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Abstract

Multi-loop Feynman integrals occurring in N = 4 super Yang-Mills theory are being
calculated, namely planar and non-planar two-loop three-point functions with massive
propagators. By means of integration-by-parts identities the corresponding topologies
of scalar integrals are reduced to master integrals. The evaluation of the master in-
tegrals is done, using differential equations in the masses. The results of the planar
integrals are presented as Laurent series in ε in terms of harmonic polylogarithms,
whereas the non-planar functions are found to contain elliptic integrals. In addition
we discuss the reduction of massive two-loop four-point functions to master integrals.
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Chapter 1

Introduction

In the era of the LHC experiments of increasing accuracy become possible. Hence it
is necessary to achieve more accurate results for measurable quantities at the theoret-
ical level. According to perturbation theory, higher order corrections to amplitudes
have to be considered. To evaluate such corrections in quantum field theory, it is
necessary to compute multi loop Feynman diagrams. While for instance in quantum-
chromodynamics higher order computations are available for various processes, in other
cases it is more difficult because of the presence of large, non-negligible masses of par-
ticles like the Higgs boson or the top quark. The evaluation of such tensor integrals,
coming directly from the application of Feynman rules, can be reduced to that of scalar
integrals.

The scalar integrals are closely related to the original Feynman diagram. The
denominator of their integrand is formed by the denominators of propagators present
in the diagram and their numerator contains scalar products of external momenta and
loop variables. In general the tensor decomposition leads to a large number of linear
dependent scalar integrals. The first step to reduce this number, is to classify them into
smaller sets of independent scalar integrals, also called topologies. The next step uses
the integration-by-parts identities [1]. These identities allow to reduce integrals of a
single topology to a much smaller subset of master integrals. One of the strategies, how
to use the identities, is the Laporta method [2][3]. Several tools have been developed,
which base on this method [4][5][6].

The method of differential equations is one of the techniques for the computation
of the remaining master integrals. This method is based on the reduction with the
integration-by-parts identities. The use of differential equations in the masses was first
proposed by Kotikov [7]. Remiddi extended it to more general differential equations
in the Mandelstam variables [8]. Gehrmann and Remiddi fully developed the method
by showing its effectiveness through the application to a non-trivial class of functions
[9]. More calculations with this method can be found in [10][11][12][13]. There are also
reviews on a pedagogical level in [14][15].

Instead of performing loop integrations, differential equations have to be solved.
Within the dimensional regularization one uses the Laurent-expansion in ε to obtain
simplified coupled differential equations. They are solved using a proper basis of special
functions: the harmonic polylogarithms [16]. Of course boundary conditions are needed
to get the complete expressions of the master integrals. The general strategy is to take
a look on special kinematical points. For example the integrals can be analysed in the
limits of small or large masses.
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CHAPTER 1. INTRODUCTION 3

In this thesis we use the method of differential equations to calculate previously
unknown planar and non-planar two-loop three-point functions with massive propaga-
tors. In order to obtain boundary conditions we use the Mellin-Barnes representation
(see for example [17]) of the integrals to expand them in the limit of small external
momenta. Two of the external legs are on-shell and the internal masses are uniform.
So they refer for example to the production of a Higgs boson via the fusion of two
massless fermions with a top quark in the loop. It is also of interest to compare our
results with the corresponding massless amplitudes to analyse the mass corrections.

These integrals are of particular interest for N = 4 super Yang-Mills theory. They
contribute to a form factor within massive regularization [18]. One of the integrals
calculated in this paper is relevant for the computation of a massive four-point topology
[19]. We discuss the reduction of these more complicated functions. We propose a
suitable choice for the master integrals. They are also part of a massive form factor in
N = 4 super Yang-Mills theory.

The thesis is organised as follows. In chapter 2 we explain the general form of the
scalar integrals, which result from the tensor decomposition. We describe the so called
auxiliary diagram scheme, which is used to classify these integrals into topologies.
Chapter 3 is about the IBP identities, how to derive them and how to use them
to reduce the number of independent scalar integrals. We also explain the Laporta
method, as one of the strategies for this reduction. Chapter 4 discusses the method of
differential equation. We describe how to generate these equations and how to solve
them. For the latter the basic analysis is explained as well as specific procedures, such
as the expansion in ε and the definition of the harmonic polylogarithms. We give also
a short discussion on boundary conditions in this chapter. In chapter 5 we discuss the
calculation of the above mentioned integrals. The results are summarized in the second
section 5.2. The reduction of the massive four-point functions to master integrals is
the topic of Chapter 6. The evaluation of the boundary conditions uses the Mellin-
Barnes representation and is summarized in the appendix A. In appendix B we give
an example for the in- and output of the tools used for the calculations in this thesis.



