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Zusammenfassung Abstract

Zusammenfassung

Diese Arbeit untersucht Wilson-Schleifen im Rahmen der AdS/CFT Korrespon-
denz. Auf der Eichtheorieseite der Dualität werden supersymmetrische Wilson-
Schleifen auf den Mannigfaltigkeiten R

4, S3, R
1,3 und H3 untersucht. Insbeson-

dere wird erforscht, wieviele Supersymmetrien generelle, sowie einige speziel-
le Wilson-Schleifen erhalten. Für einige der Wilson-Schleifen kann der Erwar-
tungswert in der Eichtheorie explizit berechnet werden. Auf der Stringtheorie-
seite der Korrespondenz werden die dualen Wilson-Schleifen untersucht und ihr
Erwartungswert mit der Eichtheorie verglichen.

Schlüsselwörter

Supersymmetrie, Wilson-Schleifen, Stringtheorie, AdS/CFT

Abstract

This thesis investigates Wilson loops in the context of the AdS/CFT correspon-
dence. On the gauge theory side Wilson loops on the mannifolds R

4, S3, R
1,3

and H3 are examined. In particular the focus is put on how many supersym-
metries are preserved by general as well as special Wilson loops. For some of
the loops we can explicitly calculate the expectation value in the gauge theory.
On the string theory side of the correspondence we calculate the dual Wilson
loops and compare their expectation value to the gauge theory.
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I

Introduction

Since Einstein, physicists dream of unifying different fundamental theories
into a single theory, a so called theory of everything (TOE). But on the other
hand it was also Einstein, who laid the foundation for two theories, namely
the theory of general relativity and quantum field theory, which up two now
still cannot be unified. The theory of general relativity is a classical description
of gravity, valid at large distances, whereas quantum field theory charaterizes
the behaviour of atoms, molecules and subatomic particles at small distances.
Although both theories are confirmed by experiment with enormous precision,
it is still unknown how to unify them.
Today we know four fundamental interactions in nature. Apart from the grav-
itational and the electromagnetic force, there are the weak and the strong in-
teraction. Except for gravity, all other forces can succesfully be described by
renormalizable quantum field theories; this led to the famous standard model of
elementary particles. When trying to apply the concepts of quantum field the-
ory to gravity one faces a big obstacle, namely that there is no consistent way
of quantizing gravity due to its nonrenormalizability. One of the aims of string
theory is to be a theory of quantum gravity. Although string theory is still far
away from beeing well understood, it is nevertheless one of the few consistent
candidates. Historically, string theory was presented to be a description of the
strong interaction, which guides the behaviour between nucleons. The bosonic
string, which was first considered in the end of the 1960’s suffered from many
unphysical properties, such as containing a tachyon, being only consistent in 26
spacetime dimension and the existence of massless spin 2 particles [1]. These
are of course misplaced in a theory describing short distance physics. Addi-
tionally, there was the rise of another theory, called quantum chromodynamics
(QCD), which could accurately describe the experimental data. Until today,
QCD can be regarded as a successfull theory, since it explains the phenomena
of confinement and asymptotic freedom, but because it is a strongly coupled
theory it is hard to perform concrete calculations.
Another important idea that unifies different concepts of fundamental physics
is supersymmetry. Supersymmetry provides a link between particles that are
responsible for mediating forces (bosons) and particles that constitute the mat-
ter (fermions) on which the forces act. The idea of supersymmetry has had
a wide impact on theoretical physics. Though it is still an open question if
supersymmetry is realized in nature, which will hopefully be answered by the
LHC in near future. Apart from the question if supersymmetry is a physical
concept, it can be seen as a tool, which can simplify calculations in field theories
drastically.
If one unifies the bosonic string and the concept of supersymmetry, leading to
superstring theory, one gets rid of the tachyon in the spectrum of the superstring
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Chapter 1: Introduction

and the number of dimensions needed for consistency is reduced to ten. The
existence of massless spin 2 particles can then be reinterpreted as a description
of gravity.
At present, superstring theory is also heading towards another direction. Al-
ready in the 1970’s ’t Hooft speculated that in a certain limit, non-abelian
gauge theories might also be described by a string theory [2]; but for a concrete
formulation of this idea people had to wait until 1997, the year in which Malda-
cena formulated the famous AdS/CFT correspondence [3]. This correspondence
links two totally different theories with each other. On the one hand, one has
a maximally supersymmetric non-abelian gauge theory in four dimensions and
on the other hand one deals with a ten dimensional string theory on the man-
ifold AdS5 × S5. The correspondence states that both theories can be used to
describe the same physics. This is highly non-trivial, since it is a duality linking
a weakly and and a strongly coupled theory.
One of the most interesting observables in the context of the AdS/CFT corre-
spondence is the Wilson loop. It is a gauge invariant non-local operator, whose
importance in non-abelian gauge theories has been known for a long time. One
year after the proposal of the AdS/CFT correspondence again Maldacena sug-
gested how the Wilson loop operator has to be interpreted in the context of
the correspondence: On the string theory side it is decribed by a minimal sur-
face which ends on the contour of the Wilson loop [4], whereas in the gauge
theory one has to extend the usual Wilson loop operator in such a way that it
is invariant under supersymmetry variation. Calculating the expectation value
of the circular Wilson loop on both sides of the correspondence has been one
of the first successfull tests of the duality. Up to now a lot of effort has been
put in finding constructions that can be applied to general Wilson loops. The
first construction of this kind was given by Zarembo [5], where the loops are
constrained to flat space R

4. A construction for loops that are bound to S3 was
put forward by Drukker et. al. [6], [7], [8].
In this thesis, we will focus on Wilson loops in Minkowskian signature. Re-
cently, it was proposed how to calculate gluon scattering amplitudes at strong
coupling using lightlike Wilson loops; this is the reason why a lot of effort was
made to investigate Wilson loops in Minkowskian signature. Some of the results
presented in this thesis can be applied to improve the current research.
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Outline

This thesis is organized as follows:
After reviewing as much of the AdS/CFT correspondence as will be needed
throughout the thesis, we study supersymmetric Wilson loops on the gauge
theory side of the correspondence. In the gauge theory, we concentrate on
calculating the amount of supersymmetry that is preserved by various Wilson
loops and evaluate their expectation value.
In the second chapter, we review Wilson loops in flat space.
In the third chapter, we focus on Wilson loops which are restricted to the
manifolds S2 and S3.
Chapter four deals with Wilson loops constrained to hyperbolic three space H3.
We point out the relation between loops on the sphere and loops in hyperbolic
space.
The fifth chapter investigates Wilson loops in Minkowskian signature that are
not restricted to H3.
The last chapter is concerned with the string theory duals of the various Wilson
loops we centered in the gauge theory. We examine the minimal surfaces that
describe these Wilson loops in string theory, evaluate their classical supergravity
action and compare it to the results obtained from the gauge theory.
Finally, we emphasize the relation between the content of this thesis and the
current research on gluon scattering amplitudes and give an outlook about
questions that remain open.
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II

Wilson Loops in AdS/CFT

In this chapter we review the aspects of the AdS/CFT correspondence that
will be needed throughout this thesis. After a short summary of AdS spaces and
their geometry we take a short look at N = 4 SYM. Finally we discuss the basic
ideas of the AdS/CFT correspondence and show how the Wilson loop operator
fits into the correspondence. For a review of the AdS/CFT correspondence the
reader might take a look at [9]; for a very detailed introduction we recommend
[10]; introductions in the form of lectures are provided by [11, 12].

2.1 Basics of AdS Spaces

Five dimensional Anti-de Sitter space, abbreviated as AdS5, is usually defined
by considering the hyperboloid with curvature radius L

− Y 2
−1 − Y 2

0 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = −L2 . (2.1)

in flat space R
2,4 with the metric

ds2 = −dY 2
−1 − dY 2

0 + dY 2
1 + dY 2

2 + dY 2
3 + dY 2

4 . (2.2)

This space has the isometry group SO(2, 4), which will be important in formu-
lating the AdS/CFT correspondence.

2.1.1 Global Coordinates

The standard parametrization of (2.1) is given by

Y−1 = L cosh ρ cos τ, Y0 = L cosh ρ sin τ (2.3)

Yi = L sinh ρ Ωi, i = 1, . . . , 4

with Ωi denoting polar coordinates satisfying Σ4
i=1Ω

2
i = 1. Given this parametriza-

tion the metric on AdS5 takes the following form

ds2 = L2(− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
3) . (2.4)

If we choose the restrictions 0 ≤ ρ and 0 ≤ τ ≤ 2π, we cover the whole
hyperboloid. This is the reason why the coordinates (τ, ρ,Ω3) are usually called
global coordinates. It is easy to see that near ρ ≃ 0 the hyperboloid has the
topology of S1×R

4, since the metric behaves as ds2 ≃ L2(−dτ2 +dρ2 +ρ2dΩ2
3).
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Chapter 2: Wilson Loops in AdS/CFT

2.1.2 Poincaré Patch

Additionally to the global coordinate system, there is another set of coordinates
that will be used frequently, the so called Poincaré patch. It is related to the
embedding coordinates by

Y−1 =
1

2u

(

1 + u2(L2 + ~x2 − x2
0)
)

, Y0 = Lux0 (2.5)

Yi = Luxi, i = 1, 2, 3

Y4 =
1

2u

(

1 − u2(L2 − ~x2 + x2
0)
)

.

These coordinates only cover half of the hyperboloid (2.1) and we obtain the
following line element

ds2 = L2

(

du2

u2
+ u2(−dx2

0 + d~x2)

)

. (2.6)

Substituting u = 1/y we get an equivalent form of the metric

ds2 =
L2

y2

(

dy2 − dx2
0 + d~x2

)

. (2.7)

At the conformal boundary y = 0 the metric has the topology of four di-
mensional Minkowski space, which is another crucial fact for formulating the
AdS/CFT correspondence.

2.1.3 Euclidian AdS

Perfoming a Wick rotation in τ → τE = −iτ is reflected in the original coordi-
nates (2.1) as Y−1 → YE = −iY−1 resulting in

− Y 2
0 + Y 2

E + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 = −L2 . (2.8)

After the Wick rotation the metric (2.2) changes to

ds2 = −dY 2
0 + dY 2

E + dY 2
1 + dY 2

2 + dY 2
3 + dY 2

4 . (2.9)

Expressed in global and Poincaré coordinates we get the following line element

ds2E = L2
(

dρ2 + cosh2 ρ dτ2
E + sinh2 ρ dΩ2

3

)

(2.10)

=
L2

y2

(

dy2 + dx2
1 + · · · + dx2

5

)

.

The coordinate system just introduced is usually called Euclidian AdS.

2.1.4 Geometry of S5

The five dimensional unit sphere can be embedded in R
6 and parametrized

via polar coordinates. In this thesis, we will only consider an S2 subspace of
S5. For completeness we give the metric on S2 parametrized in terms of polar
coordinates

ds2 = L2(dϑ2 + sin2 ϑdϕ2) . (2.11)
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2.2 Aspects of N = 4 SYM

2.2 Aspects of N = 4 SYM

N = 4 SYM is a remarkable theory. It is the maximal supersymmetric gauge
theory in four dimensions with four spinor supercharges N = 4 and gauge group
SU(N). Its field content consists of one gauge field Aµ, four Majorana spinors
Ψi and six scalars ΦI , all in the adjoint representation of the gauge group.
Furthermore, one has to mention that N = 4 SYM is a conformal theory,
therefore it is scale invariant and has vanishing beta function. The theory has
two parameters, the Yang-Mills coupling constant gY M and the number of colors
N . Its Lagrangian is completely determined by supersymmetry [9]

L = Tr

(

− 1

2g
FµνFµν +

θI

8π2
FµνF̃µν − (DµΦI)

2 − iΨ̄ 6DΨ

+ gρIΨ[ΦI ,Ψ] + gρIΨ̄[ΦI , Ψ̄] +
g2

2
[ΦI ,ΦJ ]2

)

. (2.12)

Here, the matrices ρI belong to the Clifford algebra of the R-symmetry group
SO(6). The Lagrangian is invariant under the supersymmetry transformations
studied at the end of this section.

2.2.1 Symmetries of N = 4 SYM

In this subsection, we summarize the global symmetries of N = 4 SYM. The
theory as a whole is invariant under the supergroup SU(2, 2|4) [13], nevertheless
let us take a look at the different subsectors:

• Conformal Symmetry,
given by the group SO(2, 4) ∼ SU(2, 2),
generated by translations Pµ, Lorentz transformations Mµν ,
dilatations D and special conformal transformations Kµ;

• R-symmetry, rotating the six scalars, generated by RA,
given by the group SO(6) ∼ SU(4), A = 1, . . . , 15;

• Poincaré supersymmetries,
generated by the supercharges Qa

α and their adjoint Q̄α̇a, a = 1, . . . , 4

• Conformal supersymmetries,
generated by the conformal supercharges Sαa and their adjoint S̄a

α̇

Before turning to the supersymmetry transformations let us write down the
non-trivial commutation relations of the superconformal algebra of N = 4 SYM.
Apart from the algebra of the generators of the conformal group

[Mµν ,Mαβ ] = −i[ηµβMνα + ηναMµβ − ηµαMνβ − ηνβMµα] (2.13)

[Mµν , Pα] = −i[ηναPµ − ηναPν ], [Mµν ,Kα] = −i[ηναKµ − ηµαKν ]

[D,Kµ] = iKµ, [D,Pµ] = −iPµ, [Pµ,Kν ] = −2i[ηµνD − 2Mµν ]

7



Chapter 2: Wilson Loops in AdS/CFT

we also have the commutator/anticommutators involving the superconformal
algebra (in order not to blow up the notation we omit spinor and group indices)

[D,Q] = − i

2
Q, [D,S] =

i

2
S, [Kµ, Q̄] = γµS, [Pµ, S] = γµQ̄

(2.14)

{Q, Q̄} = 2γµPµ, {S, S̄} = 2γµKµ, {Q, S} =
1

2
γµνMµν +D +R .

In the following we will quite frequently make use of the supersymmetry trans-
formations of the bosonic fields Aµ and ΦI (for completeness we also write down
the variation of the fermionic fields)

δǫAµ → ψ̄γuǫ(x) (2.15)

δǫΦI → ψ̄ρIγ5ǫ(x)

δǫΨ → (Fµνγµν + ρIJ [ΦI ,ΦJ ])ǫ(x)

δǫΨ̄ → (γµD
µΦIρ

Iγ5)ǫ(x) .

The parameter of the transformation is given by ǫ. In the following we will
choose ǫ to be a conformal Killing spinor composed of two constant spinors ǫ0
and ǫ1 as

ǫ(x) = ǫ0 + xµγµǫ1 . (2.16)

When it comes to actual calculations we will specify the properties of the gamma
matrices appearing in (2.15). We will always assume that the spacetime gamma
matrices γµ commute with the ρI matrices.
The vacuum of N = 4 SYM has 32 supersymmetries, that split up in 16 Poincaré
supersymmetries generated by the spinor ǫ0 and 16 conformal supersymmetries
generated by the spinor ǫ1. If one brings an object into the vacuum, it usually
destroys all or at least part of the 32 supersymmetries. There are only special
observables that can preserve some of the original supersymmetries. These
objects are called BPS operators. They annihilate part of the supercharges and
the supersymmetry representation suffers multiplet shortening. The amount of
supersymmetry preserved by a BPS operator is determined by the number of
independent components of the spinors ǫ0 and ǫ1. Finally, we want to mention
that BPS operators are protected from receiving quantum corrections, meaning
that in a unitary representation the dimension ∆ of these operators is not
renormalized [9].

2.2.2 Aspects of conformal Geometry

A conformal transformation preserves the metric up to a scale factor
gµν → Ω(x)2gµν . Apart from Poincaré transformations the conformal group of
Minkowski space consists of dilatations

xµ → λxµ, λ ∈ R (2.17)

and special conformal transformations

xµ → xµ + aµx2

1 + 2x · a+ a2x2
. (2.18)

8



2.3 The AdS/CFT Correspondence

One of the special conformal transformations that we will use in the following
is the stereographic projection between S2 and R2 as well as H2 and the unit
disc.

2.3 The AdS/CFT Correspondence

The AdS/CFT correspondence or Maldacena conjecture states the duality of
two totally different theories [3]:

• Type IIB superstring theory on the AdS5 × S5 background,
where both AdS5 and S5 have the same curvature radius L

• N = 4 SYM theory in 4 dimensions with gauge group SU(N)

In the correspondence the gauge theory lives on the conformal boundary of
AdS5, which is 4 dimensional Minkowski space as we have already mentioned.
This is the reason why the correspondence is often called holographic, since ev-
erything happening on the boundary completely determines what is happening
in the bulk. The parameters on the gauge theory side are the number of colors
N and the Yang Mills coupling constant gY M . On the string theory side one
has the string coupling constant gS and the curvature radius L of the AdS5 and
S5 spaces.

The correspondence matches the parmeters of both theories in the following
way

4πgS = g2
Y M , L4 = 4πgSNα

′2 . (2.19)

Although a general proof of the conjecture does not exist, there are a many
strong indications for its exactness. Perhaps the strongest argument comes
from taking a look at the symmetry group of both theories. The conformal
group in 4 dimensions is given by SO(2, 4), which is the isometry group of
AdS5. The R-symmetry group of N = 4 SYM is given by SO(6), which is the
rigid symmetry group of S5. Together with the fermionic degrees of freedom
both theories are invariant under the supergroup SU(2, 2|4).

In the form defined above, the conjecture is to hold for all values of N and
4πgS = g2

Y M . Actual computations in this strongest form of the conjecture are
hard to manage, therefore one is interested in taking simplifying limits.

2.3.1 The ’t Hooft Limit

In the ’t Hooft limit one is interested in N → ∞ while keeping the ’t Hooft
coupling λ = g2

Y M N fixed. On the field theory side, this limit is well-defined and
corresponds to a topological expansion of the field theory’s Feynman diagrams.
On the AdS side, the ’t Hooft limit describes a weakly coupled string theory,
since the string coupling constant can be expressed as gS ∝ λ/N with λ kept
fixed.

9



Chapter 2: Wilson Loops in AdS/CFT

2.3.2 The large λ Limit

Once the ’t Hooft limit is taken, the only remaining parameter is λ. In the
Yang-Mills theory one is usually interested in the perturbative regime λ ≪ 1,
while on the string theory side it is more natural to look at λ ≫ 1. This is
quite remarkable, since now we have a correspondence between a weakly and
a strongly coupled theory! In the large λ limit one can make an expansion in
λ−1/2 in the gauge theory; this corresponds to classical Type IIB supergravity
on AdS5 × S5 with the action

SSugra =
1

16πG(10)

∫

d10x
√−ge−2φD(R+ 4∂µφD∂µφD + . . . ) . (2.20)

Here G(10) is the ten-dimensional Newton constant, φD is the Dilaton field and
the dots indicate contributions from other fields.

