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Abstract

This thesis deals with three corners of the AdS/CFT Correspondence that
lie one step beyond the classical supergravity (SUGRA) approximation.

We first explore the BMN limit of the duality and study, in particular, the
behavior of field theoretic propagators in the corresponding Penrose limit.
We unravel the semiclassical (WKB-) exactness of the propagators in the
resulting plane wave background metric.

Then, we address the limit of vanishing coupling of the conformal field
theory (CFT) at large N. In the simplified scenario of Higher Spin/O(N)
Vector Model duality, the conformal partial wave (CPW) expansion of scalar
four-point functions are reorganized to make them suggestive of a bulk inter-
pretation in term of a consistent truncated massless higher spin theory and
their corresponding exchange Witten graphs. We also explore the connection
to the interacting O(N) Vector Model at its infra-red fixed point, at leading
large N.

Finally, coming back to the gauge theory, we study the effect of a relevant
double-trace deformations of the boundary CFT on the partition function
and its dual bulk interpretation. We show how the one-loop computation in
the Anti-de Sitter (AdS) space correctly reproduces the partition function
and conformal anomaly of the boundary theory. In all, we get a clean test of
the duality beyond the classical SUGRA approximation in the AdS bulk and
at the corresponding next-to-leading 1/N order of the CFT at the conformal
boundary.

Keywords:
AdS/CFT Correpondence, Penrose limit, CPW, conformal anomaly
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Zusammenfassung

Diese Arbeit beschäftigt sich mit drei Aspekten der AdS/CFT-Korres-
pondenz, die alle einen Schritt über die klassische SUGRA-Näherung hin-
ausgehen.

Zuerst diskutieren wir den BMN Grenzfall der Korrespondenz und un-
tersuchen insbesondere das Verhalten der quantenfeldtheoretischen Propa-
gatoren. Dabei weisen wir nach, dass die Propagatoren im für den BMN Fall
relevanten Hintergrund ebener Wellen semiklassisch (WKB) exakt beschrie-
ben werden.

Danach wird im Rahmen der AdS/CFT-Korrespondenz der Grenzfall ver-
schwindender Kopplung der konformen Feldtheorie betrachtet. Zur techni-
schen Vereinfachung geschieht dies für das Beispiel des O(N)-Vektormodells.
Dabei wird die OPE der Vierpunktfunktionen so umgeschrieben, dass sie
strukturelle Ähnlichkeit mit Witten-Diagrammen einer korrespondierenden
Theorie von Strömen mit höherem Spin hat. Außerdem wird das O(N)-
Vektormodell bei großem N am wechselwirkenden Infrarot-Fixpunkt unter-
sucht.

Im letzten Punkt wenden wir uns schließlich der ursprünglichen AdS/CFT-
Dualität unter Mitnahme der nächstführenden Ordnung der 1/N -Entwicklung
zu. Für die Deformationen der CFT durch relevante Doppelspur-Operatoren
finden wir bei Zustandssummen und konformen Anomalien exakte Überein-
stimmung zwischen direkter und AdS-seitiger indirekter Rechnung. Damit
wird ein nicht trivialer Test der Korrespondenz über die SUGRA-Näherung
hinaus erbracht.

Schlagwörter:
AdS/CFT-Korrespondez, Penrose-Limes, CPW, konforme Anomalie
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Introduction

String theory1 arose in attempts to understand strong interactions. As we
know, this program was not fully successful and later abandoned in favor
of Quantum Chromodynamics (QCD 2) as the quantum field theory (gauge
theory!) of the strong interaction, with asymptotic freedom and ‘infrared
slavery’ playing a crucial role. Yet, string-like behavior arises in QCD as
an emergent feature. For example, long flux tubes are well approximated
by long strings whose dynamics is dictated by Nambu-Goto action. Little
hope was left, however, for a fundamental QCD-string that could lead to,
say, the spectra of light mesons and glueballs. String theory took a drastic
turn after identifying the graviton with the massless spin-two excitation of
the closed string spectrum and tuning the typical size of the string from that
of a hadron (∼ 10−13cm) to the Planck length (∼ 10−32cm). It emerged then
as the leading (if not the only!) prospect for quantum gravity and unification
with the other interactions.

The long-standing belief in an exact string/gauge duality, on the other
hand, was supported by ’t Hooft large-N expansion of QCD. This is the
only known way to turn QCD, with N colors, into a perturbative theory (in
1/N) at all energies. To have well defined Green’s functions in the limit, the
coupling should scale as gYM ∼ 1/

√
N . Another argument in this direction

comes from the RG beta function for pure SU(N) Yand-Mills at leading order
in perturbation theory d

d log µ
gYM ≡ β(gYM) = − 3N

16π2 g
3
YM . When taking

N → ∞, it results in a sensible beta function for the ’t Hooft coupling λ ≡
g2
YMN , namely d

d log µ
λ ≡ β(λ) = − 3

8π2λ
2. This has a remarkable effect in the

Feynman diagrams (for simplicity, consider connected vacuum amplitudes)
which in double-line notation can be viewed as (oriented) two-dimensional
surfaces with holes, the colors loops. It was further conjectured that there
should be an equivalent description in which the holes get filled up, leading to
closed Riemann surfaces without boundaries. The 1/N expansion becomes

1Disclaimer: no attempt will be made to provide a comprehensive set of references for
this introduction, we just refer to [1] and references therein.

2A list of abbreviations is included at the end.
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then a genus expansion, suggestive of a closed string worldsheet expansion
with string coupling gs ∼ 1/N .
Indeed, normalizing the gauge potential so that the coupling appears only
as a factor 1/g2

YM in front of the action, each Feynman diagram (with V
vertices, E propagators and F color loops) carries a factor

(g2
YM)−V+E NF = (g2

YM)−V+E−F (g2
YMN)F ≡ (g2

YM)−χ λF (1)
where we recognize the Euler characteristic χ = 2 − 2g (g=genus of the
Riemann surface, i.e. number of handles) and the ’t Hooft coupling λ ≡
g2
YMN that remains finite in the limit. For any amplitudeA, the perturbative
series of Feynman diagrams can be rewritten as a sum over topologies

A =
∞∑

g,F=0
Fg,F (g2

YM)2g−2 λF =
∞∑
g=0
Fg(λ) (g2

YM)2g−2 =
∞∑
g=0
F̃g(λ)N2−2g (2)

where the coefficients Fg,F depend on the other coupling constants of the
theory. The last two equalities are obtained after adding up the perturbative
expansion at fixed genus and are believed to exist for any value of λ, in
particular at strong coupling.
The large-N limit is dominated by diagrams with the topology of the sphere
but, in contrast to vector models which are then soluble and where the large-
N expansion has its roots, even in this planar limit the gauge theory is far
from being solved (except in d = 2 dimensions).

AdS/CFT Correspondence

The arguments above do not give a direct construction of the string dual
to a specific large-N gauge theory. In particular, concrete realizations for
four-dimensional gauge theories had to wait until the advent of AdS/CFT
Correspondence. Now there are many examples in which, in some decoupling
limit, the dual to gauge theories realized on the worldvolume of D-branes
are known to be none other than type IIB superstrings living in a warped
10-dim space. General gauge theories are supposed to be reached by suitable
deformations of the boundary theory and, correspondingly, of the bulk geom-
etry. In some cases, the duality is a strong/weak one in the sense that when
the gauge theory is strongly coupled, the dual string background is weakly
curved and the superstring theory may be well approximated by supergravity
(SUGRA).

Let us roughly recall the circle of ideas that motivated Maldacena’s con-
jecture. Of course, each one is a whole rich field by its own, so that we will
omit the details and just highlight the relevant quantities (modulo numerical

2



INTRODUCTION

factors), in the maximally symmetric scenario, leading to the final mapping
of parameters.
• IIB SUGRA as low energy limit (effective field theory as α′ ≡ l2s → 0) of

type IIB strings: 10-dim Newton constant and therefore 10-dim Planck
length in terms of string length ls and string dimensionless coupling
constant gs,

lP = ls g
1/4
s . (3)

• Tension (mass per unit volume) of a Dp-brane, stable (BPS) soliton-
like membranes in theories of closed strings. Solitonic nature seen in
the tension τp ∼ 1/gs. Balance between gravitational attraction and
RR repulsion, mass=charge. Preserve 16 SUSYs. Dimensional analysis
fixes the rest,

τp = 1
gs l

p+1
s

. (4)

• SYM realized on the worldvolume of Dp-branes, as massless spectrum
of open strings ending on a stack of Dp-branes. Low energy limit
dynamics dictated by DBI action. Once τp is known, gYM follows as

g2
YM = 1

τp l4s
= gs l

p−3
s . (5)

Notice that for D3-branes, the worldvolume is four-dimensional and
g2
YM = gs is dimensionless, as expected.

• Classical SUGRA (p=3)-brane (extremal) solution, carrying RR-charge
(quantized flux) and constant dilaton. Preserve 16 SUSYs, BPS con-
dition mass=charge. Details encoded in a harmonic function of the
transverse coordinates r: H = 1 + L4

r4
. Harmonic superposition princi-

ple, which follows from the BPS condition, implies that for a stack of
coincident branes L4 is additive. So is the ADM mass, i.e. no binding
energy, so that M ∼ L4 and the rest is fixed by dimensional analysis

M = L4

l8P
. (6)

• Dual descriptions of the very same object. Large number N of copies
source gravity and have an effective description in terms of classical
metric, dilaton and RR field switched on:

M = N τ3 . (7)

This identification fixes L4

l4s
= gsN = g2

YM N = λ and L4

l4P
= N .

3



• Near-horizon/decoupling/Maldacena’s limit: ls → 0, keeping U ≡ r
l2sand all other physical scales fixed. In this limit the geometry becomes

that of the throat AdS5 × S5, with AdS on its Poincare patch (z ≡√
λ/U), with equal radii L

ds2 = L2

z2 (dz2 + dx2
µ) + L2dΩ2

5. (8)

This near-horizon region decouples from the asymptotically flat region
of the D3-brane and at the same time, the SYM theory in the worldvol-
ume decouples from the closed strings (i.e., from gravity!). The relation
between the dimensionless parameters of the two theories, IIB Super-
string in the near-horizon geometry and N = 4 SU(N) SYM4, goes
then as follows

gs = g2
YM (9a)

L4

l4s
= λ (9b)

or L4

l4P
= N. (9c)

In units of the radius 3 of AdS, we have that the Planck length decreases
in the large-N limit. Quantum loop effects are therefore suppressed and one
can trust classical string theory. In addition, the string size in the same units
decreases when λ is large, so that at strong ’t Hooft coupling one can rely on
the classical SUGRA approximation. There are, in consequence, three stages
of Maldacena conjecture:

• Strong form: duality between full quantum IIB string theory on AdS5×
S5 and N = 4 SU(N) SYM4 for any value of N and gYM .

• ’t Hooft limit: duality between classical IIB string theory on AdS5×S5

and planar limit N = 4 SU(N) SYM4 for any fixed λ. Perturbative
expansion in gs corresponds to the perturbative 1/N one.

3Most of the time we are going to be using this units, e.g. to recover the mass dimension
m→ mL.
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• Classical SUGRA approximation: duality between classical IIB SUGRA
on AdS5 × S5 and planar N = 4 SU(N) SYM4 at strong coupling λ.
The α′ corrections to SUGRA correspond to 1/

√
λ corrections.

The 4-dim N = 4 supersymmetric SU(N) gauge theory has adjoint mat-
ter consisting of 4 Majorana fermions and 6 scalars. All Yukawa and scalar
self-couplings are given in terms of the gauge coupling. The theory is confor-
mally invariant, i.e. has vanishing β-functions. This maximally symmetric
version of the correspondence maps the isometry group of AdS5 (SO(2, 4)) to
the conformal group in 1+3-dimensional Minkowski space and the isometries
of the sphere S5 (SO(6) ∼ SU(4)) are mapped to the internal R-symmetry
of the N = 4 SYM. The supersymmetric completion of these bosonic sym-
metries results in PSU(2, 2 | 4).

There is in addition a one-to-one map between gauge invariant operators
in the CFT at the boundary and fields (or extended configurations) in the
bulk of AdS5. The symmetries naturally lead to the identification between
scaling dimension of (conformal primary) operators and mass of the dual
bulk field. As an illustration, consider the boundary two-point function of
an operator O with scaling dimension ∆ and the corresponding bulk Green’s
function of its dual scalar field φ with a huge mass m. In this “classical”
limit, the bulk propagator is given essentially by the classical action of a
very massive particle e−m

√
σ, where

√
σ is the geodesic distance between the

two spacetime points in consideration. Let them now approach the boundary:
in the Poincare coordinates of before, small ε is a radial IR-cutoff and

√
σ ∼

log |x−x
′|2

ε2
. That gives e−m

√
σ ∼ ( |x−x

′|2
ε2

)−m and can be directly compared
with the CFT correlator 〈O(x)O(x′)〉 ∼ ( |x−x

′|2
b2

)−∆ with an UV-cutoff b.
We are then lead to the identification m ∼ ∆ (the precise relation being
m2 = ∆(∆− 4)) and ε ∼ b.
The correspondence was further given a precise calculational prescription,
involving the generating functional of correlation functions in the CFT and
the string partition function with given boundary conditions. In the SUGRA
approximation, correlators at λ >> 1 are obtained from the saddle point
approximation, i.e. from the classical SUGRA action.

As said before, many other examples of the correspondence have been
found from other brane systems containing many potential predictions rather
than confirmation of somehow expected features.

Holography and IR/UV-connection

The generic picture is that of string/M-theory on a certain manifold being
equivalent to a quantum field theory on its (conformal) boundary. This can

5



be rephrased as: (a candidate for) a consistent quantum theory of gravity
whose fundamental degrees of freedom reside at the boundary of spacetime
rather than in the bulk interior. This assertion entails part of the holographic
principle, which had been earlier conjectured.
However, the claim that AdS/CFT correspondence is a realization of the
holographic principle, even in the well understood cased of above, based
only on the mapping of Green’s functions and bulk-field/boundary-operator
identifications is certainly incomplete. With some exaggeration, this is just
as “holographic” as classical boundary value problems in electrostatics or the
Cauchy problem in PDEs.

It remains to be verified the holographic bound, namely that there is
at most one degree of freedom per Planck “area” on the boundary. The
difficulty in establishing the bound being two-fold due to the divergent area
of the boundary and the infinitely many degrees of freedom of the continuous
gauge theory. On one hand, introducing an UV-cutoff on the gauge theory
one can count the resulting finite number of degrees of freedom. Let us
consider Poincare coordinates

ds2 = L2

z2 (−dt2 + dz2 + d−→x 2) (10)

and at fixed time t and at fixed distance z from the boundary, divide a
“surface” (a three dimensional volume, in fact) region V into elementary
cells by introducing an UV-cutoff b. All points inside each individual cell of
size b3 are “coarse-grained” to a single one and we also have a finite amount of
cells V

b3
. There are then roughly N2 degrees of freedom associated to each cell,

since the elementary field is matrix-valued. We wind up with Ndof ∼ V
b3
N2

degrees of freedom in the UV-regulated boundary theory. On the other hand,
the infinite area of the conformal boundary of AdS can be rendered finite
by an IR-cutoff, the distance ε to the boundary. At fixed time t and at a
small distance ε from the boundary the area is given by the integral of the
induced metric Area =

∫
d3−→x
√
h = V L3

ε3
. The “area” V is “red-shifted” by

the warping factor L2/z2 in the Poincare metric. Taking then the ratio of
the two regularized quantities

Ndof

Area
∼ N2

L3
ε3

b3
∼ L5

l8P

ε3

b3
∼ 1
l3P5

ε3

b3
(11)

the cut-off dependence goes away and one gets (modulo numerical factor)

6
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one degree of freedom per 5-dim Planck area4 on the boundary,

Ndof

Area/l3P5

∼ 1 (12)

provided one identifies the cut-offs ε
b
∼ 1. This identification that solves the

issue of the entropy bound is known as the IR/UV-connection in AdS/CFT.
This relation we already met before in the analysis of two-point functions and
is supported by several other arguments. For example, recall the mapping of
symmetry groups: a rigid scaling to localize objects in the CFT comes, e.g.
in Poincare coordinates, with a corresponding scaling of the radial distance,
so that the boundary gets closer. In all, the Bekenstein bound is justified in
AdS/CFT.

RG flow and holographic c-theorem

Pushing forward the IR/UV-connection, the mapping of the conformal
anomaly (c-charge) immediately follows at leading large-N. In the free field
theory in a curved background, it is read from the “log-term” in the UV-
regulated one-loop effective action. According to the AdS/CFT prescription,
one looks at the classical gravity action on AdS (which is IR-divergent due to
the infinite volume) to get the corresponding quantity at strong coupling. In
the light of the IR/UV-connection, one should look then at the coefficient of
the “log-term” in the IR-regulated version. It happens to coincide with the
anomaly of the full N = 4 SYM multiplet. A non-renormalization theorem,
due to SUSY, lies behind this strong/weak matching.

Perturbing the original CFT by some relevant deformation the theory
generically flows to another CFT or to a theory with a mass gap. In the first
case, the SUGRA side is described by a domain wall solution interpolating to
another AdS-like region which represents the IR theory. The RG evolution
parameter (energy scale) becomes a coordinate in spacetime. For all these
SUGRA-driven flows a c-function follows naturally, decreasing along the flow.
The IR geometry is that of AdS with smaller radius. The central charge of
N = 4 SU(N)SYM at leading large-N being c ∼ N2, a measure of the number
of (massless) degrees of freedom, is translated into c ∼ L8

l8P
. Therefore, the

decrease in the radius is translated in a decrease of the central charge at IR,
in accord with generalizations of the c-theorem to four dimensions.

Our motivations
4 That is, Area/G5 with the effective 5-dim Newton constant and Planck length related

to the 10-dim parents via the volume of the S5: G5 ∼ l3P5
∼ l8P

L5 .
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Our aim in this thesis is to explore some limits of the AdS/CFT Corre-
spondence which promise to be more tractable than the original formulation.
One limit corresponds to a large quantum number regime in the gauge the-
ory (BMN limit) which is translated in a Penrose limit of the background
geometry, ending up in a plane wave. Progress in the construction of the
relevant field theoretic propagators were restricted to the scalar one, where
some similarities with flat space were noticed. Second motivation comes from
considering the λ = 0 limit in the ’t Hooft large-N expansion. Even in this
limit, correlation functions for gauge invariant composite operators admit a
topological expansion and several efforts have been done in trying to under-
stand the AdS dual of such limit. The OPE analysis reveals the presence of
higher spin currents, suggestive of a higher spin theory as the effective field
description in the bulk. A simplified scenario is that of the free O(N) vector
model at large N. One should be able to rewrite four point correlators in
terms of Witten graphs in AdS, involving the exchange of an infinite tower
of HS fields. As a bonus, some connections to the IR fixed point of the inter-
acting theory may be found. Finally, this flow from UV to IR at large N fits
in naturally in the generalized AdS/CFT prescription to incorporate double-
trace deformations. In this context, there were impressive results mapping
1/N2 corrections to the conformal anomaly and evidence for the validity of
the holographic c-theorem at this non-trivial level, but several issues were
open stemming from the formal identity between partition functions.

Outline
We start with a preliminary first chapter reviewing the proper-time con-
struction and its uses to compute conformal anomaly, effective action and
free correlators. We also briefly review the holographic anomaly, the map-
ping of symmetries and the Fefferman-Graham construction as preparation
for the subsequent chapters. The original contributions in the following chap-
ters are based on joint work with my advisor Dr. Harald Dorn [34, 35, 36].
In the second chapter we study field theoretic propagators in the plane wave
limit of the correspondence. Our main goal is to gain some understanding of
the semiclassical nature of the limit, that is apparent in this large-quantum-
number limit of the gauge theory. In the third chapter another corner, that
of a free CFT, is addressed in the simplified scenario of the Higher Spin/O(N)
Vector Model duality. As a natural generalization of the pattern found here,
we further examine the effect of double-trace deformations back to gauge
theory. In particular, the issues of partition functions and (correction to)
conformal anomaly are addressed in the fourth chapter. We close with con-
clusion and outlook. Useful formulas and supporting material are collected
in a series of appendices.
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Chapter 1

Preliminaries

In this chapter we briefly review some basic constructions, focusing on the
aspects that are relevant for the original contributions of the subsequent
chapters.

1.1 Proper-time
One central technique underlying all issues addressed in this thesis is the
proper-time representation of Green’s functions. Most of this background
material in contained in the classic work [30, 31].

1.1.1 Schwinger-DeWitt construction
Let us start with the scalar Feynman propagator in a curved background. It
is the solution of the wave equation with a point-like source(

�−m2
)
G(x, x′) = δ(x, x′) (1.1)

together with appropriate boundary conditions. Here δ(x, x′) denotes the in-
variant δ-function. The Fock-Schwinger-DeWitt proper-time representation
for the Feynman propagator, which incorporates the Feynman boundary con-
ditions by the i0+ prescription, is based on the formal solution

1
�−m2 + i0+ = −i

∫ ∞
0

ds e−ism
2−s0+

eis� . (1.2)

The Schwinger-DeWitt kernel (the kernel of the exponentiated operator),

K(x , x′ | s) ≡ 〈x | eis� | x′〉 = eis�δ(x, x′) (1.3)

9



CHAPTER 1. PRELIMINARIES

satisfies the following “Schrödinger equation” and initial condition

(i∂s + �)K(x, x′ | s) = 0 (1.4a)

K(x, x′ | 0) = δ(x, x′). (1.4b)

A WKB-inspired ansatz for the solution, meant to be only an asymptotic
one, is

K(x, x′ | s) = i

(4πis) d2
4

1
2 e iσ/2s Ω(x, x′ | s) + ... (1.5)

whereσ(x, x′) is the geodetic interval (half the geodesic distance squared
between the two points),

4(x, x′)[g(x)g(x′)] 1
2 ≡ −det(− ∂2σ

∂xµ∂x′ν
) (1.6)

is the Van Vleck-Pauli-Morette determinant (an important improvement of
the WKB ansatz). Ω(x, x′ | s) has a power expansion in the proper time s

Ω(x, x′ | s) =
∞∑
n=0

(is)n an(x, x′), (1.7)

whose coefficients an(x, x′) are regular functions in the coincidence limit x→
x′, and finally the ellipsis stands for indirect geodesic contributions. The
coefficients, sometimes referred to as HaMiDeW coefficients, must satisfy the
recursion relation

(n+ 1) an+1 + ∂µσ ∂µan+1 = 4− 1
2 � (4 1

2an) (1.8)

starting with ∂µσ ∂µa0 = 0 and a0(x, x) = 1. For the present scalar case, the
chain of HaMiDeW coefficients trivially starts with a0(x, x′) = 1.