Chapter 2

Scalar Feynman integrals

We start with the description of the scalar integrals, resulting from the tensor decom-
position. One way how to classify them into topologies, is explained by means of an
example.

A scalar integral of a corresponding diagram with l loops, g independent external
momenta and f internal lines has the form

∫ ddk1

iπd/2
· · ·

∫ ddkl
iπd/2

b∏
j=1

S
nj

j

f∏
i=1

Di

, (2.1)

where

• Sj (j = 1, 2, ..., b) are the possible scalar products of either one independent
external momentum and one internal loop momentum, or of two loop momenta.
There are

b = l · g + l(l + 1)
2 (2.2)

different scalar products. They appear with arbitrary powers nj ( nj ≥ 0).

• Di = q2
i +m2

i (i = 1, 2, ..., f) is the denominator of the propagator with momen-
tum qi and mass mi. From now, we call Di propagator.

To minimize the number of integrals to be computed, they can be classified into
sets of independent integrals, also called topologies. One way to do this, is to express
every integral in terms of propagators. Since there are b independent scalar products,
we need the same number of different propagators for this representation. The f
propagators of (2.1) appear with arbitrary powers ai (i = 1, 2, ..., f), also called indices,
while the additional (b − f) propagators are restricted to non-positive indices ai ≤ 0
(i = f + 1, ..., b):∫ ddk1

iπd/2
· · ·

∫ ddkl
iπd/2

1
b∏
i=1

Dai
i

(2.3)

Integrals of a given topology are conveniently written in this short form:

I{a1, a2, ..., ab} (2.4)

4



CHAPTER 2. SCALAR FEYNMAN INTEGRALS 5

Figure 2.1: Relevant Feynman diagram for Higgs production via gluon fusion with a
quark in the loop.

Let us consider for instance the two loop correction to Higgs production via gluon
fusion, i.e. the process

g + g → H. (2.5)

A contributing diagram would be that in fig. 2.1 with a quark running in the loop.
Tensor decomposition leads to scalar integrals of this form

∫ ddk1

iπd/2

∫ ddk2

iπd/2
(k2

1)n1(k2
2)n2(k1 · k2)n3(k1 · p1)n4(k1 · p2)n5(k2 · p1)n6(k2 · p2)n7

D1D2D3D4D5D6
,

(2.6)

where

• k1 and k2 are the loop momenta,

• p1 and p2 are the external momenta, with the conditions p2
1 = p2

2 = 0 and
2p1 · p2 = s,

• Di (i = 1, 2, ..., 6) are the denominators of the propagators of the corresponding
internal lines present in fig. 2.1.

The numerator contains the scalar products with one or two loop momenta. So one
additional propagator is necessary to write the scalar integrals in the form

∫ ddk1

iπd/2

∫ ddk2

iπd/2
1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7

= I{a1, a2, a3, a4, a5, a6, a7}, (2.7)

with arbitrary integers ai (i = 1, 2, ..., 6) and a7 ≤ 0. A possible choice for the
propagators in (2.7) is

D1 = k2
1 +m2

D2 = (k1 + p1 + p2)2 +m2

D3 = k2
2 +m2

D4 = (k2 + p1)2 +m2

D5 = (k2 + p1 + p2)2 +m2

D6 = (k1 − k2)2

D7 = (k1 + p1)2 +m2. (2.8)
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Figure 2.2: Diagram for the topology (2.7). Wavy lines denote massless particles
both external and internal. Internal massive lines are denoted by straight lines. This
notation is the same for the rest of this thesis.

Indeed every scalar product in the numerator of (2.6) can be expressed in terms of
these propagators and kinematical invariants:

k2
1 = D1 −m2

k2
2 = D3 −m2

k1 · k2 = 1
2 (D1 +D3 −D6)−m2

k1 · p1 = 1
2 (D7 −D1)

k1 · p2 = 1
2 (D2 −D7 − s)

k2 · p1 = 1
2 (D4 −D3)

k2 · p2 = 1
2 (D5 −D4 − s) (2.9)

A topology is determined by its propagators, like (2.8) for the above example. Since
the integrals are invariant with respect to shifts in the loop momenta, there is some
freedom in choosing the propagators. A clear definition of a topology is given by the
diagram containing all the propagators. For (2.7) it is the diagram in fig. 2.2, with the
remark, that D7 is restricted to non-positive indices.