2.3.3 Correlation Functions in the AdS/CFT Correspondence

We have already seen that a strong indication for the duality between N = 4
SYM living on the conformal boundary of AdS5 and type IIB superstring theory
on AdS5×S5 comes from both theories having the same global symmetries. But
matching global symmetries is of course just the first step; we need a precise
prescription for each operator O(~x) in N = 4 SYM to be identified with a
field φ(~x) in the bulk of AdS5. This prescription can then be used to compute
correlation functions on both sides of the correspondence. The specification for
matching correlation functions in the AdS/CFT correspondence was given in
[14, 15] and is usually called Witten prescription. It matches the generating
functional on the field theory side with the string partition function

〈

e
R

d4xφ0(~x)O(~x)
〉

CFT
= ZString[φ(~x, z)|z=0 = φ0(~x)] . (2.21)

In the last equality, O(~x) is a gauge invariant local operator and φ0(~x) specifies
the boundary values of the field φ(~x). We note that the Witten prescription
matches the central objects of both theories with each other. Nevertheless
calculating the string partition function in general is hard to manage. Luckily
in the large N and large λ limit (2.21) simplifies as

ZString ≈ e−SSugra . (2.22)

Since Wilson loops are non-local operators, the prescription (2.21) has to be
modified in their case.

2.4 Wilson Loops

In this section we shortly motivate the definition of the Wilson loop. The basic
properties of the Wilson loop operator can be found in standard quantum field
theory books, for example [16]. Originating in lattice gauge theory Wilson loops
became famous since the expectation value of a rectangular loop with infinite
temporal sides T and spatial length L describes the static quark-antiquark
potential, where L is the distance between quark and antiquark. Additionally
Wilson loops can be used to characterize confinement in QCD [17].
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2.4 Wilson Loops

2.4.1 The Wilson loop operator in gauge theories

Historically, Wilson loops were considered to construct a parallel transport in
gauge theories. If we consider a vector field φ and want to perform a parallel
transport along some curve C connecting two spacetime points y and z

U(y, z)φ(z) = φ(y) (2.23)

and additionally require that U(y, z) has the right transformation law under an
abelian gauge transformation (Σ denotes an element of the gauge group)

U(y, z) → Σ(y)U(y, z)Σ(z)−1 (2.24)

then we are lead to the following object

U(y, z) = exp

(

i

∫

C
Aµdx

µ

)

. (2.25)

The quantity U(y, z) is usually called the Wilson line. When we consider a
closed path, U(y, y) is called the Wilson loop. Now we want to generalize the
Wilson loop to a non-abelian theory. In this case subtleties arise since we have
to deal with the exponential of non-commuting matrices. It turns out that the
replacement Aµ → Aa

µT
a is not the correct generalization of (2.25), since the

matrices T a do not commute at different points. This ordering ambiguity is
solved by introducing a path ordering, which is denoted by P. Let t be the
parameter of the path P running from 0 at x = y to 1 at x = z. We can then
define the Wilson loop operator as a power series of the exponential with the
matrices T a ordered in the way that higher values of the path parameter t stand
to the left in every term. The Wilson loop generalized to non-abelian gauge
theories then becomes

U(y, z) = P exp

(

i

∮

C
dxµAa

µT
a

)

. (2.26)

Taking a closed path (2.26) would no longer be gauge invariant, that is why we
have to introduce the trace into the definition of the Wilson loop for non-abelian
gauge theories (usually in the fundamental representation). Now we can finally
write down the object of interest

W =
1

N
Tr P exp

(

i

∮

C
dxµAa

µT
a

)

. (2.27)

The factor 1/N is introduced for convenience. To conclude this section, let us
mention some crucial properties of the Wilson loop operator. First of all, it is a
non-local operator since it depends on the path C. Secondly, it is constructed
as a gauge invariant object. All gauge invariant functions of Aµ can be de-
rived from Wilson loops by choosing appropriate paths [16], since they form a
complete basis of gauge invariant operators for the pure Yang-Mills theory. Es-
pecially due to the last property Wilson loops are central objects in non-abelian
gauge theories. As already mentioned, the most prominent application of the

11



Chapter 2: Wilson Loops in AdS/CFT

Wilson loop in physics is the calculation of the static quark-antiquark potential
[17]. For this purpose one considers a rectangular loop with temporal length
T and spatial length R with T ≫ R. We can then extract the static quark
antiquark-potential from the Wilson loop operator via

〈W 〉 ∝ exp (−Vqq̄T ) = exp (−σTR) = exp (−σAmin) . (2.28)

The last equality is the famous area law. We realize that Vqq̄ gives rise to
a linear potential leading to a constant force independently of the distance
between quark and antiquark.

2.4.2 The Wilson Loop Operator in AdS/CFT

The Wilson loop operator in the AdS/CFT correspondence was first presented
in [4] and [18]. A review article about Wilson loops in the context of AdS/CFT
is given by [19]. In contrast to the normal Wilson loop considered in gauge
theories like QCD, the Wilson loop operator in the AdS/CFT correspondence
has to be modified. First of all, we present the Wilson loop operator in N = 4
SYM and then investigate its dual object in the string theory. As we have
already seen, strings in the AdS/CFT correspondence propagate in AdS5 ×S5;
the conformal boundary of five dimensional AdS is the setup of the gauge
theory. This leads to the natural proposal that the string in AdS should end
on the contour of the Wilson loop. In addition, we have to take care of the fact
that strings also extend to S5. Remember that the S5-part in the string theory
corresponds to the R-symmetry group of N = 4 SYM. Let θI be coordinates
on S5, on account of this one extends the usual Wilson loop operator by taking
the θI as coupling to the six scalars in the gauge theory. This motivates the
definition of the generalized supersymmetric Wilson loop [4]

W =
1

N
Tr P exp

∮

dt
(

iAµẋ
µ(t) + |ẋ|ΘI(t)ΦI

)

. (2.29)

Since the generalized Wilson loop operator was originally proposed by Malda-
cena, (2.29) is sometimes called Maldacena-Wilson loop. Since we are dealing
with a supersymmetric string theory, we also have to make sure that (2.29) is
invariant under supersymmetry variation. To compute the expectation value of
the Wilson loop operator in string theory one has to generalize the prescription
(2.21), since the Wilson loop is a non local operator. The mapping between
the non-local Wilson loop operator in the gauge theory and the string partition
function Z(C) has also been proposed in [4] and was further generalized in [18]

〈W (C)〉 = Z(C) = e−S(C) . (2.30)

In the rest of this thesis, we will be interested in computing the expectation
value of the Wilson loop in the supergravity approximation. In this limit the
string worldsheet is described by a minimal surface. The area of this surface
can be obtained by extremizing the Nambu-Goto action

SNG =
1

2πα′

∫

dσdτ
√

− det
α,β

GMN (∂αXM∂βXN ) . (2.31)

12



2.4 Wilson Loops

In the definition of the Nambu-Goto action, GMN is the ten-dimensional back-
ground metric and the XM are the string coordinates in ten dimensional space
time; the set {τ, σ} parametrizes the string worldsheet. There is another action
that will be used frequently, the so called Polyakov action, which is much easier
to handle than the Nambu-Goto action. The transition from the Nambu-Goto
action to the Polyakov action requires to introduce an auxilliary field hab. To
show that the Nambu-Goto action is equivalent to the Polyakow action on the
classical level gives rise to a constraint, the so called Virasoro constraint [1].
The Polyakov action reads

SPol =
1

2πα′

∫

dσdτ
√
−hhabGMN (∂αX

M∂βX
N ) . (2.32)

The appeareance of the auxilliary metric hab and its determinant h is new in
contrast to the Nambu-Goto action as already mentioned. The Polyakov action
has a huge amount of symmetry [1], it is invariant under diffeomorphisms and
Weyl transformations. One can now cleverly use these symmetries to bring the
Polyakow action into a simple form, namely if we choose the conformal gauge,
which means that we take the worldsheet metric to be Euclidian, leading to

SPol =
1

2πα′

∫

dσdτ
(

Ẋ2 +X ′2
)

. (2.33)

The Polyakov action in conformal gauge is accompanied by the Virasoro con-
straint

Ẋ2 = X ′2 . (2.34)

For more details about the Nambu-Goto and the Polyakov action the reader
might take a look at standard textbooks about string theory, for example [1, 20].
Just for completeness, we want to mention that it is also possible to describe
Wilson loops in AdS by D-Branes [21, 22, 23, 24].

2.4.3 Regulating the Action

After having found a minimal surface by solving the classical equations of mo-
tion and therefore minimizing the action, we will face an obstacle, namely that
in general such a surface will be infinite. There are two possibilities for this
to happen, first from being close to the conformal boundary of AdS and sec-
ondly due to the fact that the Wilson loop is non-compact like in the case of
an infinite line. We will face both of these situations when calculating Wilson
loops in AdS. The infinity occurring from being close to the boundary can be
regulated easily: Since there are many actions whose equation of motion are
solved by minimal surfaces (they differ by total derivatives or equivantly by
boundary terms), we have to find the minimal surface with the correct bound-
ary conditions. It was shown in [25] how this can be achieved: One has to
consider the Legendre transformation of the original Lagrangian with respect
to the coordinate y orthogonal to the boundary. We will see later that through
the regularization procedure the action becomes negative. In the original ref-
erence [25] it was also shown that not every minimal surface can be regulated
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Chapter 2: Wilson Loops in AdS/CFT

in that way: Only Wilson loops satisfying the constraint that the magnitude
of the coupling to the gauge field is the same as the magnitude of the coupling
to the scalars can be treated this way. In practice this means that ΘI in (2.29)
has to be a unit vector ~Θ · ~Θ = 1.

2.5 Cusp anomalous Dimensions

Up to now, we quietly assumed that the curve belonging to the Wilson loop is
smooth; nevertheless Wilson loops with a cusp have many interesing properties.
In QCD they are describing the trajectory of a heavy quark which suddenly
changes its velocity at the location of the cusp. The ultraviolet divergence
appearing in the calculation of the cusped Wilson loop can then be interpreted
as bremsstrahlung of soft gluons emitted by the quark while it is changing its
velocity. In addition the finite part also has an important physical interpretation
in QCD, leading to the scattering amplitudes of gluons expressed in terms of
Mandelstam variables.
The cusp anomalous dimension γcusp depends on the angle at the cusp θ in
Euclidian space or the change of rapidity in Minkowskian space. For large
values of θ it is given by the expression

γCusp =
θ

2
f(g2

Y M , N) . (2.35)

The function f(g2
Y M , N) can be calculated perturbatively, in the planar limit it

is only a function of the ’t Hooft coupling λ.
At present there is big interest in the cusp anomalous dimensions in N = 4
SYM and its relation to gluon scattering amplitudes. Up to now gluon scattering
amplitudes in the gauge theory have been computed at five loops [26, 27, 28, 29].
Since the proposal of Alday and Maldacena [30], [31] relating gluon scattering
amplitudes and lightlike Wilson loops, it is by now possible to do calculations
in the weakly and the strongly coupled regime. For the actual status of the
research we recommend the review articles [32] and [33].
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III

Wilson Loops in flat Space

In this chapter, we first of all review the circular Wilson loop coupling to
one scalar since it is is very well understood. Additionally, we use this object to
present techniques that will be needed in the following. Afterwards, we present
the Zarembo construction [5], which can be applied to a general curve on R

4.

3.1 Circular Loop coupling to one Scalar

The circular Wilson loop coupling to one scalar is the most prominent example
of a supersymmetric Wilson loop in the AdS/CFT correspondence. After show-
ing that this operator is supersymmetric, we will investigate the perturbation
series of this object. A circle with unit radius (xµ = (cos t, sin t, 0, 0)) coupling
to one scalar gives the following Wilson loop operator

W =
1

N
Tr P exp

∮

dt
(

iAµẋ
µ + Φ1

)

. (3.1)

In order to check whether this operator is supersymmetric, we use the super-
symmetry transformations of the bosonic fields (2.15). Vanishing of the super-
symmetry variation for the circular loop requires

δW ≃ (iẋµγµ + ρ1γ5)(ǫ0 + xµγµǫ1) (3.2)

= (−i sin tγ1 + i cos tγ2 + ρ1γ5)(ǫ0 + cos tγ1ǫ1 + sin tγ2ǫ1) = 0 .

The transformation parameter ǫ is a conformal Killing spinor, γµ are flat space
gamma matrices and ρ1 belongs to the Clifford algebra of SO(6). Now we have
to separate the terms appearing in the supersymmetry variation according to
their functional dependence on the loop parameter t which should all vanish
independently

sin t : iγ1ǫ0 = ρ1γ5γ2ǫ1
cos t : iγ2ǫ0 =−ρ1γ5γ1ǫ1

1 : iγ12ǫ1 = ρ1γ5ǫ0 .
(3.3)

It is easy to realize that only one of the three equations is independent

iγ12ǫ1 = ρ1γ5ǫ0 . (3.4)

The constraint relates every component of ǫ0 to a component of ǫ1, hence we
are left with 16 independent components. Therefore the circular Wilson loop
coupling to one scalar preserves half of the original supersymmetries and is a
1/2 BPS operator.
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Chapter 3: Wilson Loops in flat Space

3.1.1 Perturbative Calculation/Matrix Models

There has been a big effort in computing the expectation value for the circular
Wilson loop coupling to one scalar, or more general cases like the correlation
function of two circular loops [34, 35]. What is quite remarkable about the
circular loop coupling to one scalar, is the fact that one can sum up the whole
pertubation series. When computing the expectation value of the Wilson loop
operator in the gauge theory, one expands the exponential in a power series and
performs the usual Wick contractions. Up to lowest order this looks like (with
the propagators in Feynman gauge)

〈W 〉 = 1 +
1

2N
Tr (T aT b)

∫

dt1dt2〈(iẋµAa
µ(x) + φa

1(x))(iẏ
µAb

µ(y) + φb
1(y))〉

(3.5)

= 1 +
g2
Y MN

(4π)2

∫

dt1dt2
−ẋ · ẏ + 1

(x− y)2
.

In the case of the circular loop we have

(x− y)2 = 2(1 − ẋ · ẏ) (3.6)

resulting in

g2
Y MN

(4π)2

∫ 2π

0
dt1dt2

1 − ẋ · ẏ
(x− y)2

=
λ

8
(3.7)

in lowest non-trivial order of pertubation theory. It would of course be inter-
esting to further investigate the perturbative expansion. There are two types of
Feynman diagrams that contribute to the perturbation series: On the one hand
we have the so called ladder diagramms, which do not contain any interaction
vertices, and on the other hand we of course have the interacting graphs. In the
case of the circular Wilson loop, interacting graphs cancel each other at order
λ2 [36], leading to the conjecture that only ladder diagrams contribute to the
perturbative series. This assumption is justified, since the sum of ladders in
the gauge theory correctly reproduces the strong coupling behaviour obtained
by an AdS calculation. From (3.7) we realize that the combined scalar vector
propagator for the circle is dimensionsless leading to the idea of a zero dimen-
sional field theory. Since there is no space time dependence left, it is possible
to resum the whole pertubation series via a matrix model (it has recently been
proven that the matrix model is Gaussian [37])

〈W 〉 =

〈

1

N
Tr expM

〉

=
1

Z

∫

DM 1

N
Tr exp(M) exp

(

−2N

λ
TrM2

)

. (3.8)

This matrix model can be solved analytically (although the calculation is very
tedious) and the result can be expressed as an expansion in powers of 1/N [38]

〈

1

N
Tr expM

〉

=
2√
λ
I1
√
λ+

λ

48N2
I2
√
λ+O

(

1

N

)

. (3.9)

16



3.2 The Zarembo Construction

Here, the In denote modified Bessel functions. Coming back to the circular loop
the leading order result is given by

〈W 〉 =
2√
λ
I1
√
λ . (3.10)

For large λ equation (3.10) behaves as

〈W 〉 ∼
√

2

π

e
√

λ

λ3/4
. (3.11)

Later we will see that this result is in agreement with the string theory predic-
tion of AdS/CFT. We want to mention that this was one of the first ”experi-
mental” tests of the Maldacena conjecture.

3.2 The Zarembo Construction

The first general method of extending the Wilson loop operator so that it be-
comes supersymmetric was given by Zarembo [5]. In this construction the curves
associated to the Wilson loop live in flat space R

4. Before turning to the actual
construction, let us consider a Wilson loop as defined in (2.29), with ΘI a unit
six vector, satisfying ~Θ · ~Θ = 1

W =
1

N
Tr P exp

∮

dt
(

iAµẋ
µ(t) + |ẋ|ΘIΦI

)

. (3.12)

If we consider the supersymmetry variation of this operator some supersymme-
tries will be preserved if we find a solution to

(iγµẋ
µ + |ẋ|ρIγ5ΘI)ǫ(x) = 0 . (3.13)

The expression (iγµẋ
µ + |ẋ|ρIγ5ΘI) squares to zero, therefore (3.13) has eight

independent solutions at every point t of the loop. For a general curve these
solutions will of course depend on t, consequently the ansatz only leads to local
supersymmetry. If we want to achieve global supersymmetry we have to make
sure that there is a finite number of constraints acting on the spinor ǫ(x). To
reduce the number of constraints to a finite number we make the following
ansatz for the coupling to the scalars

ΘI = M I
µ

ẋµ

|ẋ| . (3.14)

The matrix M i
µ is a rectangular 4×6 matrix. We do not have to give an explicit

form of it, since N = 4 SYM has the global symmetry of SO(4) × SO(6). In
a geometric sense, the ansatz maps the position on S5 to the tagent vector ẋµ

in spacetime. Using the ansatz (3.14) we can now evaluate the supersymmetry
variation

iẋµ(γµ − iM I
µρ

Iγ5)ǫ(x) = 0 . (3.15)

Some supersymmetry will be preserved if we find a solution to

(γµ − iM I
µρ

Iγ5)ǫ(x) = 0 . (3.16)
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Chapter 3: Wilson Loops in flat Space

Expanding the terms in the supersymmetry variation we find that a general
curve in R

4 preserves one Poincaré supersymmetry [5]. This is why this family
of Wilson loops is often called Q-invariant. This construction guarantees that
a curve in R

1 is 1/2 BPS. Inisde R
2 it will be 1/4 BPS, in R

3 it is 1/8 BPS
and a generic curve in R

4 is 1/16 BPS. We will later study the supersymmetry
variation of this class of Wilson loops more detailed.

3.2.1 Circle

Let us take a look at a circle with unit radius and evaluate the supersymmetry
variation in the Zarembo construction

W =
1

N
Tr P exp

∮

dt
(

−iA0 sin t+ iA1 cos t− sin tΦ1 + cos tΦ2
)

. (3.17)

To be supersymmetric four equations have to hold

(iγj + ρjγ5)ǫ0 = 0, (iγj + ρjγ5)ǫ1 = 0, j = 1, 2 . (3.18)

Since there a two constraints acting on both of the spinors, both ǫ0 and ǫ1
have four independent components left. Therefore the circle in the Zarembo
construction is 1/4 BPS. We note that the constraints do not mix Poincaré and
superconformal supersymmetries.

