡ 〈(I + iT0)g(x, x̄)〉 = −i
(

ψ(x)ψ̄∗(x̄) + χ(x)χ̄∗(x̄)
)

, (6.70)

which is related to the vector gauged model, the fundamental Poisson bracket can
be expressed as

{u∗(x, x̄), u(y, ȳ)}D = γ2Θ x∗(x, ȳ)x(y, x̄) . (6.71)

The results derived in this section coincide with the Poisson relations obtained
from the SL(2,R)/U(1) model on the full line in [11].

6.3.3 Symmetries

The reduced energy-momentum tensor of the SL(2,R)/U(1) model is

T (x) = φ′21 (x) + φ′22 (x) . (6.72)

It generates conformal transformations of the system. Its action on a free-field
exponential

{T (x), e2αγ(φ1(y)+iφ2(y))} =
(

e2αγ(φ1(y)+iφ2(y))
)′
δ(x− y) (6.73)

shows that ψ(x) is a conformal scalar. The integrand of the screening charge
however transforms as

{T (x), (φ′1(y) + iφ′2(y))e
−2φ1(y)} =

(

(

φ′1(x) + iφ′2(x)
)

e−2φ1(x)
)′
δ(x − y)

−
(

(

φ′1(y) + iφ′2(y)
)

e−2φ1(y)
)

δ′(x− y) ,
(6.74)

which indicates that it transforms with conformal weight one. Therefore the screen-
ing charge itself will transform as a conformal scalar as well. Thus the object u(x, x̄)
transforms with conformal weight zero

u(x, x̄)→ u(ξ(x), ξ̄(x̄)) , (6.75)

which is also a solution of the equation of motion (6.2).
As in Liouville theory we have another symmetry generated by φ′1(x) and φ′2(x)

{φ′1(x), eγ(φ1(y)+iφ2(y))} =
γ

2
δ(x− y)eγ(φ1(y)+iφ2(y)) , (6.76)

{φ′2(x), eγ(φ1(y)+iφ2(y))} = i
γ

2
δ(x− y)eγ(φ1(y)+iφ2(y)) , (6.77)

which corresponds to the translation on the space of solutions

φ1(x)→ φ1(x) + h1(x) , (6.78a)

φ2(x)→ φ2(x) + h2(x) . (6.78b)

The Lie algebra of the symmetry group is

{φ′j(x), φ′k(y)} = −1

2
δjkδ

′(x− y) , (6.79)

{T (x), φ′j(y)} = φ′′j (x)δ(x − y)− φ′j(y)δ′(x− y) , (6.80)

{T (x), T (y)} = T ′(x)δ(x − y)− 2T (y)δ′(x− y) . (6.81)
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6.4 Elliptic Monodromy

6.4.1 Solutions

So far we have only analyzed the hyperbolic sector of the theory. However, for the
SL(2,R)/U(1) theory there also exists an elliptic sector where the monodromies of
the chiral and antichiral parts of the solution are

g̃L(x+ 2π) = e−2πµT0 g̃L(x)eλT0 , g̃R(x̄+ 2π) = eλT0 g̃R(x̄)e2πµT0 . (6.82)

A convenient parameterization of the chiral part in terms of two complex functions
ψ(x) and χ(x) now can be written as

g̃L =

(

Imψ + Reχ Reψ + Imχ
Reψ − Imχ Reχ− Imψ

)

. (6.83)

By (6.82) the chiral functions ψ(x), χ(x) have the monodromy

ψ(x+ 2π) = ψ(x)ei(λ+2πµ) , χ(x+ 2π) = χ(x)ei(−λ+2πµ) , (6.84)

and the condition det(g̃L) = 1 implies

|χ(x)|2 − |ψ(x)|2 = 1 . (6.85)

Similar to the case of the hyperbolic monodromy the constraint J0 = 0 can be
written as

ψ′(x) = −iV (x)χ∗(x) , χ′(x) = −iV (x)ψ∗(x) . (6.86)

Combining these two conditions we find

χ∗(x)χ′(x)− ψ∗(x)ψ′(x) = 0 . (6.87)

To pass to independent variables we introduce polar coordinates

ψ(x) = r(x)eiα(x) , χ(x) = R(x)eiβ(x) . (6.88)

Due to (6.84) the radial functions r(x) and R(x) are periodic, and the monodromy
of the angle variables reads

α(x+ 2π) =α(x) + 2π(µ+ n) + λ , β(x+ 2π) =β(x) + 2π(µ+m)− λ , (6.89)

with n,m ∈ Z. The conditions (6.85) and (6.87) are then

R2(x) = r2(x) + 1 , r2(x)α′(x)−R2(x)β′(x) = 0 . (6.90)

The solutions of these equations in terms of the angle variables α(x) and β(x) with
α′(x)
β′(x) > 1 are

ψ(x) =

√

β′(x)
α′(x)− β′(x)e

iα(x) , χ(x) =

√

α′(x)
α′(x)− β′(x)e

iβ(x) . (6.91)

The induced symplectic form on this space of motions is a rather complicated
expression and we suspect that it is not possible to find global canonical coordinates
here.
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The antichiral part can be parameterized in a similar way

g̃R(x̄) = −
(

Re ψ̄(x̄) + Im χ̄(x̄) Re χ̄(x̄)− Im ψ̄(x̄)
Re χ̄(x̄) + Im ψ̄(x̄) Re ψ̄(x̄)− Im χ̄(x̄)

)

. (6.92)

The fields ψ̄(x̄) and χ̄(x̄) then have a monodromy

ψ̄(x̄+ 2π) = ψ̄(x)ei(2πµ+λ) , χ̄(x̄+ 2π) = χ̄(x)ei(2πµ−λ) . (6.93)

The conditions for the unit determinant and the zero component of the Kac-Moody
current here become

|ψ̄(x̄)|2 − |χ̄(x̄)|2 = 1 (6.94)

and

ψ̄′(x̄) = iV̄ (x̄)χ̄∗(x̄) , χ̄′(x̄) = iV̄ (x̄)ψ̄∗(x̄) . (6.95)

We then find a parameterization similar to (6.91) in terms of the angle variables

ψ̄(x̄) =

√

β̄′(x̄)

β̄′(x̄)− ᾱ′(x̄)
eiᾱ(x̄) , χ̄(x̄) =

√

ᾱ′(x̄)

β̄′(x̄)− ᾱ′(x̄)
eiβ̄(x̄) (6.96)

with β̄′(x̄)
ᾱ′(x̄) > 1 and monodromies

ᾱ(x̄+ 2π) =ᾱ(x̄) + 2π(µ+ n̄) + λ , β̄(x̄+ 2π) =β̄(x̄) + 2π(µ+ m̄)− λ . (6.97)

The full solution (6.24) is now given by

u(x, x̄) = ψ(x)ψ̄(x̄) + χ(x)χ̄(x̄) . (6.98)

Note that the radial functions are periodic and therefore we see that the elliptic
sector describes bound states, where the string does not go to infinity but remains
in a bounded part of the cigar.

In order to make contact with the hyperbolic vacuum solution we choose linear
functions

α(x) =
q̃2
2

+ π +

(

µ+ n+
λ

2π

)

x , β(x) =
q̃2
2

+

(

µ+ n− λ

2π

)

x ,

ᾱ(x) =
q̃2
2

+

(

µ+ n̄+
λ

2π

)

x̄ , β̄(x̄) =
q̃2
2

+

(

µ+ n̄− λ

2π

)

x̄ .

(6.99)

With the definitions ν ≡ n− n̄, ρ ≡ 2λγ−1 and γp2 ≡ 4πµ+ 2π(n+ n̄) the solution
is then

u(x, x̄) = eiγ(q̃2+
p2
2π
τ)eiνσ

1

2ρ

[
√

(

p2 + 2π
ν

γ
− ρ
)(

2π
ν

γ
− p2 + ρ

)

eiγ
ρ
2π
τ

−
√

(

p2 + 2π
ν

γ
+ ρ

)(

2π
ν

γ
− p2 − ρ

)

e−iγ
ρ
2π
τ

]

(6.100)
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with the condition

|2πν| > γ(|p2|+ |ρ|) . (6.101)

The hyperbolic vacuum solution (6.59) can be symmetrized with a specific choice
of q1 and q2

q1 =
1

2γ
log

∣

∣

∣

∣

(

2π
ν

γ
+ p2 + ip1

)(

2π
ν

γ
− p2 − ip1

)∣

∣

∣

∣

− 1

γ
log |2p1| (6.102a)

iq2 = iq̃2 + i
3

2
π +

1

4γ
log

(

(2π νγ + p2 + ip1)(2π
ν
γ − p2 − ip1)

(2π νγ + p2 − ip1)(2π
ν
γ − p2 + ip1)

)

, (6.102b)

so that it takes the form

u(τ, σ) = eiγ(q̃2+
p2
2π
τ)eiνσ

i

2p1

[
√

(

2π
ν

γ
+ p2 + ip1

)(

2π
ν

γ
− p2 − ip1

)

eγ
p1
2π
τ

−
√

(

2π
ν

γ
+ p2 − ip1

)(

2π
ν

γ
− p2 + ip1

)

e−γ
p1
2π
τ

]

.

(6.103)

It is obvious that the specific elliptic solution can be reached from this hyperbolic
solution by an analytic continuation p1 → iρ.

6.4.2 Poisson Brackets

The symplectic form in the elliptic sector is a complicated expression and difficult
to invert. However, we can obtain the Poisson brackets of the parameterizing fields
by the method of Dirac brackets (A.16). This technique was already used for the
hyperbolic sector in section 6.3.2.

The constraints are here also given by (6.62a) and (6.62b) and the chiral periodic
WZNW-field gL is related to the nonperiodicc solution g̃L by

gL(x) = eµxT0 g̃L(x) . (6.104)

Inserting now the parameterizationn (6.83) we find the expressions for ψ(x) and
χ(x) in terms of the WZNW-field

ψ(x) = −〈(T1 + iT2)gL(x)〉eiγ2j0x , (6.105a)

χ(x) = −〈(I + iT0)gL(x)〉eiγ2j0x . (6.105b)

From (4.67a) we then find their Poisson brackets with the Fourier components of
J0(x)

{ψ(x), jk} =
−i
4π
e−ikxψ(x) , {χ(x), jk} =

−i
4π
e−ikxχ(x) . (6.106)

The Poisson brackets of ψ(x) and χ(x) in the unconstrained space can now be
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obtained from (4.60)

{ψ(x), ψ(y)} =
γ2

4
ψ(x)ψ(y)

(

ǫ(x− y)− 1

π
(x− y)

)

, (6.107a)

{χ(x), χ(y)} =
γ2

4
χ(x)χ(y)

(

ǫ(x− y)− 1

π
(x− y)

)

, (6.107b)

{ψ(x), χ(y)} = γ2
[

−1

4
(ǫ(x− y) +

1

π
(x− y))ψ(x)χ(y) + θ2iλ(x− y)χ(x)ψ(y)

]

.

(6.107c)

Similarly the Poisson brackets of the complex conjugate fields are

{ψ∗(x), ψ(y)} = γ2
[

θ−2iλ(x− y)χ∗(x)χ(y)− 1

4
ψ∗(x)ψ(y)

(

ǫ(x− y)− 1

π
(x− y)

)]

,

(6.108a)

{χ∗(x), χ(y)} = γ2
[

θ2iλ(x− y)ψ∗(x)ψ(y) − 1

4
χ∗(x)χ(y)

(

ǫ(x− y)− 1

π
(x− y)

)]

,

(6.108b)

{ψ∗(x), χ(y)} =
γ2

4
ψ∗(x)χ(y)(ǫ(x − y) +

1

π
(x− y)) . (6.108c)

Since the constraints are second class constraints we have to calculate the Dirac
brackets (A.16). Using that the inverse of the matrix {jm, jn} is given by (6.64)
we find

{ψ(x), ψ(y)}D = 0 , {χ(x), χ(y)}D = 0 , (6.109a)

{ψ(x), χ(y)}D = γ2

[

−1

2
ψ(x)χ(y) + θ2iλ(x− y)χ(x)ψ(y)

]

. (6.109b)

and for the complex conjugate fields

{ψ∗(x), ψ(y)}D = γ2θ−2iλ(x− y)χ∗(x)χ(y) , (6.110a)

{χ∗(x), χ(y)}D = γ2θ2iλ(x− y)ψ∗(x)ψ(y) , (6.110b)

{ψ∗(x), χ(y)}D =
γ2

2
ψ∗(x)χ(y)ǫ(x − y) . (6.110c)

Analogous results can be obtained for the antichiral objects. Combining the above
relations one immediately gets the Poisson bracket of the solution u(x, x̄) with itself

{u(x, x̄), u(y, ȳ)}D =
[

(θ2iλ(x− y) + θ−2iλ(x̄− ȳ))ψ(y)ψ̄(x̄)χ(x)χ̄(ȳ)

+ (θ−2iλ(x− y) + θ2iλ(x̄− ȳ))ψ(x)ψ̄(ȳ)χ(y)χ̄(x̄)

−Θ(ψ(x)ψ̄(x̄)χ(y)χ̄(ȳ) + ψ(y)ψ̄(ȳ)χ(x)χ̄(x̄))
]

.