There is an alternative to this auxiliary-denominator scheme. It is called shift
scheme and uses scalar products of external and loop momenta in the numerator instead
of auxiliary propagators. For detailed descriptions see for example [9][11].

In both ways, all the scalar integrals of the form (2.1) can be reduced to a mini-
mal set of linear independent ones. Another advantage of this classification becomes
apparent in the next section. There are identities for every topology. These so-called
integration-by-parts identities allow a further reduction.



Chapter 3

Integration-by-parts identities

In general the tensor reduction leads to a large number of scalar integrals with different
sets of indices. It is however possible to reduce the number of integrals to be computed
by using special identities. These are the integration-by-parts (IBP) identities. IBP
identities relate integrals of a single topology. For each integral of the form (2.3) we
can write

∫ ddk1

iπd/2
· · ·

∫ ddkl
iπd/2

∂

∂kj,µ

 vµ
b∏
i=1

Dai
i

 = 0. (3.1)

The vanishing of this integrals can be proved with an extension to d-dimensional spaces
of the divergence theorem [1]. The vector ki,µ is one of the loop momenta (i = 1, 2, ..., l),
whereas vµ is an arbitrary momentum, loop or external. With g independent external
momenta, there are l(l + g) IBP identities for each set of indices.

It is most suitable to explain the explicit calculation of the identities (3.1) and how
to use them for the reduction by means of a simple example. This is done in section
3.1. The Laporta method, which will be explained in section 3.2, is a useful technique
to reduce more complicated topologies. The idea is that of replacing explicit values for
the indices in the IBP identities. This way a system of linear equations is generated,
whose unknowns are the integrals themselves.

3.1 IBP reduction
An easy example is the one-loop three-point function with uniform internal masses:

=
∫ ddk

iπd/2
1

Da1
1 D

a2
2 D

a3
3

= I{a1, a2, a3}

With two external on-shell momenta p1 and p2 (p2
1 = p2

2 = 0; 2p1 · p2 = s), loop

7



CHAPTER 3. INTEGRATION-BY-PARTS IDENTITIES 8

momentum k and mass m, a possible choice for the propagators is

D1 =k2 +m2

D2 =(k + p1)2 +m2

D3 =(k + p1 + p2)2 +m2. (3.2)

There are three independent identities for each set of indices, since vµ can be p1,µ, p2,µ
or kµ. The identity with vµ = p1,µ reads

0 =
∫ ddk

iπd/2
∂

∂kµ

p1,µ

Da1
1 D

a2
2 D

a3
3
. (3.3)

The derivations of the propagators are easily obtained:

p1,µ
∂

∂kµ
D1 =2p1 · k = D2 −D1

p1,µ
∂

∂kµ
D2 =2p1 · k + 2p2

1 = D2 −D1

p1,µ
∂

∂kµ
D3 =2p1 · k + 2p2

1 + 2p1 · p2 = D2 −D1 + s (3.4)

In the last steps the derivatives have been expressed in terms of propagators. Substi-
tuting these expressions, we get∫ ddk

iπd/2
(Da1

1 D
a2
2 D

a3
3 )−1

(
a1 − a2 − a1

D2

D1
+ a2

D1

D2
+ a3

D1

D3
− a3

D2

D3
− a3

s

D3

)
=a1 − a2 − a11+2− + a22+1− + a33+1− − a33+2− − a3s3+ = 0. (3.5)

In the second step the operators i+ and i− are introduced. Applied on the generic
integral I{a1, a2, a3}, which is omitted as an overall factor, they raise or lower the
associated index, e.g.

1+2−I{a1, a2, a3} = I{a1 + 1, a2 − 1, a3}. (3.6)

The calculation of the IBP identities for vµ = p2,µ and vµ = kµ is done in the same
way:

p2,µ : a2 − a3 + a11+2− − a11+3− − a22+3− + a33+2− + a1s1+ = 0 (3.7)
kµ : d− 2a1 − a2 − a3 − a22+1− − a33+1−

+ 2m2(a11+ + a22+ + a33+) + a3s3+ = 0 (3.8)

These identities relate integrals not only with different indices, but also with different
sums of indices. The most important terms are the ones with 1+, 2+ and 3+: the sum
of indices is one greater than for all the other integrals. So it is possible to express
more complicated integrals of a topology step by step in terms of simpler ones with a
smaller sum of indices.