3.2.2 Expectation Value

One can explicitly check that the VEV of this class of Wilson loops is trivial.
In the original work of Zarembo this has been checked at one loop for a general
curve. The basic ingredient in this calculation is the equality of the scalar
and the vector propagator in Feynman gauge. Furthermore, it is known that
the one loop corrected scalar and vector propagator are still equal up to total
derivatives [36]. For the circle and a line this result was also confirmed from
an AdS calculation in the original work. In that reference it was conjectured
that planar Wilson loops, which preserve 1/4 of the original supersymmetries
do not receive quantum corrections, which was proven in [39] and [40]. The
absence of quantum corrections for the case of a general Wilson loop in the
Zarembo construction was finally proven in [41] on the string theory side of the
correspondence.
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IV

Wilson Loops on S3

In this chapter we review Wilson loops which are restricted to S3. First of
all, we take a look at a general curve and then present some examples, which
preserve more supersymmetries. This family of Wilson loops was introduced in
[7], [6] and [8].

4.1 General Curve

The group manifold S3 is defined by the property

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1 . (4.1)

The coupling to the scalars of N = 4 SYM is constructed with the help of one
forms

σR,L
1 = 2

[

±(x2dx3 − x3dx2) + (x4dx1 − x1dx4)
]

(4.2)

σR,L
2 = 2

[

±(x3dx1 − x1dx3) + (x4dx2 − x2dx4)
]

σR,L
3 = 2

[

±(x1dx2 − x2dx1) + (x4dx3 − x3dx4)
]

.

Here, σR
i are the right one-forms and σL

i are the left one-forms. These are
dual to left (right) invariant vector fields generating right (left) group actions.
Without loss of generality we take the right invariant one forms to define a
coupling to three of the six scalars of N = 4 SYM. The one forms satisfy (as a
consequence of x2 = 1)

σR
i σ

R
i = 4dxµdxµ . (4.3)

Written in form notation, the ansatz for the supersymmetric Wilson loop oper-
ator including the coupling to the scalars then looks like

W =
1

N
TrP exp

∮
(

iA+
1

2
σR

i M
i
IΦ

I

)

. (4.4)

Here γµ and ρI are the gamma matrices belonging to the Clifford algebras of
SO(4) and SO(6), and ǫ(x) is a conformal Killing spinor. M i

I is a 3× 6 matrix
which mediates the coupling to the scalars; this is necessary since we only want
to couple to three of the six scalars of N = 4 SYM. For explicit calculations
we can take M1

1 = M2
2 = M3

3 = 1 and all other entries to be zero. The
supersymmetry variation of the Wilson loop operator is then proportional to

δW ∝
(

idxµγµ +
1

2
σR

i M
i
Iρ

Iγ5

)

ǫ(x) (4.5)
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Chapter 4: Wilson Loops on S3

and can be rewritten due to (4.1)

δW ∝ idxµxνγµνǫ1 +
1

2
σR

i M
i
Iρ

Iγ5ǫ0 −xαγα

(

idxµxνγµνǫ0 +
1

2
σR

i M
i
Iρ

Iγ5ǫ1

)

.

(4.6)
The first two and analogously the last two terms can be decomposed into chi-
ralities via ǫ± = 1

2 (1±γ5). The resulting expression can then be simplified with
the help of the identity

idxµxνγµνǫ
∓ = ±1

2
τ iσR,L

i ǫ∓ (4.7)

so that the first two terms of (4.6) take the form

idxµxνγµνǫ1 +
1

2
σR

i M
i
Iρ

Iγ5ǫ0 = (4.8)

1

2

(

σR
i (τ iǫ−1 −M i

Iρ
Iǫ−0 ) − (σL

i τ
iǫ+1 − σR

i M
i
Iρ

Iǫ+0 )
)

and a similar expression holds for the last two terms.
We conclude that for an arbitrary curve on S3 without linear relations be-

tween the σR,L
i and non-trivial coordinates xµ, the only solution to the super-

symmetry variation of the Wilson loop is given by

τ iǫ−1 = M i
Iρ

Iǫ−0 , i = 1, 2, 3 (4.9)

ǫ+1 = ǫ+0 = 0 .

In order to solve this set of three equations

τkǫ
−
1 = ρkǫ−0 , k = 1, 2, 3 (4.10)

we eliminate ǫ−0 and use the Lie-Algebra of the Pauli matrices to get

iτ1ǫ
−
1 = −ρ23ǫ−1 , iτ2ǫ

−
1 = −ρ31ǫ−1 , iτ3ǫ

−
1 = −ρ12ǫ−1 . (4.11)

This is a set of three constraints, but only two of them are independent. ǫ−0 has
eight reals components and the other spinor ǫ−1 is completely determined by it.
Since there are two constraints acting on ǫ−0 a general curve on S3 preserves
1/16 of the original supersymmetries. To determine the spinor ǫ−0 we use the
same techniques we will later study in detail on H3 leading to the result

ǫ−0 = −ǫ−1 . (4.12)

Ultimately, let us write down the two supercharges preserved by a general curve
on S3

Q̄a = εα̇ȧ
(

Q̄a
α̇ȧ − S̄a

α̇ȧ

)

, (4.13)

before we turn to some special curves.

4.2 Special Loops on S3

In this section we put forward some loops that preserve more supersymmetries
than a general curve. We will later see that most of these curves have at least
one dual object on H3.
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4.2.1 The submanifold S2

The submanifold S2 is determined by the condition x4 = 0. The right and left
invariant one forms are no longer independent, but satisfy

σR
i = −σL

i = ǫijkx
jdxk . (4.14)

Since now there is a linear relation between left and right invariant one forms,
equation (4.8) has the additional solutions

τ iǫ+1 = −M i
Iρ

Iǫ+0 . (4.15)

The general solution can then be written in the compact form

iγijǫ1 = ǫijkM
i
Iρ

Iγ5ǫ0, i = 1, 2, 3 . (4.16)

Note that the constraints are no longer chiral. After all we realize that a general
curve on S2 is 1/8 BPS. Since restricting the curve from S3 to S2 doubles the
supersymmetries, there are now four conserved supercharges

Qa = εαr (Qa
αr + Sa

αr) , Q̄a = εα̇ṙ
(

Q̄a
α̇ṙ − S̄a

α̇ṙ

)

. (4.17)

If we consider a general smooth curve on S2, we can find an interesting sym-
metry: Given the above construction the Wilson loop operator will couple to
the gauge field via ~̇x, whereas the coupling to the scalars is given by (4.14) or
written as a vector ~x × ~̇x. Now we can also consider ~x × ~̇x as a curve on S2

and use it to define a gauge coupling. If we furthermore assume that the curve
is nowhere a geodesic (meaning that ~̈x 6= 0) we get the new couplings to the
scalars from (4.14) again

(~x× ~̇x) × (~x× ~̈x) = −~x(~̇x · (~x× ~̈x)) ∝ ~x . (4.18)

Since we assumed that the curve is nowhere a geodesic the proportionality
constant in front of ~x will not be zero. We realize that for a smooth curve on
S2 there exists a dual curve with interchanged gauge and scalar couplings.

4.2.2 Great circle

Consider a circle in the (x1, x2) plane parametrized by

xµ = (cos t, sin t, 0, 0) . (4.19)

Such a loop will couple to a single scalar φ3

~σR = 2(0, 0, 1)dt . (4.20)

The supersymmetry variation leads to a single constraint

iγ12ǫ1 = ρ3γ5ǫ0 . (4.21)

It is pleasent to realize that the S3 SUSY construction reproduces the long
known 1/2 BPS circular Wilson loop coupling to one scalar that we have already
studied in the second chapter. The circle preserves 16 supercharges (with A =
1, . . . , 4)

QA = iγ12QA + (ρ3S)A, Q̄A = iγ12Q̄
A − (ρ3S̄)A . (4.22)

The vacuum expectation value of the circular loop coupling to one scalar is
captured by a Gaussian matrix model as we have seen in the second chapter.
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Chapter 4: Wilson Loops on S3

(c) A latitude on S
2 (d) The scalar couplings

are also described by a lat-
itude

Figure 4.1: A Latitude on S2 and its scalar couplings

4.2.3 Latitude

A non-maximal circle on S2, which is a latitude, can be parametrized by

xµ = (sin θ0 cos t, sin θ0 sin t, cos θ0, 0) . (4.23)

This example was first considered in [42] as an interpolation between the usual
circle coupling to one scalar and the 1/4 BPS circle coupling to two scalars
presented in [5]. The special example of the latitude finally led to the general
supersymmetry construction on S3 presented at the beginning of this chapter.
There has been further interest in this particular Wilson loop: The correlation
function between the 1/4 BPS Wilson loop and a chiral primary operator has
been computed in [43] and a description in string theory in terms of D3 Branes
was given in [44]. By a conformal transformation it is possible to map the Wilson
loop studied in [42] to the latitude. The latitude couples to three scalars

~σR = 2 sin θ0(− cos θ0 cos t,− cos θ0 sin t, sin θ0)dt . (4.24)

The supersymmetry variation leads to two independent equations

cos θ0(γ12 + ρ12)ǫ1 = 0, (4.25)

ρ3γ5ǫ0 =
[

iγ12 + γ3ρ
2γ5 cos θ0(γ23 + ρ23)

]

ǫ1 .

Note that for cos θ0 = 0 the first equation vanishes and the second one reduces
to the constraint for the large circle. For cos θ0 6= 0 there are two independent
constraints, therefore this system is 1/4 BPS. As in the case of the great circle
the propagator is a constant

〈W 〉Latitude = 1 +
g2
Y MN

8
sin θ2

0 +O(g4) . (4.26)

In the original reference [42], it was shown that the pertubation series can be
summed up by the same matrix model as in the case of the great circle with a
replacement of the coupling constant λ→ sin2 θ0λ. Extrapolated to the strong
coupled regimes the expectation value is given by

〈W 〉Latitude ∼ e
√

λ sin θ0 . (4.27)

We will later see that this is in agreement with the string theory calculation.
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(a) Two longitudes on S
2 (b) Two longitudes couple to

two points on the equator of
S

2

Figure 4.2: Two longitudes on S2

4.2.4 Two Longitudes

Two longitudes intersecting at the north and southpole of a twodimensional
sphere can be parametrized by

xµ = (sin t, 0, cos t, 0), 0 ≤ t ≤ π (4.28)

xµ = (− cos δ sin t,− sin δ sin t, cos t, 0), π ≤ t ≤ 2π .

This Wilson loop has two cusps, one at each pole of the sphere. The Wilson
loop will couple to Φ2 along the first arc and to − cos δΦ2 + sin δΦ1 along the
second arc. Being supersymmetric each arc produces a single constraint

ρ2γ5ǫ0 = iγ31ǫ1, (4.29)

(cos δρ2γ5 − sin δρ1γ5)ǫ0 = i(cos δγ31 − sin δγ23)ǫ1 .

As long as sin δ 6= 0 we can combine both equations to give the two constraints

ρ2γ5ǫ0 = iγ31ǫ1, ρ1γ5ǫ0 = iγ23ǫ1 . (4.30)

Consequently, this system is also 1/4 BPS. Calculating the expectation value
for the two longitudes in N = 4 SYM up to lowest non-trivial order turns out
to be harder than in the case of the circle and the latitude

〈W 〉 = 1 +
g2
Y MN

(4π)2

∫

dt1dt2
(cos δ cos t1 cos t2 − sin t1 sin t2) − cos δ

2(1 + cos δ sin t1 sin t2 − cos t1 cos t2)
. (4.31)

Nevertheless, it is easier to attack this problem by an AdS calculation, which
will be presented in the following.

4.2.5 Hopf Fibers

The S3 can be parametrized in terms of three Euler angles

x1 = − sin
θ

2
sin

ψ − φ

2
, x2 = sin

θ

2
cos

ψ − φ

2
, (4.32)

x3 = cos
θ

2
sin

ψ + φ

2
, x4 = cos

θ

2
cos

ψ + φ

2
.

23



Chapter 4: Wilson Loops on S3

The range of the Euler angles is given by 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and
0 ≤ ψ ≤ 4π. There is a bigger structure hidden in this parametrization, to get
aware of that let us take a look at the metric in terms of the Euler angles

ds2 =
1

4

(

dθ2 + sin θ2dφ2 + (dψ + cos θdφ)2
)

. (4.33)

This form of the metric shows that we have written the S3 as an S1 fiber over
S2. The S1 fiber is parametrized by ψ, whereas the base S2 of the fibration is
decsribed by (θ, φ). Now we want to consider a Wilson loop along an arbitrary
fiber. It will sit at constant (θ0, φ0) whereas ψ varies along the curve. Inserting
the parametrization of S3 in terms of Euler angles in the definition of the one
forms (4.2) we get

σR
1 = − sinψ dθ + cosψ sin θ dφ (4.34)

σR
2 = cosψ dθ + sinψ sin θ dφ

σR
3 = dψ + cos θ dφ .

For constant (θ0, φ0) we realize that such a loop will couple to a single scalar
Φ3. This is exactly what we expected since a single fiber is a great circle. If we
study the supersymmetry variation it leads to the following constraints on the
chiralities

ρ3ǫ−0 = τ3ǫ
−
1 , ρ3ǫ+0 = σL

i τ
iǫ+1 . (4.35)

With the help of the left invariant one forms

σL
1 = sinφdθ − cosφ sin θ dψ (4.36)

σL
2 = cosφdθ + sinφ sin θ dψ

σL
3 = dφ+ cos θ dψ

we can explicitly write down

σL
i (θ0, φ0)τ

i = cos θ0τ
3 − sin θ0(cosφ0τ

1 − sinφ0τ
2) . (4.37)

Now we want to study a system of several fibers. We notice that the first
equation of (4.35) does not depend on (θ0, φ0). This is why a system of arbitrary
many fibers preserves the same anti-chiral combinations of Q̄ and S̄ as a single
fiber. In order to see if the two fibers can share any of the chiral symmetries
we take a look at the two constraints

ρ3ǫ+0 = σL
i (θ0, φ0)τ

iǫ+1 , ρ3ǫ+0 = σL
i (θ1, φ1)τ

iǫ+1 . (4.38)

Now we substract the two equations and take a look at the determinant of the
resulting matrix

det([σL
i (θ0, φ0) − σL

i (θ1, φ1)]τ
i) =

2(−1 + cos θ0 cos θ1 + sin θ0 sin θ1 cos(φ0 − φ1))dψ . (4.39)

The only possibility for this expression to vanish is to have θ0 = θ1 and φ0 = φ1,
which means that a combined system of two or more Hopf fibers does not
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4.3 Ansätze to generalize SUSY on S2

preserve any of the chiral supercharges. But we already saw that the 8 anti-
chiral supersymmetries are conserved

− iγ12ǫ
−
1 = ρ3ǫ−0 . (4.40)

This is why a system of two or more Hopf fibers is 1/4 BPS. When taking a
look at the supercharges conserved by such a system, we basically find the same
combination of Q̄ and S̄ as in the case of the circular loop, but this time we
have to stick to the anti-chiral supersymmetries

Q̄A = iγ12Q̄
A − (ρ3S̄)A, A = 1, . . . , 4 . (4.41)

If we study the propagator between two arbitrary points along two of the circles,
then we find it to be constant again which indicates that the perturbative
expansion of the Hopf fibers is also given by a Gaussian matrix model.

4.2.6 Infinitesimal Loops

It we consider a Wilson loop close to a point on S3, for example near x4 = 1,
the curvature of the manifold will no longer recognizeable. In this limit, we
regain Zarembo’s construction [5], since the scalar couplings (4.2) become exact
differentials

σR,L
i ∼ 2dxi, i = 1, 2, 3 . (4.42)

The Wilson loop operator then reduces to

W =
1

N
TrP exp

∮

dt
(

iAiẋ
i + ẋiM i

IΦI

)

, i = 1, 2, 3 (4.43)

which we already know from the second chapter.

4.3 Ansätze to generalize SUSY on S2

In this section we present some ansätze how the different SUSY constructions
on S2 discussed before can or cannot be combined. The coupling to the scalars
will be denoted by the vector ~Θ. Since we now want to eventually couple to
more than three scalars, the matrix M i

I will be an i× 6 matrix, where i is the
number of scalars used in the ansatz. The general ansatz for the Wilson loop
operator then takes the form

W =
1

N
TrP exp

∮

dt
(

iAµẋ
µ + ΘiM i

IΦ
I
)

. (4.44)

4.3.1 Zarembo’s Construction on R3

Before moving to S2 let us take a short look at a general curve on R3. The
construction of Zarembo then tells us that we have to take the following scalar
couplings

~Θ = (ẋ1, ẋ2, ẋ3) . (4.45)
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Chapter 4: Wilson Loops on S3

The supersymmetry variation leads to three independent equations

(iγk + ρkγ5)ǫ0 = 0, k = 1, 2, 3, (4.46)

ǫ1 = 0 .

Using this construction a general curve on R3 preserves 1/16 of the original
supersymmetries, but it destroys all superconformal symmetries.

4.3.2 Zarembo’s Construction on S2

S2 can be regarded as a submanifold of R3, hence we can apply Zarembo’s
prescription. Since we restrict our curve to lie on S2 we are provided with
additional linear relations between the different terms appearing in the super-
symmetry variation. The ansatz for the Wilson loop operator will be the same
as in (4.45), but this time the supersymmetry variation leads to six equations

(iγm + ρmγ5)ǫ0 = 0, m = 1, 2, 3 (4.47)

(iγn + ρnγ5)ǫ1 = 0, n = 1, 2, 3 .

Counting the supersymmetries we find that a general curve will be 1/8 BPS.
Compared to R3 we realize that confining the curve to S2 doubles the super-
symmetries.

4.3.3 Combining One forms/Zarembo coupling to six Scalars

The next thing one is tempted to try is to restrict the curve to S2 and combine
the scalar couplings given by the Zarembo construction and the one forms (4.14).
This can be achieved by introducing a parameter α that interpolates between
the two different constructions

W =
1

N
TrP exp

∮

dt
(

iAµẋ
µ + sinα ǫijkx

j ẋkM i
IΦ

I + cosα ẋlM l
LΦL

)

.

(4.48)
The parameters in this ansatz satfisfy i = 1, 2, 3 and l = 4, 5, 6. We know that
we find a solution to the supersymmetry variation for α = 0 and α = π/2.
Studying the supersymmetry variation for an arbitrary value of α leads to too
many constraints on the spinors ǫ0 and ǫ1, hence the ansatz does not lead to a
supersymmetric Wilson loop operator.

4.3.4 Combining One forms/Zarembo coupling to three Scalars

Although the ansatz considered before did not lead to a supersymmetric Wilson
loop operator, we will basically use the same one, but this time we will restrict
to couple only to three of the six scalars

Θ1 = sinα(x2ẋ3 − x3ẋ2) + cosα ẋ1 (4.49)

Θ2 = sinα(x3ẋ1 − x1ẋ3) + cosα ẋ2

Θ3 = sinα(x1ẋ2 − x2ẋ1) + cosα ẋ3 .
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4.3 Ansätze to generalize SUSY on S2

The ansatz for the Wilson loop operator then looks like this (i = 1, 2, 3)

W =
1

N
TrP exp

∮

dt
(

iAµẋ
µ + sinα ǫijkx

jẋkM i
IΦ

I + cosα ẋiM i
IΦ

I
)

.