1.1.2 Effective action
The 1-loop effective action resulting from integrating out the quadratic fluc-
tuations of the scalar field is given by the logarithm of the fluctuation deter-
minant

W = 1
2log det(−� +m2) = 1

2tr log(−� +m2). (1.9)

10



1.1. PROPER-TIME

Notice that ∂
∂m2 formally gives the trace of the propagator. Using the

proper-time representation of above, the derivative can be undone to get

W = 1
2tr

∫ ∞
0

ds

is
e−im

2sK(x, x′ | s) + const (1.10a)

= 1
2tr

∫ ∞
0

ds

is

i

(4πis) d2
e iσ/2s−im

2s Ω(x, x′ | s) + const (1.10b)

=
∫
w(x)

√
g(x) dnx+ const (1.10c)

where we used the fact that the coincidence limit of the Van Vleck-Morette
determinant is one.
The proper-time integral diverges at the lower limit for all positive values
of the spacetime dimension n, as can be seen after inserting the expansion
(1.7). Now, it can be regularized respecting the symmetries of the classical
action. To this end, one interprets the dimensionality n of spacetime as a
complex number instead of a positive integer and defines w(x) by analytic
continuation from the region of convergence in the complex n-plane to the
vicinity of the actual physical dimension. For dimensional reasons, one has
to introduce an arbitrary mass scale µ. One can therefore integrate by parts
and afterwards come back to the physical dimension

n→ 2 :

w(x) = − 1
4π

( 1
n− 2 −

1
2

){
a1(x, x)−m2

}
− i

8π

∫ ∞
0

ds log(4πiµ2s)( ∂

i∂s
)2
[
e−im

2s Ω(x, x | s)
]
. (1.11)

n→ 3 :

w(x) = i

12π 3
2

∫ ∞
0

ds (is)− 1
2 ( ∂

i∂s
)2
[
e−im

2s Ω(x, x | s)
]
. (1.12)

n→ 4 :

w(x) = − 1
32π2

( 1
n− 4 −

3
4

){
2a2(x, x)− 2m2a1(x, x+m4

}
− i

64π2

∫ ∞
0

ds log(4πiµ2s)( ∂

i∂s
)3
[
e−im

2s Ω(x, x | s)
]
. (1.13)

The divergences show up as poles in the complex n-plane in even dimensions.
In odd dimensions, in turn, there is generally no divergence in one-loop order
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CHAPTER 1. PRELIMINARIES

with DR. The terms containing the poles are real valued and have no effect on
the vacuum persistence probability. They may be subtracted (renormalized)
without affecting the physical content of the theory.

The diagonal coefficients of the SD expansion (1.7) are expressed in terms
of local curvature invariants, valid as well for a nonminimally coupled scalar
(ξ 6= 0), with no explicit dependence on the dimension. The first nontrivial
ones are

a1(x, x) =
(1

6 − ξ
)
R. (1.14a)

a2(x, x) = 1
6

(1
5 − ξ

)
�R + 1

2

(1
6 − ξ

)2
R2

− 1
180Ric

2 + 1
180Riem

2. (1.14b)

1.1.3 Conformal/trace/Weyl anomaly

Not all local invariances survive renormalization, conformal invariance is a
typical example. Consider a massless scalar conformally coupled, that is,
with ξ = 1

4
n−2
n−1 for which the DR-regularized W is

n→ 2 :

W = Wren −
1
4π

( 1
n− 2 −

1
2

) [1
6 −

1
4
n− 2
n− 1

] ∫
R
√
gdnx (1.15)

n→ 4 :

W = Wren −
1

16π2

( 1
n− 4 −

3
4

) ∫ {
1
6

(
1
5 −

n− 2
4(n− 1)

)
�R

+1
2

[
n− 4

12(n− 1)

]2

R2 − 1
180Ric

2 + 1
180Riem

2

 √gdnx (1.16)

whereWren is the finite remainder after subtraction of the local terms. Under
a metric variation δgµν one gets for the renormalized trace of the stress-energy
density

2gµν δWren

δgµν
= 〈T µ

renµ 〉 , (1.17)
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after some computation,

n→ 2 :

〈T µ
renµ 〉 →

1
24πg

1
2 R (1.18)

n→ 4 :

〈T µ
renµ 〉 →

1
16π2 g

1
2

1
180

(
�R−Ric 2 +Riem 2

)
, (1.19)

where the invariance of the the classical action, and hence of W , was used.
The variation of Wren can be read off from that of the local counterterms.
The anomaly arises then in DR due to a cancelation of the pole against a
zero coming from the variation of these counterterms, which are certainly
invariant at the physical integer dimension.

In even dimensional spacetime the renormalized stress-energy tensor is
seen to have a nonvanishing trace, the trace anomaly. It can be expressed
for all n in the form

〈T µ
renµ 〉 =


0 (n odd)

1
(4π)n/2 g

1/2(x) an/2(x, x) (n even).

Back to four dimensions, the geometric local contributions to the anomaly
are exhausted by the following four conformal invariants

〈T µ
renµ 〉 = c

16π2Weyl2 − a

16π2 R̃iem
2 + α�R + βR2, (1.20)

with the Weyl tensor squared and Euler density given by

Weyl2 = Riem2 − 2Ric2 + 1
3R

2 (1.21a)

R̃iem
2 = Riem2 − 4Ric2 +R2. (1.21b)

The “charges” c and a are renormalization-scheme independent. The β-
term does not satisfy Wess-Zumino consistency which means that no effective
action, local or non-local, can give rise to an R2 trace. The α-term is scheme
dependent (see e.g. [8]) and is the variation of the local term

∫
d4x
√
gR2.

Usually, only the first two terms are considered as non-trivial anomalies.
Our previous result for a real free scalar corresponds to c = 1

120 and
a = 1

360 . The extension to N0 scalars and inclusion of N1/2 Dirac spinors and
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N1 gauge bosons generalize to

c = N0 + 6N1/2 + 12N1

120 (1.22a)

a = N0 + 11N1/2 + 62N1

360 . (1.22b)

The conformal anomaly is not an obstacle for consistent quantization,
even if the background metric is allowed to become dynamical. The diffeo-
morphism invariance is the one that must be preserved by the renormaliza-
tion procedure. This is similar to the flat spacetime pure YM theory where
despite the conformal invariance of the classical action in four dimensions,
gauge invariance is the one preserved by quantization.

1.2 Holographic anomaly
Let us consider the free N = 4 SU(N) SYM4 and perform the counting of
fields to get their contribution to the conformal anomaly. We have then to
include the gauge field, 6 real scalars and 4 Majorana (or Weyl) fermions
(counted as 2 Dirac spinors) and on top of that, all in the adjoint, N2 − 1
copies of each. That makes (N1, N1/2, N0) = [N2 − 1](1, 2, 6) and therefore

c = a = N2 − 1
4 . (1.23)

Whenever c = a the Riemann tensor squared goes away and one gets

〈T µ
renµ 〉 = c

8π2

(
Ric2 − 1

3R
2
)
. (1.24)

The anomaly is robust with respect to the regularization scheme used to
control the divergences. Had we chosen an UV-cutoff ε in the proper-time
integral to control the divergences, the anomaly would have shown up as the
coefficient of a log ε-term.

Motivated by the IR/UV-connection, let us look at the log-term in the
gravitational action. Here we have to “fluctuate” the AdSn+1 geometry to
have a source for the boundary stress tensor. This can be done in a re-
stricted way, letting the metric to be that of a Poincare-Einstein manifold,
i.e. Ric(g+) = −ng+ (the L−2 factor is absorbed in a redefinition of g). In
this case, the action is proportional to the (infinite) volume of the space and
it is supplemented by some boundary terms (e.g. Gibbons-Hawking), but
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1.2. HOLOGRAPHIC ANOMALY

they play no role in the anomaly calculation. The bulk geometry can be
partially reconstructed by an asymptotic expansion, which is essentially the
content of the Fefferman-Graham theorem [49], and all divergencies can be
isolated. One can always find local coordinates near the boundary (at r = 0)
to write the bulk metric as

g+ = r−2{dr2 + gr}. (1.25)

Euclidean AdSn+1 corresponds to the choice gr = (1− r2)2g0 with 4 g0 being
the round metric on the sphere Sn. The “reconstruction” theorem leads to
the asymptotics

n odd :
gr = g(0) + g(2)r2 + (even powers) + g(n)rn + ... (1.26)

n even :
gr = g(0) + g(2)r2 + (even powers) + g(n)rn + hrnlog r + ... (1.27)

where g(0) = g is the chosen metric at the conformal boundary. For odd n,
g(j) are tensors on the boundary and g(n) is trace-free. For 0 ≤ j ≤ n−1, g(j)

are locally formally determined by the conformal representative but g(n) is
formally undetermined, subject to the trace-free condition. For even n, g(j)

are locally determined for j even 0 ≤ j ≤ n− 2, h is locally determined and
trace-free. The trace of g(n) is locally determined, but its trace-free part is
formally undetermined. All this is dictated by Einstein equations.

The volume element has then an asymptotic expansion

dvg+ =
√
detgr
detg

dvg dr

rn+1

= {1 + v(2)r2 + (even powers) + v(n)rn + ...}dvg dr
rn+1 , (1.28)

where all coefficients vj, j = 1..n are locally determined in term of curvature
invariants of the boundary metric and vn = 0 if n is odd. The volume regu-
larization can be carried out with an IR-cutoff ε and results in an asymptotic
expansion in negative powers of ε

n odd :
Volg+(r > ε) = c0ε

−n + c2ε
−n+2 + (odd powers) + cn−1ε

−1

+ V + o(1) (1.29)
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n even :
Volg+(r > ε) = c0ε

−n + c2ε
−n+2 + (even powers) + cn−2ε

−2

− L logε+ V + o(1). (1.30)

When n is odd, the constant term V in the expansion (renormalized
volume) turns out to be independent of the conformal choice of the boundary
metric. If n is even, in turn, V is no longer invariant and its variation under
a Weyl transformaton of the boundary metric gives rise to the conformal
anomaly. It is

L =
∫
d4x
√
g v(n) , (1.31)

the coefficient of the logε-term, the invariant one in this case and it is given
by the integral of a local curvature expression on the boundary. The variation
of V happens to be connected to this invariant, g → e2σg for infinitesimal σ
makes V → V +

∫
d4x
√
g v(n)σ. In four dimensions, we have

v(4) = 1
32

(
Ric2 − 1

3R
2
)
. (1.32)

Back to physics, to fix the overall coefficient we only have to include the
constant Lagrangian R − Λ = −8

L2 , the volume dimensions L5, which were
rescaled away, and Newton’s 5-dim constant 1

16πG5
= Vol(S5)

16πG10
= N2

8π2L3 . Alto-
gether, the anomaly comes with the same coefficient as the free CFT anomaly
computed before, at leading large-N [69]. The mismatch N2 instead of N2−1
as in the field theory computation is an O(1/N2) correction that should be
related, according to the correspondence, to a quantum loop in the SUGRA
approximation.

1.3 Emergent AdS from free correlators
One important feature of the IR/UV-connection in the matching of the con-
formal anomaly is the analogy between the Schwinger parameter in the free
field computation and the radial coordinate in AdS. As a remarkable out-
growth of this observation, Gopakumar [55, 56, 57] embarked on a broader
project where the original hope was to start with Schwinger parametrization
of the CFT correlators and, after some transformations on this moduli space,
pursue the emergence of AdS geometry in the form of Witten graphs. The
simplest setting is that of the free limit of the CFT where correlators of com-
posite singlet operators still admit a topological expansion in powers of 1/N2.
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Let us consider the single-trace bilinear O = TrΦ2 in the free field theory
limit where it carries the naive dimension ∆ = d − 2. Start with the two-
point correlation function which is easily obtained after Wick contracting,
only the free propagator is needed,

〈O(x1)O(x2)〉 ∼
1
r∆
12
. (1.33)

Pictorially, this planar contribution is represented by a loop with insertions
at the location of the operators.

Let us nonetheless make a detor by deriving this simple result using the
worldline formalism, i.e. the first quantized picture. The amplitude is de-
scribed then by a path integral along the loop and forced to meet the insertion
points

Γ(x1, x2) =
〈∫ T

0

∏
i=1,2

dτi δ(x(τi)− xi)
〉

(1.34)

where the average is taken with respect to the free particle vacuum amplitude

〈...〉 =
∫ ∞
0

dT

T

∫
T−periodic

Dx(τ) exp
{
−1

2

∫ T

0
dτ ẋ2(τ)

}
... (1.35)

The easiest way to take the Gaussian path integral is to go to momentum
space and it can be solved in terms of the classical path. The only input is
the Green’s function of the one-dimensional operator − d2

dτ2 on the circle. In
the present case one gets, in addition to an overall delta-function enforcing
momentum conservation, after little effort

Γ̃(p) =
∫ ∞
0

dT

T
d
2−1

∫ 1

0
dα exp

{
−α(1− α)T

2 p2
}
. (1.36)

There has been already a gluing up here, two Schwinger parameters were
traded by one. To see this more explicit in terms of an electric circuit analogy,
let us introduce an auxiliary momentum integral to break up the exponential

Γ̃(p) =
∫ ∞
0

dT T
∫ 1

0
dα

∫
ddq exp

{
−αT2 q2 − (1− α)T

2 (p− q)2
}
. (1.37)

The overall proper-time integral brings the amplitude back to the usual
Feynman parameter trick to compute the loop. But already in the above form
the gluing up is more transparent: we have the power dissipated by the circuit
where the “input current” p was split in the two legs carrying q and p − q
with “resistances” αT and (1−α)T , respectively. The gluing up consists then
in the substitution of the “resistors in parallel” by the “equivalent resistor”
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α(1 − α)T carrying all the input current. The equivalent circuit has then a
single resistance and the “power dissipated” is α(1− α)Tp2.

Now we want to argue that this glued-up form naturally leads to a Witten
graph in AdS, namely, the convolution of two bulk-to-boundary propagators
of the dual bulk field

Γ(x1, x2) ∼
∫ ∞
0

dz

zd+1

∫
ddx3

{
z

z2 + r13

}∆ {
z

z2 + r23

}∆
. (1.38)

In going to position space, one introduces a “center-of-mass” coordinate
to represent the overall momentum conservation. This integration, together
with the overall proper-time T , results in the volume element of AdS in
Poincare coordinates. The glued-up integrand is essentially the Schwinger
parametrization of the denominators of the bulk-to-boundary propagators.
Despite finding the correct functional dependence in both cases, there are
subtleties concerning two point functions because of their poor convergence
in the massless limit (CFT!) and the precise matching is spoiled by some
formally divergent factors that we do not attempt to regularize. Instead, we
turn to the better behaved case of the three-point function.

For brevity, we work directly in position space. The correlator is just the
product of three correlators of the elementary fields Φ,

〈O(x1)O(x2)O(x3)〉 ∼
1

r
∆/2
12 r

∆/2
23 r

∆/2
31
∼

∏
cyclic(1,2,3)

∫ ∞
0

dτi τ
∆/2−1
i exp{−τi rjk}

(1.39)
where we have introduced Schwinger parameters τi for each edge of the “trian-
gular loop”. Now we introduce an auxiliary point x4 to beak-up the gaussian
exponent∏

cyclic(1,2,3)
exp{−τi rjk} = (

∑
i=1,2,3

ρi)d/2
∫
ddx4

∏
i=1,2,3

exp{−ρi ri4}, (1.40)

where τ1 = ρ2 ρ3/
∑
i=1,2,3 ρi, etc. This is precisely the relation in electric

networks between “delta-” and “star-” configurations of conductances. In
momentum space the Schwinger parameter becomes the inverse of that used
in position space and therefore the analogy is with resistances as in the
previous case of the two-point function. The Jacobian of the transformation
{τi} → {ρi} is ρ1ρ2 ρ3/(

∑
i=1,2,3 ρi)3. An additional Schwinger parameter for

the factor (∑i=1,2,3 ρi)d/2−3∆/2 casts the original correlator in the following
form∫ ∞

0

dT

T d/2+1

∫
ddx4

∏
i=1,2,3

∫
dρiρ

∆−1
i T∆/2 exp{−ρi T − ρi ri4}. (1.41)
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Here we immediately recognize the Witten graph associated to the convolu-
tion over a common bulk point (z,−→x 4) of three bulk-to-boundary propagators

〈O(x1)O(x2)O(x3)〉 ∼
∫ ∞
0

dz

zd+1

∫
ddx4

∏
i=1,2,3

K∆(z,−→x 4;−→x i), (1.42)

where T ≡ z2 and three Schwinger parameters, as before, were used to
exponentiate the denominator of

K∆(z,−→x ;−→y ) = C∆
z∆

[z2 + (−→x −−→y )2]∆ . (1.43)

The pattern is the same as before, coming from momentum space, the over-
all momentum conservation is traded by a center-of-mass integration that
together with the overall proper-time combine in the measure for AdS and
the integrand can easily be related, as expected, to the bulk-to-boundary
propagators.

The effect of trading loops by trees can be seen as a degenerate version
of open/closed duality transformation which is believed to be the dynamical
principle behind all forms of gauge/string dualities [103]. The field theory
is inherited from open strings in the limit α′ → 0 and the worldlines are
remnants of open string worldsheets. They close to form tree diagrams which
are in turn a degenerate version of a planar closed worldsheet. That is, the
gluing up is a realization of the filling of the holes in the ’t Hooft expansion at
large N. The hope was to start from the free field theory and reconstruct the
closed string theory, or at least its effective field theory description at large
N (the long-sought master field). In fact, the more ambitious program goes
beyond the bilinears single trace operators and the planar limit by exploiting
the electrical network analogy and, after a partial gluing up into “skeleton
diagrams”, one discovers the moduli space of punctured Riemann surfaces.

1.4 Isometries vs. conformal symmetries
Let us take a brief look at the matching of symmetries that played a leading
role in the original formulation of the Maldacena’s conjecture. We will make
AdSd+1 − isometry/Md − conformal − symmetry manifest by considering
an ambient d+2-dimensional flat space. Let us choose the metric ηAB =
diag(−1, 1, ..., 1,−1)

ds2 = −dX2
0 + d

−→
X 2 − dX2

d+1. (1.44)

with A,B = 0, 1, ..., d, d+ 1.
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Isometries of AdSd+1

As is well-known, anti-de Sitter space AdSd+1 can be viewed as (the uni-
versal covering of) the embedded hyperboloid

−X2
0 −X2

d+1 +−→X 2 = −L2. (1.45)

The isometries of AdS, coordinate transformations that leave the metric
invariant, are then the homogeneous (“Lorentz”) part of the isometries of the
embedding flat space, that is, SO(2,d) (for those connected to the identity).
They are linearly realized with generators

JAB = XA
∂

∂XB
−XB

∂

∂XA
. (1.46)

Being maximally symmetric, AdSd+1 has as many isometries as the Minkowski
spaceMd+1, which add up to (d+1)(d+2)/2. This is precisely the counting
of the JAB.

There are several popular choices of coordinates, some of them cover only
a portion of the full hyperboloid as is the case of the Poincare patch: consider
local coordinates

Xµ = u

L
xµ (µ = 0, 1, ..., d− 1) (1.47a)

X+ := Xd +Xd+1 = u

L
(1.47b)

X− := Xd −Xd+1 = −u
2 xµxµ + L4

uL
, (1.47c)

the induced metric on the hyperboloid is then

ds2 = L2

u2 du
2 + u2

L2dx
µdxµ. (1.48)

This Poincare patch (we had it before after u/L→ L/z) covers only half of
the whole hyperboloid.

Conformal symmetries ofMd

Somewhat less known is the fact that if in the same ambient (Dirac’s
conformal space [37]) one considers the embedding

−X2
0 −X2

d+1 +−→X 2 = 0 (1.49)

of a null hypercone, then conformal transformations of d-dim Minkowski
space act linearly on the homogeneous coordinates XA. The corresponding
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generators are precisely the JAB of above! Consider the local coordinates of
above adapted to the cone, just take L→ 0 and keep fixed u/L := γ 6= 0,

Xµ = γ xµ (µ = 0, 1, ..., d− 1) (1.50a)
X+ = γ (1.50b)
X− = −γ xµxµ . (1.50c)

The “induced metric” on the cone is degenerate and conformal to Minkowski

ds2 = γ2 dxµdxµ. (1.51)

The degeneracy is easy to understand, all points in the equivalence class
XA ∼ λXA with λ 6= 0 are mapped to the same cone. The intersection with
the hyperplane X+ = γ = 1 results in Minkowski space

ds2 = γ2 dxµdxµ. (1.52)

The isometries of the original metric that leave the cone invariant form
the group O(2, d). Let us see their action on the above obtained Minkowski
space:

(Xµ, X+, X−)→ (Λµ
νX

ν , X+, X−) (1.53a)
⇒ (xµ, γ)→ (Λµ

νx
ν , γ), (1.53b)

(Xµ, X+, X−)→ (Xµ + Λµ
+X

+, X+, X−) (1.53c)
⇒ (xµ, γ)→ (xµ + aµ, γ), (1.53d)

where we set Λµ
+ := aµ. Since they leave γ invariant, they are also isometries

of Minkowski space and form the Poincare group that is linearly realized on
the coordinates xµ as seen above. They exhaust d(d+1)/2 of the (d+1)(d+
2)/2 = d(d+ 1)/2 + 1 + d continuous symmetries. Consider further

(Xµ, X+, X−)→ (Xµ, X+/λ, λX−) (1.54a)
⇒ (xµ, γ)→ (λxµ, γ/λ). (1.54b)

This symmetry, dilatation, is still linearly realized but re-scales the Minkowski
metric by the constant factor λ2. Finally, consider the discrete transformation
that exchanges the + and − directions

(Xµ, X+, X−)→ (Xµ, X−, X+) (1.55a)

⇒ (xµ, γ)→ (− xµ

xνxν
,−γxνxν). (1.55b)
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This is nothing but the inversion in Minkowski space that produces an ad-
ditional (conformal) factor 1/(xνxν)2 in the metric. It is not a continu-
ous symmetry, but one can consider the sandwich of two inversions and
any of the previous transformations. The only nontrivial result comes from
inversion−translation−inversion that produces the last d special conformal
transformations(SCT) to complete the list of continuous transformations.

1.5 Fefferman-Graham construction
The reconstruction theorem by Fefferman and Graham [49] that was used
in the derivation of the holographic anomaly naturally generalizes Dirac’s
conformal space notion that we have just met. It is based in the obser-
vation (Euclidean version!) that the group of conformal automorphisms of
the n-sphere (Möbius group) is essentially the same as the group of Lorentz
transformations of (n+2)-dim Minkowski space. The conformal structure of
the n-sphere can be obtained by viewing the sphere as a cross-section of the
forward light-cone in Minkowski space. Fefferman and Graham attempted
to embed an arbitrary conformal n-manifold into a (n + 2)-dim Ricci-flat
Lorentzian manifold. The outcome is that such a Lorentzian metric (ambi-
ent metric) can be constructed by formal power series for any Riemannian
metric, to infinite order when n is odd and to order n/2 when n is even
(the obstruction to the power expansion for even n is contained in the so-
called FG obstruction tensor). This formal metric is a conformal invariant
of the original conformal structure, so that its pseudo-Riemannian invariants
automatically give conformal invariants of the original conformal structure.