(6.111)

Note that this result is the analytical continuation of the corresponding expression
in the hyperbolic sector (6.67) by λ→ iλ. In the fundamental domain we therefore
also find

{u(x, x̄), u(y, ȳ)}D = γ2Θ [u(x, ȳ)u(y, x̄)− u(x, x̄)u(y, ȳ)] . (6.112)
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For the complex conjugate field u∗(x, x̄) the Poisson bracket relation takes a differ-
ent form

{u∗(x, x̄), u(y, ȳ)}D =γ2
[

Θ(ψ∗(x)ψ̄∗(x̄)χ(y)χ̄(ȳ) + χ∗(X)χ̄∗(x̄)ψ(y)ψ̄(ȳ))

+ (θ2iλ(x− y) + θ−2iλ(x̄− ȳ))ψ∗(x)χ̄∗(x̄)ψ(y)χ̄(ȳ)

+ (θ−2iλ(x− y) + θ2iλ(x̄− ȳ))χ∗(x)ψ̄∗(x̄)χ(y)ψ̄(ȳ)
]

.

(6.113)
However, in the fundamental domain we obtain the same result in terms of com-
ponents of g̃(x, x̄) as in the hyperbolic sector (6.70)

{u∗(x, x̄), u(y, ȳ)}D = γ2Θx∗(x, ȳ)x(y, x̄) (6.114)

with
x(x, x̄) ≡ 〈(I + iT0)g̃(x, x̄)〉 = ψ(x)χ̄∗(x̄) + χ(x)ψ̄∗(x̄) . (6.115)
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VII

Quantization of Liouville Theory

In this chapter we review some aspects of quantum Liouville theory following
mainly the approach proposed in [33]. Our aim is to construct the Heisenberg
operator V̂ (x, x̄) for the Liouville field exponential (5.25) and then to calculate the
reflection amplitude of the theory, using the structure of the V -field in terms of
incoming and outgoing free-fields (5.31).

We apply canonical quantization based on the standard commutation relations

[q̂, p̂] = i~ , [ân, âm] = [ˆ̄an, ˆ̄am] = ~nδn+m , (7.1)

where (p̂, q̂, ân, ˆ̄an) are the operators for the Fourier modes of the in-field (5.32) of
Liouville theory.

The Hilbert space is spanned by the creation operators acting on a p-dependent
vacuum, with p > 0

|{a}, p〉 =
∏

n>0

(â†n)
kn |0, p〉 . (7.2)

Even though this scheme establishes the basic operators and the Hilbert space
they act on, one still cannot write the quantum version of the Liouville field ex-
ponential (5.25) due to the operator ordering problem there. The operators corre-
sponding to the Liouville field exponentials are called vertex operators. The vertex
operator for (5.25) can be written as

V̂ (x, x̄) = Ê(x, x̄) + F̂ (x, x̄) , (7.3)

where Ê and F̂ correspond to the exponentials of the in- and out-fields, respectively.
Our strategy for the construction of these operators is based on the assumption
that the classical symmetry of the theory is realized on the quantum level. More
precisely, we require that

1. The operators for the symmetry generators φ̂′(x), T̂ (x) satisfy the commuta-
tion relations of the classical Lie algebra (5.53a)-(5.53c), up to a deformation
of the central terms;

2. The symmetry transformations of the physical operators are the same as for
their classical counterparts;

3. The vertex operator is local, i.e.

[V̂ (τ, σ1), V̂ (τ, σ2)] = 0 . (7.4)

We follow the Moyal formalism, which appears a convenient tool for the real-
ization of this program [59, 60, 61, 62, 63].

65



Chapter 7: Quantization of Liouville Theory

7.1 Moyal Formalism

The idea of the Moyal formalism is to establish a correspondence between operators
on the Hilbert space of a system and functions on the phase space, called operator
symbols. This correspondence has to map the algebraic structure of the space of
operators to the space of functions. In particular, a product of two operators is
mapped to the ∗-product (star product) of their symbols, and then, the commuta-
tors of operators create Moyal brackets on the phase space, which can be treated
as a quantum deformation of the Poisson bracket structure.

7.1.1 Holomorphic Representation

As an instructive example let us shortly review the harmonic oscillator. The Hamil-
tonian for this system in standard variables is

Ĥ =
1

2
p̂2 +

1

2
ω2q̂2 , (7.5)

and the ground state |0〉 in the q and p representation is a Gaussian about the
origin

ψ0(q) = Ce−
ω
2~
q2 , ψ̃0(p) = C̃e−

1

2~ω
p2 . (7.6)

It is obvious that the expectation values of p̂ and q̂ are zero, but for p̂2 and q̂2 we
find

〈0|p̂2|0〉 =
~ω

2
, 〈0|q̂2|0〉 =

~

2ω
. (7.7)

Thus, the product of the deviations is ∆p∆q = ~/2 and due to Heisenberg’s un-
certainty relation the ground state represents the best possible localization of a
particle in both position and momentum space. Let us now introduce the operator

Û(p, q) ≡ e i
~
(pq̂−qp̂) . (7.8)

It acts as a translation in position and momentum space since

Û †(p, q) p̂ Û(p, q) = p̂+ p , Û †(p, q) q̂ Û(p, q) = q̂ + q . (7.9)

However, opposed to classical translations on phase space the group is non-abelian

Û(p1, q1)Û (p2, q2) = e
i

2~
(p1q2−q1p2)Û(p1,+p2, q1 + q2) (7.10)

The action of the translation operator on the harmonic oscillator ground state
provides the coherent states [64]

|p, q〉 ≡ Û(p, q)|0〉 . (7.11)

In terms of the annihilation and creation operators

â ≡ 1√
2
(p̂ − iωq̂) , â† ≡ 1√

2
(p̂+ iωq̂) , (7.12)
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which have the commutator [â, â†] = ~ω, these states can be expressed as

|α〉 = e
1

~ω
(αâ†−α∗â)|0〉 = e−

1

2~ω
|α|2e

1

~ω
αâ† |0〉 , (7.13)

with α = 1√
2
(p − iωq). Here we have used the Baker-Campbell-Hausdorff (BCH)

formula and the vacuum definition â|0〉 = 0. The coherent states can thus also
be characterized by a complex number α. From the definition follows that the
coherent states are eigenstates of the annihilation operator â

â|α〉 = α|α〉 , 〈α|â† = 〈α|α∗ . (7.14)

The scalar product of two coherent states is given by

〈α|β〉 = e−
1

2~ω
(|α|2+|β|2−2α∗β) . (7.15)

The coherent states form a complete basis of the Hilbert space, i.e.1 =

∫

d2α |α〉〈α| , (7.16)

where d2α = (2π~)−1dp dq. This can be checked by projection onto the number

eigenstates using 〈n|α〉 = (n!)−
1

2 e−
1

2~ω
|α|2(α/~ω)n and the property of the gamma

function Γ(n) = (n− 1)! . In fact the coherent states form an over complete set as
any coherent state can be expressed in terms of the others.

One can now define a map from operators to symbols as the projection from
left and right with the coherent states

Ǎ(α∗, α) ≡ 〈α|Â|α〉 . (7.17)

This symbol, known as the normal or Berezin symbol [61], is holomorphic in α and
antiholomorphic in α∗. The inverse map corresponds to the normal ordering

Â =: Ǎ(â†, â) : . (7.18)

7.1.2 Star-Product

The analog of the non-commutative operator product is now introduced as the
∗-product which is defined through

Ǎ ∗ B̌ ≡ 〈α|ÂB̂|α〉 . (7.19)

Inserting the completeness relation (7.16) one finds the explicit formula of this star
product as the integral

Ǎ(α∗, α) ∗ B̌(α∗, α) =

∫

d2β e−
|b|2

~ω Ǎ(α∗, α+ β)B̌(α∗ + β∗, α) . (7.20)

If one expands the symbols into a Taylor series the integral can be carried out and
one ends up with a power series in ~

Ǎ(α∗, α) ∗ B̌(α∗, α) =

∞
∑

n=0

(~ω)2

n!

(

∂nαǍ(α∗, α)
) (

∂nα∗B̌(α∗, α)
)

. (7.21)
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This formalism can be applied to all non-zero modes of free-field theory by
replacing â with the mode operators ân and substituting the corresponding fre-
quencies ωn = n. However, for the zero mode operators p̂, q̂ one cannot use the
holomorphic representation since here ω0 = 0. We therefore introduce another map
between operators and symbols by

e2αqA(p)←→ eαq̂A(p̂)eαq̂ . (7.22)

This is essentially the Weyl symbol, corresponding to symmetrized operators, but
since in Liouville theory we only encounter operators of the form eq it is sufficient
to define this relation for the exponentials. The star-product of such two symbols
is

e2αqA(p) ∗ e2βqB(p) = e2(α+β)qA(p− i~β)B(p + i~α) . (7.23)

Expanding this in terms of ~ as well we get

e2αqA(p) ∗ e2βqB(p) = e2(α+β)q

[

A(p)B(p) + i~

(

A(p)
∂B

∂p
α− ∂A

∂p
β

)

+
(i~)2

2!

(

A(p)
∂2B

∂p2
α2 +

∂2A

∂p2
Bβ2 − 2

∂A

∂p

∂B

∂p
αβ

)

+O(~3)

]

. (7.24)

Putting together the calculations from above we can write the full star-product
of two symbols

Ǎ ∗ B̌ =ǍB̌ + ~









∑

n>0
c=a,ā

n
∂Ǎ

∂cn

∂B̌

∂c∗n
+
i

2

(

∂Ǎ

∂q

∂B̌

∂p
− ∂B̌

∂q

∂Ǎ

∂p

)









+
~

2

2









∑

n,m>0
c,d=a,ā

nm
∂2Ǎ

∂cn∂dm

∂2B̌

∂c∗n∂d∗m

+ i
∑

n>0
c=a,ā

n

(

∂2Ǎ

∂q∂cn

∂2B̌

∂p∂c∗n
− ∂2Ǎ

∂p∂cn

∂2B̌

∂q∂c∗n

)

− 1

4

(

∂2Ǎ

∂q2
∂2B̌

∂p2
+
∂2Ǎ

∂p2

∂2B̌

∂q2
− 2

∂2Ǎ

∂q∂p

∂2B̌

∂q∂p

)

]

+O(~3).

(7.25)

7.1.3 Moyal Bracket

One can now compute the symbol of the operator commutator by the star-product
commutator, the so-called Moyal bracket

{Ǎ.B̌}∗ ≡
i

~

(

Ǎ ∗ B̌ − B̌ ∗ Ǎ
)

. (7.26)

For a single non-zero mode we can substitute the expansion of the star-product in
~ into this expression, which shows that the Moyal bracket is a deformation of the
classical Poisson bracket

{Ǎ, B̌}∗ = {Ǎ, B̌}P.B. + i~
n2

2!