(4.50)
First of all, let us take a look at the norm of the scalar couplings. It is easy to
see that they satisfy

~Θ · ~Θ = (ẋ1)2 + (ẋ2)2 + (ẋ3)2 . (4.51)

We might ask if this construction gives a new family of supersymmetric Wilson
loops; unfortunately, this is not the case. If we go back to the one forms (4.2)
presented at the beginning of this chapter and set x4 to be a constant then
we can derive the scalar couplings in (4.49) by an appropriate rescaling of the
coordinates. This result suggests that the construction given at the beginning
of this chapter might be the most general ansatz on S3.

4.3.5 Stereographic Projection

The conformal transformation between a Wilson line and a circular loop was
studied in [38]. It was found that although N = 4 SYM is a conformal field
theory, a circular Wilson loop is different from a Wilson line. The discrepancy
was associated to the point at infinity which is needed to perform a conformal
transformation (an inversion to be specific) between a line and a circle.
In this section we want to use the Zarembo construction, but this time we will
use the stereographic projection between S2 and R2 to derive a coupling to the
scalars. The stereographic projection is defined via

(X,Y ) =

(

x1

1 − x3
,

x2

1 − x3

)

. (4.52)

Here (X,Y ) are coordinates on the plane and (x1, x2, x3) on S2. The Zarembo
prescription tells us to take a look at (Ẋ, Ẏ )

(Ẋ, Ẏ ) =

(

ẋ3x1 − ẋ1x3 + ẋ1

(1 − x3)2
,
ẋ3x2 − ẋ2x3 + ẋ2

(1 − x3)2

)

. (4.53)

When we want to use (Ẋ, Ẏ ) as scalar couplings for the Wilson loop, we need
the norm of ~Θ to be equal to ẋ2. Since the scalars of N = 4 SYM do not
transform as a tensor under a general coordinate transformation we have to
introduce a conformal factor of ∆ = (1 − x3) into the scalar couplings

Θ4 =
ẋ3x1 − ẋ1x3 + ẋ1

(1 − x3)
, Θ5 =

ẋ3x2 − ẋ2x3 + ẋ2

(1 − x3)
. (4.54)

Calculating the norm of the vector ~Θ we find

Θ2
4 + Θ2

5 = (ẋ1)2 + (ẋ2)2 + (ẋ3)2 . (4.55)
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At this point we are ready to evaluate the supersymmetry variation, which leads
to the following set of three constraints

iγ3ǫ0 = −ρ4γ5γ1ǫ1 (4.56)

iγ3ǫ0 = −ρ5γ5γ2ǫ1

γ3ǫ0 = −ǫ1 .

A general curve with this construction is therefore 1/8 BPS.

4.3.6 Coupling to five Scalars on S2

Now we want to couple to five scalars by combining the one forms with the
couplings derived by the stereographic projection. The ansatz for the Wilson
loop operator then takes the form (with an interpolation parameter α)

W =
1

N
TrP exp

∮

dt
(

iAµẋ
µ + sinα ǫijkx

j ẋkM i
IΦ

I + cosαΘlM
l
LΦL

)

.

(4.57)
The parameters i and l satisfy i = 1, 2, 3 and l = 4, 5. We know that for α = π/2
and α = 0 a general curve on S2 preserves 1/8 of the original supersymmetries.
Nevertheless, it is interesting to study if there is a solution in between for a
generic value of α. But after a rather lengthy calculation, it turns out that
this ansatz leads to inconsistent constraints on the spinors ǫ0 and ǫ1 and does
therefore not give a supersymmetric Wilson loop.
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V

Wilson Loops in H3

In this section we study Wilson loops that are restricted to hyperbolic space
H3 and how they have to couple to the scalars in order to be supersymmetric.
We will extend the supersymmetry construction from S3 to H3 by appropriate
analytic continuations in the scalar couplings. First, we consider the case of a
general curve. Afterwards we stick to some special loops, which will preserve
more supersymmetries than a general curve.

5.1 General Curve on H3

To define three dimensional hyperbolic H3 space we take our manifold to be
flat Minkowski space R

1,3 and impose the additional constraint

− (x0)2 + (x1)2 + (x2)2 + (x3)2 = −1 . (5.1)

In order to make the Wilson loop operator on H3 invariant under supersymme-
try variation, we make use of the following one forms

ω±
1 = 2

[

±i(x2dx3 − x3dx2) + (x0dx1 − x1dx0)
]

(5.2)

ω±
2 = 2

[

±i(x3dx1 − x1dx3) + (x0dx2 − x2dx0)
]

ω±
3 = 2

[

±i(x1dx2 − x2dx1) + (x0dx3 − x3dx0)
]

.

We can now either choose the ω+
i or the ω−

i to define a coupling to the scalars
of N = 4 SYM; without loss of generality we will take the ω+

i . Therefore we
will couple to three of the six scalars, namely Φ1,Φ2,Φ3. To check if this ansatz
leads to local supersymmetry we have to evaluate ω+

i ω
+
i

ω+
i ω

+
i = 4dxµdxµ . (5.3)

In the computation of the last equation we used the following relation, which
can be derived by differentiating (5.1) and squaring the generated expression

x2
0dx

2
0 + x2

1dx
2
1 + x2

2dx
2
2 + x2

3dx
3
3 =

2(x0x1dx0dx1 + x0x2dx0dx2 + x0x3dx0dx3

− x1x2dx1dx2 − x1x3dx1dx3 − x1x2dx1dx2) . (5.4)

Written in form notation, the ansatz for the Wilson loop operator then looks
like

W =
1

N
Tr P exp

∮
(

iA+
1

2
ω+

i M
i
IΦ

I

)

. (5.5)
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The properties of the matrix M i
I will be the same as in the previous chap-

ter. The supersymmetry variation of the Wilson loop operator (5.5) is then
proportional to

δW ∝
(

idxµγµ +
1

2
ω+

i M
i
Iρ

Iγ5

)

ǫ(x) (5.6)

The matrices ρI are again gamma matrices belonging to the Clifford Algebra
of SO(6), whereas the γµ belong to SO(1, 3). Explicit representations can be
found in the appendix. As usual ǫ(x) is a conformal Killing spinor. Since our
curve is restricted to H3 (5.1) the supersymmetry variation can be rewritten as:

δW ∝ idxµxνγµνǫ1 +
1

2
ω+

i M
i
Iρ

Iγ5ǫ0 + xαγα

(

idxµxνγµνǫ0 −
1

2
ω+

i M
i
Iρ

Iγ5ǫ1

)

(5.7)
Quite similar as on S3 it turns out to be necessary to go into a Weyl basis
and decompose the spinors ǫ0 and ǫ1 into chiralities with the help of the usual
projection operators ǫ± = 1

2

(

1 ± γ5
)

ǫ. Expanding the first two terms of (5.7)
into their chiralities yields

idxµxνγµνǫ1 +
1

2
ω+

i M
i
Iρ

Iγ5ǫ0

= idxµxνγµνǫ
+
1 + idxµxνγµνǫ

−
1 +

1

2
ω+

i M
i
Iρ

Iǫ+0 − 1

2
ω+

i M
i
Iρ

Iǫ−0 . (5.8)

The key relation used to further simplify the supersymmetry variation is the
following linear relation between the terms being proportional to γµν and the
scalar couplings ω+

i

idxµxνγµνǫ
± = ∓ i

2
τ iω±

i ǫ
± . (5.9)

The matrices τ on the right hand side are Pauli matrices. To prove the relation
we have to use the explicit representations of the gamma matrices defined in
the appendix and write out all terms explicitely. Using (5.9) we can further
simplify (5.8)

idxµxνγµνǫ1 +
1

2
ω+

i M
i
Iρ

Iγ5ǫ0 =

− i

2
ω+

i τ
iǫ+1 +

i

2
ω−

i τ
iǫ−1 +

1

2
ω+

i M
i
Iρ

Iǫ+0 − 1

2
ω+

i M
i
Iρ

Iǫ−0 =

1

2

(

ω+
i (−iτ iǫ+1 +M i

Iρ
Iǫ+0 ) + (iω−

i τ
iǫ−1 − ω+

i M
i
Iρ

Iǫ−0 )
)

and we can make an analogues calculation for the last two terms of (5.7)

idxµxνγµνǫ0 −
1

2
ω+

i M
i
Iρ

Iγ5ǫ1 =

1

2

(

−ω+
i (iτ iǫ+0 +M i

Iρ
Iǫ+1 ) + (iω−

i τ
iǫ−0 + ω+

i M
i
Iρ

Iǫ−1 )
)

.

We conclude that for an arbitrary curve on H3 the only solution to the super-
symmetry variation of the Wilson loop is given by

iτ iǫ+1 = M i
Iρ

Iǫ+0 , (5.10)

ǫ−1 = ǫ−0 = 0 .
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In order to solve this set of three equations

iτkǫ
+
1 = ρkǫ+0 , k = 1, 2, 3 (5.11)

we eliminate ǫ+0 and use the Lie algebra of the Pauli matrices to get

iτ1ǫ
+
1 = −ρ23ǫ+1 , iτ2ǫ

+
1 = −ρ31ǫ+1 , iτ3ǫ

+
1 = −ρ12ǫ+1 . (5.12)

These equations are consistent with each other. On the other hand only two of
the equations are independent, since the commutator of two of them gives the
third one, for example

[(iτ1 + ρ23), (iτ2 + ρ31)]ǫ+1 = 2[(−iτ3 + ρ21)]ǫ+1 . (5.13)

ǫ+1 has eight real components and ǫ+0 is fully determinded by ǫ+1 . For a general
curve there are two independent constraints acting on ǫ+1 , hence a general curve
on H3 preserves 1/16 of the original supersymmetries.

To solve the equations (5.12) we have to take care of the fact that by choosing
three of the six scalars of N = 4 SYM we broke the R-symmetry group SU(4)
down to SU(2)A ×SU(2)B . Here SU(2)A referes to rotations of Φ1,Φ2,Φ3 and
SU(2)B to rotations of Φ4,Φ5,Φ6 respectively.

That is why we conclude that the matrices appearing in the set of equations
(5.12) are the generators of SU(2)A and SU(2)R. Equation (5.12) tells us that
ǫ+1 is a singlet of the diagonal sum of SU(2)R and SU(2)A, while it is a doublet
of SU(2)B .

We can always find a basis in which the ρI act as Pauli matrices on the
SU(2)A indices, hence we can write (5.12) as

(τR
k + τA

k )ǫ+1 = 0, k = 1, 2, 3 . (5.14)

The SU(4) index in ǫ+1 can be splitted into two indices ȧ and a refering to
SU(2)A and SU(2)B

ǫA1,α̇ = ǫa1,α̇ȧ . (5.15)

The solution of (5.14) can now be written as

ǫa1 = ǫa01 − ǫa10 = ǫα̇ȧǫa1,α̇ȧ . (5.16)

Finally ǫ+0 can be determined by (5.11) and (5.14)

ǫ+0 = iτR
3 ρ

3ǫ+1 = iτR
3 τ

A
3 ǫ

+
1 = −iǫ+1 . (5.17)

We finish this section by realizing that a general curve on H3 preserves two
supercharges like in the case of S3.

5.2 Special Loops on H3

In this section, we put forward some special loops which preserve more su-
persymmetries than an arbitrary curve. Since in general curves on H3 are
non-compact, we use the Poincaré disc model to visualize them. In this model
the curves on H3 are brought to the unit disc by a stereographic projection.
Hyperbolic lines are represented by arcs that end orthogonal to the boundary
of the unit disc. For a concrete form of the stereographic projection the reader
might take a look at the appendix.
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Chapter 5: Wilson Loops in H3

5.2.1 The hyperbolic Plane H2

The submanifold H2 is determined by the condition x3 = 0. The one forms
then reduce to

~ω+ = 2
(

(x0dx1 − x1dx0), (x0dx2 − x2dx0), i(x1dx2 − x2dx1)
)

. (5.18)

In order to look for a general solution we go back to (5.7)

idxµxνγµνǫ1 +
1

2
ω+

i M
i
Iρ

Iγ5ǫ0 =

i(dx0x1 − dx1x0)γ01ǫ1 + i(dx0x2 − dx2x0)γ02ǫ1 + i(dx1x2 − dx2x1)γ12ǫ1

+ (x0dx1 − x1dx0)ρ1γ5ǫ0 + (x0dx2 −x2dx0)ρ2γ5ǫ0 + i(x1dx2 −x2dx1)ρ3γ5ǫ0 .
(5.19)

In addition, the last two terms of (5.7) also lead to the following three indepen-
dent equations

iγ01ǫ1 = ρ1γ5ǫ0, iγ02ǫ1 = ρ2γ5ǫ0, γ12ǫ1 = ρ3γ5ǫ0 . (5.20)

We conclude that a general curve on H2 preserves 1/8 of the supersymmetries.
Furthermore, we observe that on H2 it is not necessary to decompose the spinors
into chiralities. Restricting the curve to H2 doubles the number of supersym-
metries, consequently we get two supercharges for each chirality.
As on S2, there is one interesting fact that can be applied to a general curve
restricted to H2, which is nowhere a geodesic (meaning ẍµ 6= 0). For a general
curve on H2 the coupling to the gauge field is given by ẋµ and the coupling
to the scalars is defined by ~ω+ (5.18). Since ~ω+ can also be interpreted as a
vector on H2 (at least if we allow an analytic continuation of the coordinates
xµ), we can now choose ~ω+ as coupling to the gauge fields and will get a new
prescription (denoted by ω̃) for how to couple to the scalars. Surprisingly it
turns out that the new scalar couplings will be proportional to xµ

(ω̃1, ω̃2, ω̃3) ∝ (x0, x1, x2) . (5.21)

The terms appearing in front of xµ do include imaginary expressions. This
is the same duality between gauge and scalar couplings degrees of freedom as
on S3, but we realize that on H3 it is only defined in the context of analytic
continuations.

5.2.2 S2 as a Submanifold of H3

We can rewrite the defining property of H3 as

(x1)2 + (x2)2 + (x3)2 = −1 + (x0)2 . (5.22)

If we are at a constant time x0 = z, equation (5.22) is the definition of S2 with
curvature radius R2 = z2 − 1. Note that has z to obey the constraint |z| > 1
to get a reasonable definition of S2. The scalar couplings then look like

ω+
1 = 2

[

zdx1 + i(x2dx3 − x3dx2)
]

(5.23)

ω+
2 = 2

[

zdx2 + i(x3dx1 − x1dx3)
]

ω+
3 = 2

[

zdx3 + i(x1dx2 − x2dx1)
]

.
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Figure 5.1: Line on the Poincaré disc

These scalar couplings can be interpreted in an interesting way: The terms
proportional to z are the scalar couplings given by the construction of Zarembo
in flat space [5]. The other terms are up to an factor of i the scalar couplings for a
general curve on S2 examined in the last chapter. Studying the supersymmetry
variation one finds that a general curve is still 1/16 BPS, but the constraints
are not chiral

γijǫ1 = εijkρ
kγ5ǫ0, i = 1, 2, 3 (5.24)

ρ1γ5ǫ1 = iγ10ǫ0 .

The first set of equations are the constraints for a general curve on S2.

5.2.3 Hyperbolic Line

The object corresponding to a great circle on S2 is a hyperbolic line. It can be
parametrized as follows

xµ = (cosh t, sinh t, 0, 0), −∞ ≤ t ≤ ∞ . (5.25)

Like the circle, the line will couple to a single scalar. Therefore the Wilson loop
operator takes the familiar form

W =
1

N
Tr P exp

∮

(

iAµẋ
µ + Φ1

)

dt . (5.26)

Although from this perspective the hyperbolic line looks quite similar to the
circular loop, there is a big difference between the two objects, since the cir-
cle is compact whereas the hyperbolic line is not. It is easy to realize that
supersymmetry requires a single constraint

iγ01ǫ1 = ρ1γ5ǫ0 . (5.27)

Consequently, the hyperbolic line is a 1/2 BPS operator. Due to (5.27) we can
immediately write down the 16 conserved supercharges (with A = 1, . . . , 4)

QA = iγ01QA + (ρ1S)A, Q̄A = iγ01Q̄
A − (ρ1S̄)A . (5.28)
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(a) Two rays with a
cusp on the Poincaré
disc

(b) Scalar Couplings on S
2

Figure 5.2: Two rays with a cusp and their scalar couplings

Now let us take a look at the expectation value of the hyperbolic line at order
g2
Y M

〈W 〉Line = 1 +
g2
Y MN

(4π)2

∫

dt1dt2
− cosh(t1 − t2) + 1

−2 + 2 cosh(t1 − t2)
(5.29)

= 1 +
g2
Y MN

(4π)2

∫

dt1dt2

(

−1

2

)

+O(g4) .

We realize that, as in the case of the circular loop, the integrand is a constant.
Nevertheless, if we want to investigate the pertubation series we have to regulate
the integrals, which will be done at the end of this chapter.

5.2.4 Two Rays with a Cusp

The next Wilson loop operator we want to study is a system of two rays with
a cusp in the origin. These are the dual objects to the two longitudes on S2.
To parametrize this system, we take a ray in the (1,2) plane (xµ), rotate it by
an angle δ and add another ray in the (0,2) plane (yµ)

xµ = (cosh t, sinh t cos δ, sinh t sin δ, 0), 0 ≤ t ≤ ∞ (5.30)

yµ = (cosh t, 0, sinh t, 0)

Along the first ray the Wilson loop couples to two scalars via

~ω+ = 2(cos δ, sin δ, 0)dt (5.31)

and for the second ray it couples to Φ2. Studying the supersymmetry variation
for the rotated ray one finds the following equations, arranged by the functional
dependence on t

sinh t :

iγ0ǫ0 = (cos2 δρ1γ1 + sin δ cos δ(ρ1γ2 + ρ2γ1) + sin2 δρ2γ2)γ
5ǫ1 (5.32)

cosh t :

i(cos δγ1 + sin δγ2)ǫ0 = (cos δρ1γ0 + sin δρ2γ0)γ
5ǫ1 (5.33)

1 :

(cos δρ1 + sin δρ2)γ5ǫ0 = i(cos δγ01 + sin δγ02)ǫ1 . (5.34)
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5.2 Special Loops on H3

Figure 5.3: Two non intersecting lines on the Poincaré disc

It is easy to see that only one of the three constraints is independent; adding the
supersymmetry variation for the second ray leads to the following two equations

(cos δρ1γ5 + sin δρ2γ5)ǫ0 = (i cos δγ01 + i sin δγ02)ǫ1 (5.35)

ρ2γ5ǫ0 = iγ02ǫ1 .