An equivalent construction in turn, exploits the fact that the Möbius
group can be pictured as the set of isometries of the hyperbolic metric on
the interior of the unit ball Bn+1 ⊂ Rn+1. In fact, Fefferman and Graham
showed that given a compact Riemannian manifold (M, g), the problem of
finding a Ricci-flat ambient Lorentz metric for the conformal structure [g]
is equivalent to that of finding an asymptotically hyperbolic Einstein metric
on the interior of an (n + 1)-dim manifold-with-boundary that has M as
boundary and [g] as conformal infinity.

These two alternative constructions are in correspondence with the fact
that Lorentz transformations in Dirac’s conformal space can be viewed as
isometries of the embedded hyperboloid or as conformal transformation of
Minkowski space, which was a key ingredient in Maldacena’s conjecture.
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Chapter 2

The plane wave limit

This first corner of AdS/CFT correspondence is accessed via a large R-charge
subsector of the N = 4 super Yang-Mills gauge field theory[10] that is trans-
lated in a certain limit (Penrose) of the background string solution. The
logic behind this limit goes as follows: a major difficulty is posed by the
quantization of the IIB superstring in a RR-background; however, whatever
the spectrum may be it should approach the spectrum of the string in flat
spacetime as the radius of AdS blows up. Now, it turns out that one can do
better and take a combined limit (Penrose) by zooming in on the neighbor-
hood of a null geodesic resulting in a plane-wave with nonvanishing RR-flux.
In contrast to the original AdS5×S5, in these (plane wave) backgrounds the
exact quantization of strings is known. This allows for tests of the corre-
spondence including genuine stringy properties. Although the standard lore
is that stringy excitations correspond to long operators with generic dimen-
sion of order λ1/4 that decouple from SUGRA correlators, this is not the case
for the sector at hand where the operators carry a very large bare dimension
(R-charge). The bulk SUGRA approximation for describing these operators
is inadequate even at small curvature of AdS (corresponding to large λ).
The subsector of gauge invariant operators dual to SUGRA and other string
modes is identified and a successful matching of energy/scale-dimension is
achieved at small λ/J2 (J is the length of such operators).

The field theoretical properties of plane wave backgrounds become rele-
vant. In particular the propagators, both bulk-to-bulk and bulk-to-boundary,
for AdS5 × S5 and for the plane wave arising in the Penrose limit should
play a crucial role in understanding the degeneration of the holographic pic-
ture from a 4- to a 1-dimensional boundary. In spite of several attempts
[75, 28, 80, 11, 27, 118, 89, 43], no complete understanding of holography in
the plane wave geometry has emerged.

We will focus on the propagators, which are essential in implementing
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the AdS/CFT calculational prescription. The scalar propagator in the rel-
evant plane wave has been constructed for generic mass values via direct
mode summation in [92]. In addition, there have been observed structural
similarities with the flat space propagator and their possible role in guessing
the propagators for higher spin fields was stressed. The alternative route via
the limiting behavior of the AdS5 × S5 propagator was taken in [42] for the
conformally coupled scalar.

We want to study the propagators in the plane wave background along the
line of the Schwinger-DeWitt construction [30, 31] introduced in the previous
chapter. This technique is based on an expansion near the light-cone. It has
been successfully applied to the propagator construction in various specific
backgrounds as well as to issues related to near light cone and anomaly
problems in generic backgrounds. It lies at the heart of most regularization
techniques of QFT in curved spaces (see, e.g. [14]). Our aim here is to
explain the above mentioned structural similarities to the flat space case by
the termination of the underlying WKB expansion and to make progress
in the explicit construction for higher spin cases. We will also explore the
alternative approach to derive the plane wave propagators as a limiting case
of propagators in spaces which in a Penrose limit yield the plane wave under
discussion. For this we relate our results to information on propagators in
Einstein Static Universe (ESU) available in the literature.
As we will see, the Penrose limit is nothing but an expansion near a null
geodesic; the SD-technique, being an expansion near the light-cone, is the
natural tool to address this limit.

2.1 Penrose limit
The particular plane wave background to be considered is the conformally
flat one obtained as a Penrose limit of AdS5×S5 [15, 16, 10] with equal radii,
although at some stages the results can be adapted to other dimensions by
just varying the number of transverse directions ~x. The line element is given
by

ds2 = 2dudv − ~x2du2 + d~x2. (2.1)
As noticed by Penrose [101], this limit is nothing but an adaptation to

pseudo-Riemannian manifolds of the standard procedure of taking tangent
space limit, the main difference being that when applied to a null geodesic
it results in a curved spacetime, namely a plane wave. One could as well
end up with flat space, but the generic situation is a plane wave. It is this
zooming into the neighborhood of the null geodesic what gives the Penrose
limit a local character.
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2.1. PENROSE LIMIT

Usually electromagnetic and gravitational plane wave solutions of general
relativity are discussed in the context of the linearized theory. However, the
plane waves we consider here are solutions of the full nonlinear Einstein
equations.

Recently, Penrose limits of a whole variety of space-times has been thor-
oughly studied (see, e.g. [75] and reference[13] therein). The particular plane
wave metric (2.1) together with a RR-flux correspond to a maximally super-
symmetric solution of Type II-B SUGRA, as first found in [15]. This very
same Type II-B SUGRA background can also be obtained as a Penrose limit
of the less supersymmetric AdS5 × T 1,1 [73, 54, 100], and surely from many
other backgrounds. Now, as far as one is interested only in the metric, the
spacetime with the same Penrose limit, which ought to be considered the
conceptually simplest one, is the Einstein Static Universe ESU10. In parts
of the following discussion we will benefit from this fact.

2.1.1 Anti-de Sitter x Sphere
Let us start with AdSp+1 in global coordinates and with the (q + 1)-sphere
parametrized in terms of a (q − 1)-sphere (a is the common radius of AdS
and the sphere)

ds2
AdSp+1×Sq+1 =a2(−dt2 cosh2 ρ+ dρ2 + sinh2 ρ dΩ2

p−1

+ cos2 θdψ2 + dθ2 + sin2 θ dΩ′2q−1). (2.2)

Now one focuses on the immediate neighborhood of a null geodesic that
remains at the center of AdSp+1 while it wraps an equator of Sq+1, say
t = ψ = u (affine parameter along the null ray) and ρ = θ = 0. Introducing
local coordinates

t = u ψ = u+ v

a2 ρ = x

a
θ = y

a
(2.3)

and expanding in inverse powers of the radius, one gets

ds2
AdSp+1×Sq+1 = 2dudv−(x2+y2)du2+dx2+x2dΩ2

p−1+dy2+y2dΩ′2q−1+O(a−2)
(2.4)

so that in the limit a→∞ , blowing up the neighborhood and collecting the
flat transverse directions in ~x, one ends up with the plane wave metric (2.1).

2.1.2 Einstein Static Universe
We want to stress that the same plane wave results from ESUn, topologically
R × Sn−1. Let us conveniently parametrize the (n− 1)-sphere in terms of a
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(n− 3)-sphere

ds2
ESUn = a2(−dt2 + dΩ2

n−1) (2.5a)

= a2
(
−dt2 + dα2 + cos2 α dβ2 + sin2 α dΩ2

n−3

)
. (2.5b)

The null geodesic will be the one given by t = β = u (affine parameter
along the null ray) and α = 0, and the local coordinates in its neighborhood

t = u β = u+ v

a2 α = r

a
. (2.6)

Then, expanding the line element

ds2
ESUn = 2dudv − r2du2 + dr2 + r2dΩ2

n−3 +O(a−2) (2.7)

and letting a→∞ one gets the plane wave metric (2.1).
That both Penrose limits give the same metric can be easily understood

if one remembers that there is a conformal map that allows for a Penrose
diagram for AdSp+1 × Sq+1. Defining tanϑ ≡ sinh ρ in (2.2), one obtains
that both metrics are related by1

ds2
AdSp+1×Sq+1 = 1

cos2 ϑ
ds2

ESUp+q+2 . (2.8)

Now, in the local coordinates (2.3) near the null geodesic at the center of
Adp+1 we have ϑ = x

a
+O(a−3) and the conformal factor cos±2 ϑ = 1+O(a−2),

therefore up to O(a−2) both metric are equivalent, i.e. the RHS of (2.4)
holds for both backgrounds. Consequently, in the limit a→∞ the resulting
metrics coincide. This is again a manisfestation of the inherent locality of
the Penrose limit.

2.2 Propagators in the plane wave
The scalar Feynman propagator in the plane wave background (2.1) has
already been obtained by explicit summation of the eigenmodes in recent
works [75, 92]. Here we will treat it differently using the Schwinger-DeWitt
technique which admits a readily generalization to the spinor and vector
fields.

1Obviously, there is an obstruction to this argument if the null geodesic, on which
one focuses in the Penrose limit, reaches the boundary of AdS × S where the conformal
factor becomes singular. It is precisely in this situation when the null geodesic is totally
contained in AdS and the Penrose limit of AdS × S gives just Minkowski space.
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2.2.1 Scalar propagator
Now we are in position to apply this construction to the plane wave back-
ground. From the geodetic interval between two generic points (see ap-
pendix A.3) one obtains the Van Vleck-Morette determinant. The important
ingredients are

g(x) = −1 (2.9a)
σ(x, x′)
u− u′

= [v − v′ + ~x2 + ~x′2

2 cot (u− u′)− ~x · ~x′ csc (u− u′) (2.9b)

4(x, x′) =
[

u− u′

sin (u− u′)

]d−2

. (2.9c)

With this at hand, one can check that4 1
2 (x, ·) is harmonic, i.e. �4 1

2 (x, ·) =
0, because 4(x, ·) is a function only of u and the inverse metric has guu = 0,
so that the recurrence relations (1.8) are satisfied by an(x, x′) = δ0,n . Thus
the only non-zero coefficient in the expansion (1.7) is just the first one. That
is why we say that the scalar Schwinger-DeWitt kernel in the plane wave
background is leading-WKB exact. The kernel and the Green’s function,
after performing the proper time integral, are then given by2

K(x, x′ | s) = i4 1
2

(4πis) d2
e iσ/2s (2.10a)

G(x, x′) = −iπ4
1
2

(4πi) d2

(
2m2

σ

) d−2
4

H
(2)
d
2−1

([
−2m2σ

] 1
2
)
. (2.10b)

One can get Minkowski space by rescaling u → µu, v → v/µ and letting
µ go to zero. The effect of this in (2.9, 2.10) is 4 → 1 and 2σ → 2(u −
u′)(v − v′) + (~x− ~x′)2 and

KM(x, x′ | s) = i

(4πis) d2
e iσ/2s (2.11a)

GM(x, x′) = −iπ
(4πi) d2

(
2m2

σ

) d−2
4

H
(2)
d
2−1

([
−2m2σ

] 1
2
)
. (2.11b)

The difference between the two results, apart from the fact that the geode-
tic interval is of course different, is that for the plane wave we get a nontrivial

2 As usually, the Feynman Green’s function should be understood as the boundary
value of a function which is analytic in the upper-half σ plane, so that in fact σ + i0+ is
meant in what follows.
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Van Vleck-Morette determinant. The analogy with the Minkowski case ob-
served in [92] is thus fully explained by the leading-WKB exactness of the
plane wave background. The coincidence limit of our results, where the coef-
ficients become local functions of curvature invariants [30, 25], is consistent
with the fact that for the plane wave background there are no non-vanishing
curvature invariants [72].

Finally, for the massless scalar one can take the massless limit in both
expressions to get3

D(x, x′) = −iΓ(d/2− 1)
2(2π)d/2 4

1
2

( 1
σ

) d−2
2

= −iΓ(d/2− 1)
2(2π)d/2

( 1
Φ

) d−2
2

(2.12)

DM(x, x′) = −iΓ(d/2− 1)
2(2π)d/2

( 1
σ

) d−2
2
. (2.13)

2.2.2 Spinor field: leading-WKB exactness
One might guess that the similarity with Minkowski space kernel and Green’s
function still holds for higher spin fields. Now we will turn our attention to
the spin−1

2 case.
The spinor Green’s function is now a bi-spinor which satisfies the Dirac

equation with a point-like source

[γµ(x)∇µ +m] S(x, x′) = δ(x, x′)I, (2.14)

where γµ(x) are the curved space Dirac matrices and ∇µ is the spinor covari-
ant derivative (see appendix A.2).

To apply the Schwinger-DeWitt technique one introduces an auxiliary
bi-spinor G(x, x′) defined by

S(x, x′) = (γµ(x)∇µ −m) G(x, x′) (2.15)

to obtain the following wave equation for G(x, x′)

(�− R

4 −m
2)G(x, x′) = δ(x, x′)I, (2.16)

where R is the scalar curvature.
Now one can apply the Schwinger-DeWitt construction as in the scalar

case, but this time the auxiliary Green’s function G(x, x′), the kernel K(x, x′ |
s) as well as the HaMiDeW coefficients An(x, x′) are bi-spinors and the re-
currence relations (1.8) involve the spinor covariant derivative. One starts

3 The geometrical meaning of the quantity Φ is explained in appendix A.1.
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with A0(x, x′) = U(x, x′), the spinor parallel transporter along the geodesic
connecting the two points (appendix A.2).

For the plane wave background (2.1) one can check that again the recur-
rence relations are satisfied by An(x, x′) = δn,0U(x, x′), the reason being that
4 1

2 (x, ·)U(x, ·) is harmonic, with respect to the spinor D’Alembertian (i.e.
the square of the Dirac operator).

Therefore, the spinor kernel and the spinor auxiliary Green’s function
are leading-WKB exact and can be written in terms of the respective scalar
quantities

K(x, x′ | s) = K(x, x′ | s) U(x, x′), (2.17a)

G(x, x′) = G(x, x′) U(x, x′). (2.17b)

Flat space results can also be recovered as in the scalar case, taking into
account that in the limit U(x, x′) → I. The similarity with flat space result
is still present, the only additional nontrivial piece being the spinor geodesic
parallel transporter, and is better appreciated in terms of the kernel and the
auxiliary Green’s function, so we do not show the explicit expression for S.

2.2.3 Vector field: next-to-leading-WKB exactness
Let us examine the Maxwell field. Now we have additional complications
due to the gauge freedom, so we add a gauge fixing term − 1

2ξ (∇µA
µ)2 in the

action to get an invertible differential operator[
gµρ�−Rµρ − (1− ξ−1)∇µ∇ρ

]
Gρ
ν′(x, x′) = δ(x, x′)gµν′(x), (2.18)

where the Ricci tensor Rµν arises from the commutator of the covariant
derivatives. Its only non-vanishing component in the plane wave geometry
is Ruu = d − 2. This can be easily obtained from the Christoffel symbols
(A.22).

In the Feynman gauge ξ = 1, corresponding to a “minimal” wave operator
in the sense of Barvinsky and Vilkovisky [9], one can work out a Schwinger-
DeWitt construction4 and this time we have to deal with bi-vectors. The
recurrences are slightly changed to

(n+ 1) an+1µν′ + ∂ρσ ∇ρan+1µν′ = 4−
1
2 � (4 1

2anµν′)−R ρ
µ anρν′ , (2.19)

4 As shown by R. Endo [48], having the vector kernel in Feynman gauge one can easily
go to any other covariant gauge.
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and the chain of HaMiDeW coefficients starts with the vector geodesic par-
allel transporter a0µν′(x, x′) = Pµν′(x, x′) (appendix A.3) .

What one can show in this case is that the recurrences are solved by

anµν′(x, x′) =


Pµν′(x, x′), n = 0,
(2− d)δuµδu′ν′

tan u−u′
2

u−u′
2

, n = 1,
0, n ≥ 2.

(2.20)

The vector kernel is then

Kµ
ν′(x, x′ | s) = i4 1

2

(4πis) d2
e iσ/2s

(
δµρ − is

tan u−u′
2

u−u′
2

Rµ
ρ

)
P ρ
ν′(x, x′), (2.21)

and the Green’s function can be written in terms of the massless scalar
Green’s function as

Gµ
ν′(x, x′) =

(
D(x, x′) δµρ −

1
4π cos2 u−u′

2
Q(x, x′)Rµ

ρ

)
P ρ
ν′(x, x′), (2.22)

where the functional dependence of Q on u− u′ and σ is precisely the same
as in D but in two dimensions less (see 2.12), i.e.

Q(x, x′) = −iΓ(d/2− 2)
2(2π)d/2−1

[
u− u′

sin (u− u′)

] d−4
2 ( 1

σ

) d−4
2

= −iΓ(d/2− 2)
2(2π)d/2−1

( 1
Φ

) d−4
2

(2.23)

That we should not expect leading-WKB exactness this time can be seen by
examining the coincidence limit x → x′, where general results [30, 25] are
available. In particular for the plane wave under consideration, one must have
a1µν(x, x) = −Rµν(x), and this can be readily checked in (2.21) remembering
that the coincidence limit of the vector parallel transporter is just the metric
tensor, Pµν(x, x) = gµν(x).

After all, we obtained the minimal departure: next-to-leading WKB-
exactness. This time, the similarity with flat space results is still present
although obscured by an additional term. The flat space limit can be taken
as in the preceding two cases, this time the vector parallel transporter goes
to the metric tensor and the a1 coefficient together with the Ricci tensor go
to zero to end up with the usual Minkowski space results in Feynman gauge,
that is, the metric tensor times the massless scalar propagator.
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2.3 Resummation and Penrose limit in ESU
One can take advantage of the fact that the ESU has the same Penrose limit
and try to take the limit directly in the Green’s functions for ESU where some
results are available in the literature. How does the limit work directly on
the propagators is apparently not easy to see in the mode summation form.
But, after a resummation things might get clearer. The resummation we
will explore is the one implicit in the so called “duality spectrum-geodesics”.
That is, the kernel can be written either as an eigenfunction expansion or as
a “sum over classical paths” [20].

2.3.1 Scalar field in ESU
The resummation is implicit in the following form for the scalar Green’s
function in ESU4 obtained by Dowker and Critchley [46](see also [20]) based
on the Schwinger-DeWitt technique. The Schwinger-DeWitt kernel, as well
as the heat kernel, factorizes for a product space and since ESU4 is nothing
but R×S3 one just needs the free kernel for the time direction KR(t, t′ | s) =

i
(4πis)1/2 e−ia

2(t−t′)2/4s and the kernel for the 3-sphere. The whole problem
reduces to finding KS3 and one can show that the 3-sphere is leading-WKB
exact5. The only complication is that, due to the compactness of the sphere,
one has multiple geodesics in addition to the direct one so that one has to
include indirect geodesic contributions which restore the periodicity on the
sphere

KS3(q, q′ | s) =
∞∑

n=−∞
K0
S3(χ+ 2πna | s), (2.24)

where χ is the length of the shortest arc connecting the two points q, q′ on
the 3-sphere and

K0
S3(χ | s) = 1

(4πis) 3
2
4

1
2 e iχ

2/4s+ is/a2
, (2.25)

with the Van Vleck-Morette determinant for the sphere resulting in 4 1
2 =

χ/a
sin(χ/a) . The corresponding Green’s function for ESU4 is also given by direct
plus indirect geodesic contributions

GESU4(x, x′) =
∞∑

n=−∞
G0
ESU4

(t− t′, χ+ 2πna), (2.26)

5 The odd-dimensional spheres turn out to be WKB exact after factorizing a constant
phase involving the scalar curvature. This phase can in turn be absorbed in the definition
of the differential operator and its effect in the Green’s function is just a shift in the mass.
This must be taken into account when comparing the results in [46] with those in [20].
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where

G0
ESU4

(t− t′, χ) = i4 1
2

8π

(
m2 − a−2

2σ

) 1
2

H
(2)
1

([
−2(m2 − a−2)σ

] 1
2
)

(2.27)

and the direct geodetic interval is σ = −a2(t−t′)2+χ2

2 . Now one can take
the Penrose limit (see appendix A.1), and the result is that only the di-
rect geodesic contribution survives the limit to give precisely the plane wave
results (2.10) for d = 4. The indirect geodesic terms become rapidly oscil-
lating or exponentially decaying. Therefore they vanish as a distribution for
a→∞. This is similar to the flat space limit of ESU4 discussed in [46].

This construction can be generalized to higher dimensional ESUn. For
odd-dimensional spheres the Schwinger-DeWitt kernel is WKB exact [20] and
for even-dimensional spheres one only has an asymptotic expansion, but in
all cases the only term that survives the Penrose limit is the first coefficient
in the direct geodesic contribution and this can be seen in the asymptotic
expansion, all other terms are suppressed by inverse powers of the radius or
are rapidly oscillating.

2.3.2 Spinor field in ESU

For ESU4, Altaie and Dowker [45] obtained the spinor S-D kernel and the
spinor Green’s function. To our purposes it suffices to take a look at the
spinor S-D kernel, which due to the compactness of the 3-sphere is again a
sum over all geodesics connecting the two points, with the direct term

K0
ESU4

(x, x′ | s) = i

(4πis)2 4
1
2 e i(χ

2−a2(t−t′)2)/4s
(

1− is tan(χ/a)
aχ

)
U(x, x′).

(2.28)
In the Penrose limit (see appendix A.1) one gets again the same behavior, i.e.
only the first coefficient in the direct geodesic term survive and everything
else is suppressed as in the scalar case.

One can follow this construction using the spinor kernel for the higher-
dimensional spheres, already calculated by Camporesi [22], and one gets
again agreement with our previous results from direct computation in the
plane wave background. In all cases, the relevant information is contained
in the S-D asymptotic (S-D stands either for Schwinger-DeWitt or for short-
distance), the rest is just scaled away in the Penrose limit. This is precisely
the resummation we were looking for.
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2.4 Penrose limit of AdS x S propagators
The key tool for the previous results was the resummation implicit in the
Schwinger-DeWitt asymptotics. So, this could be the recipe to obtain the
limiting values of the Green’s functions.

Let us first explore for some cases where closed results are still available
before drawing conclusions for the generic case.

2.4.1 Three dimensions and equal radii
The kernel for AdS3 can be obtained from the heat kernel for H3 [20] by
analytic continuation, for spacelike intervals both must coincide. For timelike
intervals in AdS3, which are the relevant ones for the Penrose limit since the
null geodesic is always spacelike on the sphere so that it must be timelike in
AdS3 [43], one has the continuation

KAdS3(ζ | s) = i

(4πis) 3
2
4

1
2 eiζ

2/4s− is/a2
, (2.29)

where ζ2

2 is the geodetic interval and 4 1
2 = ζ/a

sinh (ζ/a) . This kernel gives the
standard Green’s function corresponding to Dirichlet boundary conditions,
which can be expressed in terms of hypergeometric functions (see, e.g. [32]).

This allows us to write the exact kernel for AdS3 × S3, given again by
a sum to produce the periodicity on the 3-sphere, with the direct geodesic
term

K0
AdS3×S3(ζ, χ | s) = i

(4πis)3
ζ/a

sinh (ζ/a)
χ/a

sin (χ/a) e
i(ζ2+χ2)/4s. (2.30)

In the Penrose limit, the indirect geodesic contributions are suppressed,
ζ2 + χ2 → 2σ, ζ/a

sinh (ζ/a) and χ/a
sin (χ/a) both → u−u′

sin(u−u′) and one recovers the
plane wave results (2.10) for d = 6.