(

∂2Ǎ

∂a2
n

∂2B̌

(∂a∗n)2
− ∂2B̌

∂a2
n

∂2Ǎ

(∂a∗n)2

)

+O(~2). (7.27)
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Finally the full Moyal bracket of two symbols can be found by inserting the star-
product (7.25) into the definition (7.26), which results in

{Ǎ, B̌}∗ = {Ǎ, B̌}P.B. + ~X1(Ǎ, B̌) +O(~2) (7.28)

with

X1(Ǎ, B̌) =
i

2

∑

n,m>0
c,d=a,ā

nm

[

∂2Ǎ

∂cn∂dm

∂2B̌

∂c∗n∂d∗m
− ∂2B̌

∂cn∂dm

∂2Ǎ

∂c∗n∂d∗m

]

+
1

2

∑

n>0
c=a,ā

n

[

∂2Ǎ

∂p∂cn

∂2B̌

∂q∂c∗n
− ∂2Ǎ

∂q∂cn

∂2B̌

∂p∂c∗n
− ∂2B̌

∂p∂cn

∂2Ǎ

∂q∂c∗n
+

∂2B̌

∂q∂cn

∂2Ǎ

∂p∂c∗n

]

.

(7.29)

Note that X1 consists of second derivatives only and higher order terms in ~ consist
of higher derivatives also. Therefore the Moyal brackets of a symbol that is linear
coincide with its Poisson brackets. Furthermore, if one symbol is at most quadratic
then expression (7.28) will terminate after X1.

7.2 Construction of Operators

7.2.1 Symmetry Generators and Hamiltonian

We are now going to construct the quantum versions of the symmetry generators
φ′(x) ≡ ∂xΦ(x, x̄), T (x) and their antichiral counterparts. The operator φ′(x) is
linear in p, q and an and therefore there is no ordering ambiguity. The symbol of
this operator is then simply the classical function itself

φ̌′(x) = φ′(x) . (7.30)

The same argument also holds for the antichiral symbol ˇ̄φ′(x̄) = φ̄′(x̄) and since
these symbols are linear they trivially satisfy the same algebra as classically

{φ̌′(x), f(y)}∗ = {φ′(x), f(y)}P.B. . (7.31)

For the symbol of the operator T̂ (x) the demand that it satisfy the classical
relation (5.53b) up to a central extension

{Ť (x), φ′(y)}∗ = φ′′(y)δ(x − y)− φ′(y)δ′(x− y) +
η

2γ
δ′′(x− y) (7.32)

gives a variational equation for Ť (x) which can be integrated to

Ť (x) = φ′2(x)− η

γ
φ′′(x) + C(p, x) . (7.33)

Note that this Ť is quadratic and linear in φ and does not depend on q. Hence,
its Moyal brackets are equal to the Poisson brackets plus a linear term in ~. Using
the identity

k−1
∑

n=1

n(k − n) =
k3 − k

6
(7.34)
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the Moyal bracket of Ť with itself can be found to be

{Ť (x), Ť (y)}∗ = Ť ′(y)δ(x − y)− 2Ť (y)δ′(x− y) +

(

1

2γ2
η2 +

~

24π

)

δ′′′(x− y)

+
~

24π
δ′(x− y)− C ′(p, y)δ(x − y) + 2C(p, y)δ′(x− y) .

(7.35)
Since we only allow central extensions a comparison with the classical relation
(5.53c) shows that C(p, x) ≡ 0. However, η remains undetermined for now. The

antichiral symbol Ť can be obtained in the same way.
In analogy to the free-field theory we choose the quantum version of the Hamil-

tonian (2.48) to be the normal ordered operator. The symbol then coincides with
the classical function

Ȟ = H =
p2

4π
+
∑

n>0

ana
∗
n +

∑

n>0

ānā
∗
n . (7.36)

With this choice φ′(x) trivially satisfies the Heisenberg equation as its Moyal bracket
is given by its classical Poisson bracket. Also the relation

Ȟ =

∫ 2π

0
dσ
(

Ť (σ) + Ť (σ)
)

(7.37)

is preserved because the deformation of Ť is in the coefficient of a total derivative of
a periodic function. Since furthermore the central extension of the Moyal bracket of
Ť is also a total derivative of a periodic function Ť satisfies the Heisenberg equation

{Ȟ, Ť (x)}∗ = ∂τ Ť (x) . (7.38)

7.2.2 Free-Field Exponential

We now turn to the construction of the symbols for the free-field exponentials

Ěα(x, x̄)←→ e2αγΦ(x,x̄) . (7.39)

The requirement here is that the symmetry generators act in a similar fashion as
the classical ones. Commutation with φ′(x) as in (5.51) gives the condition

{φ′(x), Ěα(y, ȳ)} = αγĚα(y, ȳ) (7.40)

plus a similar condition for the antichiral symbol φ̄′. These are easily solved by
Ěα(x) = Cα(p, x, x̄)e2αγφ(x,x̄) with an arbitrary coefficient Cα(p, x, x̄). Commuta-
tion with the energy-momentum tensor yields

{Ť (x), Ěα(y, ȳ)}∗ =∂x
(

Ěα(y, ȳ)
)

δ(x− y)−
(

αη − α2b2
)

δ′(x− y)Ěα(y, ȳ)

− ∂xCα(p, x, x̄)Ěα(x, x̄)δ(x − y) . (7.41)

with

b2 ≡ ~γ2

2π
. (7.42)

Comparing this Moyal bracket (and the corresponding one with ˇ̄T ) to (5.43) we
see that we have to take Cα(p, x, x̄) to be constant in x and x̄. The Heisenberg
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equation is then also satisfied. Furthermore we note that the conformal weight is
now deformed to

∆α = αη − α2b2 . (7.43)

For the symbol of the in-field, α = −1/2, we can make a redefinition of q to
absorb the p dependent factor. We have then fixed the symbol of the in-field

Ě(x, x̄) = e−γΦ(x,x̄) , (7.44)

which according to the remarks about Moyal formalism is the symbol of the normal
ordered operator

: e−γΦ̂(x,x̄) := e−γ(q̂+
p̂
2π
τ)e−γ(φ̂

+(x)+ ˆ̄φ+(x̄))e−γ(φ̂
−(x)+ ˆ̄φ−(x̄)) . (7.45)

with

φ̂−(x) ≡ i√
4π

∑

n>0

ân
n
e−inx , φ̂+(x) ≡ −i√

4π

∑

n>0

â†n
n
einx , (7.46)

and similar definitions of the antichiral operators.

7.2.3 Short Distance Singularity

We now consider the product of two free-field exponentials without their p depen-
dent coefficients at equal times but separated by a distance ǫ with |ǫ| < 2π . In the
operator language this can be calculated with the BCH formula

: eαγΦ̂(x,x̄) : : eβγΦ̂(x+ǫ,x̄−ǫ) :

=: eγ(αΦ̂(x,x̄)+βΦ̂(x+ǫ,x̄−ǫ)) : e
αβγ2

“

[φ̂−(x),φ̂+(x+ǫ)]+[ ˆ̄φ−(x̄), ˆ̄φ+(x̄−ǫ)]
”

(7.47)

In this expression the two commutators

[φ̂−(x), φ̂+(x+ ǫ)] =
~

4π

∑

n>0

1

n
einǫ , [ ˆ̄φ−(x̄), ˆ̄φ+(x̄− ǫ)] = − ~

4π

∑

n<0

1

n
einǫ (7.48)

are divergent, but one can regularize them by replacing ǫ with ǫ+ iδ where δ > 0
and taking the limit δ → 0. Then we can insert the identity

∑

n>0

1

n
zn = − log(1− z) |z| < 1 . (7.49)

with z = einǫ. The sum of the commutators then becomes

[φ̂−(x), φ̂+(x+ ǫ)] + [ ˆ̄φ−(x̄), ˆ̄φ+(x̄− ǫ)] = − ~

2π
log
∣

∣

∣
2 sin

ǫ

2

∣

∣

∣
(7.50)

and the product of two free-field exponentials is found to be

: eαγΦ̂(x,x̄) : : eβγΦ̂(x+ǫ,x̄−ǫ) :=: eγ(αΦ̂(x,x̄)+βΦ̂(x+ǫ,x̄−ǫ)) :
∣

∣

∣
2 sin

ǫ

2

∣

∣

∣

−αβ b2
. (7.51)

The product of two free-field exponentials with coefficients of equal sign at equal
space and time is therefore singular.
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7.2.4 Screening Charge

Classically the out-field exponential can be written as an integral over a bilocal
field

χ(x)χ(x̄) =

∫ 2π

0

∫ 2π

0
dz dz̄ B(x, x̄, x+ z, x̄+ z̄) (7.52)

with

B(x, x̄, y, ȳ) =
m2

4 sinh2
(γp

2

)e−γpe−γΦ(x,x̄)e2γΦ(y,ȳ) . (7.53)

This field has the classical Poisson bracket with φ′

{φ′(x), B(y, ȳ, z, z̄)} =
γ

2
B(y, ȳ, z, z̄)δ(x − y) + γB(y, ȳ, z, z̄)δ(x − z) . (7.54)

We now assume that the quantum version of the out-field exponential F̌ can also
be written as the integral over a bilocal field. Demanding that the symbol have the
same Poisson bracket with φ′(x) as the classical field leads to the symbol

B̌(y, ȳ, z, z̄) = C(p, y, ȳ, z, z̄)e−γΦ(y,ȳ)e2γΦ(z,z̄) . (7.55)

The classical Poisson bracket of T (x) with B can easily be found from (5.43)

{T (x), B(y, ȳ, z, z̄)} =∂yBδ(x− y) +
1

2
Bδ′(x− y)

+ ∂zBδ(x− z)−Bδ′(x− z) . (7.56)

The Moyal bracket with Ť (x) can be calculated in a similar way as before and we
find

{T (x), B̌(y, ȳ, z, z̄)}∗ = ∂yB(y, ȳ, z, z̄)δ(x − y) + ∂zB(y, ȳ, z, z̄)δ(x − z)

+
1

2

(

η +
1

2
b2
)

B(y, ȳ, z, z̄)δ′(x− y)−
(

η − b2
)

B(y, ȳ, z, z̄)δ′(x− z)

+ e−γΦ(y,ȳ)e2γΦ(z,z̄)

(

1

2
b2C cot

(

1

2
(y − z)

)

− ∂yC
)

δ(x− y)

− e−γΦ(y,ȳ)e2γΦ(z,z̄)

(

1

2
b2C cot

(

1

2
(y − z)

)

+ ∂zC

)

δ(x − z) .
(7.57)

Here we have used

2i
∑

k>1

e−ik(x−y)
k−1
∑

m=1

e−im(y−z) + i
∑

k>0

(

e−ik(x−y) + e−ik(x−z)
)

+ c.c. =

2π cot

(

1

2
(y − z)

)

(

δ(x− y)− δ(x− z)
)

. (7.58)

In order for the last two anomalous lines in (7.57) to disappear C has to be of the
form C = up c(y − z, ȳ − z̄) where c satisfies the equation

∂yc(y − z, ȳ − z̄) =
b2

2
cot

(

y − z
2

)

(7.59)
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The solution of this and the corresponding condition for the antichiral part is up
to an integration constant

C(p, y − z, ȳ − z̄) = up

(

4 sin2

(

y − z
2

))
b2

2
(

4 sin2

(

ȳ − z̄
2

))
b2

2

. (7.60)

Integration of the Moyal bracket then results in the following relation of Ť and F̌

{Ť (x),F̌ (y, ȳ)}∗ = ∂yF̌ (y, ȳ)δ(x − y) +
1

2

(

η +
b2

2

)

F̌ (y, ȳ)δ′(x− y)

−
(

η − 1− b2
)

∫ 2π

0
dz̄ ∂xB(y, ȳ, x, ȳ + z̄)

+
(

η − 1− b2
)

∫ 2π

0
dz̄ B(y, ȳ, y, ȳ + z̄)(eγp − 1)δ(x − y) . (7.61)

Requiring again that the anomalous terms vanish leads us to the condition

η = 1 + b2 . (7.62)

From this follows that both the in- and out-field transform with a conformal weight

∆− 1

2

= −1

2
− 3

4
b2 (7.63)

and therefore the full field V̌ is also a primary. Inserting (7.62) into (7.35) we fix
the central charge of the Virasoro algebra [25].