In the case of sin δ 6= 0 there are two consistent equations,

ρ1γ5ǫ0 = iγ01ǫ1, ρ2γ5ǫ0 = iγ02ǫ1 (5.36)

therefore this system is 1/4 BPS like the two longitudes on S2. When taking
a look at the expectation value of the two rays, we find the combined scalar
vector propagator to be a complicated expression

〈W 〉Rays = 1 +
g2
Y MN

(4π)2

∫

dt1dt2

×
(

sinh t1 sinh t2 − cosh t1 cosh t2 sin δ + sin δ

2(−1 + cosh t1 cosh t2 − sinh t1 sinh t2 sin δ)

)

. (5.37)

Despite the fact that the expectation value of the rays seems not to be accessible
from the field theory side, we will study it in AdS.

5.2.5 Two non-intersecting Lines

If one considers two geodesics in H2 one cannot find an analogue on S2. This fact
is originating from the special properties of hyperbolic geometry. It has been
kwown since the work of Lobatschewski in the 19th century that hyperbolic
geometry explicitely violates the parallel axiom of Euclidian geometry. Two
non-intersecting lines can be parametrized by (j = 1, 2)

xµ = (cosh t cosh βj , cosh t sinhβj , sinh t, 0), −∞ ≤ t ≤ ∞ . (5.38)

The scalar couplings for this particular Wilson loop are given by

~ω+ = 2(0, cosh βj , i sinhβj)dt, j = 1, 2 . (5.39)
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Figure 5.4: Circle in hyperbolic space

Arranged by functional dependence supersymmetry requires for the two lines
(j = 1, 2)

cosh t :

iγ2ǫ0 = [cosh2 βjρ
2γ0 + cosh βj sinhβj(ρ

2γ1 + iρ3γ0)

+ i sinh2 βjρ
3γ1]γ

5ǫ1 (5.40)

sinh t :

i(cosh βjγ0 + sinhβjγ1)ǫ0 = (cosh βjρ
2γ2 + i sinhβjρ

3γ2)γ
5ǫ1 (5.41)

1 :

− (cosh βjρ
2 + i sinhβjρ

3)γ5ǫ0 = i(cosh βjγ20 + sinhβjγ21)ǫ1 . (5.42)

It is easy to realize that only one of the three equations is independent

(cosh βjρ
2γ5 + i sinhβjρ

3γ5)ǫ0 = (i cosh βjγ02 + i sinhβjγ12)ǫ1 . (5.43)

If we consider the system of two non-intersecting lines (j = 1, 2) supersymmetry
requires only two consistent equations

ρ2γ5ǫ0 = iγ02ǫ1, ρ3γ5ǫ0 = γ12ǫ1 . (5.44)

We conclude that this system is also 1/4 BPS.
To lowest non-trivial order the vacuum expectation value for the two non-

intersecting lines is given by

〈W 〉 = 1 +
g2
Y MN

(4π)2

∫

dt1dt2

×
(

cosh(β1 − β2)(1 + sinh t1 sinh t2) − cosh t1 cosh t2
−2 + 2 cosh(β1 − β2) cosh t1 cosh t2 − 2 sinh t1 sinh t2

)

. (5.45)

Even if we regularize the integral by a cutoff it is hard to handle.

5.2.6 Circle in hyperbolic Space

A circle with an arbitrary radius on H2 is the analogue of a latitude on S2, the
main difference between these two loops is the fact, that the radius of the circle
in H2 is unbound, although this is not of importance in a conformal theory
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like N = 4 SYM. The circle in hyperbolic space is related to the latitude on
S2, which we studied in (4.2.3) by an analytic continuation in the coordinate
θ0 → iθ0. Comparing the circle to the other loops on H2 one should be aware
of the fact that the circle is compact in contrast to the various hyperbolic lines.
We can parametrize the circle by (with constant θ0)

xµ = (cosh θ0, sinh θ0 cos t, sinh θ0 sin t, 0), 0 ≤ t ≤ 2π . (5.46)

In this parametrization the radius of the circle is given by ρ = sinh θ0. Like the
latitude the circle couples to three scalars

~ω = 2 sinh θ0(− cosh θ0 sin t, cosh θ0 cos t, i sinh θ0)dt . (5.47)

The supersymmetry variation results in the following constraints

sin t :

(iγ1 + cosh θ0ρ
1γ5)ǫ0 = (−i cosh θ0γ10 − cosh2 θ0ρ

1γ5γ0

+ i sinh2 θ0ρ
3γ5γ2)ǫ1 (5.48)

cos t :

− (iγ2 + cosh θ0ρ
2γ5)ǫ0 = (i cosh θ0γ20 + cosh2 θ0ρ

2γ5γ0 (5.49)

+ i sinh2 θ0ρ
3γ5γ1)ǫ1

1 :

− iρ3γ5ǫ0 = (iγ21 + cosh θ0(ρ
2γ5γ2 + iρ3γ5γ0))ǫ1 . (5.50)

There is another constraint which is proportional to cos2 t and sin t cos t, namely
(ρ1γ1 − ρ2γ2)ǫ1 = 0. Global supersymmetry then requires two independent
conditions

(γ12 − ρ12)ǫ1 = 0 (5.51)

ρ3γ5ǫ0 = [γ12 + i cosh θ0γ0ρ
1γ5(iγ20 + ρ13)]ǫ1 .

Consequently the circle in H2 also is a 1/4 BPS operator. Taking a look at the
expectation value we find

〈W 〉Circle = 1 +
g2
Y MN

(4π)2

∫

dt1dt2

× sinh θ2
0

(− cos(t1 − t2) + cosh θ2
0 cos(t1 − t2) − sinh θ2

0

−2 + 2 cosh θ2
0 − 2 sinh θ2

0 cos(t1 − t2))

)

+O(g4) . (5.52)

The integrand turns out to be a constant again, the integrations over t become
trivial

〈W 〉Circle = 1 − g2
Y MN

8
sinh θ2

0 +O(g4) . (5.53)

Compared to the latitude on S2 we realize that the coupling constant is replaced
as

λ→ − sinh2 θ0λ . (5.54)
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(a) Moved hyperbolic
line

(b) Two moved hyper-
bolic lines

To evaluate the expectation value we sum up the ladder diagrams. By the same
arguments used for the latitude on S2 we only have to consider non-interacting
graphs in the perturbative expansion. We can then use the same matrix model,
but now the result is given by a Bessel function of the first kind due to the
minus sign in front of the ’t Hooft coupling

〈W 〉 =
2√
λ′
J1(

√
λ′), λ′ = λ sinh2 θ0 . (5.55)

For great arguments Bessel functions of the first kind asymptotically behave as

Ja(x) →
√

2

πx
cos
(

x− aπ

2
− π

4

)

. (5.56)

We conclude that at strong coupling the vacuum expectation value for the circle
in hyperbolic space behaves as

〈W 〉 ∼
√

2

π

1

λ′3/4
cos

(√
λ′ − 3π

4

)

. (5.57)

We will find the same oscillating behaviour of the expectation value from a
string theory calculation.

If we reparametrize the circle by xµ = (
√

1 + ρ2
i , ρi cos t, ρi sin t) and want to

compute the correlation function between two circular loops with radii ρ1, ρ2,
the integrand in (5.52) becomes more complicated

− ρ1ρ2

2

cos(t1 − t2)(−1 +
√

1 + ρ2
1

√

1 + ρ2
2) − ρ1ρ2

1 −
√

1 + ρ2
2

√

1 + ρ2
1 + ρ1ρ2 cos(t1 − t2)

. (5.58)

The correlation function between two circular loops in the plane both coupling
to one scalar has been contemplated in [34]. The difference between that cal-
culation and the two circles in hyperbolic space is given by the different scalar
couplings.

5.2.7 Moved hyperbolic Line

Another way of generalizing a single hyperbolic line is given by the following
parametrization (with constant κ0)

xµ = (cosh κ0 cosh t, cosh κ0 sinh t, sinhκ0, 0) −∞ ≤ t ≤ ∞ . (5.59)
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It is worth mentioning that for κ0 = 0 we recover the hyperbolic line studied
in section (5.2.3). This generalized hyperbolic line can also be obtained by an
analytic continuation of the latitude on S2 studied in (4.2.3), namely by setting
θ → (π/2 + iκ0) and t→ it. Therefore we realize that there are two objects on
H2 dual to the latitude on S2. Like the latitude the moved hyperbolic line will
couple to three scalars

~ω+ = 2cosh κ0(cosh κ0,− sinhκ0 sinh t,−i sinhκ0 cosh t)dt . (5.60)

The supersymmetry variation results in the following constraints

sinh t :

(−iγ0 + sinhκ0ρ
2γ5)ǫ0 = (i sinhκ0γ02 + cosh2 κ0ρ

1γ5γ1

− sinh2 κ0ρ
2γ5γ2)ǫ1 (5.61)

cosh t :

− (iγ2 + sinhκ0ρ
2γ5)ǫ0 = (i sinhκ0γ12 + cosh2 κ0ρ

1γ5γ0 (5.62)

− i sinh2 κ0ρ
3γ5γ2)ǫ1

1 :

− ρ1γ5ǫ0 = (iγ10 + sinhκ0(ρ
1γ5γ2 − iρ3γ5γ0))ǫ1 . (5.63)

In addition, there is another constraint which is proportional to sinh2 t and
sinh t cosh t, namely (ρ2γ1 + iρ3γ0)ǫ1 = 0. Only two of the constraints are
independent

sinhκ0(iγ01 + ρ23)ǫ1 = 0 (5.64)

(iγ01 + sinhκ0γ
5ρ3γ2(iγ02 + ρ13)ǫ1 = ρ1γ5ǫ0 .

In the case of κ0 = 0 the first equation disappears and the second equation
reduces to the constraint for the hyperbolic line (5.27). For κ0 6= 0 the su-
persymmetry variation leads to two consistent equations. Consequently we are
dealing with a 1/4 BPS operator. Calculating the propagator for the moved
hyperbolic line, we find it to be a constant

〈W 〉 = 1 +
g2
Y MN

(4π)2

∫

dt1dt2

×
(

cosh2 κ0

2

− cosh(t1 − t2) + cosh2 κ0 − sinh2 κ0 cosh(t1 − t2)

−1 + cosh2 κ0 cosh(t1 − t2) + sinh2 κ0

)

+O(g4)

= 1 − g2
Y MN

(4π)2

∫

dt1dt2
cosh2 κ0

2
+O(g4) . (5.65)

We can also consider a system of two lines which are 1/8 BPS. Two such lines
can be parametrized by

xµ = (cosh κl cosh t, coshκl sinh t, sinhκl), l = 1, 2 . (5.66)

For such a system the integrand in (5.65) will no longer be constant but pro-
portional to

coshκ1 coshκ2

2

(cosh κ1 coshκ2 − cosh(t1 − t2))(1 + sinhκ1 sinhκ2)

−1 + cosh(t1 − t2) cosh κ1 cosh κ2 − sinhκ1 sinhκ2
. (5.67)
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For κ1 = κ2 the integrand reduces to (5.65) as expected.

5.2.8 No analogue of Hopf Fibers

In the last chapter we saw that on S3 the Hopf fibers form a two parameter
family of circles and are therefore very interesting objects. In order to find an
analogue on H3 we have to solve the ODE’s ω+

1 = ω+
2 = 0 and ω+

3 = 1 under
the side condition (5.1). There exists a solution to this system of diffenrential
equations, but it includes imaginary coordinates and is therefore not physically
interesting. Just for completeness we want to mention that one can find a
similar fibration on a manifold with two timelike directions.

5.3 Extension to the Light Cone

In order to extend the prescription studied in this chapter from H3 to the light
cone we have to define H3 with curvature radius x2 = −R2 and take the limit
R → 0. Performing a dimensional analysis of the scalar couplings defined in
(5.2), we realize that it is necessary to introduce a factor of 1/R

ω±
1 =

2

R

[

±i(x2dx3 − x3dx2) + (x0dx1 − x1dx0)
]

(5.68)

ω±
2 =

2

R

[

±i(x3dx1 − x1dx3) + (x0dx2 − x2dx0)
]

ω±
3 =

2

R

[

±i(x1dx2 − x2dx1) + (x0dx3 − x3dx0)
]

.

For a general curve there will not exist a smooth limit R→ 0.

5.3.1 One Line in the Light Cone

A single line in the light cone, parametrized by

xµ = (x0, x0, 0, 0) , (5.69)

will be supersymmetric without any coupling to the scalars. This can also be
seen from (5.68), since all of the scalar couplings will already vanish before
taking the limit R → 0. Supersymmetry for a single line in the light cone
requires

(γ0 + γ1)ǫ0 = 0 . (5.70)

Since the SUSY variation is independent of ǫ1 none of the superconformal
charges will be annihilated, in addition there is one constraint acting on ǫ0;
this is the reason why one line in the light cone is 3/4 BPS.

5.3.2 Two Lines in the Lightcone

Two lines in the light cone can be parametrized via

xµ = (x0, x0, 0, 0), yµ = (y0, 0, y0, 0) . (5.71)
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Being supersymmetric for the first and respectively the second line requires

(γ0 + γ1)ǫ0 = 0, (γ0 + γ2)ǫ0 = 0 . (5.72)

Again the supersymmetry variation is independent of ǫ1. In order to look for
shared supersymmetries we evaluate the commutator between the two con-
straints

[(γ0 + γ1), (γ0 + γ2)]ǫ0 = 2(γ02 + γ10 + γ12)ǫ0 . (5.73)

Since the last two terms acting on ǫ0 vanish due to the second equation of
(5.72), shared supersymmetry requires γ02ǫ0 = 0, which is inconsistent with the
second equation of (5.72), therefore ǫ0 has to vanish. Nevertheless two lines in
the light cone are 1/2 BPS, since they preserve all superconformal charges.
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Figure 5.5: Cutoff on the hyperbolic line

5.4 The hyperbolic Line at order λ2

In this section we study the expectation value of the hyperbolic line. We already
saw that the propagator (5.29) is a constant

〈W 〉 = 1 +
g2
Y MN

(4π)2

∫

dt1dt2

(

−1

2

)

+O(g4) . (5.74)

To regulate equation (5.74) we integrate the coordinate x0 twice from its mini-
mal value 1 to a cutoff Λ and get

〈W 〉 = 1 − g2
Y MN

(4π)2
1

2
(2(Λ − 1))2 +O(g4) . (5.75)

To further investigate the perturbative behaviour let us take a look at the next
order g4

Y MN
2. In addition to the cutoff on the integrals it turns out to be

necessary to also introduce a dimensional regulator.

5.4.1 Contributions at order λ2

The quantum corrections at order g4
Y MN

2 for the circular Wilson loop have been
calculated in [36], a cusped Wilson loop at two loops has been contemplated in
[45]. The expressions of the contributing Feynman diagrams can be modified
to the case of the hyperbolic line. Apart from ladder diagrams

Σ1 =
g4
Y MN

2

6

∫

t1>t2>t3>t4

dt1dt2dt3dt4
(1 − ẋ(1) · ẋ(2))(1 − ẋ(3) · ẋ(4))

[(x(1) − x(2))2(x(3) − x(4))2]ω−1
(5.76)

we also have one loop corrections to the combined vector/scalar propagator

Σ2 = −g4
Y MN

2 Γ2(ω − 1)

27π2ω(2 − ω)(2ω − 3)

∫

dt1dt2
1 − ẋ(1) · ẋ(2)

[(x(1) − x(2))2]2ω−3
(5.77)

and additionally a diagram with one internal vertex attching to three points on
the Wilson loop

Σ3 = −g
4
Y MN

2

4

∫

dt1dt2dt3ǫ(t1, t2, t3)(1−ẋ(1) ·ẋ(3))ẋ(2) · ∂

∂x(1)
G(x(1), x(2), x(3)) .

(5.78)
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(a) Σ1 (b) Σ2 (c) Σ3

Figure 5.6: Diagrams at order λ2 for the hyperbolic line

Here ǫ(t1, t2, t3) performs antisymmetrization of t1, t2 and t3 and the scalar
three-point function is given by

G(x(1), x(2), x(3)) =

∫

d2ωw∆(x(1) − w)∆(x(2) − w)∆(x(3) − w) . (5.79)

Introducing Feynman parameters and performing the w integration we arrive
at

G(x(1), x(2), x(3)) =
Γ(2ω − 3)

26π2ω

×
∫ 1

0

dαdβdγ(αβγ)ω−2δ(1 − α− β − γ)

[αβ(x(1) − x(2))2 + αγ(x(1) − x(3))2 + βγ(x(3) − x(2))2]2ω−3
. (5.80)

The differentiation with respect to x(1) gives

Σ3 = g4
Y MN

2 Γ(2ω − 2)

27π2ω

∫ 1

0
dαdβdγ(αβγ)ω−2δ(1 − α− β − γ)

∫

dt1dt2dt3

×ǫ(t1, t2, t3)
(1 − ẋ(1) · ẋ(3))(α(1 − α)ẋ(2) · x(1) − αγẋ(2) · x(3) − αβẋ(2) · x(2))

[αβ(x(1) − x(2))2 + αγ(x(1) − x(3))2 + βγ(x(3) − x(2))2]2ω−2
.

(5.81)

After discussing the Feynman graphs at order λ2 in general, we now evaluate
the contributions Σ1,Σ2,Σ3 for the case of the hyperbolic line.

5.4.2 The hyperbolic Line

At first we define tij := ti − tj and choose the standard parametrization
x(i) = (cosh ti, sinh ti, 0, 0) leading to the following identities

(x(i)−x(j))2 = 2(−1+cosh tij), x(i) · ẋ(j) = sinh tij, ẋ(i) · ẋ(j) = cosh tij .
(5.82)

First of all let us take a look at the ladder diagramm Σ1 in ω = 2 dimensions

Σ1 =
g4
Y MN

2

6

∫

t1>t2>t3>t4

dt1dt2dt3dt4
1

4
. (5.83)

Using the same cutoff procedure as for (5.74) we get

Σ1 =
g4
Y MN

2

6

1

4
(2(Λ − 1))4 . (5.84)
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Secondly, let us specify (5.81) to the case of the hyperbolic line

Σ3 = g4
Y MN

2 Γ(2ω − 2)

22ω+5π2ω

∫ 1

0
dαdβdγ(αβγ)ω−2δ(1 − α− β − γ)

∫

dt1dt2dt3

× ǫ(t1, t2, t3)
(1 − cosh t13)(α(1 − α) sinh t12 + αγ sinh t23)

[αβ(1 − cosh t12) + αγ(1 − cosh t13) + βγ(1 − cosh t23)]2ω−2
.