2.4.2 Conformal coupling
In AdSp+1 × Sq+1 with equal radii which is then conformally flat, for the
conformally coupled scalar one gets a powerlike function in the total chordal
distance when mapping to the massless scalar in flat space. This can also
be obtained by a direct summation of the harmonics on the sphere as shown
in [42]6. The limit agrees with the plane wave result for the massless case

6 In fact, in [42] one also obtains a powerlike function for a particular mass in the
case where the radii are different, when no conformal map to flat space is possible. We
have also managed to reproduce this result using the kernels and a nice relation to the
conformal situation was found in terms of a contour integral, as we will see.
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where the Green’s function is an inverse power of Φ (see appendixA.1).
We can accommodate this case in our scheme. Start with AdS3×S3 and

use the whole kernel, that is

KAdS3×S3(ζ, χ | s) =
∞∑

n=−∞
K0
AdS3×S3(ζ, χ+ 2πna | s). (2.31)

For the Weyl invariant scalar, corresponding in this case to m = 0 one can
take the proper time integral and perform the sum of all direct and indirect
geodesics to get

GAdS3×S3(ζ, χ | s) ∼ 1
[cos(χ/a)− cos(ζ/a)]2

∼ 1
[total squared chordal distance]2 . (2.32)

Now one can take the Penrose limit at any of the two stages, in this final
expression or first in the kernel.

The Weyl coupling case for higher dimension can now be generated by
the “intertwining” technique [20]. Applied to the kernel one obtains a kernel
that produces the desired power in the total chordal distance for the Green’s
function. Alternative, the intertwining can be applied directly to the Green’s
function. The intertwining technique reduces basically to the fact when one
can obtain the kernel or the Green’s function for the conformally coupled
scalar by just taking derivatives with respect to the chordal distances. One
can start with AdS3 × S1, taking partial derivative with respect the chordal
distance in AdS one gets the results for the product space with two dimen-
sions higher in AdS and taking partial derivative with respect the chordal
distance in the sphere one gets the results for the product space with two di-
mensions higher in the sphere7. In this way one generates the higher negative
powers in the total distance for the conformally coupled scalar [42]. Again,
in the Penrose limit only the leading term of the direct geodesic survives the
limit.

7To cover he whole range of dimensions for the product space AdS × S ([odd,odd],
[odd,even], [even,odd] and [even,even]) one needs in addition the S2 and AdS2 results, see
[20].
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2.4.3 Miscellany: non-conformally flat background
Let us consider the Euclidean version H3×S3 with different radii (say, a and
αa). Up to normalization factors, the kernel K∗H3×S3(ζ, χ | s) is given by

1
s3

ζ/a

sinh (ζ/a)
1

sin (χ/αa) e
is/a2(1/α2−1)

∞∑
n=−∞

(χ/αa + 2πn) e i[ζ2+(χ+2πnαa)2]/4s.

(2.33)
The kernel this time has a remaining “s” dependent term in the exponent that
can only be eliminated by a special value of the mass, m2

∗ = 1
a2 (1− 1

α2 ). This
value of the mass is precisely the one used in [42] to get a closed expression
for the Green’s function. What one can see is that for this value one can
perform the integral to get for the Green’s function

ζ/a

sinh (ζ/a)
1

sin (χ/αa)

∞∑
n=−∞

χ/αa + 2πn
[ζ2 + (χ+ 2πnαa)2]2 (2.34)

and the resulting series can be exactly computed with the aid of a Poisson
summation (after taking partial derivative with respect to x to relate both
sums)

∞∑
n=−∞

y

y2 + (x+ n)2 = 1− e−4πy

1− 2 cos (2πx)e−2πy + e−4πy (2.35)

to get

G∗H3×S3(ζ, χ) ∼ sinh (ζ/αa)
sinh (ζ/a)

1
[cosh(ζ/αa)− cos(χ/αa)]2 . (2.36)

Now, when the two radii are equal (α = 1) one gets of course the con-
formally coupled scalar in the conformally flat background. The conformally
flat case is periodic on the arc in the sphere χ with period 2πa while the
period in the non-conformally flat is 2παa. The interesting thing to notice
is that the kernels as well as the Green’s functions are related by a contour
integral due to Sommerfeld that restores the appropriate periodicity (see,
e.g. [44]). This can be explicitly checked for the special mass above [90]

G∗H3×S3(ζ, χ) = GH3×S3(ζ, χ) + i

4πα

∫
Γ
dw cot ( w2α) GH3×S3(ζ, χ+ wa),

(2.37)
where the contour Γ consists of two vertical lines from (−π+i∞) to (−π−i∞)
and from (π − i∞) to (π + i∞) and intersecting the real axis between the
poles of cot ( w2α): −2πα, 0 and 0, 2πα, respectively.
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This very same formula gives the heat kernel for the cone starting with the
one for the plane. This is a remarkable property since equal radii corresponds
to a conformally flat situation and different radii is conformal to a singular
background with a tip, a conical singularity.

2.5 Discussion
Our main result is the explicit construction of the spinor and vector prop-
agator in the plane wave background (2.1) arising in a Penrose limit from
AdSp+1×Sq+1. The spinor propagator is constructed for generic mass values,
the vector propagator for massless gauge fields in Feynman gauge.

The construction was based on the Schwinger-DeWitt technique. In gen-
eral backgrounds via this method one gets only an asymptotic WKB series
with respect to the approach to the light cone. Global issues for the prop-
agators remain open. In fact, we know that the correct propagator beyond
the caustic (u − u′ = π) should pick up an additional phase (Maslov index
e−iπ/4) for each transverse coordinate, each time one goes beyond the cautics.
This is the analog of the full Feynman-Soriau formula for the harmonic os-
cillator (see e.g. [38]). Now, the Penrose construction breaks down whenever
caustics (conjugate points) come into game, so that the above observation
would be helpful in sewing together different patches where the Penrose limit
is well defined. Fortunatelly, for the case under consideration there are eight
transverse oscillators and the issue of the Maslov index is irrelevant.

For the background under discussion we could show that the series ter-
minates with its leading or next-to-leading term. This then strongly sug-
gests that the resulting expressions are indeed the correct propagators. We
checked this by reproducing the scalar propagator already constructed in
the literature by different methods. In this check we also explained by the
WKB exactness the structural similarity with the flat space scalar propaga-
tor pointed out in [92]. The propagator in both cases is given by the same
function of the respective geodesic distances up to an additional factor gen-
erated by the nontrivial Van Vleck-Morette determinant of the plane wave
background. This ordinary determinant for the plane wave can be shown to
be equal to the functional determinant of the quadratic fluctuations in the
path integral formalism [98], where leading-WKB-exactness amounts to the
exactness of the Gaussian approximation for the path integral.

Besides the explicit construction in the plane wave geometry, we made
some observations on the relation between both propagators and kernels to
those in spaces from which the plane wave arises in a Penrose limit. After
remarking that the plane wave under study can also be obtained from ESU,
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we discussed the limit starting from known explicit expressions both for the
scalars and spinors in ESU. It turned out that only the leading term in the
direct geodesic contribution survives the limit. This nicely corresponds with
the local nature of the Penrose limit. This picture was supported by similar
observations starting from some special AdS × S cases. In addition for the
AdS × S propagators we were able to explain the distinguished role of a
special mass value for non-Weyl invariant coupling in spaces with different
radii for AdSp+1 and Sq+1 [42]. Just for this value in the exponent of the
Schwinger-DeWitt kernel the term linear in the proper time cancels and one
can explicitly perform the sum. A contour integral relates the kernels and
propagators for this special non-conformally flat (conformal to a spacetime
with a conical singularity) case to a conformally flat spacetime.

Further study should clarify whether there is a general theorem behind.
Given a generic plane wave arising in a Penrose limit from some other space-
time, does then the information on the first few coefficients of the direct
geodesic contribution in the original spacetime always contain enough infor-
mation to get the plane wave propagators? Is the WKB-exactness a generic
feature of the Penrose limit? We believe the answer is in the affirmative.
The generic plane wave after a Penrose limit can be casted in Brinkmann
coordinates

ds2 = 2dudv − Aab(u)xaxbdu2 + d~x2. (2.38)

We can repeat the steps undertaken before, the only technical difficulty is ob-
taining the classical action for the resulting coupled system of time-dependent
harmonic oscillators (see the discussion above A.23) in order to compute
the geodetic interval and the Van Vleck-Morette determinant. The caustic
structure (determined by the zeros of the VVM-determinant) will of course
be much more complicated and explicit expressions will in general not be
available. Still, the WKB-exactness would be a feature of the propagator
since, at any rate, the geodetic interval will be quadratic in the transverse
variables xa and the VVM-determinant will again be only a function of u so
that the recursion relations will be satisfied as before.

Finally, let us stress that the semiclassical nature of the limit is the cen-
tral feature here. On the gauge side, it is related to the notion of large
quantum numbers (Bohr’s correspondence principle in Quantum Mechan-
ics). On the AdS side, we have unraveled the semiclassical exactness of field
theoretic propagators. In addition, it was found out that the strings are in-
deed semiclassical in the sense that the spectrum is reproduced by a 1-loop
sigma-model computation, i.e. quadratic fluctuations, around certain soli-
tonic configuration [62, 112]. This semiclassical expansion is more general
than starting directly with the plane-wave background and allows for tests
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of the energy/dimension relation beyond the leading 1-loop order. It also
opened new avenues regarding a whole “fauna” of classical and semiclassical
string configurations with large quantum numbers.
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Chapter 3

Towards AdS duals of free
CFTs

As already mentioned, duality between strongly coupled SYM in the large
N limit and weakly coupled SUGRA is the form of Maldacena’s conjecture
where many interesting results have been obtained and most of the tests
have been performed. However, much less is known about the bulk dual
to perturbative gauge theories or even to free theory. This constitutes the
second corner of the correspondence that we want to address. It has been
conjectured that the dual bulk theory to large N free gauge theory is a HS
theory of Fradkin-Vasiliev type [115, 107]. A simpler scenario for testing
these ideas has been proposed by Klebanov and Polyakov [77], concerning
the bulk dual of the critical O(N) vector model. Vector models have always
been useful in understanding features that arise in the more complicated case
of gauge theories. Here one can use the vast experience in large-N limit of
O(N) vector models to reconstruct the bulk theory.

An analogous attempt has been started by Gopakumar [55, 56, 57] for
the singlet bilinear sector of the gauge theory involving only the scalars ΦI ;
but despite the initial success in casting two and three point function of
scalar bilinears into AdS amplitudes as we saw in the preliminary chapter,
four point correlators have remained a challenge 1. The technical difficulty
has been that one should include the whole tower of HS fields, dual to the
HS conserved currents of the CFT, in the exchange graphs since the OPE
structure of the free field correlators involve the whole tower of conserved
currents. A bulk theory consistently truncated to massless fields should be
reflected somehow in a closure of the corresponding dual sector of CFT oper-

1See however [2] for recent progress and for a large set of references to proposals for
string dual of free large N gauge theories. These include string bit models, tensionless
strings, strings in highly curved space, etc.
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ators. We study the free four point function of the scalar bilinear by means
of a conformal partial wave expansion as alternative “gluing up” and reor-
ganize it so as to involve only the minimal twist sector 2, i.e. the conserved
HS currents and their descendants, as required by the correspondence. The
fusion coefficients are analytically checked to factorize in terms of two- and
three-point function coefficients. A comparison with the correlators at the
IR fixed point can be made by means of the amputation procedure that re-
alizes the Legendre transformation connecting the two conformal theories at
leading order in the large-N expansion, in close analogy with the effect of
double-trace deformations in the gauge theory ( see e.g. [64] and references
therein). We pursue the view that both CFTs are on equal footing, related
by Legendre transformation, and that one can compute directly the Witten
graphs with either branch ∆+/−

3. Our aim is to have an autonomous way
to compute directly in the free theory, having in mind a possible extension to
free gauge theories, with no need of Legendre transforming from a conjugate
CFT that arises at leading large N but whose existence is otherwise uncer-
tain. As a consequence, at d = 3 one has a vanishing three-point function for
the scalar bilinear at IR. On the other hand, at UV the three-point function
is nonzero due to the compensation of the vanishing coupling by a divergence
of the corresponding Witten graph. This is similar to the case of extremal
correlators (see e.g. [32]). The underlying assumption of a common bulk the-
ory, degeneracy of the holographic image, is also consistent with the CPWE
of the four-point correlators. Progress in the bulk side of the correspondence
is considerably more difficult due to the complicated nature of the interacting
HS theories on AdS. We use the CPWs to mimic the effect of the correspond-
ing bulk exchange graphs, even though the CPW is generically only a part
of the Witten graph and one can only hope that after including the whole
tower of HS exchange the additional terms cancel out. In this direction, we
study the scalar exchange in AdS and relate it to the corresponding CPW.

3.1 The Klebanov-Polyakov Conjecture
Let us briefly review the essentials of the conjecture. The singlet sector of
the critical 3-dim O(N) vector model with the (−→ϕ 2)2 interaction is conjec-
tured to be dual, in the large N limit, to the minimal bosonic theory in AdS4
containing massless gauge fields of even spin. There is a one-to-one corre-
spondence between the spectrum of currents and that of massless higher-spin

2Here we follow a suggestion in [107] for the free gauge theory case and turn it into a
quantitative result.

3A recent paper by Hartman and Rastelli [67] also stresses this view.
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fields. In addition we have a scalar bilinear J mapped to a bulk scalar φ.
The AdS/CFT correspondence working in the standard way (conventional
dimension ∆+ for J) produces the correlation functions of the singlet cur-
rents in the interacting large N vector model at its IR critical point from
the bulk action in AdS4 by identifying the boundary term φ0 of the field φ
with a source in the dual field theory (cf. appendix B.6). At the same time,
the correlators in the free theory are obtained by Legendre transforming the
generating functional with respect to the source that couples to the scalar bi-
linear J; this corresponds on the AdS side to the procedure for extracting the
correlation functions working with the unconventional branch ∆− [77, 78].
However, we want to stress that one can directly compute the bulk graphs
with the ∆− branch, by using the boundary term A (cf. appendix B.6) as
source in the boundary theory, and that the boundary correlator obtained is
precisely related by Legendre transformation to the one computed with the
standard ∆+ branch.

3.2 Free O(N) Vector Model
We start by considering N elementary real fields ϕa in d-dimMinkowski space,
vectors under the global O(N) symmetry and Lorentz scalars with canonical
scaling dimension δ = d/2−1(in what follows we switch to Euclidean space).
They satisfy the free equation of motion ∂2ϕa = 0. We normalize their two
point function as

〈ϕa(x1)ϕb(x2)〉 = δab

rδ12
, a, b = 1, ..., N , (3.1)

where rij = |xi − xj|2 = |xij|2.

3.2.1 HS Conserved Currents
In this free theory there is an infinite tower of higher-spin currents, bilinear in
the elementary fields, which are totally symmetric, traceless and conserved.
These three properties fix their form, their precise expression can be found
in [6, 82]. We will only need them in the following form (assuming normal
order and omitting free indices)

Jl =
l∑

k=0
ak ∂

k−→ϕ · ∂l−k−→ϕ − traces, (3.2)
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with 4

ak = al−k = 1
2(−1)k

(
l

k

)
(δ)l

(δ)k(δ)l−k
. (3.3)

Note that this convention means

Jl = −→ϕ · ∂l−→ϕ + .., (3.4)

where the ellipsis stands for terms involving derivatives of both fields. They
are conformal quasi-primaries, minimal twist operators with scaling dimen-
sion

∆l = d− 2 + l = 2δ + l. (3.5)
The AdS/CFT Correspondence relates them to massless HS bulk field since
the canonical dimension ∆l precisely saturates the unitarity bound for totally
symmetric traceless rank l tensors (l > 0, even).

3.2.2 Two- and Three-Point Functions
The singlet-bilinear sector is completed by adding to the above list the scalar
bilinear J = −→ϕ 2 (“spin-zero current”) with canonical dimension ∆J = d−2 =
2δ. At d = 3 its bulk partner is a conformally coupled scalar.

Let us compute the two point function of the HS currents and the three
point function of two spin-zero and a HS current.

The conformal symmetry fixes the form of the two point function up to
a constant (B.3),

〈Jl µ1...µl(x)Jl ν1...νl(0)〉 = CJl r
−2δ−l sym{Iµ1ν1(x)...Iµlνl(x)}. (3.6)

To find the coefficient it is then sufficient to look at the term 2l x...x
rl

involving
x 2l times. By Wick contracting we get

〈Jl(x)Jl(y)〉 =
l∑

k,s=0
ak as

{
∂kx ∂

s
y〈ϕa(x)ϕb(y)〉 ∂l−kx ∂l−sy 〈ϕa(x)ϕb(y)〉

+ (s↔ l − s)} − traces. (3.7)

Using now the symmetry ak = al−k, trading ∂y by −∂x and taking y = 0 we
get, up to trace terms,

2N
l∑

k,s=0
ak as(∂k+sr−δ)(∂2l−k−sr−δ) = 22l+1N

x..x

r2δ+2l

l∑
k,s=0

ak as (δ)k+s (δ)2l−k−s.

(3.8)
4The Pochhammer symbol (q)r = Γ(q+r)

Γ(q) .
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The double summation is done using generalized hypergeometric series in
appendix B.2 giving 1

4 l!(2δ−1+ l)l. The coefficient of the two point function
is then (l > 0)

CJl = 2l−1Nl!(2δ − 1 + l)l (3.9)
that coincides with the extrapolated result reported by Anselmi [6]. Analo-
gously, the three point function form is dictated by the conformal symmetry
(see B.1)

〈J(x1)J(x2)Jl ν1...νl(x3)〉 = CJJJl (r12 r23 r31)−δ λx3
µ1..µl

(x1, x2). (3.10)

Now we focus on the coefficient of 2l x31...x31
rl

involving x31 2l times after Wick-
contracting,

〈J(x1)J(x2)Jl(x3)〉 = 〈ϕa(x1)ϕb(x2)〉〈ϕb(x2)ϕc(x3)〉∂lx3〈ϕ
c(x3)ϕa(x1)〉

+permutations+ ... = 4N(r12r23)−δ2l(δ)l
x31...x31

rδ+l31
+ ... .

(3.11)

Finally, we get for the coefficient of the three-point function (l > 0)

CJJJl = 2l+2N(δ)l . (3.12)

The corresponding values for the scalar are CJ = 2N and CJJJ = 8N .

3.2.3 Scalar Four-Point Function
The four-point function contains much more dynamical information encoded
in a function of two conformal invariant cross-ratios which is not fixed by
conformal symmetry. Still, its form is constrained by the OPE of any two
fields and therefore the contributions of operators of arbitrary spin, including
their derivative descendants, can be unveiled. The connected part of the
spin-zero “current” four point function is obtained by Wick contractions

〈J(x1)J(x2)J(x3)J(x4)〉free,conn = 16N
(r12r34)2δ

{
uδ + (u

v
)δ + uδ(u

v
)δ
}
, (3.13)

where u = r12 r34
r13 r24

and v = r14 r23
r13 r24

. Diagrammatically, it is given by the three
boxes in fig. 3.1.

Following Klebanov and Polyakov [77] we notice that the leading term in
the box diagram

1
(r12r23r34r41)1/2 ∼

1
(r12r34)1/2

1
r13

(3.14)
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Figure 3.1: Connected part of the free four point function of the spin-zero
current J .

in the direct channel limit 1→ 2, 3→ 4 correctly reproduces the contribution
of the scalar J with dimension ∆ = ∆J = 1 to the double OPE (see, e.g.
[32]), which in general reads

〈J(x1)J(x2)J(x3)J(x4)〉 ∼
1

(r12r34)∆J−∆/2
1

(r13)∆ . (3.15)

Sub-leading terms in the expansion of the box diagram should correspond
to the contribution of the currents Jl ∼ −→ϕ · ∂l−→ϕ , l > 0. This structure is
precisely what we want to study in detail and the best way to identify all
these contributions is via a conformal partial wave expansion (CPWE); i.e.,
decomposing into eigenfunctions of the quadratic Casimir of the conformal
group SO(1,d+1) in Euclidean space Rd [41].

3.3 From Free Fields to AdS via CPWE
The attempts to cast the box diagrams into AdS amplitudes via Schwinger
parametrization have not succeeded so far [56]. From the previous analysis
of the OPE, it becomes apparent that the whole tower of HS field exchange
has to be taken into account. Even though some progress has been made in
obtaining bulk-to-bulk propagators for the HS fields in AdS [81, 85], there is
no closed analytic form that could be used to include all the infinite tower.
We will content ourselves with the CPW amplitude to mimic the effect of the
corresponding exchange Witten graph. In general, the CPW is contained in
the exchange Witten graph but there appear additional terms that cannot
be precisely identified as CPWs [87, 86, 70, 71, 40].

Let us first quote the essentials of the CPWE (see, e.g., [40] and references
therein). The contribution of a quasi-primary O(l)

µ1...µl
of scale dimension ∆

and spin l, and its derivative descendants, to the OPE of two scalar operators
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φi of dimension ∆i,

φ1(x)φ2(y) ∼
Cφ1φ2O(l)

CO(l)

1
| x− y |∆1+∆2−∆+lC

(l)(x− y, ∂y)µ1..µlO
(l)
µ1...µl

(y).

(3.16)
The derivative operator is fixed by requiring consistency of the OPE with
the two- and three-point functions of the involved fields. Based on these
constraints one can work out the contribution of the conformal block cor-
responding to the quasi-primary O(l), and its derivative descendants, to the
four-point function. This is given by the Conformal Partial Wave (see ap-
pendix B.3)

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 ∼
Cφ1φ2O(l)Cφ3φ4O(l)

CO(l)
(r24

r14
)∆12/2(r14

r13
)∆34/2

× u(∆−l)/2

(r12r34)∆φ
G(l)(∆−∆12 − l

2 ,
∆ + ∆34 − l

2 ,∆;u, v), (3.17)

which depends on the two cross-ratios

u = r12 r34
r13 r24

, v = r14 r23

r13 r24
. (3.18)

The CPWs have been obtained as double series in the direct channel limit
(u, 1−v)→ 0 by several authors (see, e.g. [79] and references therein). They
can also be shown to satisfy the recurrence relation (B.16), obtained by Dolan
and Osborn [40].