In order to write the operator for the symbol F̌ note that the function C (7.60)
contains the short distance factor from (7.51). The operator can therefore be
written as the product of two normal ordered exponential free fields

F̂ (x, x̄) = upÊ(x, x̄)Â(x, x̄) (7.64)

with

Â(x, x̄) =

∫ 2π

0

∫ 2π

0
dz dz̄ : e2γΦ(x+z,x̄+z̄) : e−γ(p−i~γ) (7.65)

here we have included a part of the p-dependent factor in the definition of Â, which
makes for simpler exchange relations.

We have now fixed the operator F̂ except for the function up. This function can
be determined from the locality condition (7.4), for which we need the exchange
relations of Ê and F̂ .

7.2.5 Exchange Algebra

In this section we establish the exchange algebra of the objects Ê and F̂ , that are
the building blocks of the vertex operator V̂ . The exponential free-fields obey a
simple exchange relation for exchange of only the chiral and antichiral dependence

Ê(x, x̄)Ê(y, ȳ) = Ê(y, x̄)Ê(x, ȳ)e−
i
2
πb2ǫ(x−y) (7.66)

= Ê(x, ȳ)Ê(y, x̄)e−
i
2
πb2ǫ(x̄−ȳ) , (7.67)
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This can be calculated using the BCH formula. Combination immediately yields
the full exchange relation

Ê(x, x̄)Ê(y, ȳ) = Ê(y, ȳ)Ê(x, x̄)e−
i
2
πb2(ǫ(x−y)+ǫ(x̄−ȳ)) . (7.68)

A bit more complicated is the derivation of the exchange relation of Ê and Â.
Exchanging the integrand of Â with Ê leads to

Ê(x, x̄)Â(y, ȳ) =

∫ 2π

0

∫ 2π

0
dz dz̄ Ê1(x+ z, x̄+ z̄)e−(γp̂−4πib2)

× Ê(x, x̄)eiπb
2(ǫ(x−y−z)+ǫ(x̄−ȳ−z̄)) . (7.69)

For x = y and x̄ = ȳ we find ǫ(x− y− z) + ǫ(x̄− ȳ− z̄) = −2 since z ∈ (0, 2π), and
therefore

Ê(x, x̄)Â(x, x̄) = Â(x, x̄)Ê(x, x̄) . (7.70)

In the general case when x 6= y we can use the identity

eiπb
2(ǫ(x−y−z)+ǫ(x̄−ȳz̄)) =

1

sinh(πP )

[

sinh
(

πP − iπb2)
)

eiπb
2(ǫ(x−y)−ǫ(z))

+i sin
(

πb2
)

eπP (ǫ(x−y−z)−ǫ(x−y)+ǫ(z))eiπb
2(ǫ(x−y)−ǫ(z))

]

(7.71)

with P ≡ γp
2π , which is derived from

sinh(a)e±b + sinh(b)e±a = sinh(a+ b) (7.72)

and the property of the stair-step function

ǫ(x− y − z)− ǫ(x− y) + ǫ(z) = ±1 . (7.73)

Insertion of this identity into the exchange relation leads to four terms under the
integral. One can now use the periodicity in z or z̄ of some of these terms to shift
the domain of integration, which results in

Ê(x, x̄)Â(y, ȳ) =
sinh2 (πP )

sinh2 (π(P + ib2))

[

eiπb
2(ǫ(x−y)+ǫ(x̄−ȳ))Â(y, ȳ)Ê(x, x̄)

− 2i sin
(

πb2
)

eiπb
2ǫ(x̄−ȳ)θ−2πP (x− y)Â(x, ȳ)Ê(x, x̄)

− 2i sin
(

πb2
)

eiπb
2ǫ(x−y)θ−2πP (x̄− ȳ)Â(y, x̄)Ê(x, x̄)

− 4 sin2
(

πb2
)

θ−2πP (x− y)θ−2πP (x̄− ȳ)Â(x, x̄)Ê(x, x̄)
]

. (7.74)

With the exchange relation for partial exchange of Ê with itself (7.66) it is easy to
find the exchange relation between the free-field exponential and F̂

Ê(x, x̄)F̂ (y, ȳ) =
uP−ib2
uP

sinh2 (πP )

sinh2 (πP + iπb2)

[

e
i
2
πb2(ǫ(x−y)+ǫ(x̄−ȳ))F̂ (y, ȳ)Ê(x, x̄)

− 2i sin
(

πb2
)

e
i
2
πb2ǫ(x̄−ȳ)θ−2πP (x− y)F̂ (x, ȳ)Ê(y, x̄)

− 2i sin
(

πb2
)

e
i
2
πb2ǫ(x−y)θ−2πP (x̄− ȳ)F̂ (y, x̄)Ê(x, ȳ)

− 4 sin2
(

πb2
)

θ−2πP (x− y)θ−2πP (x̄− ȳ)F̂ (x, x̄)Ê(y, ȳ)
]

.

(7.75)
We assume here that the operator F̂ is related to Ê by a unitary transformation.

Therefore F̂ must have the same exchange relation as (7.68), namely

F̂ (x, x̄)F̂ (y, ȳ) = F̂ (y, ȳ)F̂ (x, x̄)e−
i
2
πb2(ǫ(x−y)+ǫ(x̄−ȳ)) . (7.76)
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7.2.6 Locality Condition

With the exchange algebra of the building blocks of the vertex operator (7.3) we
can now look at the commutator of V̂ with itself. Locality then implies that the
equal time commutator for vertex operators at different points in space must vanish
(7.4). For simplicity we will set time to zero. The demand is then equivalent to
the condition that the expression

V̂ (x,−x)V̂ (y,−y) =Ê(x,−x)Ê(y,−y) + F̂ (x,−x)F̂ (y,−y)

+ f1(P )

[

f2(P )
(

e−(πP+ i
2
πb2)ǫ(x−y)F̂ (x,−y)Ê(y,−x)

+ e(πP+ i
2
πb2)ǫ(x−y)F̂ (y,−x)Ê(x,−y)

)

+ F̂ (y,−y)Ê(x,−x) + f3(P )F̂ (x,−x)Ê(y,−y)
]

.

(7.77)

with

f1(P ) =
uP−ib2
uP

sinh2 (πP )

sinh2 (πP + iπb2)
, f2(P ) =

i sin
(

πb2
)

sinh2 (πP )
,

f3(P ) =
uP

uP−ib2

sinh2
(

πP + iπb2
)

sinh2(πP )
+

sinh2(iπb2)

sinh2(πP )

(7.78)

is symmetric in x and y. The first three lines are symmetric as one can check using
(7.68) and (7.76). Symmetry of the last line however gives a condition on uP in
form of a difference equation

(

sinh2(πP )− sinh2(iπb2)
)

uP−ib2 = sinh2(πP + iπb2)uP . (7.79)

This is solved by

uP = m2
b

1

2 sinh(πP )

1

2 sinh(πP + iπb2)
, (7.80)

where mb is a deformed constant with the classical limit mb → m. The out-field
operator is thus

F̂ (x, x̄) =
m2
b

2 sinh(πP )
Ê(x, x̄)Ŝ(x, x̄)

1

2 sinh(πP )
. (7.81)

After insertion of the explicit operators in terms of the free-field φ one can use the
commutation rules to group the zero modes and normal order the oscillatory parts
of the two operators. The regularized operator is then

F̂ (x, x̄) = eγq̂+P̂ τ
mb

2 sinh(π(P − ib2))
mb

2 sinh(πP )
e−2π(P−ib2)

×
∫ 2π

0
dz e(P−ib2)z(1− eiz)b2eγ(2φ̂+(x+z)−φ̂+(x))eγ(2φ̂

−(x+z)−φ̂−(x))

×
∫ 2π

0
dz̄ e(P−ib2)z̄(1− eiz̄)b2eγ(2 ˆ̄φ+(x̄+z̄)− ˆ̄φ+(x̄))eγ(2

ˆ̄φ−(x̄+z̄)− ˆ̄φ−(x̄)) . (7.82)
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7.3 Reflection Amplitude

Here we assume that the operators for the in- and out-field are related by a unitary
transformation with the S-matrix

Ê(x, x̄)Ŝ = ŜF̂ (x, x̄) . (7.83)

Furthermore we assume that this scattering matrix can be written as the product
of the parity operator P̂ , which inverts the momentum p̂ and the position q̂, a
p-dependent part Ŝ that only acts on the non-zero modes, and finally the reflection
amplitude R̂ that acts on the vacuum

Ŝ = P̂ R̂ Ŝ . (7.84)

Projecting equation (7.83) onto two vacuum states

〈0, P |Ê(x, x̄)Ŝ|0, P ′〉 = 〈0, P |ŜF̂ (x, x̄)|0, P ′〉 . (7.85)

vanishes the normal ordered oscillatory parts of the operators and we get a relation
for the reflection amplitude

R(P ) = R(P − ib2)D(P ) (7.86)

with

D(P ) =
e−2(πP−iπb2)

2 sinh(πP − iπb2)
m2
b

2 sinh(πP )

(
∫ 2π

0
dz e

1

π
(πP−iπb2)z (1− eiz

)b2
)2

(7.87)

Here one can use the integral [65]

∫ 2π

0
dy eρy

(

1− e±iy
)α

= 2π
Γ(1 + α)

Γ(1± iρ)Γ(1 + α∓ iρ) e
πρ (7.88)

to express the integral through gamma functions. Using the formulas

π

sinh(πz)
=

1

z
Γ(1− iz)Γ(1 + iz) (7.89)

and Γ(1 + z) = zΓ(z) for the gamma-function one can further simplify this to

D(P ) = m2
b

(b2)2

P (P − ib2)Γ
2
(

b2
) Γ (iP ) Γ

(

−iP − b2
)

Γ (−iP ) Γ (iP + b2)
(7.90)

The ansatz

R(P ) = R̃(P )
Γ(iP )

Γ(−iP )
(7.91)

reduces the formula to

R̃(P ) = m2
b

(b2)2

P (P − ib2)Γ
2
(

b2
)

R̃(P − ib2) . (7.92)

One can easily check that this equation is solved by

R̃(P ) = −
(

m2
bΓ

2
(

b2
))− iP

b2
Γ(iP/b2)

Γ(−iP/b2) . (7.93)
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The final result for the reflection amplitude with b expressed in terms of the original
coupling constant γ is therefore

R(p) = −
(

mb Γ

(

~γ2

2π

))−i 2p
~γ Γ

(

i p
~γ

)

Γ
(

iγp2π

)

Γ
(

−i p
~γ

)

Γ
(

−iγp2π

)

. (7.94)

This reflection amplitude was first obtained in [31] by the analysis of the 3- and
2-point functions of Liouville theory [29, 31]. Note that for complete agreement
with this result we have to set

m2
b =

sin(π2 b
2)

π
2 b

2
m2 . (7.95)

This ’renormalization’ of the Liouville mass was first derived in[27, 66] in the oper-
ator approach based on a free-field parameterization similar to the one used here.
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VIII

Quantization of the SL(2,R)/U(1)
Model

In this chapter we consider quantization of the SL(2,R)/U(1) model following
the same line as for Liouville theory. In the last two sections we present two new
results. Namely, in section 8.3 we calculate the non-equal time commutator of the
interacting u-field. The commutator preserves causal and local structure of the
corresponding classical Poisson bracket with a consistent quantum deformation.
Finally in section 8.4 we calculate the discrete spectrum of the bound states by
an analytical continuation of the reflection amplitude from the hyperbolic to the
elliptic sector.