As an example we reduce the integral I{2, 1, 1} in the following. With {a1, a2, a3} =
{1, 1, 1} eq. (3.7) reads

I{2, 1, 1} = 1
s

[I{2, 1, 0}+ I{1, 2, 0} − I{2, 0, 1} − I{1, 0, 2}] . (3.9)
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Due to the symmetric limits of integration and the invariance in shifting the loop
momentum k, we easily proof that I{a1, a2, 0} = I{a2, a1, 0}:

Da1
1 D

a2
2 =

[
k2 +m2

]a1 [(k + p1)2 +m2
]a2

k→−k−p1−→
[
(−k − p1)2 +m2

]a1 [(−k)2 +m2
]a2 = Da1

2 D
a2
1 (3.10)

In the same way we can show that I{a1, 0, a3} = I{a3, 0, a1}. So we arrive at

I{2, 1, 1} = 2
s

[I{2, 1, 0} − I{2, 0, 1}] . (3.11)

Choosing {a1, a2, a3} = {2, 1, 0} in (3.5) and {a1, a2, a3} = {1, 0, 1} in (3.8) gives us
the identities

I{2, 1, 0} =I{3, 0, 0} (3.12)

and − I{2, 0, 1} = 1
4m2 + s

[(d− 3)I{1, 0, 1} − I{2, 0, 0}] . (3.13)

When we substitute both in (3.11), the integral I{2, 1, 1} is expressed in terms of
bubble and tadpole integrals (fig. 3.1). With the indices {a1, a2, a3} = {a1, 0, 0} in
(3.8) we obtain the identity

I{a1 + 1, 0, 0} = 2a1 − d
2m2a1

I{a1, 0, 0}, (3.14)

which can be used to reduce the tadpole integrals:

I{2, 0, 0} = 2− d
2m2 I{1, 0, 0} (3.15)

I{3, 0, 0} = 4− d
4m2 I{2, 0, 0} = (4− d)(2− d)

8m4 I{1, 0, 0} (3.16)

The final reduction then is

I{2, 1, 1} =(d− 2) (4(d− 3)m2 + (d− 4)s)
4m4s(4m2 + s) I{1, 0, 0}

+ 2(d− 3)
s(4m2 + s)I{1, 0, 1}. (3.17)

The remaining integrals I{1, 0, 1} and I{1, 0, 0} are irreducible. They are called master
integrals (MI). This topology has a third MI: I{1, 1, 1}. Every integral of this topology
can be reduced to these three MIs. This simple example shows, that the IBP identities
are a useful tool to reduce the number of integrals to be computed.

There is some freedom in choosing the basis of MIs. For example (3.15) allows
to use I{2, 0, 0} instead of I{1, 0, 0} as a MI. Certainly one chooses simpler integrals,
which generally implies a smaller sum of indices or less propagators. Further criteria
for more complicated topologies are a better convergence or a higher symmetry.

There are additional identities, such as Lorentz invariance identities or symmetry
relations (see for example [10]). But it is proven that these are included by the IBP
identities [20].

Obtaining a complete IBP reduction for one-loop integrals is much simpler than for
multi-loop ones. The reason is the following: The aim of a reduction is to eliminate
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Figure 3.1: Tadpole integral IT and bubble integral IB. The double straight lines
denote external lines with mass square s.

propagators, meaning that their indices should become zero. When this succeeds,
the corresponding internal line contracts to a point. Since in the one-loop case every
endpoint of an internal line is connected to a an external line, the contraction allows to
combine the associated external momenta. So the elimination of a propagator reduces
the number of independent external momenta, i.e. also the number of differing scalar
products. Hence the integral can be classified into a topology with a smaller set of
propagators. Of course the IBP identities of the so-called subtopology do not contain
operators or the index of the eliminated propagator. This is not the case for multi-loop
integrals. There are propagators with endpoints, which are not connected to external
lines, e.g. Di (i = 1, 2, 3, 5) in fig. 2.2. To further simplify integrals with one of these
propagators eliminated, one has to use identities, which still contain the associated
operators. Therefore one has to deal with integrals with negative indices of already
eliminated propagators. This makes the reduction of multi-loop topologies a difficult
task. A good strategy is necessary to prevent the reduction from going around in
circles. One of these is the Laporta method, which is explained in the next section.

The simplicity of the reduction of one-loop topologies can also be explained with
(2.2). The number of differing scalar products for one-loop topologies (l = 1) is given
by g + 1. In general this is the number of external lines and in the case of one-loop
integrals this equals the number of internals lines. Thus no auxiliary propagators with
non-positive indices are needed for one-loop topologies.