3.3.1 HS currents and CPWs
We are interested in the singlet-bilinears, minimal twist operators, in the free
O(N) vector model. These are the “spin-zero”(J ∼ ϕaϕa) and the higher spin
conserved currents (Jl ∼ ϕa∂lϕa) with canonical dimension ∆l = d − 2 + l.
We can consider this limiting case in the recurrences (B.16), by first setting
e = (∆ − l)/2 = d/2 − 1 = δ and in the end S = 2δ + l, b = δ. A crucial
simplification occurs in the recurrence relation, only the third line in (B.16)
survives:

G(l)(b, δ, S;u, v) = 1
2
S + l − 1
δ + l − 1

{
G(l−1)(b, δ, S;u, v)−G(l−1)(b+ 1, δ, S;u, v)

}
(3.19)

The iteration can then be easily done for the coefficients of the double ex-
pansion

G(l)(b, e, S;u, v) =
∞∑

m,n=0
a(l)
nm(b, S) u

n

n!
(1− v)m
m! . (3.20)
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Pascal’s triangle coefficients
(
l
k

)
arise to get

a(l)
nm(b, S) = 1

2l
(S)l
(δ)l

l∑
k=0

(−1)k
(
l

k

)
a(0)
nm(b+ k, S), (3.21)

where δ = µ− 1 = d/2− 1 and we start with the scalar exchange (B.17)

a(0)
nm(b, S) = (δ)m+n

(S)m+2n
(S − b)n(b)m+n. (3.22)

This can be summed up into a closed form involving a terminating generalized
hypergeometric of unit argument

a(l)
nm(b, S) = 1

2l
(δ + l)m+n−l

(S + l)m+2n−l
(b)m+n(S − b)n 3F2

(
−l, 1 + b− S, b+m+ n

b, 1 + b− S − n

)
.

(3.23)
With these conventions, the normalization is fixed by

a
(l)
0l = (−1

2)ll!. (3.24)

Now, using twice an identity ([5], pp.141), obtained as a limiting case of a
result due to Whipple for balanced 4F3 series, one can rewrite the coefficients
as a terminating (after n + 1 terms) series. This coincides with the result
from the “Master Formula” in [83] 5 for b = δ and S = 2δ + l

a(l)
nm = a

(l)
0l

(
m+ n

l

)
(δ + l)2

m+n−l
(2δ + 2l)m+n−l

3F2

(
−n, 1 +m+ n, δ +m+ n

1 +m+ n− l, 2δ +m+ n+ l

)

= a
(l)
0l

n∑
s=0

(−1)s
(
n

s

)(
m+ n+ s

l

)
(δ + l)m+n−l(δ + l)m+n−l+s

(2δ + 2l)m+n−l+s
. (3.25)

In this form one can easily recognize a triangular structure of the coefficients,
i.e. a(l>m+2n)

nm = 0, which has proved useful in performing computer symbolic
algebraic manipulations [83].

3.3.2 Modified CPWE and Closure
Now we compute the contribution of the singlet bilinear sector to the four-
point function by summing the CPWs with the corresponding fusion coef-

5In their normalization, a(l)
0l are set to 1.
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ficients (γuvl ) in terms of those of the two and three point functions 6 as
(see 3.17)

(γuvl )2 = C2
JJJl

/CJl . (3.26)
Using our previous results (3.9 ) and (3.12) we have

(γuvl )2 = 16N 2l
l!

2 (δ)2
l

(2δ − 1 + l)l
. (3.27)

The result of the direct channel summation ( appendix B.4) is the observation
that we can expand the first two terms (boxes) of (3.13) in partial waves of
the bilinears, in the s-channel, as (B.27)

16N uδ

(r12r34)2δ

{
1 + v−δ

}
= 1

(r12r34)2δ

∑
l≥0, even

(γuvl )2u(∆l−l)/2G(l)(δ, δ,∆l;u, v).

(3.28)
The full connected correlator is obtained then by crossing symmetry, since
the three box diagrams A,B,C transform under crossing symmetry in the
following way,

(2→ 4, t− channel)(u, v)→ (v, u) : (A,B,C)→ (A,C,B) (3.29)

(2→ 3, u− channel)(u, v)→ (1/u, v/u) : (A,B,C)→ (C,B,A). (3.30)
What we have found amounts to the diagrammatic identity in fig. 3.2.

Our rewriting is different from the standard CPWE where the whole
crossing symmetric result is reproduced in each channel. The OPE of two
scalar bilinear J contains the contributions of the identity, of the conformal
blocks of the bilinears (minimal twist) and also of the “double-trace” (higher
twist) operators starting with (−→ϕ 2)2. In the large N analysis, one can see
that when the OPE is inserted in the four-point function, the identity pro-
duces only one piece of the disconnected part (which goes as N2 ) and the
completion comes precisely form the double-traces (their fusion coefficients
squared also goes as N2+O(N)) [77, 7]. It is also easy to see that the bilinear
sector only contributes to the connected part (which goes as N , just like the
fusion coefficients squared of this minimal twist sector, eq. 3.27).

6 We can check the consistency of our conventions by comparing for the energy-
momentum tensor (l = 2). To keep track of the normalization coming from Ward
identities we use φ = 1√

2N J and the canonically normalized energy-momentum tensor

T = − 1
2(d−1)Sd J2 [40], where Sd = 2π

d
2

Γ( d2 ) , to have CφφT = −∆φd
d−1 = − (d−2)d

d−1 . The fusion
coefficient in eq.(4.13) gets multiplied by ( 1√

2N )4. Then one gets from eq.(4.12) for the
coefficient of the energy-momentum two point function CT

S2
d

, with the well known result for
the free O(N) vector model CT = d

d−1N .
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1
2

∑
l ≥ 0, even

(γuv
l )2

[Jl]

Figure 3.2: Free four point function as a sum partial waves of minimal twist
operators.

Now the full disconnected piece is obtained from the Witten graphs con-
taining two disconnected lines, where the three channels are included and
with no need of additional fields in the bulk of AdS. One would then expect
that for the connected part, something similar might happen. At leading
1/N , tree approximation for the bulk theory, we have a classical field theory
where one has to consider the exchange graphs in each channel separately;
trading bulk exchanges by the corresponding CPW, one should then expect
to write the connected part in terms of only CPWs of the minimal twist
sector in the three channels, with no explicit reference to contributions from
higher-twist/double-trace operators. To our surprise, this is precisely what
we have obtained above!

In this way, we rescue the closure of the minimal twist sector that is in
correspondence with a consistent truncation to the massless sector of the
dual HS bulk theory. This result is valid as well for the bilinear single trace
sector of free gauge theories considered in [56, 115, 107, 93], and amounts to a
closure of the twist-two sector of scalars (without the double-trace operators
this time!) in d = 4 by including the crossed channels, in conformity with
the expectations for a consistent truncation of the bulk theory [107, 93].

3.4 Degeneracy of the Hologram: IR CFT at
d=3

Now we examine a peculiarity of this O(N) vector model at d = 3, which
mimics the effect of double-trace deformations of the free gauge theory ( see
e.g. [64] and references therein).

The canonical dimension of the scalar J is ∆ = 1. This value ∆−
is mapped, via AdS/CFT Correspondence, to a conformally coupled bulk
scalar. However,there is a conjugate dimension ∆+ = 2 which agrees (at
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leading 1/N order) with the known result for the dimension of −→ϕ 2 at the
interacting IR critical point. This led Klebanov and Polyakov to conjecture
that the minimal bosonic HS gauge theory with even spins and symmetry
group hs(4) is related, via standard AdS/CFT methods with the “conven-
tional” branch ∆+, to the interacting large N vector model at its IR critical
point. The free theory, UV fixed point, corresponds then to the other branch
∆−.

The existence of this IR stable critical point of the O(N) vector model
below four dimension is a well established fact 7. Standard approaches are
the ε-expansion in 4 − ε dimensions which leads to the Wilson-Fisher fixed
point and the large-N expansion which reveals a fixed point at 2 < d <
4. Our analysis will be restricted to the leading 1/N results. An efficient
way to perform the large-N expansion is introducing an auxiliary field α
coupled to the vector field via a triple vertex αϕaϕa and then integrate
out ϕa which appears now quadratically, to get the effective action for α.
The diagrammatic expansion in 1/N involves skeleton graphs with the field
ϕa running along internal lines and the triple vertices of two ϕ’s with the
auxiliary field [114].

3.4.1 IR Two- and Three-Point Functions
At leading 1/N we keep the free two point function of the elementary fields
ϕa, they acquire anomalous dimension of order 1/N , and for the auxiliary
field α with dimension ∆+ = 2 one can set 8

〈α(x)α(0)〉 = r−2, (3.31)

absorbing the normalizations in the vertex, which becomes [84] (see ap-
pendix B.5 for notations)

(z1

N
)1/2 , z1 = −2p(2). (3.32)

Analogously, the three point function form is dictated by the conformal
symmetry

〈α(x1)α(x2)α(x3)〉 = Cααα (r12r23r31)−1 (3.33)
and

〈α(x1)α(x2)Jl ν1...νl(x3)〉 = CααJl r
−2+δ
12 (r23r31)−δ λx3

µ1...µl
(x1x2). (3.34)

7In four dimensions the IR fixed point merges with the UV one and the duality is no
longer valid in the way we have just presented. Still one can modify the O(N) Vector
Model (by gauging) to have a similar holographic scenario [105].

8In what follows and in an abuse of notation, a correlator involving α is understood to
be computed at the IR fixed point, while the same correlator at UV contains J instead.
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They are related to the respective free correlators by amputation relations
(Legendre transform). For the two point function

〈J(x)J(0)〉 = − 2N
p(2)〈α(x)α(0)〉−1. (3.35)

With our choice of normalizations, we have to amputate with 〈α(x)α(0)〉−1

and multiply by the factor (− 2N
p(2))

1
2 for each scalar leg that is amputated to go

from IR to UV at leading N , while the legs corresponding to the HS current
remain the same. To compare this normalization with that of Klebanov and
Witten [78] and appendix F, we denote their Legendre transformation by
Γ[A] = W [φ0]− (2∆+−d)

∫
Aφ0. Then at d = 3 the source for α is φ0/π and

that for J is A/(2π
√
N). The amputation is done with the D’EPP formula

and its generalization (see appendix B.5). For the three point function of the
scalars one gets

Cααα = N(− 2
Np(2))

3
2v2(2, δ, δ)v(2, 1, 2δ − 1) (3.36)

as obtained in [84, 102]. There is a factor 1
Γ(d−3) that forces the vanishing of

the IR three point function at d = 3 in correspondence with the vanishing of
the bulk coupling in the HS AdS4 theory [102, 108].

We extend this amputation procedure to the other three point functions
to get 9

CααJl = 2l+1 l! (2δ − 1) (δ)l
(2δ − 1)l

(3.37)

which agrees with what was obtained in [82] 10 by a different procedure,
namely computing the four point function first of the two scalars with two
elementary fields and then forming the HS current by contracting the two
legs of the elementary fields acting with derivatives and letting their argu-
ment to coincide at the end. This computation was done at d = 3, however
we corroborate the validity for any 2 < d < 4. This has the surprising impli-
cation that a graph contributing to the four point function above mentioned,
which vanishes at d = 3, does not contribute to the HS current correlator at
generic 2 < d < 4 as well.

3.4.2 Scalar Four-Point Function at IR
Let us now examine the implications of the degeneracy of the hologram for
the four point function at the IR critical point. The AdS amplitude should

9This time the amputation is done with the generalization B.32 of the D’EPP formula.
10There is a relative factor of 2 due to normalization of the HS current and a missing

factor 2l, by misprint, in equation (97) of this paper.
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1
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∑
l ≥ 2, even

(γir
l )2

[Jl]

Figure 3.3: IR four point function as a sum of partial waves of minimal twist
operators at d = 3.

involve the same bulk exchange graphs, only the scalar bulk-to-boundary
and and bulk-to-bulk propagators are switched to the ones with ∆+. We
trade them by CPWs with the appropriate fusion coefficients that follow
from the amputation program. Therefore we guess the modified CPWE in
the interacting theory as indicated in fig. 3.3.

The fusion coefficients

(γirl )2 = C2
ααJl

/CJl , (3.38)

using our previous results from the amputations, are given by

(γirl )2 = 1
N

2l
l!

8(l!)2 (δ)2
l

(2δ)l−1 (2δ)2l−1
. (3.39)

That the four point function at the IR critical point at leading 1/N has
precisely this expansion has been shown by Rühl [104], by explicit compu-
tations at the IR critical point and the fusion coefficients obtained by ex-
trapolation of computer algebraic manipulations. What we have analytically
found confirms those results and prove their validity for the whole range
2 < d < 4 where the scalar contribution accounts for the one-line-reducible
graph, both of them being now non-vanishing. The shadow contribution in
the one-line-reducible graph is canceled by contributions from the box as
shown in [77] for the leading singular term and in [83] for the full CPW. The
quotient γirl /γuvl for d = 3 is (5.10) γirl /γuvl = l/(2N), which is valid even
for l = 0 since γirl = 0. Note that in the other normalization for fields with
sources φ0 and A, the ratio turns out to be equal to 2l.

3.5 CPW vs. AdS Exchange Graph at d=3
The two and three point functions considered before can be reproduced from
a bulk action, being relevant only up to cubic terms of the bulk Lagrangian.
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These have been obtained in [82], assuming a bulk coupling of the HS field
with a bulk current, bilinear in the scalar bulk field and involving up to
l derivatives 11. In their scheme there are two different couplings of the
HS bulk field to two bulk scalars, one to reproduce the UV correlators and
another for the IR case, and therefore two different bulk Lagrangians. We
however adopt the view of a unique bulk Lagrangian, as expected from double
trace deformations. It is not difficult then to realize that the bulk graphs
corresponding to the coupling of the HS fields to the AdS current, bilinear
in the bulk scalar, obtained in [82] lead to boundary three-point functions
which are precisely related by amputation of the scalar legs. This is done
in the boundary theory with the generalized D’EPP formula (B.32) and in
the bulk graph this amounts to changing the dimension ∆− ↔ ∆+ of the
bulk-to-boundary propagator of the scalar legs [39].

For the four point function, the CPW expansion obtained is indeed a step
in the ambitious program of bottom to top approach, in which one uses the
knowledge of the boundary CFT to reconstruct the bulk theory. This is a
formidable task, but a Witten graph is certainly closer to a CPW as we know
since the early days of AdS/CFT, although the precise correspondence has
always been elusive and tricky.

Here we will study the scalar exchange and see what happens when one
considers the boundary scalar bilinear to have canonical dimension ∆− =
d − 2 = 1. Let us start with the free 3-pt function. Despite the success of
predicting the vanishing of the scalar three point function at the IR critical
point and matching with the HS bulk theory [102, 108], the non-vanishing
result for the free correlator cannot be obtained from a null result via the
proposed Legendre transformation. One is forced to make a regularization,
and the appropriate way turns out to be that the bulk coupling goes like
g ∼ (d − 3). Here we propose to compute directly with the canonical di-
mension and to control the divergence of the Witten graph by dimensional
regularization. The graph is divergent at d = 3, but a cancellation against
the vanishing coupling gives the correct result for the free correlator12. Start-
ing with the free correlator and following Gopakumar [56] in bringing it to
an AdS Witten graph, one gets the identity sketched 13 in fig. 3.4 .

11However, what one obtains from the HS theory for l = 2 is a bulk energy-momentum
involving infinitely many derivatives. It is still an open issue to see whether both formula-
tions are equivalent via some field redefinition. This we believe must first be clarified before
trying to explore HS bulk exchange graphs, the coupling to the scalar is still ambiguous
although their should be fixed by the conformal symmetry.

12Essentially the same cancellation that occurs for extremal correlators in standard
AdS/CFT.

13In this section the equality sign is to be understood modulo finite factors that we omit
for simplicity. The precise relation can be read from (E.7).
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g = g Γ(d− 3)

1

2 3

1

2 3

Figure 3.4: Free three point function and star Witten graph at d→ 3.

The divergence of the star graph is then controlled by the zero in 1/Γ(d−
3), rendering the correct result for the free correlator.

Now we move on and examine the scalar exchange Witten graph, with
the external legs having canonical dimension ∆− = d− 2 → 1 and coupling
vanishing as g ∼ (d − 3) → 0. A suitable evaluation of this graph, worked
out in [71] using Mellin-Barnes representation and performing a contour
integral, is given by a double series expansion involving three coefficients
a(1)
nm, b(1)nm and c(1)nm (in [71], eq.23-26). In the limit ∆ = ∆̃ = d− 2 and d→ 3,

they all become divergent but only c(1)
nm and the first term in b(1)

nm develop
a double pole, the rest being less singular. They cancel against the double
zero from g2 and the final result can be precisely casted into the CPW of
the free scalar J plus its shadow, a scalar of dimension ∆+ = 2. The piece
coming from the c(1)nm coefficient goes to the cnm(1) coefficient of the CPW
and the contribution from b(1)nm produces the shadow term with coefficient
cnm(2) ( [71], eq.35-36). We end up with a precise identification in term of
CPWs as sketched in fig. 3.5.

When one continues the crossed channel expansions to get their contri-
bution in the direct channel one gets log u terms but no non-analytic terms
in (1 − v) 14. This happens both for a Witten graph and for the combined
CPW , i.e. direct plus shadow. The mechanisms that prevent the appear-
ance of such terms are different [70, 71], in one case is due to some nontrivial
hypergeometric identities and in the second case is due to the presence of
the shadow field contribution. In the above case, both mechanisms coincide
and the identification in terms of CPW is precise (this identification is in
general incomplete, as mentioned before). That is, there is more structure in
the scalar exchange graph than in a generic one and we take this as a good
sign that after all, when computing the infinite tower of exchange diagrams,
many delicate cancellations of additional terms take place to end up with

14This is a simple way to see that the bold identification of the scalar exchange Witten
graph with the CPW, as originally proposed in [87], was certainly not correct. In our
case we bypass this difficulty due to the shadow term, which makes the whole expression
manifestly “shadow-symmetric”.
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Figure 3.5: Scalar exchange Witten graph vs. scalar CPWs as d→ 3

just the sum of CPWs as obtained before. In particular, the additional term
in the scalar case is a “shadow” contribution which are indeed absent in any
full physical amplitude.

3.6 Discussion
We have re-organized the CPWE of the free four-point function of the scalar
singlet bilinear in the natural way one would expect from AdS/CFT Corre-
spondence; that is, by explicit inclusion of the crossed channels and involving
only CPWs of the minimal twist sector which is holographically dual to the
bulk HS gauge fields. This result is applicable as well to the corresponding
sector of singlet bilinears in the scalars of the free gauge theory. Kinemati-
cally, double-trace operators are dual to two-particle bulk states; however, it
is hard to see how such bulk states arise in the tree bulk computation that
one has to perform at leading large-N. We guess that the double-trace oper-
ators arise indirectly, just in the way they show up in the free O(N) vector
model.

In 2 < d < 4 dimensions, one can flow (at leading large-N) into the IR
fixed point of the O(N) vector model by just Legendre transforming. In this
way, we have completed the program initiated in [102] for the three-point
functions. In addition, under the assumption of a degenerate hologram,
i.e. same bulk content but different asymptotics for the scalar bulk field,
the modified CPWE of the four-point function was also obtained at IR.
All two- and three-point function coefficients as well as fusion coefficients
were analytically obtained, in some cases corroborating extrapolations from
computer algebraic manipulations.

For the scalar exchange Witten graph with canonical dimensions, a funny
cancellation occurs and the result can be precisely identified in terms of CPWs
of the corresponding scalar and its shadow. This reveals more structure than
the generic case, and we hope that such “accidents” are indeed needed to
obtain the full four-point correlator if one were able to sum the infinite tower
of HS field exchanges.
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Chapter 4

Double-trace deformations

Let us recall that the Maldacena’s conjecture and its calculational prescrip-
tion [88, 63, 116] entail the equality between the partition function of String/M-
theory (with prescribed boundary conditions) in the product space AdSd+1×

X, where X is certain compact manifold, and the generating functional of
gauge invariant single-trace composite operators of the dual CFTd at the
boundary. As said, it has been fairly well tested at the level of classical
SUGRA in the bulk and at the corresponding leading order at large N on
the boundary.
One of the most remarkable tests is the mapping of the conformal anomaly [69].
Since the rank N of the group measures the size of the geometry in Planck
units, quantum corrections correspond to subleading terms in the large N
limit. Corrections of order O(N) have also been obtained [3, 17, 97, 99],
but they rather correspond to tree-level corrections after inclusion of open
or unoriented closed strings. Truly quantum corrections face the notorious
difficulty of RR-backgrounds and only few examples, besides semiclassical
limits of the correspondence, have circumvented it and corroborated the con-
jecture at this nontrivial level [13, 91]. These results rely on whole towers
of KK-states and SUSY. The regimes in which the bulk and boundary com-
putations can be done do not overlap and some sort of non-renormalization
must be invoked.

In this chapter we deal with a universal AdS/CFT result, not relying
on SUSY or any other detail encoded in the compact space X, concerning
an O(1) correction to the conformal anomaly under a flow produced by a
double-trace deformation. This was first computed in the bulk of AdS [65]
and confirmed shortly after by a field theoretic computation on the dual
boundary theory [64] (see also [61]).

Let us roughly recapitulate the sequence of developments leading to this
remarkable success. It starts with a scalar field φ with “tachyonic” mass in
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the window −d2

4 ≤ m2 < −d2

4 + 1 where two AdS-invariant quantizations are
known to exist [19]. The conformal dimensions of the dual CFT operators,
given by the two roots ∆+ and ∆− of the AdS/CFT relation m2 = ∆(∆−d):

∆± = d

2 ± ν , ν =
√
d2

4 +m2 (4.1)

are then (0 ≤ ν < 1) both above the unitarity bound. The modern AdS/CFT
interpretation [78] assigns the same bulk theory to two different CFTs at the
boundary, whose generating functionals are related to each other by Legendre
transformation at leading large N. The only difference is the interchange of
the roles of boundary operator/source associated to the asymptotic behavior
of the bulk scalar field near the conformal boundary.
The whole picture fits into the generalized AdS/CFT prescription to incor-
porate boundary multi-trace operators [117, 12, 96, 94]. The two CFTs are
then the end points of a RG flow triggered by the relevant perturbation
f O2

α of the α−CFT, where the operator Oα has dimension ∆− (so that
∆− + ∆+ = d, ∆− ≤ ∆+ ⇒ 2∆− ≤ d). The α−theory flows into the
β−theory which now has an operator Oβ with dimension ∆+ = d − ∆−,
conjugate to ∆−. The rest of the operators remains untouched at leading
large N , which suggests that the metric and the rest of the fields involved
should retain their background values, only the dual bulk scalar changes its
asymptotics 1.

The crucial observation in [65] is the following: since the only change in
the bulk is in the asymptotics of the scalar field, the effect on the partition
function cannot be seen at the classical gravity level in the bulk, i.e. at
leading large N , since the background solution has φ = 0; but the quan-
tum fluctuations around this solution, given by the functional determinant
of the kinetic term (inverse propagator), are certainly sensitive to the asymp-
totics since there are two different propagators G∆ corresponding to the two
different AdS-invariant quantizations. The partition function including the
one-loop correction is

Z±grav = Zclass
grav ·

[
det±(−� +m2)

]− 1
2 , (4.2)

where Zclass
grav refers to the usual saddle point approximation. Notice that the

functional determinant is independent of N , this makes the scalar one-loop
quantum correction an O(1) effect. The 1-loop computation turns out to
be very simple for even dimension d and is given by a polynomial in ∆.