In contrast to Liouville theory here we have two free-fields

Φ1(x, x̄) ≡ q1 +
p1

4π
(x+ x̄) + φ+

1 (x) + φ−1 (x) + φ̄+
1 (x̄) + φ̄−1 (x̄) , (8.1)

Φ2(x, x̄) ≡ q2 +
p2

4π
(x+ x̄) +

ν

2γ
(x− x̄) + φ+

2 (x) + φ−2 (x) + φ̄+
2 (x̄) + φ̄−2 (x̄) , (8.2)

with

φ−1 (x) =
i√
4π

∑

n>0

an
n
e−inx , φ+

1 (x) =
−i√
4π

∑

n>0

a∗n
n
einx , (8.3a)

φ−2 (x) =
i√
4π

∑

n>0

bn
n
e−inx , φ+

2 (x) =
−i√
4π

∑

n>0

b∗n
n
einx . (8.3b)

and the analogous antichiral part. Since the derivatives with respect to x and x̄
are still chiral functions we will keep the notation

φ′j(x) = ∂xΦj(x, x̄) , φ̄′j(x) = ∂x̄Φj(x, x̄) , j = 1, 2 . (8.4)

The operators corresponding to the canonical coordinates satisfy the standard
commutation relations

[q̂j, p̂j ] = δjki~ , [ân, âm] = [ˆ̄an, ˆ̄am] = [b̂n, b̂m] = [ˆ̄bn,
ˆ̄bm] = ~nδn+m , (8.5)

and the Hilbert space is spanned by the creation operators acting on the momentum
dependent vacuum

|{a, b}, p1, p2〉 =
∏

n>0

(â†n)
nk(b̂†n)

nk |0, p1, p2〉 . (8.6)

Here, p1 is negative and p2 is quantized, due to the periodicity in q2. The dis-
crete spectrum we specify later. The vertex operator is assumed to be the sum of
incoming and outgoing operators

û(x, x̄) = Ê(x, x̄) + F̂ (x, x̄) , (8.7)

where F̂ is given as the integral over a bilocal operator B̂. In order to fix these
operators we again follow the Moyal formalism.
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8.1 Moyal Formalism

For both Φ1 and Φ2 we use the symbol calculus of the previous chapter. Therefore,
the Moyal bracket of two symbols is given by

{Ǎ, B̌}∗ = {Ǎ, B̌}P.B. + ~X1(Ǎ, B̌) +O(~2) (8.8)

with

X1(Ǎ, B̌) =
i

2

∑

n,m>0
c,d=a,ā,b,b̄

nm

[

∂2Ǎ

∂cn∂dm

∂2B̌

∂c∗n∂d∗m
− ∂2B̌

∂cn∂dm

∂2Ǎ

∂c∗n∂d∗m

]

+
1

2

∑

n>0
c=a,ā,b,b̄
i=1,2

n

[

∂2Ǎ

∂pi∂cn

∂2B̌

∂qi∂c∗n
− ∂2Ǎ

∂qi∂cn

∂2B̌

∂pi∂c∗n
− ∂2B̌

∂pi∂cn

∂2Ǎ

∂qi∂c∗n
+

∂2B̌

∂qi∂cn

∂2Ǎ

∂pi∂c∗n

]

.

(8.9)

Note that all symbols contain eiq2 only in discrete powers due to the quantization
of p2.

8.2 Construction of Operators

8.2.1 Symmetry Generators and Hamiltonian

The chiral functions φ′1(x) and φ′2(x) are linear in the canonical coordinates and
have no ordering ambiguity. Their symbols are equal to the classical functions

φ̌′1(x) = φ′1(x) φ̌′2(x) = φ′2(x) (8.10)

and similarly for the antichiral part. Their Moyal brackets obviously coincide with
their Poisson brackets.

As in the previous chapter the symbol of the Hamiltonian is also undeformed

Ȟ = H =
p2
1

4π
+
p2
2

4π
+
∑

n>0

ana
∗
n +

∑

n>0

ānā
∗
n +

∑

n>0

bnb
∗
n +

∑

n>0

b̄nb̄
∗
n . (8.11)

In order to determine the symbol of the energy-momentum tensor Ť (x) we use
the algebra (6.80) with a deformed central term.

{Ť (x), φ′j(y)} = φ′′j (y)δ(x − y)− φ′j(y)δ′(x− y) +
ηj
2γ
δ′′(x− y) . (8.12)

Integration of this variational equation for Ť (x) yields

Ť (x) = φ′21 (x) + φ′22 (x)− η1

γ
φ′′1(x)−

η2

γ
φ′′2(x) + C(p1, p2;x) , (8.13)

with an integration ’constant’ C(p1, p2;x). Then, similarly to (7.35) we find

{Ť (x), Ť (y)}∗ =Ť ′(y)δ(x − y)− 2T (y)δ′(x− y) +

(

η2
1

2γ2
+

η2
2

2γ2
+

~

12π

)

δ′′′(x− y)

+
~

12π
δ′(x− y)− C ′(p1, p2;x)δ(x − y) + 2C(p1, p2;x)δ

′(x− y) ,
(8.14)
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and its comparison with (6.81) leads to C(p1, p2;x) ≡ 0. Here the coefficients η1

and η2 remain undetermined for now.
The antichiral symbol

Ť (x̄) = φ̄′21 (x̄) + φ̄′22 (x̄)− η1

γ
φ̄′′1(x̄)−

η2

γ
φ̄′′2(x̄) (8.15)

is obtained in a similar way and we take the same deformation parameters η1, η2

to preserve the chiral symmetry.
Then we find the relation

Ȟ =

∫ 2π

0
dx Ť (x) +

∫ 2π

0
dx̄ Ť (x̄) , (8.16)

since the improved terms disappear after integration.

8.2.2 Free-Field Exponential

Having almost fixed the symbols and thereby the operators of the symmetry gener-
ators we now turn to the construction of the symbols corresponding to the classical
exponential free-field. Since Φ1 and Φ2 commute we can do this separately for each
field. We introduce the notation

E(x, x̄)←→ eγ(Φ1(x,x̄)+iΦ2(x,x̄)) (8.17)

for the symbol of the in-field exponential. Demanding that the commutation with
φ′1(x) and φ′2(x) corresponds to (6.76) and (6.77), we consider the two equations

{φ′1(x), E(y, ȳ)} = γδ(x− y)E(y, ȳ) (8.18a)

{φ′2(x), E(y, ȳ)} = iγλ δ(x − y)E(y, ȳ) (8.18b)

Here λ is a deformation parameter. We allow a deformation of φ′2(x) part only. In
principle, we could allow an additional deformation of the φ′1 part as well, but it
could be absorbed by a redefinition of γ. The solution of (8.18a), (8.18b) and the
corresponding antichiral versions is

E = C(p1, p2, x, x̄)eγ(Φ1(x,x̄)+iλΦ2(x,x̄)) . (8.19)

In principle the Moyal formalism does not require the existence of a winding number
ν of the field Φ2(x, x̄). However, we assume that the topological properties of the
in-field are the same as for the classical solution. In order to have periodicity we
must deform the winding number in (8.2) according to

ν

γ
→ ν

γλ
(8.20)

and the spectrum of p̂2 is also deformed

p̂2 |{a, b}, p1, n〉 = ~γλn |{a, b}, p1, n〉 n ∈ Z . (8.21)

The commutation relation of Ê with Ť can be calculated to be

{Ť (x), E(y, ȳ)}∗ =∂y (E(y, ȳ)) δ(x − y)−∆E(y, ȳ)δ′(x− y)
− ∂yC(p1, p2, y, ȳ) e

γ(Φ1(y,ȳ)+iλΦ2(x,x̄))δ(x− y) , (8.22)
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with a conformal weight

∆ =
η1

2
+ iλ

η2

2
− (1− λ2)

b2

4
. (8.23)

Here C(p1, p2;x, x̄) has to be constant in x and x̄, so that the commutation relation
corresponds to (6.73).

One can now make a redefinition of q1 and q2 to absorb the p-dependent coef-
ficient of the in-field exponential. Its symbol is then

Ě(x, x̄) ≡ eγ(Φ1(x,x̄)+iλΦ2(x,x̄)) , (8.24)

and the operator is just the normal ordered operator

Ê(x, x̄) =: eγ(Φ̂1(x,x̄)+iλΦ̂2(x,x̄)) : . (8.25)

As in Liouville theory multiplication of two free-field exponentials generates a
short-distance factor. Since Φ1 and Φ2 commute the results from section (7.2.3)
can easily be generalized to the SL(2,R)/U(1) model.

8.2.3 Screening Charge

As in the Liouville theory the classical out-field is given as an integral over a bilocal
field

χ(x)χ̄(x̄) =

∫ 2π

0

∫ 2π

0
dz dz̄ B(x, x̄, x+ z, x̄+ z̄) (8.26)

with

B(x, x̄, y, ȳ) =
−γ2eγp1

4 sinh2
(γp1

2

)eγ(Φ1(x,x̄)+iΦ2(x,x̄)−2Φ1(y,ȳ))

×
(

φ′1(y) + iφ′2(y)
)(

φ̄′1(ȳ) + iφ̄′2(ȳ)
)

. (8.27)

In principle, the quantum version of this can be constructed from the demand
that the action of the symmetry generators is the same as classically. However
the calculation is more involved because one has to introduce additional objects
to get a closed algebra. Requiring cancellation of anomalous terms in these Moyal
relations forces us to set

η1 =− b2 , η2 = 0 . (8.28)

Furthermore we find as the symbol of the bilocal field

B̌(y, ȳ, z, z̄) =f(p1, p2)C(y − z)C(ȳ − z̄)eγ(Φ1(x,x̄)+iλΦ2(x,x̄))e−2γΦ1(y,ȳ)

×
(

λΦ′
1(z) + iΦ′

2(z)
)(

λΦ̄′
1(z̄) + iΦ̄′

2(z̄)
)

, (8.29)

with a still undetermined function f(p1, p2) and the short distance factor

C(y − z) =

(

4 sin2

(

y − z
2

))
b2

2

. (8.30)

The integral of this gives the out-field symbol

F̌ (x, x̄) =

∫ 2π

0

∫ 2π

0
dz dz̄ B̌(x, x̄, x+ z, x̄+ z̄) , (8.31)
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which transforms as conformal primary with conformal weight

∆F̌ = (3− λ2)
b2

4
. (8.32)

Together with the values for η1 and η2 we find that the in-field transforms with the
same conformal weight. Therefore the full field ǔ is also a conformal primary with
the same conformal weight. For details of this calculation we refer to Appendix C.

The operator of the bilocal field B̌ is the normal ordered operator version. Note
that because it contains the short distance factor of two exponential free-fields, and
because the commutators with φ′1 and φ′2 arising in normal ordering cancel each
other, it can also be written as

B̂(y, ȳ, z, z̄) = f(p̂1, p̂2) : eγ(Φ1(x,x̄)+iλΦ2(x,x̄)) :

× : e−2γΦ1(y,ȳ)
(

λφ′1(z) + iφ′2(z)
)(

λφ̄′1(z̄) + iφ̄′2(z̄)
)

: (8.33)

with a redefinition of f(p1, p2). The operator F̂ of the out-field can thus be written
as a product of the in-field and a screening charge

F̂ (x, x̄) = f(p̂1, p̂2)Ê(x, x̄)Â(x, x̄) (8.34)

with

Â(x, x̄) =

∫ 2π

0

∫ 2π

0
dz dz̄ : e−2γΦ1(x+z,x̄+z̄)

(

λφ′1(x+ z) + iφ′2(x+ z)
)

×
(

λφ̄′1(x̄+ z̄) + iφ̄′2(x̄+ z̄)
)

: eγp̂1+i~γ2

. (8.35)

As has been pointed out in [43] the terms containing e−2γφ1(x,x̄)φ′1(x) are total
derivatives and can be integrated. Furthermore due to the short distance singularity
the product of these free-field exponentials with the in-field vanish. One can thus
write the effective screening charge as

Â(x, x̄) = −
∫ 2π

0

∫ 2π

0
dz dz̄ : e−2γΦ1(x+z,x̄+z̄)φ′2(x+z)φ̄′2(x̄+ z̄) : eγp1+i~γ2

, (8.36)

which seemingly has a wrong classical limit. However, upon normal ordering the
product of the in-field and this screening charge the φ′1 terms reappear by partial
integration.