(5.85)

For compactness we will introduce another abbreviation

∆ = αβ(1 − cosh t12) + αγ(1 − cosh t13) + βγ(1 − cosh t23) . (5.86)

If we consider the identity

∫

dt1dt2dt3
∂

∂t1

ǫ(t1, t2, t3)(1 − cosh t13)

∆2ω−3
= 0 (5.87)

together with
∂

∂t1
ǫ(t1, t2, t3) = 2δ(t12) − 2δ(t13) (5.88)

we can derive the following relation

∫

dt1dt2dt3

[− sinh t13(αβ(1 − cosh t12) + αγ(1 − cosh t13) + βγ(1 − cosh t23))

∆2ω−2

+ (2ω − 3)
(1 − cosh t13)(αβ sinh t12 + αγ sinh t13)

∆2ω−2

]

ǫ(t1, t2, t3)

= −2

∫

dt1dt2
1

[γ(1 − γ)]2ω−3

1

[1 − cosh t12]2ω−4
. (5.89)

In the last equation we used that the integrand vanishes in the case of t1 = t3.
By cyclic permutations of t1, t2, t3 and α, β, γ respectively and the fact that the
Feynman parameters are fixed by α + β + γ = 1, we rewrite the first term on
the left hand side of (5.89) as

− (1 − cosh t13)

∆2ω−2
(αγ sinh t32 + αγ sinh t13 + α(1 − α) sinh t21 + αβ sinh t12) .

(5.90)
With the help of the above relation, equation (5.89) can be rewritten as

∫

dt1dt2dt3ǫ(t1, t2, t3)

[

(1 − cosh t13)(α(1 − α) sinh t12 + αγ sinh t23)

∆2ω−2

+(2ω − 4)
(1 − cosh t13)(αβ sinh t12 + αγ sinh t13)

∆2ω−2

]

= −2

∫

dt1dt2
1

[γ(1 − γ)]2ω−3

1

[1 − cosh t12]2ω−4
. (5.91)

Note that the first term on the left hand side is exactly the integrand appearing
in (5.85).
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5.4 The hyperbolic Line at order λ2

Conducting integration by parts we can alter the second term as (A denotes
the surface term)

2ω − 4

2ω − 3

∫

dt1dt2dt3ǫ(t1, t2, t3)(1 − cosh t13)
∂

∂t1

1

∆2ω−3

=
2ω − 4

2ω − 3

[
∫

dt1dt2dt3ǫ(t1, t2, t3)
sinh t13
∆2ω−3

−2

∫

dt1dt2
1

[γ(1 − γ)]2ω−3

1

[1 − cosh t12]2ω−4

]

+A . (5.92)

Hence we arrive at
∫

dt1dt2dt3ǫ(t1, t2, t3)
(1 − cosh t13)(α(1 − α) sinh t12 + αγ sinh t23)

∆2ω−2

=
2ω − 4

2ω − 3

∫

dt1dt2dt3ǫ(t1, t2, t3)
sinh t13
∆2ω−3

− 2

2ω − 3

∫

dt1dt2
1

[γ(1 − γ)]2ω−3

1

[1 − cosh t12]2ω−4
+A . (5.93)

We will later study the first term on the right hand side, for the moment we
will abbreviate it with B. The integral over the Feynman parameters gives

∫ 1

0

(αβγ)ω−2

[γ(1 − γ)]2ω−3
δ(1 − α− β − γ) =

Γ2(ω − 1)

Γ(2ω − 2)(2 − ω)
. (5.94)

After all the different manipulations the contribution Σ3 takes the form

Σ3 = −g4
Y MN

2 Γ2(ω − 1)

22ω+4π2ω(2 − ω)(2ω − 3)

∫

dt1dt2
1

(1 − cosh t12)2ω−4
+A+B .

(5.95)

In the case of the hyperbolic line the self-energy contribution Σ2 looks like

Σ2 = g4
Y MN

2 Γ2(ω − 1)

22ω+4π2ω(2 − ω)(2ω − 3)

∫

dt1dt2
1

(1 − cosh t12)2ω−4
. (5.96)

Having arrived at this point we note that the self-energy diagram is canceled
and we are left with the terms originating from the integration by parts

Σ2 + Σ3 = A+B . (5.97)

We observe that the one loop calculation in the case of the hyperbolic line is
more complicated than for the circular loop [36]. In the latter the contributions
A and B vanish indicating that the whole perturbative expansion is given by
ladder diagrams.

Coming back to the hyperbolic line let us first of all investigate the B term.
It is proportional to

B ∝ 2ω − 4

2ω − 3

∫

dt1dt2dt3ǫ(t1, t2, t3)

× sinh t13
αβ(1 − cosh t12) + αγ(1 − cosh t13) + βγ(1 − cosh t23)2ω−3

. (5.98)
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At this stage of the calculation we face the problem that the B term has a
prefactor which vanishes in 2ω = 4 dimensions, whereas the integration may
not be finite without setting a cutoff. Unfortunately, there does not seem to be
a consistent way to link both limits. Nevertheless, if we set a cutoff and could
bring the integrand in the form of

B ∝ (2ω − 4)f(Λ) (5.99)

then the contribution from the B term vanishes in 2ω = 4 dimensions.
In addition to the B term we also have to take into account the surface term

A, which is proportional to

A ∝ 2ω − 4

2ω − 3

∫

dt2dt3

× 1 − cosh t13
(αβ(1 − cosh t12) + αγ(1 − cosh t13) + βγ(1 − cosh t23))2ω−3

∣

∣

∣

∣

∣

t1=Λ

t1=−Λ

(5.100)

and has to be evaluated at the two cutoffs. Basically we are facing the same
problem as before when evaluating the surface term. One way to proceed would
be to remove the Feynman parameters and rewrite A in terms of the scalar three
point function G(x(1), x(2), x(3)). We could then assume that (t2, t3) ≤ t1 and
use the asymptotic behaviour of the scalar propagators.

Although we ware unable to give a final result of the perturbative behaviour
for the hyperbolic line, there are a lot of strong indications that the expectation
value is not captured by summing up ladder diagramms. First of all, we expect
the hyperbolic line to get contributions from infinity since it is infinite. Secondly,
if we would assume for the moment that the complete perturbation series is
given by ladder diagrams, the expectation value would be given by a Bessel
function of the first kind like in the case of the circle in hyperbolic space.
When extrapolated to the strong coupling regime the Bessel function shows an
oscillating behaviour, which is in disagreement with the string theory result
that will be presented later.
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VI

Wilson loops in Minkowski Space

In this chapter we study Wilson loops in Minkowski space R
1,3 which are not

constrained to H3. Such a curve can be made supersymmetric by a simple ana-
lytic continuation of the Zarembo construction [5]. Such analytic continuations
have already been considered in [46] for some special curves. The prescription
can then also be applied to curves on the light cone.

6.1 General Curve

We investigate a Wilson loop operator in flat Minkowski space with signature
(−,+,+,+)

W =
1

N
Tr P exp

∮

(

iAµẋ
µ(t) + ΘiM

i
IΦ

I
)

dt . (6.1)

The properties of the matrix M i
I are the same as in (3.2), but this time the

coupling to the scalars is given by

~Θ = (iẋ0, ẋ1, ẋ2, ẋ3) . (6.2)

When studying the supersymmetry variation acting on a conformal Killing
spinor, we get the following constraints

(γ0 + ρ1γ5)ǫ0 = 0, (iγj + ρ(j+1)γ5)ǫ0 = 0, j = 1, 2, 3 (6.3)

ǫ1 = 0 .

Since there are four constraints acting on ǫ0 a general curve preserves one
Poincaré supersymmetry while it destroys all superconformal symmetries.

6.1.1 Restricting the Curve to H3

If we restrain the curve to the light cone or to hyperbolic three space H3,
supersymmetry will be further enhanced since we are provided with additional
linear relations in the supersymmetry variation of (6.1). For a general curve
the constraints read

(γ0 + ρ1γ5)ǫα = 0, (iγ1 + ρ2γ5)ǫα = 0 (6.4)

(iγ2 + ρ3γ5)ǫα = 0, (iγ3 + ρ4γ5)ǫα = 0, α = 0, 1 .

We realize that restraining the curve doubles the supersymmetries. A gen-
eral curve then preserves one Poincaré supersymmetry and one superconformal
symmetry and is therefore a 1/16 BPS operator.
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Chapter 6: Wilson loops in Minkowski Space

6.1.2 Hyperbolic Line

Let us briefly take a look at the hyperbolic line (xµ = (cosh t, sinh t, 0, 0)) and
use the prescription given by (6.2). Studying the supersymmetry variation
results in the constraints

(γ0 + ρ1γ5)ǫα = 0, (iγ1 + ρ2γ5)ǫα = 0, α = 0, 1 . (6.5)

Like the circle in flat space with the Zarembo construction the above hyperbolic
line will be 1/4 BPS, since there are two constraints for ǫ0 and ǫ1.

6.1.3 Expectation Value

It seems very likely that the expectation value of this class of Wilson loops is
trivial by the same arguments used in the case of Zarembo’s loops [5] in flat
space. To give a definite statement of course requires a more careful analysis.

6.2 Some special Curves

In this section we investigate some special curves in Minkowski space. The
scalar couplings used here are not derived by a general construction.

6.2.1 Circle at a constant Time

Let us a briefly contemplate a circle in the lightcone at a constant time z. It is
given by

xµ = (z, z cos t, z sin t) . (6.6)

Coupling to one scalar via z supersymmetry requires one constraint

iγ1ǫ0 = z(iγ01 + ρ1γ5γ2)ǫ1 . (6.7)

Consequently the circle in the lightcone is the usual 1/2 BPS operator, whose
propagator is constant.

6.2.2 Helix

Another example of a supersymmetric Wilson loop on the lightcone is a helix,
given by

xµ = (eξt, eξt cos t, eξt sin t, 0), −∞ ≤ t ≤ ∞ . (6.8)

Since (6.8) only covers the future part of the lightcone, we define the past
lightcone helix via

xµ = −(eξt, eξt cos t, eξt sin t, 0), −∞ ≤ t ≤ ∞ . (6.9)

To make this Wilson loop supersymmetric we have to couple to one scalar via
eξt for the future helix and via -eξt for the past helix

W =
1

N
Tr P exp

∮

dt
(

iAµẋ
µ ± eξtΦ1

)

. (6.10)
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6.2 Some special Curves

Figure 6.1: A helix on the lightcone; in the plot we set ξ = 1/10

After performing the supersymmetry variation we obtain the same constraints
for the past as well as the future helix

(iγ01 + ρ1γ5γ2)ǫ1 = 0, ǫ0 = 0 . (6.11)

A helix destroys all Poincaré supersymmetries and half of the superconfor-
mal symmetries, consequently it is a 1/4 BPS operator. For the future helix
parametrized in (6.8) the expectation value up to g2

Y M is given by

〈W 〉Helix = 1 +
λ

(4π)2

∫

dt1dt2
1 + ξ2

2
+O(g4) . (6.12)

It seems, that the scalar coupling for the light cone helix cannot be derived
by considering a similar curve on H3 and then taking the light cone limit.
Since the propagator is equal to a constant, the helix might lead to a general
supersymmetry construction for curves on the light cone.

6.2.3 An interesting Interpolation

We saw that the hyperbolic line using the prescription (6.2) gives a 1/4 BPS
operator, but additionaly we have seen in the previous chapter that when con-
sidering a hyperbolic line coupling to one scalar we get a 1/2 BPS operator.
This naturally induces the question if there is a solution in between. The same
question for the circle has been considered in [23]. In other words we want to
take a look at a hyperbolic line and use the following coupling to the scalars
(with an interpolation parameter α)

~Θ = (i cosα sinh t, cosα cosh t, sinα) . (6.13)

Supersymmetry then requires the two constraints

cosα(iρ12 + γ01)ǫ1 = 0 (6.14)

sinαρ3γ5ǫ0 = (iγ01 + i cosαρ1γ5γ1)ǫ1 .
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Chapter 6: Wilson loops in Minkowski Space

For α = π/2 the first equation of (6.14) disappears and the second equation
reduces to the constraint known for the 1/2 BPS hyperbolic line. We realize
that there exists a solution for a generic α, which is 1/4 BPS. Taking a look at
the vacuum expectation value up to lowest order we find

〈W 〉 = 1 +
g2
Y M

(4π)2

∫

dt1dt2
− sin2 α

2
+O(g4) . (6.15)

Finally we want to mention, that we could also consider an interpolation of the
following form (with interpolation parameter κ0)

~Θ = (i sinhκ0 cosh t, sinhκ0 sinh t, cosh κ0) . (6.16)

It is easy to see that the second interpolation leads to the moved hyperbolic
line studied in section (5.2.7).
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VII

Wilson Loops in String Theory

In this chapter we present the dual string solutions to some of the Wilson
loops which were discussed before in the gauge theory. To calculate the string
solutions in the supergravity approximation we have to find the appropriate
minimal surfaces under the side condition that the string worldsheet ends on the
contour of the Wilson loop. In addition we evaluate the classical supergravity
action and compare it to the expectation values calculated in the gauge theory.
To compute the AdS duals of the loops in Minkowskian signature we have to
perform analytic continuations. In the case of Wilson loops in Minkowskian
signature these haven already been considered in [46]. The necessity to per-
form an analytic continuation when studying a Wilson loop with insertions of
local operators has been contemplated in [47]. An interpretation of analytic
continuations as a tunneling phenomena in AdS/CFT has been given in [48].

7.1 The circular Wilson Loop

The minimal surface ending on a circular loop was first presented in [49] and
[25]. We shortly want to review the calculation in the conformal gauge and
present some of the techniques that will be needed throughout the chapter.
Since the circular loop in the gauge theory couples to a single scalar, we do not
have to consider motion on S5. We start our calculation with the metric on an
AdS3 subspace of AdS5

ds2 =
L2

y2
(dy2 + dx2

1 + dx2
2) (7.1)

and change to polar coordinates (r, φ) in the (x1, x2) plane

ds2 =
L2

y2
(dy2 + dr2 + r2dφ2) . (7.2)

We make the following ansatz and choose the static gauge

y = y(σ), r = r(σ), φ = τ . (7.3)

The range of the worldsheet coordinates (τ, σ) is given by 0 ≤ τ ≤ 2π and
0 ≤ σ ≤ ∞. The Lagrangian in conformal gauge takes the form

LPol =
L2

y2
(y′2 + r′2 + r2) (7.4)

whereas the Virasoro constraint reads

y′2 + r′2 = r2 . (7.5)
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Chapter 7: Wilson Loops in String Theory

Figure 7.1: Minimal surface ending on a circular contour

The equations of motion

yy′′ − y′2 + r′2 + r2 = 0 (7.6)

r′′ − r − 2
r′y′

y
= 0

are solved by

y = tanhσ, r =
1

coshσ
. (7.7)

It is easy to see that the solution satisfies the Virasoro constraint. Evaluating
the solution to the equation of motion on the classical supergravity action we
find

SPol =
L2

2πα′

∫

dσdτ
1

sinh2 σ
. (7.8)

The τ integration is trivial; in order to evaluate the σ integration we have to
regularize the action by including a boundary term [25]. The regularized action
then reads

Sreg =
√
λ

∫ ∞

0
dσ

(

1

cosh2 σ sinh2 σ
− 1

sinh2 σ

)

= −
√
λ . (7.9)

Note that through the regularization process the action has become negative.
Using the Witten prescription we can finally write down the expectation value
for the circular loop from string theory

〈W 〉 = e
√

λ . (7.10)

This result is in agreement with the expectation value of the circular Wilson
loop in the gauge theory extrapolated to the strong coupling regime.

7.2 Latitude

In this section we present the string theory dual to the latitude, which was first
considered in [23] and [42]. Taking into account the scalar couplings from the
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7.3 The lightlike Cusp

gauge theory for the case of the latitude we use the metric on an AdS4 × S2

subspace of AdS5 × S5

ds2 =
L2

y2
(dy2 + dr2 + r2dφ2 + dx2

3) + L2(dϑ2 + sin2 ϑdϕ2) . (7.11)

with polar coordinates (r, φ) in the (x1, x2) plane. The string should end along
the curve r = sin θ0 and constant x3 = cos θ0. In order to calculate the action
in the conformal gauge we make the ansatz

y = y(σ), r = r(σ), ϑ = ϑ(σ), φ = ϕ+ π = τ . (7.12)

The phase difference of π in the ansatz between the φ and ϕ coordinates is a
consequence of the supersymmetry construction from the gauge theory. The
Lagrangian in conformal gauge assumes the shape

LPol =
L2

y2
(y′2 + r′2 + r2) + L2(ϑ′2 + sin2 ϑ) (7.13)

and the Virasoro constraint acquires the form

1

y2
(y′2 + r′2) + ϑ′2 = sin2 ϑ+

r2

y2
. (7.14)

The AdS part of the Lagrangian can be integrated easily as

y = sin θ0 tanhσ, r =
sin θ0
coshσ

. (7.15)

Using the Virasoro constraint we find the equation of motion for ϑ

sin2 ϑ = ϑ′2 , (7.16)

which can be integrated as

sinϑ(σ) =
1

cosh(σ0 ± σ)
, cosϑ(σ) = tanh(σ0 ± σ) . (7.17)

The boundary condition at σ = 0 reads

sinϑ0 = cos θ0 =
1

coshσ0
, tanh2 σ0 = sin2 θ0 . (7.18)

The boundary term will be the same as in the case of the circular loop. Therefore
the classical action acquires the form

Sreg =
√
λ

∫ ∞

0
dσ

(

1

cosh2 σ sinh2 σ
− 1

sinh2 σ
+

1

cosh2(σ0 ± σ)

)

(7.19)

= ∓ sin θ0
√
λ .

If we would consider the 1/4 BPS circle coupling to two scalars given by
Zarembo’s construction, the boundary condition would be σ0 = 0, which means
that the AdS part of the action cancels against the S5 part leading to a trivial
expectation value [5]. For the latitude the ambiguity in the sign in front of sin θ0
should be chosen that way, that the classical action is minimized. Consequently
the expectation value of the Wilson loop at strong coupling is given by

〈W 〉 = esin θ0

√
λ . (7.20)

The other solution corresponds to an unstable instanton, which is exponentially
supressed at a large value of λ.
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7.3 The lightlike Cusp

Wilson loops in the lightcone seem to be very special. We already saw in the
gauge theory that lightlike lines preserve a large amount of supersymmetry. Be-
fore turning to the hyperbolic line let us shortly review the case of the lightlike
cusp, meaning we consider two semi infinite lightlike lines meeting at a point.
This case was first considered in [50], but recently there is a growing interest
in these objects since one can compute gluon scattering amplitudes at strong
coupling with the help of lightlike Wilson loops [30, 31]. Even before the ac-
tual interest it was known that lightlike Wilson loops have a lot of interesting
features, see for example [51, 45].
In the gauge theory lightlike lines are supersymmetric without any coupling to
the scalars, therefore we use an AdS3 subspace of AdS5

ds2 =
L2

y2

(

dy2 − dx2
0 + dx2

1

)

. (7.21)

We choose the following parametrization

x0 = eτ coshσ, x1 = eτ sinhσ, y = eτw(τ) (7.22)

and using the Nambu-Goto action we get the following Lagrangian

LNG =

√

1 − (w + ẇ)2

w2
. (7.23)

The equation of motion for w then follows as usual from the Euler-Lagrange
equation

0 =
d

dτ

(

−(ẇ + w)

w2
√

1 − (w + ẇ)2

)

+

(

2

w3

√

1 − (w + ẇ)2 +
ẇ + w

w2
√

1 − (w + ẇ)2

)

(7.24)
and it is easy to realize that it is solved by w(τ) =

√
2. Consequently, the

surface is given by

y =
√

2
√

x2
0 − x2

1 . (7.25)

Evaluating the action for the lightlike cusp requires to introduce a cutoff, which
we will also have to introduce in the AdS calculation of the hyperbolic line.