1The simplest realization of this behavior being the O(N) vector model in 2 < d < 4
studied in the previous chapter (see also [77, 35]).
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No infinities besides the IR one, related to the volume of AdS, show up in
the relative change Z+

grav/Z
−
grav, since the UV-divergences can be controlled

exactly in the same way for both propagators. From this correction to the
classical gravitational action one can read off an O(1) contribution to the
holographic conformal anomaly [69].

The question whether this O(1) correction to the anomaly could be re-
covered from a pure CFTd calculation was answered shortly after in the af-
firmative [64]. Using the Hubbard-Stratonovich transformation (or auxiliary
field trick) and large N factorization of correlators, the Legendre transfor-
mation relation at leading large N is shown. An extra O(1) contribution, the
fluctuation determinant of the auxiliary field, is also obtained. Turning the
sources to zero, the result for the CFT partition function can be written as

Zβ = Zα · [det(Ξ)]−
1
2 , (4.3)

where the kernel Ξ ≡ I + f G in position space in Rd is given by δd(x, x′) +
f

|x−x′|2∆− . The β−CFT is reached in the limit f →∞ .
From the CFT point of view, the conformal invariance of this functional
determinant has then to be probed. Putting the theory on the sphere Sd and
expanding in spherical harmonics, using Stirling formula for large principal
quantum number l and zeta-function regularization, the coefficient of the
log-divergent term is isolated. It happily coincides (for the explored cases
d = 2, 4, 6, 8) with the AdSd+1 prediction for the anomaly.

Despite the successful agreement, there are several issues in this derivation
that ought to be further examined. No track is kept on the overall coefficient
in the CFT computation, in contrast to the mapping at leading order [69]
that matches the overall coefficient as well. For odd dimension d, the CFT
determinant has no anomaly, whereas there is a nonzero AdS result that
could be some finite term in field theory not computed so far [64]. From a
computational point of view the results are quite different. The AdS answer
is a polynomial for generic even dimension, whereas for odd d only numerical
results are reported. The CFT answer, on the other hand, is obtained for few
values of the dimension d, a proof for generic d is lacking. Yet, the very same
O(1) nature of the correction on both sides of the correspondence calls for a
full equivalence between the relative change in the partition functions, and
not only just the conformal anomaly. This poses a new challenge since in the
above derivation there are several (divergent) terms that were disregarded,
for they do not contribute to the anomaly.

As we have seen, it all boils down to computing functional determinants.
In a more recent work [67], a “kinematical” understanding of the agreement
between the bulk and boundary computations was achieved based on the
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equality between the determinants. The key is to explicitly separate the
transverse coordinates in AdS, expand the bulk determinant in this basis
inserting the eigenvalues of the transverse Laplacian weighted with their de-
generacies. In this way, one gets a weighted sum/integral of effective radial
(one-dimensional) determinants which are then evaluated via a suitable gen-
eralization of the Gel’fand-Yaglom formula. The outcome turns out to coin-
cide with the expansion of the auxiliary field fluctuation determinant of [64].
However, this procedure is known to be rather formal (see, e.g., [47] and ref-
erences therein) and the result to be certainly divergent. No further progress
is done on either side of this formal equality and the issue of reproducing the
full bulk result from a field theoretic computation at the boundary remains
open.

We will show in this chapter that all above open questions can be thor-
oughly clarified or bypassed if one uses dimensional regularization to control
all the divergences. Both IR and UV divergencies are now on equal footing,
which is precisely the essence of the IR-UV connection [110]: the key to the
holographic bound is that an IR regulator for the boundary area becomes an
UV regulator in the dual CFT. The bulk effective potential times the infinite
AdS volume, i.e. the effective action, and the boundary sum, using Gauß’s
“proper-time representation” for the digamma function to perform it, are
shown to coincide in dimensional regularization.

We start with the bulk partition function and compute the regularized
effective action. Here one needs to compute separately the volume and the
effective potential. Then we move to the boundary to compute the change
induced by the double-trace deformation. Having established the equivalence
for dimensionally regularized quantities we go back to the physical dimensions
and extract the relevant results for the renormalized partition functions and
the conformal anomaly. We further discuss some technical details.

4.1 The bulk computation: one-loop effective
action

Let us start with the Euclidean action for gravity and a scalar field

Sclassd+1 = −1
2κ2

∫
dvold+1 [R− Λ] +

∫
dvold+1 [12(∇φ)2 + 1

2m
2φ2]. (4.4)

For negative Λ the Euclidean version of AdSd+1, i.e. the Lobachevsky space
Hd+1, is a classical solution. There are, of course, additional terms like the
Gibbons-Hawking surface term and contributions from other fields, but they
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will play no role in what follows, nor will the details of the leading large N
duality. This is an indication of universality of the results.

We are interested in the quantum one-loop correction from the scalar field
with the ∆+ or ∆− asymptotic behavior

S±d+1 = 1
2 log det±(−� +m2) = 1

2 tr± log(−� +m2) . (4.5)

It will prove simpler to consider instead the quantities

∂

∂m2 S
±
d+1 = 1

2 tr±
1

−� +m2 . (4.6)

This rather symbolic manipulation, casted into a concrete form 2, reads

∂

∂m2 S
±
d+1 = 1

2

∫
dvolHd+1 G∆±(z, z). (4.7)

There are two kinds of divergencies here, one is the infinite volume of the
hyperbolic space (IR) and the other is the short distance singularity of the
propagator (UV). The latter is conventionally controlled by taking the dif-
ference of the ±-versions; this produces a finite result and was the crucial
observation in [65]. Then one gets for the difference of the one-loop correc-
tions for the ∆± asymptotics

∂

∂m2

(
S+
d+1 − S−d+1

)
= 1

2

∫
dvolHd+1 {G∆+(z, z)− G∆−(z, z)} . (4.8)

One might be tempted to factorize away the volume (usual procedure)
and work further only with the effective potential. However, the perfect
matching with the boundary computation will require keeping track of the
volume as well. In the spirit of the IR-UV connection we now use dimensional
regularization to control both the IR divergencies in the bulk as well as the
UV divergencies on the boundary.

4.1.1 Dimensionally regularized volume
Starting from the usual representation of Hd+1 in terms of a unit ball with
metric ds2 = 4(1−x2)−2dx2 one gets, after the substitution r = (1−|x|)/(1+

2We have been a little cavalier here since the Breitenlohner-Freedman analysis is done
in Lorentzian signature. However, for computational purposes is easier to consider the
Euclidean formulation of the CFT and the volume renormalization of Riemannian man-
ifolds, so that a Wick rotation should be performed. The Feynman propagator for the
regular modes (∆+) in AdSd+1 becomes the resolvent in Hd+1, whereas the continuation
to hyperbolic space of the propagator for the irregular modes is only achieved via the
continuation of the resolvent from ∆+ to ∆− [21].
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|x|), the metric
G = r−2[(1− r2)2g0 + dr2] , (4.9)

with 4g0 being the usual round metric on Sd. Then

(
detG
det g0

) 1
2

= r−1−d (1− r2)d, (4.10)

and the volume is then given by∫
dvolHd+1 = 2−d volSd

∫ 1

0
dr r−d−1 (1− r2)d. (4.11)

Up to this point, we have just followed [60] to compute the volume. From here
on, there are two standard ways to proceed in the mathematical literature,
namely Hadamard or Riesz regularization ( see, e.g. [4]). We will use none of
them, although our choice of dimensional regularization is closer to Riesz’s
scheme. This IR-divergent volume will now be controlled with DR: set d→
D = d− ε and perform the integral to get, after some manipulations,

vol HD+1 = π
D
2 Γ(−D2 ) . (4.12)

Let us now send ε to zero:

vol HD+1 = Ld+1

ε
+ Vd+1 + o(1) . (4.13)

For even d we find the “integrated conformal anomaly” (integral of Bran-
son’s Q-curvature, a generalization of the scalar curvature, see e.g. [59]) and
renormalized volume given by

Ld+1 = (−1) d2 2π d
2

Γ(d+2
2 )

, (4.14a)

Vd+1 = 1
2 Ld+1 ·

[
ψ(1 + d

2)− log π
]
. (4.14b)

For odd d in turn, Ld+1 vanishes and the renormalized volume is given by

Vd+1 = (−1)
d+1
2

π
d+2
2

Γ(d+2
2 )

. (4.15)

The conformal invariants Ld+1 and Vd+1 for d = even and d = odd re-
spectively, coincide with those obtained by Hadamard regularization [60]. For
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even d in turn, the regularized volume fails to be conformal invariant and its
integrated infinitesimal variation under a conformal change of representative
metric on the boundary is precisely given by L [60]. In all, the presence of the
pole term is indicative of an anomaly under conformal transformation of the
boundary metric. As usual in DR, the pole corresponds to the logarithmic
divergence in a cutoff regularization. In the pioneering work of Henningson
and Skenderis [69], an IR cutoff is used and the (integrated) anomaly turns
out to be the coefficient of the log ε after the radial integration is performed.

4.1.2 Dimensionally regularized one-loop effective po-
tential

As effective potential we understand the integrand in (4.8), i.e.

∂

∂m2

(
V +
d+1 − V −d+1

)
= 1

2 {G∆+(z, z)− G∆−(z, z)}, (4.16)

where the propagator at coincident points, understood as analytically con-
tinued [74] from D = d− ε, is given by ( m2 = ∆(∆− d), ∆± = d/2± ν)

G∆(z, z) = Γ(∆)
21+∆π

D
2 Γ(1 + ∆− D

2 )
F (∆2 ,

1 + ∆
2 ; 1 + ∆− D

2 ; 1). (4.17)

Using now Gauß’s formula for the hypergeometric with unit argument and
Legendre duplication formula for the gamma function (appendix C.3), the
dimensionally regularized version of (4.16) can be written as

∂

∂m2

(
V +
D+1 − V −D+1

)
= 1

2D+2 π
D+1

2
Γ(1−D2 )

[
Γ(ν + D

2 )
Γ(1 + ν − D

2 )
− (ν → −ν)

]
.

(4.18)
Letting now ε→ 0, the limit is trivial to take when d = even since all terms
are finite; for d = odd however, care must be taken to cancel the pole of the
gamma function with the zero coming from the expression in square brackets
in that case. This is in agreement with general results of QFT in curved
space; using heat kernel and dimensional regularization one can show that in
odd-dimensional spacetimes the dimensionally regularized effective potential
is finite, whereas in even dimensions the UV singularities show up as a pole
at the physical dimension (see, e.g., [31]), which cancel in the difference taken
above. Ultimately, one gets a finite result valid for both even and odd d

∂

∂m2

(
V +
d+1 − V −d+1

)
= 1

2ν
1

2d π d
2

(ν) d
2
(−ν) d

2

(1
2) d2

≡ Ad(ν). (4.19)
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We used the last equation also to introduce an abbreviation Ad(ν) for later
convenience. That this formula comprises both even and odd d can be better
appreciated in the derivation given in appendix C.1. Written in the form
(4.19), this result coincides with that of Gubser and Mitra (eq. 24 in [65]) but
now valid for d odd as well. We have to keep in mind to undo the derivative
at the end. Interestingly, for the corresponding integral the integrand is
essentially the Plancherel measure 3 for the hyperbolic space at imaginary
argument i ν (see appendix C.1).

4.1.3 Dimensionally regularized one-loop effective ac-
tion

The product of the regularized volume (4.12) and the regularized one-loop
potential (4.18) yields the dimensionally regularized one-loop effective action

∂

∂m2

(
S+
D+1 − S−D+1

)
= 1

2 Γ(−D)
[

Γ(ν + D
2 )

Γ(1 + ν − D
2 )
− (ν → −ν)

]

= sin πν
2 sin πD/2

Γ(D2 + ν)Γ(D2 − ν)
Γ(1 +D) . (4.20)

The poles of Γ(−D) are deceiving. For D → odd, the pole is canceled against
a zero from the square bracket. Only at D → even there is a pole.

The claim now is that this full result can be recovered from the dual
boundary theory computation if we use the same regularization procedure,
namely dimensional regularization.

4.2 The boundary computation: deformed par-
tition function

Let us first take a brief look at the way the RG-flow picture is exploited
to get the O(1) contribution on the boundary theory. Start by turning on
the deformation f O2

α in the α−theory. Then use the Hubbard-Stratonovich
transformation (i.e. auxiliary field trick) to linearize in Oα

〈e−
f
2

∫
O2
α〉 ∼

∫
Dσ e

1
2f

∫
σ2
〈e
∫
σOα〉 . (4.21)

3Presumably, the easiest way to see this is via the spectral representation in terms of
spherical functions (see e.g. [21]), it pick ups the residue at i ν. But the construction is
valid only for the ∆+ propagator, ∆− is only reached at the end by suitable continuation.
These details will be presented elsewhere.
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Now make use of the large-N factorization, which means that the correlators
are dominated by the product of two-point functions, to write

〈e
∫
σOα〉N�1 ≈ e

1
2

∫ ∫
σ〈OαOα〉σ . (4.22)

Finally, integrate back the auxiliary field which produces its fluctuation deter-
minant Ξ−1/2 = (I + f 〈OαOα〉)−1/2. We have therefore the relation between
partition functions

Zβ = Zα · [det(Ξ)]−1/2 (4.23)

as f →∞.
Putting the CFT on the sphere Sd with radius R, the kernel Ξ becomes

[64]

Ξ = δd(x, x′) + f

s2∆−(x, x′) , (4.24)

where s is the chordal distance on the sphere. The quotient of the partition
functions in the α− and β−theory is then given by

W+
d −W−

d ≡ −log
Zβ
Zα

= 1
2 lim
f→∞

log det Ξ = lim
f→∞

1
2

∞∑
l=0

deg(d, l) log(1+f gl) ,

(4.25)
where

gl = π
d
2 22ν Γ(ν)

Γ(d2 − ν)
Γ(l + d

2 − ν)
Γ(l + d

2 + ν)
R2ν , (4.26)

deg(d, l) = (2l + d− 1)(l + d− 2)!
l! (d− 1)! ≡

2l + d− 1
d− 1

(d− 1)l
l! . (4.27)

Here gl is the coefficient 4 of the expansion of s−2∆(x, x′) in spherical harmonic
and deg(d, l) counts the degeneracies. For large l one finds (our interest
concerns 0 ≤ ν < 1, see (4.1))

deg(D, l) ∼ lD−1 , gl ∼ l−2ν , (4.28)

implying convergence of the sum in (4.25) forD < 2ν. To define (4.25) for the
physically interesting positive integers d we favor dimensional regularization
and use analytical continuation from the save region D < 0. There, in
addition, the limit f →∞ can be taken under the sum.

For this limit an amusing property of the sum of the degeneracies deg(D, l)
alone turns out to be crucial. After short manipulations it can be casted into

4There is a missing factor of 2−∆ in eqs. (19) and (24) of [64]. It can be traced back
to the chordal distance in term of the azimuthal angle s2 = 2(1− cosθ).

63



CHAPTER 4. DOUBLE-TRACE DEFORMATIONS

the binomial expansion of (1 − 1)−D (see (C.26)) which is zero for negative
D, i.e.

∞∑
l=0

deg(D, l) = 0 . (4.29)

As a consequence all factors in gl not depending on l have no influence on
the limit f →∞ and we arrive at

W+
D −W−

D = −1
2

∞∑
l=0

deg(D, l) log
Γ(l + D

2 + ν)
Γ(l + D

2 − ν)
. (4.30)

Here we want to stress that this is our full answer, whereas it is just a piece
in [64] where zeta-function regularization was preferred. Although the zeta-
function regularization of the sum of the degeneracies alone vanish in odd
dimensions, in even dimension it is certainly nonzero.

To make contact with the mass derivative of the effective action of the
previous section we take the derivative ∂

∂m2 = 1
2ν

∂
∂ν

1
2ν

∂

∂ν

(
W+
D −W−

D

)
= − 1

4ν

∞∑
l=0

deg(D, l)
(
ψ(l + D

2 + ν) + ψ(l + D

2 − ν)
)
.

(4.31)
The task is now to compute the sum. For this we want to exploit Gauß’s
integral representation for ψ(z) (C.25). However, since it requires z > 0 we
first keep untouched the l = 0 term and get for 2ν − 2 < D < 0

1
2ν

∂

∂ν

(
W+
D −W−

D

)
=− 1

4ν

(
ψ(D2 + ν) + ψ(D2 − ν)

)

− 1
4ν

∞∑
l=1

deg(D, l)
∫ ∞
0

dt

(
2 e−t

t
− e−t(l+d/2)

1− e−t (e−tν + etν)
)
. (4.32)

Now the sum of the l independent term under the integral can be performed
with (4.29). The other sums via (C.26) can be reduced to ∑∞l=1

(D−1)l
l! e−tl =

(1−e−t)1−D−1 . Then with ψ(z) = ψ(1+z)−1/z and the Gauß representation
for ψ(D/2 + 1± ν) we arrive at

1
2ν

∂

∂ν

(
W+
D −W−

D

)
= D

ν(D − 2ν)(D + 2ν)

+ 1
4ν

∫ 1

0
du u

D
2 −1(uν + u−ν)

(
(1− u)−D−1(1 + u)− 1

)
. (4.33)
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In identifying the remaining integral as a sum of Euler’s beta functions
a bit of caution is necessary since we are still confined to the convergence
region 2ν − 2 < D < 0. But using both the standard representation and the
subtracted version (C.27) we finally get

1
2ν

∂

∂ν

(
W+
D −W−

D

)
= 1

2 Γ(−D)
[

Γ(ν + D
2 )

Γ(1 + ν − D
2 )
− (ν → −ν)

]
. (4.34)

This has been derived by allowed manipulations of convergent sums and
integrals in the region 2ν − 2 < D < 0. From there we analytically continue
and a comparison with (4.20) gives now for all D

1
2ν

∂

∂ν

(
W+
D −W−

D

)
= ∂

∂m2

(
S+
D+1 − S−D+1

)
. (4.35)

Let us just mention that one can, in principle, choose Hadamard regu-
larization, i.e. subtract as many terms of the Taylor expansion in ν of the
sum (4.30) as necessary to guarantee convergence. This results in the renor-
malized bulk result plus a polynomial in ν of degree d. This polynomial
is just an artifact of the regularization scheme and is of no physical mean-
ing. The question whether in this framework there is a subtraction scheme
on the boundary that exactly reproduces the bulk result seems to find an
answer in a generalization of Weierstrass formula for the multigamma func-
tions [113]. Surprisingly, the effective potential in AdS can be written in
terms the multigamma functions [74, 26]. We refrain from pursuing this
Weierstrass regularization here and stick to DR for simplicity.

4.3 Back to the physical dimensions
Let us now send ε → 0 in the dimensionally regularized partition functions
(eqs. 4.20 and 4.35) and see what happens in odd and even dimensions.

4.3.1 d odd: renormalized partition functions
Let us assume a minimal subtraction scheme to renormalize and establish
the holographic interpretation of the boundary result. In this case we have

1
2ν

∂

∂ν

(
W+
D −W−

D

)
= π

2ν
(−1) d+1

2

Γ(1 + d) (ν) d
2
(−ν) d

2
+ o(1). (4.36)
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Now, the renormalized value is exactly the renormalized volume times the
renormalized effective potential 5

1
2ν

∂

∂ν

(
W+
d −W+

d

)
= Vd+1 · Ad(ν) = ∂

∂m2

(
S+
d+1 − S−d+1

)
. (4.37)

This completes the matching in [64], the finite nonzero bulk result being
indeed a finite contribution in the CFT computation which has not been
computed before. At the same time, it is not a contribution to the conformal
anomaly, this being absent for d odd as expected on general grounds.

Holography (AdS/CFT correspondence) in this case matches the renor-
malized partition functions at O(1) order in CFTd and at one-loop quantum
level in AdSd+1.

4.3.2 d even: anomaly and renormalized partition func-
tions

Following the same steps as above, we get for this case

1
2ν

∂

∂ν

(
W+
D −W−

D

)
= 1
ε
· 1
ν

(−1) d2
Γ(1 + d) (ν) d

2
(−ν) d

2

+ 1
2ν

∂

∂ν

(
W+
d −W−

d

)
+ o(1). (4.38)

Here we can identify the factorized form of the term containing the pole, the
contribution to the conformal anomaly,

Res
[

1
2ν

∂

∂ν

(
W+
D −W−

D

)
, D = d

]
= Ld+1 · Ad(ν) . (4.39)

Note that according to (4.19) Ad(ν) is just the derivative of the difference of
the renormalized effective potentials for the α− and β−CFT.

This is the proof to generic even dimension of the matching between
bulk [65] and boundary [64] computations concerning the correction to the
conformal anomaly, including the overall coefficient.

5This exact agreement can be upset if different regularization/renormalization proce-
dures were chosen, but in any case this ambiguity would show up only as a polynomial
in ν of degree d at most. This is related to the fact that if one differentiate enough
times with respect to ν (equivalently, m2) the result is no longer divergent and therefore
“reg.-scheme”-independent.

66



4.3. BACK TO THE PHYSICAL DIMENSIONS

However, there is apparently a puzzle here concerning the finite remnant.
The renormalized value

1
2ν

∂

∂ν

(
W+
d −W−

d

)
= Ld+1 · Ad(ν)

2

{
2ψ(1 + d)− ψ(d2 + ν)− ψ(d2 − ν)

}
(4.40)

is certainly non-polynomial in ν.
Had we computed only the renormalized effective potential, then after

subtraction of the pole we would end up with the finite result Vd+1 · Ad(ν).
But Ad(ν) is polynomial in ν and therefore it could have been renormalized
away. Yet, the CFT computation renders the non-polynomial finite result of
above that cannot be accounted for by the renormalized effective potential,
which is only polynomial in ν.

Here is that IR-UV connection enters in a crucial way, and the non-
polynomial result is obtained by the cancellation of the pole term in the
regularized volume (IR) with the O(ε) term in the regularized effective po-
tential (UV). Only in this way is the naive factorization bypassed. In fact,
one can check that the coefficient of the non-polynomial part in the CFT
computation is precisely the L factor, rather than the regularized volume V .

That is, we have to keep track of the O(ε) term in the expansion of the
regularized effective potential (4.18, 4.19)

∂

∂m2

(
V +
D+1 − V −D+1

)
= Ad(ν) + ε · Bd(ν) + o(ε), (4.41)

where

Bd(ν) = Ad(ν)2

{
log(4π) + ψ(12 −

d

2)− ψ(d2 + ν)− ψ(d2 − ν)
}
, (4.42)

is almost the non-polynomial part of above.
After using two identities for d = even, ψ(1

2 −
d
2) = ψ(1

2 + d
2) and then

2ψ(1 + d) = 2 log 2 +ψ(1
2 + d

2) +ψ(1 + d
2) -which are the “log-derivatives” of

Euler’s reflection and Legendre duplication formula respectively (C.23), one
can finally write the renormalized CFTd result (4.40) in terms of the bulk
quantities (4.14b, 4.42) for d = even as

1
2ν

∂

∂ν

(
W+
d −W−

d

)
= Vd+1 ·Ad(ν) + Ld+1 ·Bd(ν) = ∂

∂m2

(
S+
d+1 − S−d+1

)
.