8.2.4 Exchange Algebra

Since Φ̂1 and Φ̂2 commute the exchange relations of the free-field exponentials can
be carried over from (7.66) and (7.68) and we find

Ê(x, x̄)Ê(y, ȳ) = Ê(y, x̄)Ê(x, ȳ) e−
i
2
πb2(1−λ2)ǫ(x−y)

= Ê(x, ȳ)Ê(y, x̄) e−
i
2
πb2(1−λ2)ǫ(x̄−ȳ)

= Ê(y, ȳ)Ê(x, x̄) e−
i
2
πb2(1−λ2)(ǫ(x̄−ȳ)+ǫ(x−y)) .

(8.37)

The Exchange algebra of F̂ with the screening charge requires more labor.
Commuting Ê with the screening charge leads to the integral

Ê(x, x̄)Â(x, x̄) =

∫ 2π

0

∫ 2π

0
dz dz̄ : e−2γφ1(y+z,ȳ+z̄)(λφ′1(y + z) + iφ′2(y + z))

(λφ̄′1(ȳ + z̄) + iφ̄′2(ȳ + z̄)) : e2π(P+2ib2)Ê(x, x̄) eiπb
2(ǫ(x−y−z)+ǫ(x̄−ȳ−z̄)) . (8.38)
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with P ≡ γp1
2π . Using the identity (7.71) this can be split into different terms.

Some of these are periodic in z or z̄ and with a shift of the integration variable the
expression becomes

Ê(x, x̄)Â(y, ȳ) =
sinh2 (πP )

sinh2 (π(P − ib2))

[

eiπb
2(ǫ(x−y)+ǫ(x̄−ȳ))Â(y, ȳ)Ê(x, x̄)

− 2i sin
(

πb2
)

eiπb
2ǫ(x−y)θ2πP (x̄− ȳ)Â(y, x̄)Ê(x, x̄)

− 2i sin
(

πb2
)

eiπb
2ǫ(x̄−ȳ)θ2πP (x− y)Â(x, ȳ)Ê(x, x̄)

− 4 sin2
(

πb2
)

θ2πP (x− y)θ2πP (x̄− ȳ)Â(x, x̄)Ê(x, x̄)
]

.

(8.39)

Here we have a similar algebra as in Liouville theory.
Using (8.37) it is now easy to find the exchange relation between Ê and F̂

Ê(x, x̄)F̂ (y, ȳ) =
f(P + ib2, p̂2)

f(P, p̂2)

sinh2 (πP )

sinh2 (π(P − ib2))

[

e
i
2
πb2(1+λ2)ΘF̂ (y, ȳ)Ê(x, x̄)

− 2i sin
(

πb2
)

e
i
2
πb2(1+λ2)ǫ(x−y)θ2πP (x̄− ȳ)F̂ (y, x̄)Ê(x, ȳ)

− 2i sin
(

πb2
)

e
i
2
πb2(1+λ2)ǫ(x̄−ȳ)θ2πP (x− y)F̂ (x, ȳ)Ê(y, x̄)

− 4 sin2
(

πb2
)

θ2πP (x− y)θ2πP (x̄− ȳ)F̂ (x, x̄)Ê(y, ȳ)
]

.

(8.40)
Since the operator F̂ , corresponding to the out-field, is related to the operator

Ê, that is related to the in-field, by a unitary transformation it has the same
exchange algebra with itself

F̂ (x, x̄)F̂ (y, ȳ) = F̂ (y, ȳ)F̂ (x, x̄)e−
i
2
πb2(1−λ2)(ǫ(x̄−ȳ)+ǫ(x−y)) . (8.41)

8.2.5 Locality Condition

We have now determined all parts of the vertex operator û except for the p depen-
dent factor of F̂ . In order to fix this factor we impose the locality condition, i.e.
we demand that the equal time commutator of two û fields at different positions is
zero. Taking time equal to zero this is equivalent to the condition that the product

û(x,−x)û(y,−y) =Ê(x,−x)Ê(y,−y) + F̂ (x,−x)F̂ (y,−y)

+ h1(p)

[

h2(P )
(

e

(

πP− i
2
πb2(1+λ2)

)

ǫ(x−y)F̂ (x,−y)Ê(y,−x)

+ e−
(

πP− i
2
πb2(1+λ2)

)

ǫ(x−y)F̂ (y,−x)Ê(x,−y)
)

+ F̂ (y,−y)Ê(x,−x) + h3(P )F̂ (x,−x)Ê(y,−y)
]

.

(8.42)
with

h1(P ) =
f(P + ib2, p2)

f(p1, p2)

sinh2 (πP )

sinh2 (π(P − ib2))
, h2(P ) =

i sin
(

πb2
)

sinh2 (πP )
,

h3(P ) =
f(P, p2)

f(P + ib2, p2)

sinh2
(

π(P − ib2)
)

sinh2(πP )
+

sinh2(iπb2)

sinh2(πP )

(8.43)
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is symmetric under exchange of x and y. The first line is symmetric by (8.37)
and (8.41) and the second and third line are manifestly symmetric. The last line
however gives a condition on f(p1, p2)

(

sinh2 (πP )− sinh2
(

iπb2
))

f(P + ib2, p2) = sinh2
(

π(P − ib2)
)

f(P, p2) . (8.44)

This equation is fulfilled by

f(P, p2) = −ρ2 γ2

4 sinh (πP ) sinh (π(P − ib2)) , (8.45)

where ρ is a constant. The locality of the commutator of û(x, x̄) and its complex
conjugate yields an equivalent condition.

The operator of the out-field is thus

F̂ (x, x̄) = − ρ2γ2

2 sinh (πP )
Ê(x, x̄)Ŝ(x, x̄)

1

2 sinh (πP )
. (8.46)

Here the deformations are hidden in the ordering.

8.3 Non-Equal Time Commutator

Having fixed the vertex operator completely we can now investigate its commuta-
tion relations. Motivated by the classical structure of (6.68) we make the ansatz

û(x, x̄)û(y, ȳ) = D1û(y, ȳ)û(x, x̄) +D2 (û(x, ȳ)û(y, x̄) + û(y, x̄)û(x, ȳ)) (8.47)

with undetermined functions D1 and D2. This equation has to be satisfied sepa-
rately for the structures Ê · Ê, F̂ · F̂ and Ê · F̂ . With the exchange relation (8.37)
we can now bring all terms quadratic in either Ê or F̂ to the form Ê(x, x̄)Ê(y, ȳ)
or F̂ (x, x̄)F̂ (y, ȳ). Since Ê and F̂ both have the same exchange relations we read
off one condition

1 = D1e
iπb2(1−λ2)(ǫ+ǭ) +D2

(

e
i
2
πb2(1−λ2)ǭ + e

i
2
πb2(1−λ2)ǫ

)

(8.48)

with ǫ ≡ ǫ(x − y) and ǭ ≡ ǫ(x̄ − ȳ). With (8.40) we can order the mixed terms
such that F̂ stands to the left of Ê. Comparing separately the coefficients of the
four terms F̂ (x, x̄)Ê(y, ȳ), F̂ (y, ȳ)Ê(x, x̄), F̂ (x, ȳ)Ê(y, x̄) and F̂ (y, x̄)Ê(x, ȳ) we
find additional equations

sinh2(πP )− sinh2(iπb2)(1 + e2πPΘ) = D1 sinh2(πP )e−iπb
2(1+λ2)Θ (8.49)

−D2 sinh(πP ) sinh(iπb2)
(

e−
i
2
πb2(1+λ2)ǫeπP ǭ + e−

i
2
πb2(1+λ2)ǭeπPǫ

)

sinh2(πP )eiπb
2(1+λ2)Θ = D1

(

sinh2(πP ) + sinh2(iπb2)(e2πPΘ − 1)
)

(8.50)

−D2 sinh(πP ) sinh(iπb2)
(

e
i
2
πb2(1+λ2)ǫe−πP ǭ + e

i
2
πb2(1+λ2)ǭe−πPǫ

)

e
i
2
πb2(1+λ2)ǭeπPǫ = D1e

− i
2
πb2(1+λ2)ǫe−πP ǭ (8.51)

−D2

(

sinh(πP )

sinh(iπb2)

(

1 + e−iπb
2(1+λ2)(ǫ−ǭ)

)

+
sinh(iπb2)

sinh(πP )

(

eπP (ǫ−ǭ) − 1
)

)

.
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In the fundamental domain where ǫ, ǭ = ±1 one can check that these equations are
solved by

D1 =eiπb
2(1+λ2)Θ D2 =− iΘ sin

(

πb2
)

e
i
2
πb2(1+λ2)Θ . (8.52)

We can therefore write the commutator in the fundamental domain as

[û(x, x̄), û(y, ȳ)] = e
i
2
πb2(1+λ2)Θ

[

2i sin

(

1

2
πb2(1 + λ2)Θ

)

û(y, ȳ)û(x, x̄)

− iΘ sin
(

πb2
)

(û(x, ȳ)û(y, x̄) + û(y, x̄)û(x, ȳ))
]

.

(8.53)

Expanding this result in powers of ~ we find

[û(x, x̄), û(y, ȳ)] ≈ −i~γ2Θ

[

û(x, ȳ)û(y, x̄) + û(y, x̄)û(x, ȳ)

2
− û(y, ȳ)û(x, x̄)

]

(8.54)
which agrees with the classical Poisson bracket (6.68).

8.4 Reflection Amplitude

As it was mentioned before we assume that the operators Ê and F̂ are related by
a unitary transformation by the scattering matrix S such that

Ê(x, x̄)Ŝ = ŜF̂ (x, x̄) . (8.55)

We furthermore assume that the scattering matrix is the product of three operators

Ŝ = P̂1R̂Ŝ , (8.56)

where P̂1 is the parity operator for the zero modes p1, q1, Ŝ acts only on the non-zero
modes, and R̂ is the reflection amplitude of the vacuum sector

R̂|0, P, n〉 = R(P, n)|0, P, n〉 . (8.57)

Projection of equation (8.55) onto vacuum states leads to a difference equation for
R(P, n)

R(P, n) = R(P + ib2, n + 1)D(P, n) (8.58)

with

D(P, n) =
e2π(P+ib2)

2 sinh (π(P + ib2))

−ρ2

2 sinh (πP )

(
∫ 2π

0
dz e−(P+ib2)z

(

1− eiz
)b2
)2

×
(

λ

2
(P + ib2) +

i

4π

(

~γ2λn+
ν

λ

)

)(

λ

2
(P + ib2) +

i

4π

(

~γ2λn− ν

λ

)

)

. (8.59)

This corresponds to the difference for the reflection amplitude in Liouville theory
(7.87) with an additional factor. We therefore make the following ansatz using the
Liouville reflection amplitude

R(p1, n) = −R̃(p1, n)
(

ρΓ
(

b2
))i2P/b2 Γ

(

−iP/b2
)

Γ (−iP )

Γ (iP/b2) Γ (iP )
. (8.60)
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Substituting this into the original difference equation (8.58) leads to the new rela-
tion R̃(P, n) = D̃(P, n)R̃(P + ib2, n + 1) with

D̃(P, n) = −
(

λ

2
(P + ib2) +

i

4π

(

~γ2λn+
ν

λ

)

)(

λ

2
(P + ib2) +

i

4π

(

~γ2λn− ν

λ

)

)

.

(8.61)

This equation is solved by the two functions

R̃(P, n) =
(

λb2
)i 2P

b2
Γ
(

i P
2b2
± n

2 + ν
4πb2λ2 + 1

2

)

Γ
(

i P
2b2
± n

2 − ν
4πb2λ2 + 1

2

)

Γ
(

−i P
2b2
± n

2 + ν
4πb2λ2 + 1

2

)

Γ
(

−i P
2b2
± n

2 − ν
4πb2λ2 + 1

2

) .

(8.62)

Since the reflection amplitude has to respect the symmetry p2 → −p2 of the system
we choose the solution

R̃(P, n) =
(

λb2
)i 2P

b2

Γ
(

i P
2b2

+ |n|
2 + ν

4πb2λ2 + 1
2

)

Γ
(

i P
2b2

+ |n|
2 − ν

4πb2λ2 + 1
2

)

Γ
(

−i P
2b2

+ |n|
2 + ν

4πb2λ2 + 1
2

)

Γ
(

−i P
2b2

+ |n|
2 − ν

4πb2λ2 + 1
2

) .