7.4 The hyperbolic Line

The main difference between the hyperbolic line and the lightlike cusp consid-
ered before is the fact that the hyperbolic line does not have cusp at the origin,
it is smooth. We know from the gauge theory that we do not have to consider
motion on S5, therefore we again take the metric on AdS3

ds2 =
L2

y2

(

dy2 − dx2
0 + dx2

1

)

. (7.26)
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7.4 The hyperbolic Line

(a) Minimal surface ending on a
hyperbolic line

(b) Zooming into the origin one
recognizes that the hyperbolic
line is smooth

We choose hyperbolic coordinates in the (x0, x1) plane

x0 = u cosh t, x1 = u sinh t (7.27)

and the metric in these coordinates is then given by

ds2 =
L2

y2

(

dy2 − du2 + u2dt2
)

. (7.28)

As in the case of the circular loop we make the following ansatz and choose the
static gauge

y = y(σ), u = u(σ), t = τ . (7.29)

To find the string solution let us write down the Lagrangian in conformal gauge

LPol =
L2

y2
(y′2 − u′2 + u2) (7.30)

together with the Virasoro constraint

y′2 − u′2 = u2 . (7.31)

The equations of motion

y′′y − y′2 − u′2 + u2 = 0, (7.32)

u′′ − 2y′

y
u′ + u = 0

can be integrated as

y = tan σ, u =
1

cosσ
(7.33)

and it is easy to see that the solution satisfies the Virasoro constraint and gives
the right behaviour at the boundary.

The range of the world sheet coordinate σ is given by 0 ≤ σ ≤ π/2, whereas
τ varies between −∞ and ∞. We conclude that the minimal surface ending on
a hyperbolic line is given by

x0 =
cosh τ

cosσ
, x1 =

sinh τ

cos σ
, y = tanσ . (7.34)
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and can be written in the form

y =
1

u

√

u2 − 1
√

x2
0 − x2

1 . (7.35)

Before calculating the classical action let us take a look at the metric induced
on the minimal surface, which is euclidian up to a conformal factor

ds2 =
1

sin2 σ
(dσ2 + dτ2) . (7.36)

The bulk part of the action reads

Sbulk =
L2

2πα′

∫

dσdτ
1

sin2 σ
(7.37)

and the boundary term is given by

Sboundary =
L2

2πα′

∫

dσdτ
1

sin2 σ cos2 σ
, (7.38)

so that the regularized action takes the following form

Sreg = − L2

2πα′

∫

dσdτ
1

cos2 σ
. (7.39)

By adding the appropriate boundary term we have removed the divergence that
appears from being close to the boundary. In the case of the hyperbolic line
there is another kind of divergence originating from the infinite length of the
line. One way of regularizing the surface is to set a cutoff on both σ and τ ,
which gives the following result

Sreg = − L2

2πα′

∫ Λτ

−Λτ

dτ

∫ Λσ

0
dσ

1

cos2 σ
(7.40)

= − L2

2πα′ (2Λτ tan Λσ) .

Since this result is hard to interprete we want to apply a different regularization
scheme and use a physical cutoff on the diverging integral. Using the solution
to the equations of motion, we can express the worldsheet coordinates in terms
of the original coordinates

cosh τ =
x0

√

x2
0 − x2

1

, cos σ =
1

√

x2
0 − x2

1

. (7.41)

Changing from (σ, τ) to (x0, x1) gives the following Jacobian

dσdτ =
1

√

x2
0 − x2

1 − 1(x2
0 − x2

1)
dx0dx1 , (7.42)

hence we can rewrite the action in terms of the original coordinates

Sreg = − L2

2πα′

∫

dx0dx1
1

√

x2
0 − x2

1 − 1
. (7.43)
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For fixed x0 the variable x1 varies between the two roots of x2
1 = x2

0 − 1.
Afterwards we perform the integration over x0 from its minimal value 1 to a
cutoff Λ

Sreg = − L2

2πα′

∫ Λ

1
dx0

∫

√
x2
0−1

−
√

x2
0−1

dx1
1

√

x2
0 − x2

1 − 1
. (7.44)

The first integral gives a factor of π and the second integration becomes trivial.
Finally the action takes the simple form

Sreg = −1

2

√
λ(Λ − 1) . (7.45)

The expectation value for the hyperbolic using the physical cutoff is therefore
given by

〈W 〉 = e
1
2

√
λ(Λ−1) . (7.46)

From (7.45) we realize that the action is diverging linearly in the cutoff Λ.
Although the second way of regularizing the integral seems to be more natural
from a physical point of view it is still hard to give a reasonable interpretation
of the result. Comparing the cutoff used in the string theory to the cutoff used
in the gauge theory we realize that in the latter the only variable to set a cutoff
on is x0. In the string theory we have to set a cutoff on both x0 and x1, which
makes it hard to compare the result to the gauge theory.

Additionally, it would be nice to relate the result obtained for the hyperbolic
line to the lightlike cusp studied before.

7.5 Circle in hyperbolic Space

In this section we want to find a minimal surface in AdS ending on a circle with
radius ρ = sinh θ0. In contrast to the latitude we will have to use a different
ansatz for the S5 part of the action. Again, we use the metric

ds2 =
L2

y2
(dy2 − dx2

0 + dr2 + r2dφ2) + L2(dϑ2 + sin2 ϑdϕ2) (7.47)

with polar coordinates (r, φ) in the (x1, x2) plane. In order to calculate the
action in the conformal gauge we make the ansatz

y = y(σ), r = r(σ), ϑ = ϑ(σ), φ = ϕ = τ (7.48)

leading to the Lagrangian

L =
L2

y2
(y′2 + r′2 + r2) + L2(ϑ′2 + sin2 ϑ) (7.49)

and the Virasoro constraint

1

y2
(y′2 + r′2) + ϑ′2 = sin2 ϑ+

r2

y2
. (7.50)
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The AdS part of the ansatz can be integrated easily as

y = sinh θ0 tanhσ, r =
sinh θ0
cosh σ

. (7.51)

We are left with a differential equation for the S5 part

ϑ′2 = sin2 ϑ . (7.52)

Up to this point the calculation has been essentially the same as in the case
of the latitude. To evaluate the S5 part of the ansatz we take a look at the
supersymmetry construction in the gauge theory.
The curve describing the coupling to the scalars is given by a circle in de Sitter
space dS2. To support this statement, we remember that the manifold dS2 is
defined by the constraint

− x2
1 + x2

2 + x2
3 = 1 (7.53)

and the curve we are interested in looks like

x1 = sinhϑ, x2 = coshϑ cos t, x3 = cosh ϑ sin t . (7.54)

Here we interprete the analytic continuation performed in the gauge theory as
a Wick rotation on the coordinate x1.

We conclude that we have to substitute ϑ→
(

π
2 + iϑ

)

into (7.52) giving the
following equation of motion

− ϑ′2 = cosh2 ϑ (7.55)

that can be integrated as

cosh2 ϑ(σ) =
1

cosh2(σ0 ± σ)
. (7.56)

After the analytic continuation we get the following boundary condition

coshϑ0 = cosh θ0 =
1

cosh σ0
, (7.57)

which can be rewritten as

tanh2 σ0 = − sinh2 θ0 . (7.58)

At this point are ready to evaluate the action, the boundary term is the same
as in the case of the circular Wilson loop

Sreg =
√
λ

∫ ∞

0
dσ

(

1

sinh2 σ cosh2 σ
− 1

sinh2 σ
+

1

cosh2(σ0 ± σ)

)

. (7.59)

Evaluating the integrals gives the result

S =
L2

2πα′ (−1 + 1 ∓ tanhσ0) = ∓
√
λi sinh θ0 . (7.60)

Finally, the expectation value from string theory is given by

〈W 〉 = e±i
√

λ sinh θ0 . (7.61)

We realize that the AdS calculation leads to the same oscillating behaviour
in the vacuum expectation value as the calculation on the gauge theory side
extrapolated to strong coupling (5.57). We conclude that the hyperbolic circle
is unstable, since it does not minimize the action.
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7.6 Two Longitudes/hyperbolic Rays with a Cusp

The strategy for finding the minimal surfaces in AdS that correspond to two
longitudes on S2 and two intersecting rays on H2 is to first solve a system of two
lines in the plane with a cusp at the origin. Afterwards we perform conformal
transformations to S2 and H2. The coupling to the scalars in the gauge theory
is reflected by turning on one coordinate on S5. When looking at the two
longitudes and the two intersecting rays in the gauge theory we find both of
them to have the same scalar couplings. Furthermore, we notice that the scalar
couplings are not changed under the conformal transformation.

7.6.1 Nambu-Goto Action

We start with the metric of AdS3×S1. Here, we choose polar coordinates (r, φ)
in the plane and we will also use them as worldsheet coordinates

ds2 =
L2

y2
(dy2 + dr2 + r2dφ2) + L2dϕ2 . (7.62)

Our ansatz for a system of two lines with a cusp in the plane looks like

y = rv(φ), ϕ = ϕ(φ) . (7.63)

We realize that at y = 0 either r or v has to vanish, so the ansatz is quite
natural for a system of two lines with a cusp in the origin. The Nambu-Goto
action is given by

SNG =

√
λ

2π

∫

drdφ

√

−(X ′ · Ẋ)2 + (Ẋ)2(X ′)2 . (7.64)

In our case prime represents differentiation with respect to φ, whereas a dot
refers to differentiation with respect to r. Inserting the ansatz into the Nambu-
Goto action we find

SNG =

√
λ

2π

∫

drdφ
1

rv2

√

v′2 + (1 + v2)(1 + v2ϕ′2) . (7.65)

Since the Nambu-Goto action does not depend on φ explicitly we immediately
find one conserved quantity, namely the energy E. Additionally ϕ is cyclic,
therefore the canonical momentum conjugate to ϕ, which we will denote by J ,
will be conserved as well

E =
1 + v2

v2
√

v′2 + (1 + v2)(1 + v2ϕ′2)
, J =

(1 + v2)ϕ′
√

v′2 + (1 + v2)(1 + v2ϕ′2)
.

(7.66)
Using the Euler-Lagrange equations we can write down the equation of motion
for v

0 =

(

v′

v2
√

v′2 + (1 + v2)(1 + v2ϕ′2)

)′

− ∂

∂v

(

1

v2

√

v′2 + (1 + v2)(1 + v2ϕ′2)

)

.

(7.67)
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To derive the BPS condition we have to consider the Legendre transformation
of the original Lagrangian and add it to the action

SLT =

√
λ

2π

∫

drdφ(ypy)
′ =

√
λ

2π

∫

drdφ
−v′2 − 2 − v2(1 + ϕ′2)

rv2
√

v′2 + (1 + v2)(1 + v2ϕ′2)
.

(7.68)
In the last equality we made use of the equation of motion for v. Requiring
that the total Lagrangian vanishes locally leads to the BPS condition

v4ϕ′2 − 1 = 0 . (7.69)

Note that the BPS condition can also be expressed in terms of the conserved
quantities as E2 = J2. Now it is easy to find the equation of motion for v

v′ =
1 + v2

v2

√

p2 − v2, p =
1

E
. (7.70)

We can solve this equation with inverse trigonometric functions

φ = arcsin
v

p
− 1
√

1 + p2
arcsin

√

1 + 1/p2

1 + 1/v2
. (7.71)

Since the function arcsin is only defined for arguments less or equal to one, this
expression is valid on half of the worldsheet, afterwards we have to make an
analytic continuation

φ = π − arcsin
v

p
− 1
√

1 + p2

(

π − arcsin

√

1 + 1/p2

1 + 1/v2

)

. (7.72)

φ reaches its final value on the boundary again

φf = π

(

1 − 1
√

1 + p2

)

. (7.73)

The equation of motion for ϕ can be derived from the BPS condition

ϕ′ = ± 1

v2
= ± v′

(1 + v2)
√

p2 − v2
(7.74)

and the solution is given by

ϕ =
1

√

1 + p2
arcsin

√

1 + 1/p2

1 + 1/v2
. (7.75)

Again this equation is only valid on half of the worldsheet. After performing
the same analytic continuation the final value for ϕ is given by

ϕf =
π

√

1 + p2
. (7.76)
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When we take the positive sign in (7.74) the relation φf + ϕf = π is satisfied.
Now let us write down the induced metric on the minimal surface

grr =
1 + v2

r2v2
, grv =

1

rv
, gvv =

p2(1 + v2) − v4

v2(v2 − p2)(1 + v2)
. (7.77)

Inserting the solutions to the equations of motion into the Nambu-Goto action
yields

SNG =

√
λ

2π

∫

drdφ
p

r

(v2 + 1)

v4
=

√
λ

2π

∫

drdv
p

r

1

v2
√

p2 − v2
. (7.78)

Using the dictionary of the AdS/CFT correspondence a conformal transforma-
tion in the gauge theory is reflected by an isometry in AdS5. Since we want
to stereographically project the cusp solution from the plane to S2 and H2, we
have to find the appropriate isometries in AdS that reduce to the stereographic
projections on the boundary.

7.6.1.1 Stereographic Projection to S2

To map the solution to S2 we use the following isometry

x̃1 =
2r

1 + r2 + y2
cosφ, x̃2 =

2r

1 + r2 + y2
sinφ, (7.79)

x̃3 =
−1 + r2 + y2

1 + r2 + y2
, ỹ =

2y

1 + r2 + y2
.

Note that

x̃2
1 + x̃2

2 + x̃2
3 + ỹ2 = 1 . (7.80)

Let us take a look at the surface in global AdS, which we parametrize by

Y0 = cosh ρ, Y1 = sinh ρ sin θ cosφ, (7.81)

Y2 = sinh ρ sin θ sinφ, Y3 = sinh ρ cos θ .

Choosing this parametrization the metric on AdS4 × S1 is given by

ds2 = L2(dρ2 + sinh2 ρ(dθ2 + sin θ2dφ2) + dϕ2) . (7.82)

In the global coordiantes the isometry (7.79) then looks like

Y1 =
r

y
cosφ, Y2 =

r

y
sinφ, (7.83)

Y3 =
−1 + r2 + y2

2y
, Y−1 =

1 + r2 + y2

2y
.

We realize that the minimal surface in global AdS is given by

cosh ρ =
1 + y2 + r2

2y
, sinh ρ sin θ =

r

y
. (7.84)
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The coordinates φ and ϕ are mapped to themselves, whereas the relation be-
tween (r, v) and (ρ, θ) is then given by

r =
sin θ sinh ρ

1 + sin2 θ sinh2 ρ

(

cosh ρ±
√

cosh2 ρ− 1 − sin2 θ sinh2 ρ

)

, (7.85)

v =
1

sinh ρ sin θ
.

The plus sign corrpesponds to the two longitudes on S2, whereas the minus sign
does not have any physical relevance. After the conformal transformation to
S2 the Nambu-Goto action for the two longitudes acquires the following form
(the Jacobian is rather lengthy, so we only give the final result)

SNG =

√
λ

2π

∫

dρ dθ
p sinh2 ρ sin θ

√

p2 sinh2 ρ sin2 θ − 1
. (7.86)

First of all we want to perform the integral over θ. If we take ρ to be fixed then
the domain of integration for θ is determined by the roots of p2 sin2 θ sinh2 ρ = 1.
Afterwards we are left with the integral over ρ, which we perform by integrating
from the minimal value sinh ρ = 1/p to a cutoff ρ0

SNG =
√
λ

∫

dρ sinh ρ =
√
λ

(

cosh ρ0 −
√

1 +
1

p2

)

. (7.87)

In this case regulating the action is very subtle. We cannot simply neglect the
divergent part. To find the appropriate boundary term, we have to consider the
Legendre transform of the original Lagrangian with respect to the coordinates
orthogonal to the boundary. In global AdS it is given by

LBoundary = − coth ρ0pρ = − coth ρ0ρ
′ δLNG

δρ′
. (7.88)

In the last equality ρ′ is the derivative of ρ with respect to the worldsheet
coordinate orthogonal to the boundary. We notice that coth ρ0 can be set equal
to one for large values of ρ0. To explicitely calculate the boundary term one
has to introduce ρ′ into the Nambu-Goto action (7.86), leading to

SBoundary = −
√
λ

2π

∫

dθ

√

p2 sinh2 ρ0 sin2 θ − 1

p sinh2 ρ0 sin θ

×
[

sinh2 ρ0(1 + sin2 θ(∂θφ)2 + (∂θϕ)2)
]

. (7.89)

Using the solutions to the equations of motion for φ and ϕ we evaluate the
boundary term as

SBoundary = −
√
λ

2π

∫

dθ sin θ
p2 sinh2 ρ0(sinh2 ρ0 sin2 θ + 1) − cosh2 ρ0

p(sinh2 ρ0 sin2 θ + 1)
√

p2 sinh2 ρ0 sin2 θ − 1
.

(7.90)
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We realize that the first part of the boundary term gives 2π sinh ρ0 by the same
arguments as in the case of the unregularized action, whereas the second term
can be integrated to

SBoundary ≃ −
√
λ

(

sinh ρ0 −
coth ρ0

p
√

1 + p2

)

. (7.91)

Again, for large ρ0 we can set coth ρ0 equal to one. We realize that the divergent
parts cancel each other, so we are left with the finite part of the action

S = − p
√

1 + p2

√
λ = −

√

φf (2π − φf )

π

√
λ . (7.92)

To express p in terms of φ we used (7.73). Finally, the expectation value for
the two longitudes from string theory is given by

〈W 〉 = e

√

λ
√

φf (2π−φf )

π . (7.93)

We note that for Φf = π the expectation value for the two longitudes reduces
to the expectation value of the circular loop. This is in perfect agreement with
the gauge theory: In the case of the angle between the two halfcircles beeing
equal to π the cusp disappears and we regain the large circle.