(4.43)
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4.4 Miscellany
4.4.1 Breitenlohner-Freedman mass
Our main results (4.35, 4.37, 4.43) still contain a mass derivative (equiva-
lently, derivative with respect to ν). Integrating these equations introduces
an integration constant which cannot be fixed without further input. Equiv-
alently, so far we only know (see (4.25))

Wd(ν)−Wd(ν0) = − log
(
Zβ(ν)
Zα(ν)

Zα(ν0)
Zβ(ν0)

)
. (4.44)

Beyond dimensional regularization, in the framework of general renormal-
ization theory, there appear free polynomials in ν anyway. Hence fixing this
constant should be part of the physically motivated normalization conditions.

It was argued in [65] that both Zα and Zβ at the BF mass, i.e. ν = 0,
should coincide; the argument given was shown in [67] to apply to the vacuum
energy rather than to the effective potential and the equality was argued in a
different way, replacing the BF mass by infinity as a reference point. We just
want to point out that this procedure also has a potential loophole, namely
the integration range exceeds the window in which the two CFTs are defined
m2
BF ≤ m2 < 1 +m2

BF .
Drawing attention by the last comment to the case ν = 0, another remark

is in order. Then in (4.25) the product f gl is ill defined if f is assumed to
be ν−independent, as in [64, 67]. However, if one chooses

f̃ = f π
d
2

Γ(1− ν)
ν Γ(d2 − ν)

(4.45)

as the true ν−independent quantity, then the product f(ν) gl(ν) ≡ f̃kl(ν) is
well defined at ν = 0. The relative factor between f and f̃ can be traced back
to the conventional normalization of the two point functions. In addition,
while f is the coefficient of the relevant perturbation of the α-CFT, f̃ appears
in the parametrization of the boundary behavior of the bulk theory [64, 67].
However, fortunately, a switch from f to f̃ has no effect on the limit f →∞
in (4.25) and the conclusions drawn from it in the previous section. This
follows from the observation stated after eq. (4.29): any rescaling of f by a
factor independent of l does not affect the limit.

The issue of the integration constant discussed above leading to (4.44)
has still another aspect concerning the treatment of (4.25). Starting from the
formal expression forWd(ν)−Wd(ν0) on the r.h.s. we would get log( 1+fgl(ν)

1+fgl(ν0)
)

instead of log(1+fgl(ν)). Now the limit f →∞ is well defined for each l. The
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definition of the regularized sum over l could then be done directly with the
summands referring to the difference of the two limiting conformal theories.
Finally, differentiation with respect to ν would reproduce all our results of
section 3.

4.4.2 Generalized Gel’fand-Yaglom formula
Recently, in ref. [67] a “kinematic explanation” of the equivalence of the bulk
and boundary computation has been given . There a polar basis in Hd+1

was used to compute the bulk fluctuation determinants. After inserting the
eigenvalues of the angular Laplacian one ends up with a sum over spherical
harmonics of effective radial determinants which are now one-dimensional.
Using then a proposed generalization of the Gel’fand-Yaglom formula [52],
it results in the same expansion as obtained on the boundary (4.25). Since,
especially in their reasoning, it should be crucial to have a well defined limit
f → ∞ before the sum over l is taken, we would prefer to consider the
cross-ratios

det
f̃1

(−∆rad + Veff (ν))
det

f̃1
(−∆rad + Veff (ν0))

·
det

f̃2
(−∆rad + Veff (ν0))

det
f̃2

(−∆rad + Veff (ν))
(4.46)

instead of the single ratios obtained by dropping the ν0 determinants. Be-
sides giving a well defined limit for f̃1 →∞ , f̃2 → 0 this has the additional
benefit that no generalization of the Gel’fand-Yaglom formula beyond that
in [76] is needed to handle the ratio for operators with different boundary
conditions; each of the two ratios in (4.46) refer to the same boundary condi-
tion. Even though the above recipe makes finite the quotient of the effective
radial determinants, the inclusion of the infinite tower of harmonics makes
the sum divergent. This remaining divergence is then the only source for IR
divergence in the bulk and UV ones on the boundary. The formal equality
calls for a more ambitious program including generic dimension and not only
the matching of the anomalous part. There is nothing in the derivation that
picks out d = even in preference to d = odd. What we have shown in the pre-
vious section is that the equality can indeed be made rigorous if interpreted
in the sense of dimensional regularization.

4.5 Discussion
4.5.1 Physical relevance
The relevant double-trace deformation of a CFT and its AdS dual picture
provide a satisfactory test of the correspondence. The regimes in which the
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bulk and boundary computations are legitimate fully overlap and the map-
ping goes beyond the original correction to the conformal anomaly. Rather
the full change in the partition functions is correctly reproduced on either
side of the correspondence; on the boundary being subleading O(1) in the
large N limit, and in the bulk being a 1-loop quantum correction to the clas-
sical gravity action. Dimensional regularization proved to be the simplest
and most transparent way to control the divergences on both sides, UV and
IR infinities are then on equal footing, in accord with the IR-UV connection.

The anomaly turns out to be the same computed in DR and in zeta-
function regularization, confirming its stability with respect to changes in
the regularization method used [31]. They differ, however, in the regularized
value of the boundary determinant for even dimension; this is also known
to be the case in free CFTs in curved backgrounds when computing the
regularized effective potential [31]. Going back to the anomaly, we recall that
it arises in DR due to a cancellation of the pole against a zero, in fact minus
the variation of the counterterms is the variation of the renormalized effective
action [31, 106]. The pole we already had from the volume regularization and
the zero comes from the invariance of L [60].

At odd d, the finite non-zero bulk change in the effective potential is
reproduced from a finite remnant in the boundary computation, confirming
the suspicion in [64]. But there is no anomaly in this case, just a conformally
invariant renormalized contribution to the partition functions. At even d, in
turn, the boundary change in the partition function is obtained only after a
subtle cancellation of the pole in regularized volume (IR-div.) against a zero
from the change in the effective potential (UV-div.). This mixing of IR and
UV effects on the same side of the correspondence has no precedent in the
leading order computation [69]. In that case the bulk computation is a tree
level one, where no UV problems show up; i.e. the AdS answer is obtained
from the classical SUGRA action.

We can contemplate several extensions of the program carried out. One
can try to access to an intermediate stage of the RG flow, that is, finite f . Be-
ing away from conformality, the factorization of the volume breaks downs, the
propagators at coincidence points depend on the radial position; this makes
the task of regularization more difficult. Extensions to other bulk geometries
seems, naively, immediate in terms of the Plancherel measure, it admits a
readily generalization to symmetric spaces [68]. It would be interesting to
explore whether this construction admits a holographic interpretation. In
the other direction 6, one can trade the round sphere by a “squashed” one,

6We end up this section with a plausible connection to Polyakov formulas. Since these
formulas are related to extremal problems and sharp inequalities, it would also be a chal-

70



4.5. DISCUSSION

conformal boundary of Taub-Nut-AdS and Taub-Bolt-AdS spacetimes.

4.5.2 IR-UV connection once more
One may not be fully satisfied by the dimensional regularization used in our
derivation 7. It was certainly the most economic way to get full agreement
between bulk and boundary computations. However, to have a hint to which
regularization on the boundary should reproduce the IR-cutoff bulk compu-
tation let us illustrate how the infinite volume of AdS is hidden in the sum
over degeneracies 8. Consider an UV-cutoff 1 � lc < ∞ in the sum over
spherical harmonics 9

lc∑
l=0

deg(d, l) ∼ (lc)d. (4.47)

Now compare this term with the leading divergent term in the volume of
AdS after introducing an IR-cutoff ε∫

dvolHd+1 = 2−d volSd
∫ 1

ε
dr r−d−1 (1− r2)d ∼ (ε)−d. (4.48)

Last thing to do, according to the IR-UV connection, is to relate the two
cutoffs as lc ε ∼ 1.

To see this more clearly, consider the same counting on the 3-sphere.
Now, N2 l3c essentially counts the degree of freedom of the UV-cutoff gauge
theory. On the other hand, the area of this embedded surface grows as L3 ε−3.
As we know from the AdS/CFT dictionary N2/L3 ∼ 1/AP5 , where AP5 is
the 5-dim Planck area. Therefore, the number of degree of freedom per unit
Planck area turns out to be

Ndof
A/AP5

∼ (lc ε)3. (4.49)

So that the holographic bound and the IR-UV connection are in conformity
with the identification of the cutoffs as ε ∼ 1/lc . Therefore, the leading di-
vergence in the sum corresponds to the leading divergent term in the volume.

lenge to find the physical interpretation of these inequalities. Probably, the first two
physically motivated inequalities that come to mind are the c-theorem and the positive
mass conjecture.

7Mathematicians are always skeptic with respect to these formal manipulations.
8I am indebted to H.S. Yang for elucidation of this point.
9This construction readily admits a generalization to any compact manifold without

boundaries in terms of the Weyl asymptotics (see e.g. [24]). The counting function of
eigenstates of the Laplacian is estimated as λd/2c , where λc is the largest eigenvalue. In
our case, we simply have λ = l(l + d− 1).
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CHAPTER 4. DOUBLE-TRACE DEFORMATIONS

4.5.3 Connection to mathematics
Finally, on the basis of the impressive agreement, one may wonder whether
there is a parallel computation in the mathematical literature. If one is
willing to allow for a continuation in ∆− so that it becomes d/2 − k (k =
1, 2, ..., d/2), then Ξ ∼ 〈OαOα〉 ∼ 1/s2∆− can be thought of as the inverse of
the k-th GJMS conformal Laplacian [58]. These are conformally covariant
differential operators whose symbol is given the k-th power of the Laplacian;
for k = 1 one has just the conformal Laplacian (Yamabe operator), k = 2
corresponds to the Paneitz operator, etc. For even d + 1, we find then an
analogous result in theorem 1.4 of [66] for a generalized notion of determinant
of the k-th GJMS conformal Laplacian. The absence of anomaly for odd d
is consistent with this determinant being a conformal invariant of the con-
formal infinity of the even dimensional asymptotically hyperbolic manifold.
Unfortunately, “the delicate case of d+1 odd where things do not renormalize
correctly”, is still to be understood in this mathematical setting. We antici-
pate, by analogy with our results, that a proper analysis in this case should
unravel a conformal anomaly which can be read off from quotient formulas
(generalized Polyakov formulas, see e.g. [18]) of determinants of GJMS op-
erators at conformally related metrics, which involve the higher-dimensional
Q-curvatures.

We expect the AdS/CFT recipe to treat double-trace deformations and
its bulk interpretation to be a way into these constructions in conformal ge-
ometry. The leading large-N anomaly matching already hinted in this direc-
tion, the relation between Q-curvature and volume renormalization emerges
there; but higher-dimensional Q-curvatures in connection with generalized
Polyakov formulas for GJMS operators had not shown up so far 10.

10In fact, one can even argue that the AdS/CFT prescription entails a holographic
derivation of these Polyakov formulas and correctly reproduces the Q-curvature term [33].
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Conclusion and Outlook

AdS/CFT correspondence relates two seemingly different theories, gauge the-
ory and gravity, via two deeply rooted ideas in physics, namely, the string
emerging at the large-N limit of the gauge theory and the holographic prin-
ciple. Ten years after its birth and in spite of the many successful tests,
AdS/CFT remains in the status of “true but not proven”. However, this
does not prevent it from “laying golden eggs” and there are plenty of new
developments ranging from connections to mathematics to heavy-ion physics.

In this thesis we have explored three aspects of the AdS/CFT correspon-
dence. In the BMN/plane-wave limit, we obtained the spinor and vector
propagators. The important aspect emerging from the analysis carried out
is the (WKB) semiclassical exactness 11 of the Green’s functions in the plane
wave obtained as Penrose limit of a given spacetime. The Schwinger-DeWitt
construction and the Penrose limit are naturally connected since they both
share the property of being based on a near light-cone expansion. We also
learned how to take the limit directly on the propagators of the original
spacetime, the resummation implicit in the SD-expansion was the crucial in-
gredient. Finally, for different radii of AdS and the sphere the geometry is no
longer conformally flat. However, it is conformal to a spacetime with a con-
ical singularity; intuitively one expects that this should play some role and,
indeed, in this case the propagators were found to be related by Sommerfeld’s
formula, the very same that relates the heat kernel on the plane with that
on the cone. Yet, string theory in the plane wave background is understood
as being dual to a limit of the gauge theory but it is widely anticipated that
there is some smaller CFT, not yet identified, which is precisely dual to the
string side. Our understanding of propagators in the plane wave may give
some insight into the nature of the CFT itself.

The program starting with free fields and ending up in AdS was pushed
forward for the nontrivial case of four-point functions and we achieved “half-
the-way” to AdS by an alternative “gluing up” rewriting the correlators as

11Not to be confused with WKB exactness of pp-waves, which is only true at the lin-
earized level where the details encoded in the VVM-determinant are washed away.
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CPW expansion in the three channels involving only the singlet bilinears.
This is reminiscent of the infinite tower of exchange Witten graphs that
should be included in the bulk computation and might facilitate the com-
parison with this technically challenging calculation. This also hints at the
existence of a decoupled theory of massless HS fields in the bulk of AdS
(consistent truncation). Various useful results involving the two and three
point functions of the HS currents were derived. In addition, the connection
to the IR fixed point made possible to obtain the analog CPW expansion
and check fusion coefficients as well as two and three point functions via the
amputation procedure (Legendre transformation). With the insight gained
in the vector model, we should go back to gauge theory to parallel, at least
in a restricted (closed) sector, the results at hand.

Finally, the effect of double trace deformations provided a clean test of the
AdS/CFT prescription for the partition functions involving a 1-loop quantum
correction in the bulk and a subleading contribution in the large N limit at the
boundary. We fully mapped the conformal anomaly and renormalized par-
tition functions. The IR-UV connection was crucial to find agreement with
the pure CFT computation. With the work of Henningson and Skenderis
on the holographic anomaly, new developments in conformal geometry were
triggered by the discovery of new purely geometric invariants of conformally
compact Einstein manifolds. As we saw in the preliminary chapter, the grav-
itational action on the bulk turns out to be proportional to the volume for an
Einstein metric and an appropriate volume renormalization was carried out
in the context of AdS/CFT correspondence which predicts that the volume
anomaly is a particular linear combination of functional determinant anoma-
lies of the Laplacian on scalars, spinors and 1-forms. The volume anomaly
is closely related to the higher-dimensional Q-curvature which in turn is the
universal term in the functional determinant anomaly for GJMS operators.
But these operators don’t play any role in the leading large-N boundary com-
putation of Henningson and Skenderis and the original excitement seems to
be fading away. However, this two-sided nature of the Q-curvature seems
to be precisely what lies behind the matching of conformal anomalies that
we have in the case of double-trace deformations and we hope this set up to
be a new bridge between AdS/CFT correspondence and conformal geome-
try where higher-dimensional Q-curvature, GJMS operators and generalized
Polyakov formulas arise in a natural way.
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Appendix A

Appendix to chapter 2

A.1 Geodesic and chordal distances in ESU
Embedding the n-sphere in (n+ 1)-Euclidean space, a point on the sphere is
given by the vector a Ω̂, with

Ω̂ = (cosα cos β , cosα sin β , sinα ω̂) (A.1)

where ω̂ is a unit vector on the (n− 2)-sphere and the parametrization is as
in equation (2.4). The chordal distance squared µn(x, x′) between two points
x and x′ is related to the arc χn(x, x′) (direct geodesic distance) by

1− µn
2a2 = cos χn

a
= cosα cosα′ cos(β − β′) + sinα sinα′ cos χn−2

a
(A.2)

where cos χn
a
≡ Ω̂ · Ω̂′ and cos χn−2

a
≡ ω̂ · ω̂′, being χn−2 the arc along the

(n− 2)-sphere. Let us take for simplicity x′ to be at the origin.
Going to the local coordinates (equation 2.6) and expanding in inverse

powers of the radius

cos χn
a

= cosα cos β = cosu− Φ
a2 +O(a−4) (A.3)

χn
a

= u+ Ψ
a2 +O(a−4), (A.4)

where

Φ = v sin u+ ~x2

2 cosu (A.5)

Ψ = v + ~x2

2 cotu. (A.6)

75



These two quantities naturally arise in the plane wave, uΨ is the geodetic
interval [75, 92] and 2Φ is the limiting value of the total chordal distance
squared in AdS × S as elucidated in [42]. Going back to our ESU , it is easy
to see that this also holds provided one compactifies the time into a circle so
that t becomes an angle. That is, as a→∞ one has

geodetic interval = −a
2t2 + χ2

2 → uΨ (A.7)
total chordal distance squared

2 = −a2[1− cos t] + µ

2 → Φ. (A.8)

A.2 Spinor Geodesic Parallel Transporter
Let us go to the frame given by

ds2 = 2θ+θ− + ~θ · ~θ ≡ ηabθ
aθb (A.9)

θ+ = du, θ− = dv − 1
2~x

2du, ~θ = d~x. (A.10)

The spin-connection components can be read off from the first Cartan struc-
ture equation

dθa + ωab ∧ θb = 0 (A.11)

(tangent indices a, b = +,−, i with i = 1, ..., d− 2 being the transverse ones)
and the only nonvanishing ones are

ωi− = −ω−i = xi du. (A.12)

The covariant derivative on spinors

∇µ ≡ ∂µ + Γµ = ∂µ + 1
4ω

ab
µ γaγb , (A.13)

where the γ′s fulfill the Clifford algebra in tangent space

{γa, γb} = 2ηab I, (A.14)

is found to be

∇µ =


∂u − 1

2γ−~γ · ~x
∂v
∂i

(A.15)

that is, only Γu is nonzero. An important property is that (Γu)2 = 0 because
(γ−)2 = I η−− = 0, i.e. Γu is nilpotent.
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The spinor D’Alembertian can be written in terms of the scalar one as

gµν∇µ∇ν = 1√
−g

∂µ(
√
−ggµν∂ν) + 2Γu∂v . (A.16)

The spinor parallel transporter is a bi-spinor that parallel transports a
spinor along a given path and the path we need is the geodesic connecting
the two points. This spinor geodesic parallel transporter must satisfy the
parallel transport equation and the initial condition

∂µσ ∇µU(x, x′) = 0 , U(x, x) = I (A.17)

One can write a Dyson-type representation for it (see, e.g. [22]), integrating
along the geodesic emanating from x′ [43]

U(t) = P exp −
∫ t

0
Γµ(τ)dxµ(τ). (A.18)

But for the plane wave metric, due to the nilpotency of Γµ, one can drop
the path ordering symbol P because the matrices in the exponent commute,
therefore one can perform the integration to get

U(x, x′) = exp 1
2γ−~γ · (~x+ ~x′) tan u− u

′

2 = I + 1
2γ−~γ · (~x+ ~x′) tan u− u

′

2 .

(A.19)
Finally, one can easily check that � U(x, x′) = 0.

A.3 Vector Geodesic Parallel Transporter
The Christoffel symbols for the plane wave metric can be directly read off
from the geodesic equations which in turn can be derived from the Lagrangian

L(u̇, v̇, ~̇x, ~x) = 1
2 ẋ

µẋµ = u̇v̇ + 1
2 ~̇x

2 − 1
2 u̇

2 ~x2, (A.20)

where the dots are derivatives with respect to an affine parameter along the
geodesic. The geodesic equations read

ü = 0 (A.21a)
v̈ − 2~x · ~̇xu̇ = 0 (A.21b)

~̈x+ u̇2~x = 0 (A.21c)

and therefore the only nonzero Christoffels are

(Γu)iu = xi , (Γu)vi = (Γi)vu = −xi . (A.22)
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There are two types of geodesics [43]: type-A when u̇ = 0 and the null
ones in this category are parallel to the propagation direction of the wave,
and type-B when one can take u as the affine parameter which is the generic
situation. For this generic case, the Lagrangian (A.20) is 1

2 ẋ
µẋµ = const and

reproduces the one for a harmonic oscillator of unit mass and unit frequency
plus an extra v̇ term. Then, it is not difficult to see that the recipe to get
the geodetic interval between two generic points is just the replacing by the
classical action for the oscillator between two points ~x and ~x′ followed by the
shifts u→ u− u′ and v → v − v′, so that

geodetic interval = (u− u′)(v − v′) + (u− u′)

×
[
~x 2 + ~x′ 2

2 cot (u− u′)− ~x · ~x′ csc (u− u′)
]

(A.23)

and for type-A, one just has to let u→ 0 which simply produces

geodetic interval = (~x− ~x′)2

2 . (A.24)

This recipe also works for the quantities Ψ,Φ and 4, previously defined.
The vector parallel transporter is a bi-vector that parallel transports a

vector along a given path, and the path we need is the geodesic connecting
the two points. This vector geodesic parallel transporter must satisfy the
parallel transport equation and the initial condition

∂ρσ ∇ρPµν′(x, x′) = 0 , Pµν(x, x) = gµν(x). (A.25)

One can also write a Dyson-type representation for it (see, e.g. [23]), inte-
grating along the geodesic emanating from x′ [43]

P µ
ν′(x, x′) = P exp −

∫ t

0
(Γρ)µν′ (τ) dx

ρ(τ). (A.26)

But for the plane wave metric one can check that Γρ as a matrix, with µ and ν ′
labeling its rows and columns respectively, commutes with itself at different
points. One can therefore drop the path ordering symbol and perform the
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integration to get

P µ
ν′(x, x′) = exp

 0 0 ~0
~x2−~x′ 2

2 0 (~x+ ~x′) tan u−u′
2

−(~x t + ~x′ t) tan u−u′
2

~0 t O



=


1 0 ~0

~x2−~x′ 2
2 − |~x+~x

′|2
2 tan2 u−u′

2 1 (~x+ ~x′) tan u−u′
2

−(~x+ ~x′) tan u−u′
2

~0 t I

 . (A.27a)
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Appendix B

Appendix to chapter 3

B.1 Restrictions from Conformal Invariance
Conformal invariance dictates the form the three-point function of two scalars,
of dimension ∆i, with a totally symmetric traceless rank l tensor, of dimen-
sion ∆, to be (see e.g. [50])

〈φ1(x1)φ2(x2)O(l)
µ1...µl

(x3)〉 =

Cφ1φ2O(l)
1

r
(∆1+∆2−∆+l)/2
12 r

(∆+∆12−l)/2
13 r

(∆−∆12−l)/2
23

λx3
µ1...µl

(x1, x2), (B.1)

where

λx3
µ1...µl

(x1, x2) = λx3
µ1(x1, x2)...λx3

µl
(x1, x2)− traces, (B.2a)

λx3
µ (x1, x2) = (x13

r13
− x23

r23
)µ, (B.2b)

and ∆ij = ∆i −∆j.
Also the form of the two-point function of the symmetric traceless rank l
tensor, which defines an orthogonality relation with respect to spin and con-
formal dimension, is required to be (see e.g. [50])

〈O(l)
µ1...µl

(x1)O(l)
ν1...νl

(x2)〉 = CO(l)
1
r∆
12

sym{Iµ1ν1(x)...Iµlνl(x)} (B.3)

where
Iµν(x) = δµν − 2xµxν

r
(B.4)
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is the inversion tensor, related to the Jacobian of the inversion xµ → xµ/r,
and sym means symmetrization and removal of traces.