(8.63)

The final result for the reflection amplitude in terms of the original variables is thus

R(p1, n) = −
(

ρλ
~γ2

2π
Γ

(

~γ2

2π

))i
2p1
~γ

×
Γ
(

−i p1
~γ

)

Γ
(

−iγp12π

)

Γ
(

i p12~γ + |n|
2 + ν

2~λ2γ2 + 1
2

)

Γ
(

i p12~γ + |n|
2 − ν

2~λ2γ2 + 1
2

)

Γ
(

i p1
~γ

)

Γ
(

iγp12π

)

Γ
(

−i p12~γ + |n|
2 + ν

2~λ2γ2 + 1
2

)

Γ
(

−i p12~γ + |n|
2 − ν

2~λ2γ2 + 1
2

) .

(8.64)

The deformation parameter λ can be fixed by demanding closed exchange relations
of parafermions [42], which gives

λ = (1 + 2b2)−
1

2 . (8.65)

This result for the reflection amplitude is a generalization of the expressions found
in [43, 44].

As it was shown in chapter 6 a part of the bound states is reached by an
analytical continuation from the hyperbolic sector p1 → iρ. A comparison with the
scattering of a quantum mechanical particle described by a wave function

ψ(x) = eipx +R(p)e−ipx (8.66)

shows that in order to have a normalizable state for an analytical continuation
p1 → iρ with ρ > 0 the reflection amplitude must be zero, R(iρ) = 0. Since the
gamma function has poles at negative integers we find that bound states exist for
positive ρ with

ρ = −~γ(2k + |n|+ 1) +
|ν|
γλ2

, k ∈ N . (8.67)
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This can be regarded as the quantum version of the classical condition (6.101).
As it was mentioned before the periodic Liouville theory has no continuation to

the elliptic sector and therefore the bound states are missing there. But Liouville
theory on a strip admits the elliptic sector, which was studied in the 80’s and 90’s by
Gervais and his collaborators [67, 67]. Later the investigation was continued both
in the Euclidean [22, 32, 23] and Minkowskian [54, 38] cases. The corresponding
discrete spectrum analyzed in [32, 37, 38] is quite similar to our spectrum (8.67).
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IX

Conclusion

Summary and Discussion

We have analyzed the periodic SL(2,R) WZNW theory: its general solution, sym-
metries, the chiral symplectic structure and monodromies. By inversion of the
chiral symplectic form we have derived the non-equal time Poisson brackets in the
elliptic sector. In the fundamental domain this result coincides with the earlier
obtained result of [11] for the hyperbolic monodromy, indicating the monodromy
independence of the causal Poisson bracket structure for the full WZNW-field.

Then, we have investigated the SL(2,R)/U(1) model. By reduction of the space
of solutions of the SL(2,R) WZNW theory we have derived the general solution for
the hyperbolic and also for the elliptic sector. While the hyperbolic sector describes
scattering processes, similarly to Liouville theory, the elliptic sector corresponds to
bound states. The symplectic form of the hyperbolic sector has been written in the
canonical coordinates related to the Fourier modes of the incoming free-field. By
an analytical continuation of the incoming zero-mode momentum to the imaginary
axis we reached the solutions of the elliptic sector, thereby establishing an analytical
relation between the two sectors. Using the Dirac bracket method we have reduced
the causal Poisson bracket structure of the SL(2,R) WZNW theory to its coset
model.

Using the free-field parameterization we have then quantized the hyperbolic
sector of the SL(2,R)/U(1) model. The vertex operator has been fixed in the Moyal
formalism, which had already proved useful in Louville theory. We have calculated
the causal commutator for the vertex operator and obtained its compact form,
which preserves causal and localstructure of the corresponding classical Poisson
bracket with a consistent deformation. Furthermore, the reflection amplitude has
been constructed from the structure of the vertex operator in terms of incoming
and outgoing fields. The analytical continuation of the reflection amplitude to the
imaginary axis of the incoming momentum has zeros, like mechanical models with
a bound states or the boundary Liouville theory. Therefore, these zeros have been
identified with the discrete spectrum of the elliptic sector.

Outlook

The description of the elliptic sector of the SL(2,R)/U(1) model is still incomplete
as we lack the necessary symmetries to cover the full space of solutions. It is
therefore highly desirable to find an analog of the translation symmetry that is
present in the hyperbolic sector. This additional symmetry would then allow a
semiclassical treatment of the bound sector.

Furthermore it was found that the non-equal time Poisson bracket of the hyper-
bolic SL(2,R)/U(1) field with its complex conjugate is given in terms of the field
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related to the vector gauged SL(2,R)/U(1) model. We presume that similarly a
relation between the two models exists on the quantum level. To further analyze
this it will be necessary to repeat the quantization procedure carried out for the
Euclidean black hole model in this work for the vector gauged model as well.
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Appendix A

Poisson Brackets in Constrained
Systems

Let us consider a 2n dimensional manifold M with a symplectic form ω and
impose m constraints φi = 0 (i = 1, . . . ,m), where φi are smooth functions on M ,
such that dφi are linearly independent on the constrained surface

Σ ≡ {x ∈M |φi(x) = 0} . (A.1)

Hence, Σ is a 2n−m dimensional regular surface in M .

The aim is to analyze under which conditions one can construct Poisson brackets
on Σ (or on some subspace of Σ) from the induced 2-form

ω̃ = ω
∣

∣

Σ
, (A.2)

and how the new Poisson brackets are related to the Poisson brackets on the full
space M . We consider two cases:

• first class constraints {φi, φj}
∣

∣

Σ
= 0 , ∀ i, j ∈ {1, . . . ,m} (A.3)

• second class constraints det ({φi, φj})1≤i,j≤m
∣

∣

Σ
6= 0 (A.4)

First Class Constraints

Here we have Xφi
(φj) = 0 on Σ and therefore Xi ≡ Xφi

|Σ ∈ TΣ. To simplify the
analysis we introduce local coordinates xµ on M , such that xµ for µ = 1, . . . , 2n−m
are coordinates on Σ and x2n−m+i = φi, i = 1, . . . ,m. We furthermore choose the
coordinates on Σ such that the following consitions are fulfilled:

∂k
∣

∣

Σ
∈ TΣ for k ∈ {1, . . . , 2n − 2m} ,

∂j
∣

∣

Σ
= Xj−2n+2m for j ∈ {2n − 2m+ 1, . . . , 2n −m} ,

∂lφi(x)
∣

∣

Σ
= δk(2n−m+l) , for l ∈ {2n −m+ 1, . . . , 2n}, i ∈ {1, . . . ,m} .

(A.5)

In these coordinates we thus have dφi = dx2n−m+i andXµ
l = δµ2n−2m+l and applying

equation (2.8) to φi yields

dx2n−m+i = ωµ(2n−2m+i)dx
µ , i = 1, . . . ,m . (A.6)

From this equation we read off ωµ(2n−2m+i) = δµ(2n−m+i), and we can write ω in
the block form

ω(x)
∣

∣

Σ
=





A(x) 0 B(x)
0 0 −1

−BT (x) 1 C(x)



 . (A.7)
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∂k∂j

∂l

Σ

M

Figure A.1: Hypersurface Σ with coordinates

Similarly from equation (2.9) we find δµ(2n−2m+l) = ωµ(2n−m+l) for l = 1, . . . ,m
and we can write the inverse of the symplectic form as

ω−1(x)
∣

∣

Σ
=





D(x) E(x) 0
−ET (x) F (x) 1

0 −1 0



 . (A.8)

It is obvious that the induced two form on Σ is singular. We can, however,
consider the quotient space of Σ with respect to the equivalence classes generated
by the flow of Xi:

M̃ ≡ Σ/G , with [x]G ≡ {eα
i{φi, · }x |αi ∈ R} . (A.9)

Coordinates on M̃ in terms of representatives are given by xi with i = 1, . . . , 2n−2m
and the induced two form in these coordinates, ω̃(x) ≡ A(x) is invertible as ω̃−1 =
D. Furthermore it is independent of the choice of representatives as can be seen
from the following: The Poisson bracket of xi, xj for i, j = 1, . . . , 2n − 2m is given
by {xi, xj} = ω̃ij and therefore the derivative of the induced two form is

Xk(ω̃
ij(x)) = {φk, {xi, xj}} . (A.10)

Due to the Jacobi identity (2.12) and the fact that {φk, xi} = ∂k+2n−2mx
i = 0

this vanishes. Thus the pullback of ω onto M̃ is well defined, non-degenerate and
closed, since ω is closed. We have thus shown that (M̃, ω̃) is a symplectic manifold.

A function f that satisfies

{f, φi}
∣

∣

Σ
= 0 (A.11)

is called gauge invariant. By definition a gauge invariant function can be uniquely
reduced to M̃ . It is now easy to verify that for two gauge invariant functions the
Poisson brackets calculated in (M,ω) evaluated at Σ is identical to the Poisson
bracket in (M̃, ω̃).

{f, g}
∣

∣

Σ
= {f |Σ, g|Σ}∼ . (A.12)
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Second class constraints

We now considerm = 2k constraints φi = 0, i = 1, . . . , 2k and assume det({φi, φj}) 6=
0. In this case one can choose local coordinates with the properties

∂iφl
∣

∣

Σ
= 0 for i = 1, . . . , 2(n − k) , l = 1, . . . , 2k ,

∂jφl
∣

∣

Σ
= δij for j = 2(n− k) + 1 . . . , 2n , l = 1, . . . , 2k .

(A.13)

In these coordinates the symplectic form and its inverse have the following block
form

ω(x) =

(

ω̃(x) A(x)
−AT (x) B(x)

)

ω−1(x) =

(

C(x) D(x)
−DT (x) −E(x)

)

. (A.14)

The matrix ({φi, φj}) is then given by

{φi, φj} = ωµν∂νφi∂µφj = ωji = Eij . (A.15)

In the following we will show that the Dirac bracket of two functions f, g, defined
by

{f, g}D ≡ {f, g} − {f, φk}({φi, φj})−1
kl {φl, g} , (A.16)

is equal to the Poisson bracket obtained by inverting the reduced symplectic form
ω̃.

In the coordinate system chosen above the Dirac bracket becomes

{f, g}D = ωµν∂νf∂µg − ωµν∂νf∂µφkE−1
kl ω

ρσ∂σφl∂ρg

= ωµν∂νf∂µg + ∂ρgω
ρlE−1

lk ω
kν∂νf

(A.17)

where k and l range from 2(n− k) + 1 to 2n, and we have used ∂iφj = δij together
with the antisymmetry of E. Writing this in the matrix form we get

{f, g}D = (∂g)T
((

C D
−DT −E

)

+

(

D
−E

)

(E−1)
(

−DT −E
)

)

(∂f)

= (∂g)T
(

C −DE−1DT 0
0 0

)

(∂f)

= (C −DE−1DT )kl∂lf∂kg

(A.18)

The first row of the matrix equation ωω−1 = 1 now tells us that ω̃DE−1 = A
and furthermore ω̃C − ADT = 1. Combining these two relations then leads to
ω̃(C −DE−1DT ) = 1, which shows that ω̃ is invertible and

ω̃−1 = C −DE−1DT . (A.19)

As a result we can write
{f, g}D = ω̃kl∂lf∂kg . (A.20)
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Appendix B

SL(2,R)/U (1) Poisson Brackets in the
Hyperbolic Sector

In this section we construct the Dirac brackets (A.16) of the chiral fields in the
hyperbolic sector of the SL(2,R)/U(1) model.

From (4.67a) one can extract the Poisson brackets of the chiral fields (6.65) and
(6.66) with the Fourier modes jk of the Kac-Moody current J0

{ψ(x), jk} = − i

4π
e−ikxψ(x) {χ(x), jk} = − i

4π
e−ikxχ(x) , (B.1)

and because J0 is real we can use j∗k = j−k to find

{ψ∗(x), jk} =
i

4π
e−ikxψ(x) {χ∗(x), jk} =

i

4π
e−ikxχ(x) . (B.2)

Using these relations and the equation (4.50) we can now calculate the Poisson
brackets in the unconstrained space

{ψ(x), ψ(y)} =
γ2

4

(

ǫ(x− y)− 1

π
(x− y)

)

ψ(x)ψ(y) , (B.3a)

{χ(x), χ(y)} =
γ2

4

(

ǫ(x− y)− 1

π
(x− y)

)

χ(x)χ(y) , (B.3b)

{ψ(x), χ(y)} =
γ2

4

(

(− 1

π
(x− y)− ǫ(x− y))ψ(x)χ(y) + 4θ2λ(x− y)χ(x)ψ(y)

)

.