7.6.1.2 Stereographic Projection to H2

To transform the solution to H2 we write down the isometry in AdS again
expressed in the Poincaré patch

x̃0 =
1 + r2 + y2

1 − r2 − y2
, x̃1 =

2r

1 − r2 − y2
cosφ, (7.94)

x̃2 =
2r

1 − r2 − y2
sinφ, ỹ =

2y

1 − r2 − y2

with
− x̃2

0 + x̃2
1 + x̃2

2 + ỹ2 = −1 . (7.95)

Consequently the surface which ends on two rays with a cusp in the Poincaré
patch is given by

r =
−1 ±

√
1 + r̃2 + r̃2v2

r̃ + r̃v2
, v = ṽ . (7.96)

Inserting into the Nambu-Goto action (7.78) yields (we will drop the ˜ super-
script)

SNG =

√
λ

2π

∫

drdv
1

r
√

1 + r2(1 + v2)

p

v2
√

p2 − v2
. (7.97)

Evaluating the Nambu-Goto action leads to a complicated expression in terms of
elliptic integrals. Therefore it seems likely that we should change to a different
set of coordinates more suited for the calculation.
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7.6.2 Calculation in conformal Gauge

The basic idea for the calculation in conformal gauge is the same as before. First
we consider a cusp in the plane and afterwards use stereographic projections
to S2 and H2. To derive the solution in the plane we start with an AdS3 × S1

subspace of AdS5 × S5 and the following parametrization

y = ρ sin ν, x1 = ρ cos ν cosφ, x2 = ρ cos ν sinφ . (7.98)

In this parametrization the metric reads

ds2 = L2

(

dρ2

ρ2 sin2 ν
+

dν2

sin2 ν
+ cot2 ν dφ2 + dϕ2

)

(7.99)

and we make the following ansatz

ρ = ρ(τ), ν = ν(σ), φ = φ(σ), ϕ = ϕ(σ) . (7.100)

The Lagrangian in conformal gauge is then given by

LPol = L2

(

ρ̇2

ρ2 sin2 ν
+

ν ′2

sin2 ν
+ cot2 νφ′2 + ϕ′2

)

, (7.101)

and the Virasoro constraint reads

ρ̇2

ρ2
= ν ′2 + cos2 νφ′2 + sin2 νϕ′2 . (7.102)

By setting ρ = eaτ the Virasoro constraint simplifies

a2 = ν ′2 + cos2 νφ′2 + sin2 νϕ′2 . (7.103)

Like before we find two conserved quantities, since φ and ϕ are cyclic. In the
BPS case the conserved charges should be equal, which enables us to reduce
the Virasoro constraint down to

a2 = ν ′2 +
p2

tan2 ν
. (7.104)

For p2 < 1 we can set a2 = 1 − p2 and get

ν ′2 = 1 − p2

cos2 ν
. (7.105)

From this equation we realize that ν starts at the boundary of AdS and reaches
a maximal value when cos ν0 = p, since then the right hand side of (7.105)
vanishes. It is easy to integrate (7.105)

sin ν =
√

1 − p2 sinσ = a sinσ . (7.106)

The equation of motion for φ can be derived from the original Lagrangian
(7.101)

φ′ = p tan2 ν = p
(1 − p2) sin2 σ

cos2 σ + p2 sin2 σ
(7.107)
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(c) Stereographic projection to
S

2
(d) Stereographic projection to
H2

Figure 7.2: Minimal surfaces belonging to two longitudes/intersecting rays

and can be integrated as

tan(φ+ pσ) = p tanσ . (7.108)

The equation of motion for ϕ is simply ϕ′ = p and is solved by ϕ = pσ. Just
for completeness let us write down the classical action

S =
L2

4πα′

∫

dσdτ
2

sin2 σ
. (7.109)

Having arrived at this point we are ready to carry out stereographic projections
to S2 and H2 respectively to find the desired minimal surfaces.
Projecting the solution to S2 we find

x1 =
p sinσ sin pσ + cos σ cos pσ

cosh aτ
, (7.110)

x2 =
p sinσ cos pσ − cos σ cos pσ

cosh aτ
,

x3 = tanh aτ,

whereas on H2 the minimal surface looks like

x0 = − coth aτ, (7.111)

x1 = −p sinσ sin pσ + cos σ cos pσ

sinh aτ
,

x2 = −p sinσ cos pσ − cos σ cos pσ

sinh aτ
.

For an explicit from of the stereographic projections the reader might take a
look at the appendix.

7.6.3 Non-supersymmetric Case

We shortly consider the non-supersymmetric case for two lines in the plane
with a cusp at the origin. Here, the conserved charges are not equal but will
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be proportional to each other. In the following we will denote the ratio of the
conserved charges by q

v2ϕ′ = q . (7.112)

Again we get a differential equation for v, but this time it is more complicated

v′2 =
1 + v2

v4
(p2 + (p2 − q2)v2 − v4), p =

1

E
. (7.113)

To bring the above equation into the standard form of an elliptic equation we
define the quantities

z =

√

v2(1 + b2)

b2(1 + v2)
, b2 =

1

2

(

p2 − q2 +
√

(p2 − q2)2 + 4p2
)

,(7.114)

k2 =
b2(p2 − b2)

p2(1 + b2)
.

Note that b2 solves the following equation

− b4 + b2(p2 − q2) + p2 = 0 . (7.115)

We are now ready to write down a differential equation for z

z′2 =
p2(1 + b2)

b2

(

1 − 1 + b2

b2z2

)2

(1 − z2)(1 − k2z2) . (7.116)

The equation can be solved via elliptic integrals

φ =
b

p
√

1 + b2

[

F (arcsin z; k) − Π

(

b2

1 + b2
, arcsin z; k

)]

. (7.117)

Here, F is an elliptic integral of the first kind, whereas Π is an elliptic integral
of the third kind. At the boundary we have v = 0 which also means z = 0. As
in the supersymmetric case after reaching a maximal value of z = 1 another
copy of the surface continues with

φ =
b

p
√

1 + b2

[

2K(k) − 2Π

(

b2

1 + b2
; k

)

− F (arcsin z; k) + Π

(

b2

1 + b2
, arcsin z; k

)]

. (7.118)

φ takes its final value when we reach the boundary again and can then be
expressed by complete elliptic integrals

φf =
2b

p
√

1 + b2

[

K(k) − Π

(

b2

1 + b2
; k

)]

. (7.119)

In the last formula K denotes the complete elliptic integral of the first kind,
whereas Π is the complete elliptic integral of the third kind. The equation of
motion for ϕ can be derived from (7.112) and gives

ϕ′2 =
q b

p
√

1 + b2
1

(1 − z2)(1 − k2z2)
. (7.120)
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It can again be integrated via elliptic integrals

ϕ =
q b

p
√

1 + b2
F (arcsin z; k) . (7.121)

The final value of ϕ is then given by a complete elliptic integral again

ϕf = 2
q b

p
√

1 + b2
K(k) . (7.122)

Evaluating the classical action is rather technical due to the presence of the
elliptic integrals [8]. We are only giving the final result

SNG =

√
λ

2π

∫

2
√

1 + b2

b r z0
. (7.123)

In the last equation z0 is a cutoff for small values of z. This is the standard
divergence when considering a cusp in the plane.

7.7 Moved hyperbolic Line

To find the string theory dual of the moved hyperbolic line, which has been
studied in the gauge theory in section (5.2.7), we take the following metric

ds2 =
L2

y2

(

dy2 − du2 + u2dt2 + dx3
)

+ L2(dϑ2 + sin2 ϑdϕ2) . (7.124)

The string should then end along the curve u = coshκ0 and constant x3 =
sinhκ0. To find the string solution we take the following ansatz

y = y(σ), u = u(σ), ϑ = ϑ(σ), t = τ (7.125)

so that the Lagrangian in conformal gauge is given by

L =
L2

y2
(y′2 − u′2 + u2) + L2(ϑ′2 + sin2 ϑ) (7.126)

and the Virasoro constraint takes the following form

1

y2
(y′2 − u′2) + ϑ′2 = sin2 ϑ+

u2

y2
. (7.127)

First of all, let us only consider the AdS part. Taking care of the boundary
conditions we can integrate the equations of motion for u and y as

y = coshκ0 tanσ, u =
coshκ0

cosσ
, 0 ≤ σ ≤ π

2
. (7.128)

As in the case of the 1/2 BPS hyperbolic line we express the action in terms of
the original coordinates

cosh t =
x0

√

x2
0 − x2

1

, cos σ =
coshκ0
√

x2
0 − x2

1

(7.129)
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and changing from (σ, τ) to (x0, x1) gives the following Jacobian

dσdτ =
coshκ0

(x2
0 − x2

1)
√

x2
0 − x2

1 − cosh2 κ0

. (7.130)

After subtracting the boundary divergence the action in terms of (σ, τ) reads

SAdS = − L2

2πα′

∫

dσdτ
1

cos2 σ
(7.131)

or equivalently in terms of (x0, x1)

SAdS = − L2

2πα′

∫

dx0dx1
1

coshκ0

√

x2
0 − x2

1 − cosh2 κ0

. (7.132)

To determine the integration limits we note that for fixed x0 the variable x1

varies between the two roots of x2
0 − cosh2 κ0 = x2

1

SAdS = − L2

2πα′

∫ Λ cosh κ0

cosh κ0

dx0

∫

√
x2
0−cosh2 κ0

−
√

x2
0−cosh2 κ0

dx1

× 1

coshκ0

√

x2
0 − x2

1 − cosh2 κ
. (7.133)

The first integral gives a factor of π and the second integration becomes trivial

SAdS = −
√
λ

2
(Λ − 1) . (7.134)

Now let us turn to the S5 part of the action. In the gauge theory the coupling
to the scalars is decribed by a line

x1 = sinhϑ cosh t, x2 = sinhϑ sinh t, x3 = coshϑ (7.135)

which is constrained to de Sitter space dS2

− x2
1 + x2

2 + x2
3 = 1 . (7.136)

We already observed in the case of the hyperbolic circle that the curve describing
the coupling to the scalars is inside de Sitter space. By a change of coordinates
it is possible to map the curve associated to the hyperbolic circle, denoted by
the coordinates (x̃1, x̃2, x̃3), to the line (7.135) we are studying at the moment.
Written explicitly, the transformation takes the following form

√

1 + x̃2
1 = x3, arctan

x̃3

x̃2
= arctanh

x2

x1
. (7.137)

A review of different coordinate systems in de Sitter space is given by [52].
Apart from the change of coordinates we could have also performed the double
analytic continuation ϑ→ iϑ and ϕ→ iτ in the original S5 coordinates.
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With the help of the Virasoro constraint we derive the following equation
of motion for ϑ

ϑ′2 = − sinh2 ϑ , (7.138)

which can be integrated as

− sinh2 ϑ(σ) =
1

sin2(σ0 ± σ)
. (7.139)

The integration constant σ0 is fixed by the boundary condition

sinhϑ0 = sinhκ0 . (7.140)

To regularize the S5 part of the action we can use the same methods that we
used to regularize the AdS part of the action. Rewriting the S5 part

SS5 =
L2

2πα′

∫

dσdτ
1

sin2(σ0 ± σ)
(7.141)

in terms of physical coordinates (x1, x2) leads to a complicated expression which
cannot be integrated easily. Therefore it seems likely that we have to use a
different regularization scheme.

We want to finish this chapter by making some general observations. First
of all, we observe that calculating the classical action and in addition its regu-
larization for the various hyberbolic lines is hard to interprete from a physical
perspective. By considering the hyperbolic circle and the moved hyperbolic line,
we found out that the S5 part of the action has to be analytically continued in
such a way that we are dealing with de Sitter space dS2. It seems likely that
this fact applies also to general curves.
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VIII

Conclusions and Outlook

8.1 Summary

In this thesis we considered several classes of supersymmetric Wilson loops in
N = 4 SYM. For some special loops we could give explicit results in the string as
well as the gauge theory in the context of the AdS/CFT duality. After reviewing
loops which are restricted to flat space and to S3 we first presented a new class
of supersymmetric Wilson loops. In this class the Wilson loops are restricted
to hyperbolic three space H3. We found out that a general curve preserves
1/16 of the original supersymmetries. In addition we put forward some special
loops which preserve 1/8, 1/4 and 1/2 of the original supersymmetries. We
investigated the perturbative behaviour of the hyperbolic line by a one loop
calculation. Afterwards we examined Wilson loops in Minkowskian signature
and found some special examples in flat Minkowski space and in the light cone
as well. In the last chapter we took a look at the dual Wilson loops in string
theory and calculated their expectation value.

8.2 Outlook

There are still a lot of open issues concerning this new class of Wilson loops on
H3. First of all, it would be nice to have a general construction in the string
theory for the loops which are restricted to H2 in the gauge theory. In addition,
it would be desireable to derive a general formula for the pertubative expansion
in the gauge theory.

Furthermore, it is necessary to better understand the results obtained for
the hyperbolic line and its relation to cusped Wilson loops. In particular the
different regularizations of the minimal surface in AdS should be further inves-
tigated.

Nevertheless, the hyperbolic line may be useful in the following way: If we
consider the scattering of two particles into two particles, then according to the
Alday/Maldacena prescription we have to calculate a minimal surface in AdS
ending on a light-like polygon. It is still an open question how the classical
action for the polygon has to be regularized. We want to sketch an approach
different from the ones that have been considered up to now. The idea is to
smooth out the cusps in the polygon with the help of hyperbolic lines (with
curvature radius R). Thereafter we can study the limit R→ 0. In the plot one
can clearly see that by decreasing the curvature radius R we regain the lightlike
polygon. Since we have a description of the hyperbolic line in AdS it maybe
useful as a tool to regularize the action.
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(a) Lightlike Polygon

(b) R=1/20 (c) R=1/100

Figure 8.1: Lightlike Polygon as a limit of hyperbolic lines

Finally we want to emphasize that all Wilson loops for which we have a
description in gauge and string theory can be regarded as a further test of the
AdS/CFT duality.
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Appendix A

Clifford Algebras

A.1 Pauli Matrices

The generators of SU(2) are the three Pauli matrices

τ1 =

(

0 1
1 0

)

τ2 =

(

0 −i
i 0

)

τ3 =

(

1 0
0 −1

)

. (A.1)

The satisfy the following properties

τiτj = δij + iǫijkτk, [τi, τj] = 2iǫijkτk, {τi, τj} = 2δij . (A.2)

A.2 Clifford Algebra belonging to SO(4)

Euclidian gamma matrices are defined by (with j = 1, 2, 3)

γj =

(

0 −iτj
iτj 0

)

, γ4 =

(

0 11 0

)

. (A.3)

They satisfy the Clifford Algebra in flat space

{γµ, γν} = 2δµν . (A.4)

In Euclidian signature the chirality matrix γ5 is defined as γ5 = −γ1γ2γ3γ4.
γ5 satisfies the properties

{γ5, γµ} = 0, (γ5)2 = 1 . (A.5)

A.3 Clifford Algebra belonging to SO(1, 3)

The gamma matrices belonging to SO(1, 3) are given by (with j = 1, 2, 3)

γ0 = −i
(

0 11 0

)

, γj =

(

0 −iτj
iτj 0

)

. (A.6)

They satisfy the Clifford algebra

{γµ, γν} = 2ηµν (A.7)

with ηµν = diag(−,+,+,+). The chirality matrix γ5 is defined as
γ5 = −iγ0γ1γ2γ3. Again γ5 satisfies the properties

{γ5, γµ} = 0, (γ5)2 = 1 . (A.8)
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Appendix A: Clifford Algebras

A.4 Clifford Algebra belonging to SO(6)

The matrices ρI , I = 1, . . . , 6 belonging to the Clifford algebra of SO(6) obey
the commutation relations

{ρI , ρJ} = 2δIJ . (A.9)

A.5 Conventions

In the text we use the following conventions

γµν =
1

2
(γµγν − γνγµ), ρIJ =

1

2
(ρIρJ − ρJρI) . (A.10)
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Appendix B

Stereographic Projections

A stereographic projection is a conformal map, therefore it preserves angles.

B.1 Stereographic Projection between S2 and R
2

Let (X,Y ) denote coordinates on the plane whereas (x1, x2, x3) are coordinates
on S2 given by the constraint x2

1 + x2
2 + x2

3 = 1. The stereographic projection
from S2 to R

2 is given by

(X,Y ) =

(

x1

1 − x3
,

x2

1 − x3

)

. (B.1)

The inverse map is given by

(x1, x2, x3) =

(

2X

1 +X2 + Y 2
,

2Y

1 +X2 + Y 2
,
−1 +X2 + Y 2

1 +X2 + Y 2

)

. (B.2)

B.2 Stereographic Projection between H2 and the

unit Disc

Here (X,Y ) are coordinates on the unit disc whereas (x0, x1, x2) are coordinates
on H2 satisfying −x2

0 + x2
1 + x2

2 = −1. The stereographic projection from H2

onto the unit disc is given by

(X,Y ) =

(

x1

1 + x0
,

x2

1 + x0

)

. (B.3)

The inverse transformation reads

(x0, x1, x2) =

(

1 +X2 + Y 2

1 −X2 − Y 2
,

2X

1 −X2 − Y 2
,

2Y

1 −X2 − Y 2

)

. (B.4)

B.3 Half angle Formulas

In the context of the sterographic projections we often make use of the formulas

sinx

1 + cos x
= tan

x

2
,

sinhx

1 + coshx
= tanh

x

2
. (B.5)

75



Appendix B: Stereographic Projections

76



Appendix C

Aspects of SU (N) Gauge Theories

We want to shortly summarize the aspects of SU(N) gauge theories and
Feynman integrals/parameters that are needed throughout the thesis.

C.1 Propagators

First of all let us write down the needed propagators in Feynman gauge in four
dimensions

〈

Aa
µ(x)Ab

ν(y)
〉

=
g2δabηµν

4π2(x− y)2
,

〈

Φa
I(x)Φ

b
J(y)

〉

=
g2δIJδ

ab

4π2(x− y)2
. (C.1)

In 2ω dimensions the propagator is modified in the following way

∆(x) =
Γ(ω − 1)

4πω

1

(x2)ω−1
. (C.2)

The generators of the gauge group SU(N) are denoted by T a; there defining
property is the so called structure equation,

[T a, T b] = ifabcTc (C.3)

here fabc is the structure constant of SU(N). The generators are normalized
in such a way that T aT b = δabN2/2.

C.2 Feynman Parameters

The general Feynman parameter formula is given by

∏

i=1

A−ni

i =
Γ(Σni)

Πi(Γ(ni))

∫ 1

0
dx1 . . . dxk .x

n1−1
1 . . . xnk−1

k

δ(1 − Σixi)

(ΣiAixi)Σni
. (C.4)

C.3 Gamma Function Identities

The Euler Beta function and the gamma function are defined by

Γ(n+ 1) =

∫ ∞

0
dt tne−t, β(µ, ν) =

∫ 1

0
xµ−1(1 − x)ν−1dx =

Γ(µ)Γ(ν)

Γ(µ+ ν)
.

(C.5)
The gamma functions satisfies the following properties [53]

Γ(n+ 1) = n!, Γ

(

2n+ 1

2

)

= (n− 1/2) (n− 3/2) . . . (1/2)
√
π,

Γ(n)Γ(1/2) = 2n−1Γ (n/2) Γ

(

n+ 1

2

)

. (C.6)
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C.4 Feynman Integrals in 2ω dimensions

Feynman integrals in 2ω dimensions can be found in standard quantum field
theory books, for example [16]:

∫

d2ωk(k2 + 2p · k +m2)−s = πω Γ(s− ω)

Γ(s)
(m2 − p2)ω−s (C.7)

∫

d2ωkkµ(k2 + 2p · k +m2)−s = −pµπ
ω Γ(s− ω)

Γ(s)
(m2 − p2)ω−s

∫

d2ωkkµkν(k
2 + 2p · k +m2)−s = πω 1

Γ(s)
(m2 − p2)ω−s

×
[

pµpνΓ(s− ω) − 1

2
ηµνΓ(s− ω − 1)(p2 +m2)

]
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