The structure of the general four point conformal correlator is required
to be

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
4∏

i<j,1
(rij)(Σ/3−∆i−∆j)/2F (u, v), (B.5)

where Σ = ∆1+ ...+∆4 and F is an arbitrary function of the invariant ratios.

B.2 HS Two-Point Function Coefficient
The double sum can be cast into the form

1
4

l∑
k=0

(−1)k
(
l

k

)
(δ)l (δ)2l−k

(δ)l−k

l∑
s=0

(−1)s
(
l

s

)
(δ + k)s (δ + 2l − k)−s

(δ)s (δ + l)−s
. (B.6)

The last sum can be transformed, by means of elementary identities such as
(−1)k

(
n
k

)
= (−n)k

k! and (−z)n = (−1)n 1
(1+z)−n , in a terminating generalized

hypergeometric series 3F2 of unit argument
l∑

s=0

1
s! (−l)s

(δ + k)s (1− δ − l)s
(δ)s (1− δ − 2l + k)s

= 3F2

(
−l, δ + k, 1− l − δ
δ, 1− 2l − δ − k

)
. (B.7)

The evaluation of 3F2 can be done by applying twice the same identity
used in eq.(4.8),

3F2

(
−n, a, b
d, e

)
= (e− a)n

(e)n 3F2

(
−n, a, d− b

d, 1 + a− n− e

)
(B.8)

to get
(k − l)l

(1− 2l − δ + k)l
(1− k + l)k

(1− k)k 3F2

(
−k,−l, 2δ + l − 1

δ,−l

)

= (k − l)l
(1− 2l − δ + k)l

(1− k + l)k
(1− k)k

(1− δ − l)k
δk

= (−1)k l!
(δ)k

(δ + l)l−k (B.9)

where the 3F2 reduced to an ordinary 2F1 of unit argument evaluated with
the Chu-Vandermonde formula [5].

The sum that remains to be done reduces then again to a terminating
ordinary hypergeometric of unit argument that is evaluated as before

1
4 l! (δ)l

l∑
k=0

(
l

k

)
1

(δ)k (δ + l)−k
= 1

4 l! (δ)l 2F1

(
−l, 1− δ − l

δ

)

= 1
4 l! (2δ − 1 + l)l. (B.10)
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B.3 CPW Recurrences
Inserting the OPE 1 (3.16) and using the orthogonality relation (B.3) we
have for the action of the derivative operator

〈φ1(x1)φ2(x2) O(l)
µ1...µl

(x3)〉

=
Cφ1φ2O(l)

CO(l)

1
r
(∆1+∆2−∆+l)/2
12

C(l)(x12, ∂x2)ν1...νl〈O(l)
ν1...νl

(x2) O(l)
µ1...µl

(x3)〉.

(B.11)
Inserting now the OPE (3.16) in the scalar four-point function one gets

for the contribution of O(l) and its descendants

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 ∼
Cφ1φ2O(l)

CO(l)

1
r
(∆1+∆2−∆+l)/2
12

×C(l)(x12, ∂x2)µ1...µl〈O(l)
µ1...µl

(x2) φ3(x3)φ4(x4)〉. (B.12)

In order to be able to act as before with the derivative operator on a two-point
function, one has to re-write the x2-dependence in 〈O(l)

µ1...µl
(x2) φ3(x3)φ4(x4)〉

in a suitable way. This is achieved by introducing the ‘shadow’ operator
(conformal partner) O∗(l), a ‘conventional’ operator with labels (∆∗, l) =
(d−∆, l)

O(l)
µ1...µl

(x2) =
∫
ddx 〈O(l)

µ1...µl
(x2) O(l)

ν1...νl
(x)〉 O∗(l)ν1...νl

(x). (B.13)

Inserting this relation and using (B.11) one gets

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 ∼
∫
ddx〈φ1(x1)φ2(x2) O(l)

µ1...µl
(x)〉

×〈O∗(l)µ1...µl
(x) φ3(x3)φ4(x4)〉. (B.14)

In all, one has just inserted the projection operator [77, 87]

P
l
=
∫
ddx O(l)

µ1...µl
(x)|0〉 〈0|O∗(l)µ1...µl

(x). (B.15)

The integrand can be cast into a form involving Gegenbauer polynomials
after contraction of Lorentz indices, and using their recurrence relations one

1The OPE involves the sum over the complete set of quasi-primaries. We consider no
degeneracies for simplicity, ie. no additional labels apart from (∆, l).
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gets the following recurrences2 [40]

G(l)(b, e, S;u, v) = 1
2

S + l − 1
d− S + l − 2

×
{
d/2− e− 1
f + l − 1

(
v G(l−1)(b+ 1, e+ 1, S;u, v)−G(l−1)(b, e+ 1, S;u, v)

)
+d/2− f − 1

e+ l − 1
(
G(l−1)(b, e, S;u, v)−G(l−1)(b+ 1, e, S;u, v)

)}

− 1
4

(S + l − 1)(S + l − 2)
(d− S + l − 2)(d− S + l − 3)

(d/2− e− 1)(d/2− f − 1)
(f + l − 1)(e+ l − 1)

× (l − 1)(d+ l − 4)
(d/2 + l − 2)(d/2 + l − 3) uG

(l−2)(b+ 1, e+ 1, S;u, v), (B.16)

with S = e+ f + l. The starting point is the scalar result that in the direct
channel limit, u, 1− v ∼ 0 is given by the double power expansion

G(0)(b, e, S;u, v) =
∞∑

m,n=0

(S − b)n(S − e)n
(S + 1− d/2)n

(b)n+m(e)n+m

(S)2n+m

un

n!
(1− v)m
m! .

(B.17)

B.4 UV Fusion Coefficients
Using the double expansion in the direct channel limit u, 1− v ∼ 0, the sum
we have to perform is ∑

l≥0, even
(γuvl )2 a(l)

nm , (B.18)

where

a(l)
nm = a

(l)
0l

n∑
s=0

(−1)s
(
n

s

)(
m+ n+ s

l

)
(δ + l)m+n−l(δ + l)m+n−l+s

(2δ + 2l)m+n−l+s
(B.19)

and (γuvl )2 given in 3.27.
First perform the sum over l, due to the triangular structure the sum is

up to m+ 2n, and sum over all l′s writing

(γuvl )2 = [1 + (−1)l] (δ) 2
l

(2δ + l − 1)l
16N
a

(l)
0l
. (B.20)

2In fact, by the previous procedure one gets in addition the contribution from the
shadow operator. What follows is valid for the direct contribution.
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Now make straightforward manipulations3 to rewrite the sum in terms of
terminating well-poised generalized hypergeometric 3F2 of argument ±1 as

16N (δ)m+n

n∑
s=0

(−1)s
(
n

s

)
(δ)m+n+s

(2δ)m+n+s

×
{

3F
−
2

(
−m− n− s, δ + 1

2 , 2δ − 1
2δ +m+ n+ s, δ − 1

2

)
+ 3F

+
2

(
−m− n− s, δ + 1

2 , 2δ − 1
2δ +m+ n+ s, δ − 1

2

)}
.

(B.21)
The evaluation at −1, with the particular case of a corollary of Dougall’s

formula ([5], pp.148)

3F
−
2

(
a, 1 + a

2 , b
a
2 , 1 + a− b

)
= (1 + a)−b

(1
2 + a

2)−b
, (B.22)

gives
(2δ)m+n+s

(δ)m+n+s
(B.23)

so that the first part is

16N (δ)m+n

n∑
s=0

(−1)s
(
n

s

)
= 16N (δ)m+n δn,0 = 16N (δ)m δn,0 . (B.24)

The evaluation at +1 is done with Dixon’s identity ([5], pp.72), which
can also be derived from Dougall’s formula,

3F
+
2

(
a, b, c

1 + a− b, 1 + a− c

)
=

(1 + a)−b (1 + a)−c (1 + a
2)−b−c

(1 + a
2)−b (1 + a

2)−c (1 + a)−b−c
, (B.25)

produces a factor (0)m+n+s which vanishes for m+ n+ s 6= 0. At m = n = 0
(this forces s=0) one gets 1, so that the second part contributes

16N (δ)m+n δn,0 δm,0 = 16N δn,0 δm,0. (B.26)

Finally, we find the equality

16N δn,0 {δm,0 + (δ)m} =
∑

l≥0, even
(γuvl )2 a(l)

nm. (B.27)

3A term (2δ + 2l)−1 involving 2l must be casted into 1
2 (δ + l + 1

2 )−1 .
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B.5 D’EPP formula and star Witten graph
The inverse kernels are defined according to

p(λ)
∫
ddx3 r

−λ
13 r−d+λ23 = δd(x12), (B.28)

where

p(λ) = p(d− λ) = π−d
Γ(λ) Γ(d− λ)

Γ(d2 − λ) Γ(λ− d
2)
. (B.29)

The D’Eramo-Parisi-Peliti formula [29, 111, 50, 102] reads
∫
ddx4 r

−δ1
14 r−δ224 r−δ334 = v(δ1, δ2, δ3) r

− d2+δ3
12 r

− d2+δ1
23 r

− d2+δ2
13 , (B.30)

where δ1 + δ2 + δ3 = d and

v(δ1, δ2, δ3) = π
d
2
Γ(d2 − δ1) Γ(d2 − δ2) Γ(d2 − δ3)

Γ(δ1) Γ(δ2) Γ(δ3)
. (B.31)

We also need a generalization of D’EPP [50], obtained by differentiation,
∫
ddx4 r

−δ1
14 r−δ224 r−δ334 λx1

µ1...µs(x4, x2) =

(d2 − δ2)s
(δ1)s

v(δ1, δ2, δ3) r
− d2+δ3
12 r

− d2+δ1
23 r

− d2+δ2
13 λx1

µ1.µs(x3, x2) . (B.32)

The star Witten graph with scalar legs of generic dimensions ∆i (i =
1, 2, 3) is given by (see e.g. [32])

a(∆1,∆2,∆3)
r
(∆1+∆2−∆3)/2
12 r

(∆1+∆3−∆2)/2
13 r

(∆2+∆3−∆1)/2
23

, (B.33)

where

a(∆1,∆2,∆3) =
Γ(∆1+∆2+∆3−d

2 )
2πd

Γ(∆1+∆2−∆3
2 )Γ(∆1+∆3−∆2

2 )Γ(∆2+∆3+∆1
2 )

Γ(∆1 − d
2)Γ(∆2 − d

2)Γ(∆3 − d
2)

.

(B.34)
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B.6 Regularized kernels
The aim of this part is to fix notation and thereby to summarize the facts
concerning the reconstruction of the bulk fields out of its two types of asymp-
totics along the line of [78, 95]. Our presentation contains some new elements,
insofar as we exclusively rely on convergent position space integrals. From
them we will be able to derive the analytic continuation rules which usually
appear a posteriori to give meaning to naively divergent integrals.

In AdSd+1 the scalar on shell bulk field φ(x), with x = (z, ~x), z ≥ 0
denoting Poincaré coordinates, has the near boundary asymptotics 4, see e.g.
[1, 78]

φ(x) = z∆−(φ0(~x) +O(z2)) + z∆+(A(~x) +O(z2)) , (B.35)

where ∆± = d
2 ±

√
d2

4 +m2. The standard bulk to bulk propagators obey
(∆ = ∆±)

(�x −m2)G∆(x, x′) = −g− 1
2 δ(x, x′) ,

G∆(x, x′) = z′∆G0
∆(x, ~x′) +O(z′∆+2) . (B.36)

Using (B.35),(B.36) and Gauss theorem one gets with fixed z′ > 0 [42, 53,
109]

φ(x) =
∫
dd~x′{(∆−∆−)φ0(~x′) G0

∆(x, ~x′) z′∆−+∆−d +O(z′∆−+∆−d+2)

+ (∆−∆+)A(~x′) G0
∆(x, ~x′) z′∆++∆−d +O(z′∆++∆−d+2)} . (B.37)

Since always ∆+ ≥ d
2 , for the choice ∆ = ∆+ both O-terms go to zero for

z′ → 0. Choosing instead ∆ = ∆−, the vanishing of both O-terms requires
∆− > d−2

2 , i.e. just the unitarity bound. Altogether for d−2
2 < ∆− < d

2 < ∆+
one gets

φ(x) =
∫
dd~x′ φ0(~x′) K∆+(x, ~x′) =

∫
dd~x′ A(~x′) K∆−(x, ~x′) , (B.38)

with

K∆±(x, ~x′) = (2∆± − d) lim
z′→0

z′−∆± G∆±(x, x′)

= Γ(∆±)
π
d
2 Γ(∆± − d

2)
z∆±

(z2 + (~x− ~x′)2)∆±
. (B.39)

4In the following we assume a suitable rapid falloff of A and φ0 for |~x| → ∞.
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The reconstruction of the asymptotics (B.35) from the first eq. in (B.38) is
given by

∫
dd~x′ φ0(~x′) K∆+(x, ~x′) = z∆− φ0(~x) (1 +O(z2k)) + Γ(∆+)

π
d
2 Γ(∆+ − d

2)
z∆+

×

∫ dd~x′
φ0(~x′)− φ0(~x)− · · · − ((~x′−~x)~∂)2k

(2k)! φ0(~x)
|~x′ − ~x|2∆+

+ O(z2)

 , (B.40)

where k is the largest integer smaller than ∆+ − d
2 . Similarly one finds from

the second representation of φ(x) in (B.38) for d−2
2 < ∆− < d

2∫
dd~x′ A(~x′) K∆−(x, ~x′) = z∆+ A(~x) (1 +O(z2(∆−− d2+1)))

+ Γ(∆−)
π
d
2 Γ(∆− − d

2)
z∆− ×

(∫
dd~x′

A(~x′)
|~x′ − ~x|2∆−

+ O(z2)
)
. (B.41)

We are mainly interested in the situation where both ∆± are above the uni-
tarity bound, then k = 0 and A and φ0 are related via the convergent position
space integrals

A(~x) = π−
d
2 Γ(∆+)

Γ(∆+ − d
2)

∫
dd~x′

φ0(~x′)− φ0(~x)
|~x′ − ~x|2∆+

, (B.42a)

φ0(~x) = π−
d
2 Γ(∆−)

Γ(∆− − d
2)

∫
dd~x′

A(~x′)
|~x′ − ~x|2∆−

. (B.42b)

Comparing the first formula in (B.42b), containing a subtraction, with the
analytic continuation from ∆ < d

2 of the corresponding formula without
subtraction, we find for d

2 < ∆ < d
2 + 1

∫
dd~x′

φ0(~x′)− φ0(~x)
|~x′ − ~x|2∆

=
(∫

dd~x′
φ0(~x′)
|~x′ − ~x|2∆

)
continued

. (B.43)

To check (B.43) one has to split the integral in two parts |~x′−~x| < K or > K,
use the falloff property of φ0 at |~x′| → ∞ and to send the arbitrary auxiliary
scale K to infinity after the continuation. Remarkably, the singularity of
the r.h.s. for ∆→ d

2 − 0 due to the short distance behavior is reproduced on
the l.h.s. for ∆→ d

2 + 0 via the infrared behavior of the subtraction term.
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Appendix C

Appendix to chapter 4

C.1 Convolution of bulk-to-boundary propa-
gators

The bulk-to-bulk propagator and bulk-to-boundary propagators in AdS (see,
e.g., [78]), in Poincare coordinates

ds2 = 1
z2
0
(dz2

0 + d−→x 2), (C.1)

are given, respectively, by

G∆(z, w) = C∆
2−∆

2∆− d ξ
∆ F (∆2 ,

∆ + 1
2 ; ∆− d

2 + 1; ξ−2), (C.2)

in term of the hypergeometric function, and

K∆(z,−→x ) = C∆

(
z0

z2
0 + (−→z −−→x )2

)∆

, (C.3)

with the normalization constant

C∆ = Γ(∆)
π
d
2 Γ(∆− d

2)
. (C.4)

The quantity
ξ = 2 z0w0

z2
0 + w2

0 + (−→z −−→w )2 (C.5)

is related to the geodesic distance d(z, w) = log1+
√

1−ξ2
ξ

.
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There is a natural way to get precisely the difference of the two bulk-to-
bulk propagators of conjugate dimension in AdS/CFT. It is based on the ob-
servation that the convolution along a common boundary point of two bulk-
to-boundary propagator of conjugate dimensions, that is ∆ and d−∆, results
in the difference of the corresponding two bulk-to-bulk propagators [67, 81].
More precisely, the result is in fact the sum∫

Rd
dd−→x K∆(z,−→x ) Kd−∆(w,−→x ) = (2∆− d)G∆(z, w) + [∆↔ d−∆]. (C.6)

The coincidence limit w → z can be taken before the convolution, on
both bulk-to-boundary propagators, to get

(2∆− d) {G∆(z, z)−Gd−∆(z, z)} = C∆Cd−∆

∫
Rd
dd−→x zd0

[z2
0 + (−→z −−→x )2]d .

(C.7)
The z0 dependence in the integral is just illusory, the result is just 2π

d
2

2dΓ( d+1
2 ) . As

noted by Dobrev [39], the product of the two bulk-to-boundary normalization
factors C∆Cd−∆ coincides, modulo factors independent of ∆ = d

2 + x, with
the Plancherel measure for the d+1-dimensional hyperbolic space evaluated
at imaginary argument i x. After putting all together, equation (4.19) is
confirmed.

C.2 GJMS operators and Q-curvature (vul-
garized)

To give a glimpse of these constructions in conformal geometry, let us go
back to our “Dirichlet to Neumann map” (B.43) in the Poincare patch and
examine the analytic continuation to ∆ > d/2. The kernel

C∆

|−→x ′ −−→x |2∆ (C.8)

will have single poles at ∆ = d/2 + k, k ∈ N, since in the neighborhood of
these values (see e.g. [51])

lim
∆→d/2+k

∆− d/2− k
|−→x |2∆

= −ck �k δ(d)(−→x ) (C.9)

where
ck = 1

22k k! (k − 1)! . (C.10)

89



Therefore, the relation between A(−→x ) and φ0(−→x ) for these “resonant val-
ues” is given by the k-th power of the Laplacian �k, a conformal invariant
(covariant) differential operator 1.

The generalization of this observation [59] for a filling Poincare metric as-
sociated to a given conformal structure involves Pk, the conformally invariant
operators of GJMS [58].

GJMS operators

The GJMS operators Pk built using the Fefferman-Graham ambient con-
struction have, among others, the following properties in a d-dim Riemannian
manifold (M, g)

• On flat Rd, Pk = �k

• Pk ∃ k ∈ N and k − d/2 6= Z+

• Pk = �k + LOT

• Pk is formally self-adjoint

• for f ∈ C∞(M), under a conformal change of metric ĝ = e2σg, σ ∈
C∞(M), conformal covariance: P̂kf = e−

d+2k
2 σPk(e

d−2k
2 σf)

• Pk has a polynomial expansion in ∇ and the Riemann tensor (actually
the Ricci tensor) in which all coefficients are rational in the dimension
d

• Pk has the form ∇ · (Sk∇) + d−2k
2 Qd

k, where Sk = �k−1 +LOT and Qd
k

is a local scalar invariant.

Q-Curvature

TheQ−curvature generalizes in many ways the 2-dim scalar curvature R.
It original derivation tries to mimic the derivation of the prescribed Gaussian
curvature equation (PGC) in 2-dim starting from the Yamabe equation in
higher dimension and analytically continuing to d = 2.

Start with the conformal transformation of the scalar curvature at d ≥ 3

e2σR̂ = R− 2(d− 1)�σ − (d− 1)(d− 2)∇σ · ∇σ (C.11)
1There is a factor (−1)k hanging around, just because in the mathematical literature

the positive Laplacian is preferred.

90



and absorb the quadratic term

�σ + (d/2− 1)∇σ · ∇σ = 2
d− 2 e

−(d/2−1)σ � e(d/2−1)σ, (C.12)

to get for the Schouten scalar J := R
2(d−1) and u := e(d/2−1)σ the Yamabe

equation
[−� + (d/2− 1)J ]u = (d/2− 1) Ĵ u

d+2
d−2 . (C.13)

The trick (due to T. Branson) is now to slip in a 1 to rewrite as

−�(e(d/2−1)σ − 1) + (d/2− 1) J e(d/2−1)σ = (d/2− 1) Ĵ e(d/2+1)σ (C.14)

and take now the limit d→ 2 that results in the PGC eqn.

e2σ Ĵ = J −�σ. (C.15)

The very same trick applied now to the higher-order Yamabe eqn. based
on the GJMS operators

Pk u = ∇ · Sk∇ (u− 1) + (d/2− k)Qd
k u = (d/2− k) Q̂d

k u
d+2k
d−2k (C.16)

with u = e(d/2−k)σ, in the limit d→ 2k renders the higher (even-)dimensional
generalization of the PGC eqn.

edσQ̂ = Q+ P σ , (C.17)

where Q := Qd
d/2 and P := Pd/2.

Among the properties of the Q-curvature, the conformal invariance of its
volume integral easily follows. To conclude, let us mention two more relevant
features (switch to the density-valued Q = √g Q):
• For A being an operator with “decent” elliptic and conformal behav-

ior (e.g. Yamabe, Dirac-squared or any of the GJMS operators) in
low dimensions d = 2, 4, 6, and conjecturally in all even dimensions,
the functional determinant quotient within a conformal class can be
generically written as

− logdetÂdetA = c
∫
M
σ(Q̂ + Q) +

∫
M

(F̂− F) + (global term) (C.18)

for some (universal) constant c, where F is some density-valued local
invariant (which varies depending on A). These are called generalized
Polyakov formulas (see e.g. [18, 24]).

• In addition, it provides one of the important terms in volume renor-
malization asymptotics (4.13) at conformal infinity [59]

L = 2 cd/2
∫
M

Q . (C.19)
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C.3 Useful formulas
Here we collect some formulas that have been used throughout the paper.
They can all be found e.g. in [5].

(Euler′s reflection) Γ(z) Γ(1− z) = π

sin(πz) (C.20)

(Pochhammer symbol) (z)n = Γ(z + n)
Γ(z) (C.21)

(1 + z)−n = (−1)n
(−z)n

(C.22)

(Legendre duplication) Γ(z) Γ(z + 1
2) = 21−2z Γ(12) Γ(2z) (C.23)

(Gauß′s hypergeometric theorem, Re(c−a−b) > 0) F (a, b; c; 1) = (c− b)−a
(c)−a
(C.24)

(Gauß′s integral representation) ψ(z) =
∫ ∞
0

dt

(
e−t

t
− e−t z

1− e−t

)
(C.25)

(Binomial expansion) (1− x)a =
∞∑
n=0

(−a)n
n! xn (C.26)

B(a, b)−B(a, c) =
∫ 1

0
du (1− u)a−1(ub−1 − uc−1) , a > −1, b, c > 0 .

(C.27)
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