(B.3c)

For the complex conjugate fields one can derive in the same manner the relations

{ψ∗(x), ψ(y)} =
γ2

4

(

ǫ(x− y) +
1

π
(x− y)

)

ψ∗(x)ψ(y) , (B.4a)

{χ∗(x), χ(y)} =
γ2

4

(

ǫ(x− y) +
1

π
(x− y)

)

χ∗(x)χ(y) , (B.4b)

{ψ∗(x), χ(y)} =
γ2

4

(

(
1

π
(x− y)− ǫ(x− y))ψ∗(x)χ(y) + 4θ2λ(x− y)χ∗(x)ψ(y)

)

.

(B.4c)

Finally we insert these relations and (6.64) into the Dirac bracket (A.16).
For ψ(x) and ψ(y) we obtain

{ψ(x), ψ(y)}D = {ψ(x), ψ(y)} −
∑

l,m6=0

{ψ(x), jl}i
4πγ2

l
δl+m{jm, ψ(y)} = 0 (B.5)

which reproduces (6.60) calculated in free-field parameterization. The remaining
Dirac brackets are

{χ(x), χ(y)}D = 0 , (B.6a)

{ψ(x), χ(y)}D = γ2

(

θ2λ(x− y)χ(x)ψ(y) − 1

2
ǫ(x− y)ψ(x)χ(y)

)

. (B.6b)
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For the complex conjugate fields we find similarly

{ψ∗(x), ψ(y)}D =
γ2

2
ǫ(x− y)ψ∗(x)ψ(y) (B.7)

{χ∗(x), χ(y)}D =
γ2

2
ǫ(x− y)χ∗(x)χ(y) (B.8)

{ψ∗(x), χ(y)}D = γ2θ2λ(x− y)χ∗(x)ψ(y) . (B.9)

As in Liouville theory we can complete this algebra by the Poisson bracket
relations with the screening chargesusing that A(x) = χ(x)

ψ(x)

{ψ(x), A(y)}D = γ2

(

θ2λ(x− y)A(x)ψ(x) − 1

2
ǫ(x− y)ψ(x)A(y)

)

, (B.10a)

{A(x), A(y)}D = γ2
(

ǫ(x− y)A(x)A(y) − θ2λ(x− y)A2(x)− θ−2λ(x− y)A2(y)
)

,
(B.10b)

{ψ∗(x), A(y)}D = γ2

(

θ2λ(x− y)A∗(x)ψ∗(x)− 1

2
ǫ(x− y)ψ∗(x)A(y)

)

, (B.10c)

{A∗(x), A(y)}D = γ2
(

ǫ(x− y)A∗(x)A(y) (B.10d)

− θ2λ(x− y)A∗2(x)− θ−2λ(x− y)A2(y)
)

.

The Dirac bracket algebra for the antichiral part is the same.
Combining now the chiral and the antichiral calculations one obtains the non-

equal time Poisson bracket structure for the interacting field in the hyperbolic
monodromy (6.67) and (6.70).
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Appendix C

Construction of the Out-Field
Operator

In this section we show in detail the construction of the symbol that corresponds
to the classical bilocal field

B(x, x̄, y, ȳ) =
−γ2eγp1

4 sinh2
(γp1

2

)eγ(Φ1(x,x̄)+iΦ2(x,x̄)−2Φ1(y,ȳ))

×
(

φ′1(y) + iφ′2(y)
)(

φ̄′1(ȳ) + iφ̄′2(ȳ)
)

. (C.1)

As one can check using the basic Poisson brackets this field does not form a closed
algebra with φ′i(x). To close the algebra we will have to introduce additional fields

s(x, x̄, y, ȳ) ≡ eγ(Φ1(x,x̄)+iΦ2(x,x̄))e−2γΦ1(y,ȳ)(φ′1(y) + iφ′2(y)) (C.2a)

s̄(x, x̄, y, ȳ) ≡ eγ(Φ1(x,x̄)+iΦ2(x,x̄))e−2γΦ1(y,ȳ)(φ̄′1(ȳ) + iφ̄′2(ȳ)) (C.2b)

f(y, ȳ, z, z̄) ≡ eγ(Φ1(y,ȳ)+iΦ2(y,ȳ))e−2γΦ1(z,z̄) . (C.2c)

We will start the construction of symbols with the symbol of f since its relation
with φ′i(x) are closed. The classical Poisson brackets of f impose the conditions

{φ′1(x), f̌ (y, ȳ, z, z̄)}∗ =
γ

2
f̌(y, ȳ, z, z̄)δ(x− y)− γf(y, ȳ, z, z̄)δ(x − z) (C.3a)

{φ′2(x), f̌ (y, ȳ, z, z̄)}∗ =id
γ

2
f̌(y, ȳ, z, z̄)δ(x − y) . (C.3b)

The solution of these equations is simply

f̌(x, x̄, y, ȳ) = C(p1, p2, x, x̄, y, ȳ)e
γ(Φ1(x,x̄)+iλΦ2(x,x̄))e−2γΦ1(y,ȳ) . (C.4)

Here we have chosen the same deformation of the coupling constant in front of φ2

as for the in-field Ě (cf. (8.19)). Other deformations would be inconsistent with
our assumptions for the conformal properties and the scattering matrix. The Moyal
bracket of this f̌ with Ť is

{Ť (x),f̌(y, ȳ, z, z̄)}∗ = ∂yf̌ δ(x− y) + ∂z f̌ δ(x− z)

− 1

2

(

η1 + iλη2 − (1− λ2)
b2

2

)

f̌ δ′(x− y) +
(

η1 + b2
)

f̌ δ′(x− z)

+ f̌

(

b2

2
cot

(

1

2
(y − z)

)

− (∂yC)
1

C

)

δ(x− y)

− f̌
(

b2

2
cot

(

1

2
(y − z)

)

+ (∂zC)
1

C

)

δ(x − z) .

(C.5)

Comparing this with the classical Poisson bracket

{T (x), f(y, ȳ, z, z̄)} = ∂yf(y, ȳ, z, z̄)δ(x− y) + ∂zf((y, ȳ, z, z̄)δ(x − z) (C.6)
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we allow a deformation of the conformal weight but require that the last two terms
to vanish. This leads to the condition C = f(p1, p2) c(y − z, ȳ − z̄) with

∂yc(y − z, ȳ − z̄) = c(y − z, ȳ − z̄)b
2

2
cot

(

1

2
(y − z)

)

. (C.7)

The solution of this and the equivalent antichiral condition from commutation with
ˇ̄T (x̄) is the short distance factor

C = fp

(

4 sin2

(

y − z
2

))
b2

2
(

4 sin2

(

ȳ − z̄
2

))
b2

2

. (C.8)

To construct the symbols š and ˇ̄s we have to satisfy the conditions

{φ′1(x), š(y, ȳ, z, z̄)}∗ =
γ

2
š(y, ȳ, z, z̄)δ(x − y)− γš(y, ȳ, z, z̄)δ(x − z) (C.9a)

− 1

2
f̌(y, ȳ, z, z̄)δ′(x− z)

{φ′2(x), š(y, ȳ, z, z̄)}∗ =i
γ

2
š(y, ȳ, z, z̄)δ(x − y)− i1

2
f̌(y, ȳ, z, z̄)δ′(x− z) (C.9b)

{φ̄′1(x), š(y, ȳ, z, z̄)}∗ =
γ

2
š(y, ȳ, z, z̄)δ(x̄ − ȳ)− γš(y, ȳ, z, z̄)δ(x̄ − z̄) (C.9c)

{φ̄′2(x), š(y, ȳ, z, z̄)}∗ =i
γ

2
š(y, ȳ, z, z̄)δ(x − y) , (C.9d)

and similar relations for ˇ̄s. Here no further deformations can be allowed. The
solutions of the variational equations are

š(y, ȳ, z, z̄) = f̌((y, ȳ, z, z̄))
(

c1φ
′
1(z) + ic2φ2(z) + C1(p1, p2, y, ȳ, z, z̄)

)

(C.10a)

ˇ̄s(y, ȳ, z, z̄) = f̌((y, ȳ, z, z̄))
(

c1φ̄
′
1(z̄) + ic2φ̄2(z̄) + C2(p1, p2, y, ȳ, z, z̄)

)

. (C.10b)

Finally the classical Poisson brackets of B give conditions for the symbol B̌

{φ′1(x), B̌(y, ȳ, z, z̄)}∗ =
γ

2
B̌(y, ȳ, z, z̄)δ(x − y)− γB̌(y, ȳ, z, z̄)δ(x − z) (C.11)

− 1

2
δ′(x− z)ˇ̄s(y, ȳ, z, z̄)

{φ′2(x), B̌(y, ȳ, z, z̄)}∗ =i
γ

2
B̌(y, ȳ, z, z̄)δ(x − y)− i1

2
δ′(x− z)ˇ̄s(y, ȳ, z, z̄) . (C.12)

We can therefore write the symbol of the out-field as

B̌(y, ȳ, z, z̄) = f̌(y, ȳ, z, z̄)
(

c1φ
′
1(z) + iφ′2(z) + C1(p1, p2, y, ȳ, z, z̄)

)

(

c1φ̄
′
1(z̄) + iφ̄′2(z̄) + C2(p1, p2, y, ȳ, z, z̄)

)

.
(C.13)

As before we now compare the classical Poisson bracket with T (x)

{T (x), B(y, ȳ, z, z̄)} =∂yB(y, ȳ, z, z̄)δ(x − y) + ∂zB(y, ȳ, z, z̄)δ(x − z)
−B(y, ȳ, z, z̄)δ′(x− z)

(C.14)
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with the Moyal bracket with Ť

{Ť (x), B̌(y, ȳ, z, z̄)}∗ = ∂yBδ(x− y) + ∂zBδ(x− z)

− 1

2

(

η1 + iλη2 − (1− λ2)
b2

2

)

B̌δ′(x− y)−
(

1− η1 − b2
)

B̌δ′(x− z)

+

(

η1

2γ
+ iλ

η2

2γ
+
b2

2γ

)

ˇ̄sδ′′(x− z)

− (∂yC1 ˇ̄s+ ∂yC2š) δ(x− y)− (∂zC1 ˇ̄s+ ∂zC2š) δ(x − z) + C1 ˇ̄sδ
′(x− z)

− (c1 − λ)
b2

4γ
ˇ̄s cot

(

1

2
(x− z)

)

(

δ(x− y)− δ(x− z)
)

− i(c1 − λ)ˇ̄s
b2

8πγ

∑

k>0

(

eik(x−y) − e−ik(x−y)
)

.

(C.15)
In order for the anomalous terms to vanish we find that we have to set c1 = λ,
C1 = 0 = C2 and

η2 =
i

λ

(

η1 + b2
)

. (C.16)

Integration of the bilocal field yields the out-field

F̌ (y, ȳ) =

∫ 2π

0

∫ 2π

0
dz dz̄ B̌(y, ȳ, y + z, ȳ + z̄) . (C.17)

We therefore find the Moyal bracket of Ť (x) with the out-field to be

{Ť (x), F̌ (y, ȳ)}∗ = ∂yF̌ (y, ȳ)δ(x − y) + (3− λ2)
b2

4
F (y, ȳ)δ′(x− y)

+
(

η1 + b2
)

[
∫ 2π

0
dz̄ ∂0xB(y, ȳ, x, ȳ + z̄)−B(y, ȳ, y, ȳ + z̄)(e−γp1 − 1)δ(x − y)

]

.

(C.18)

Here we demand that the out-field transform as a conformal primary and find the
condition

η1 = −b2 . (C.19)

This also implies that η2 = 0.
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