The definition of subtopologies will also be important for chapter 4. Let us consider
for instance the topology of the functions I{a1, a2, a3, a4, a5, a6, a7} in fig. 2.2 again.
A subtopology is given by I{a1, a2, a3, 0, a5, a6, 0}, because D4 connects the external
on-shell lines.

3.2 Laporta method
The Laporta method, originally introduced in [2][3], is a useful strategy for the IBP
reduction. The idea is to build IBP identities with explicit values for the indices. In
this way a system of linear equations is generated, whose unknowns are the integrals
themselves. The system can be solved with the method of elimination of variables,
where we have to decide, which integrals have to be solved first. Of course we choose
the more complicated amplitudes, so that the remaining ones, which are the MIs, are as
simple as possible. As already mentioned in the last section, the basis of MIs depends
on the definition of “simple”. Possible criteria are:

• The number of different propagators: This is usually the primary criterion,
since tadpole integrals are simpler than bubbles, while bubbles are less compli-
cated then vertices and so on. Of course there are many integrals with the same
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number of propagators, so additional criteria are needed.

• The sum of positive indices: In general an integral with an quadratic propa-
gator (ai = 2) is more complicated than the one with the according index ai = 1.
So this is a good secondary condition.

• Since there may still be no clear order, further criteria could be imposed. For
instance, they can include the number of negative indices. At some point the
choice can also be random.

With only a few identities the system is badly under-determined. For example the
identity (3.5) had already six unknowns for a1, a2, a3 6= 0 and a1 6= a2. But by enlarg-
ing the size of the system, the number of equations grows faster than the number of
unknowns [2]. Thus a smaller or equal set of MIs is obtained. There is a “critical mass”
of equations, above which the number of MIs stays the same. Solving this system leads
to a minimal basis of MIs.

The main advantage of the Laporta method is, that it can be automated in a rather
simple way. There are some public implementations based on this method [4][5][6]. For
the calculations of this thesis, the Mathematica implementation FIRE has been used
in combination with the IBP tool [21], which allows to generate IBP identities. The
reduction with AIR was used for checking purposes.

The basic input for FIRE consists of the momenta, internal an external, and the
propagators of a topology. When the code is ready to work, any integral of the given
topology can be reduced. The output is a linear combination of MIs. An example for
the use of FIRE and IBP is in appendix B. There we take the topology from section 3.1
and reduce the integral I{2, 1, 1}. The result is identical to (3.17).

It is worth mentioning, that there is no strict mathematical proof, that the number
of MIs obtained with the Laporta method is minimal, i.e. that they are independent
from each other. In any case the final number of the MIs is small, compared to the
several hundred integrals occurring in a typical calculation. So this reduction is after
all a great progress.



Chapter 4

The method of differential
equations

After classifying the scalar integrals into topologies and carrying out the IBP reduction
we are left with the MIs. The method of differential equations allows to compute
the MIs with the help of the IBP identities. Instead of performing loop integrations,
differential equations have to be solved to get the MIs. How to generate these equations
is explained in section 4.1 with two one-loop examples. In 4.2 we discuss how boundary
conditions are obtained. The rest of this chapter discusses how to solve the differential
equations. We explain the basic analysis, such as separation of variables, as well as
more specific techniques, e.g. the ε-expansion.

4.1 Generating the equations
Differential operators of the masses or the external momenta applied on scalar integrals
raise or lower the indices of specific propagators. The resulting integrals can then be
reduced to the MIs using the IBP identities. In building these equations for every MI,
a system of differential equations is obtained.

We define the differential operator

px,µ
∂

∂py,µ
, (4.1)

where px and py (x, y = 1, 2, ..., g) are independent external momenta of an integral

I(m2
j , pv · pw) =

∫ ddk1

iπd/2
· · · d

dkl
iπd/2

1
b∏
i=1

Dai
i

. (4.2)

Since it is a scalar integral, it can only depend on scalar quantities, like the mass
squares m2

j (j = 1, 2, ..., b) and the scalar products of the external momenta pv · pw
(v, w = 1, 2, ..., g). Applying (4.1) to a propagator of (4.2), we get

px,µ
∂

∂py,µ
Di =px,µ

∂

∂py,µ
(q2
i +m2

i )

=px,µ
∂

∂py,µ
((q̂i + py)2 +m2

i )

=2px · (q̂i + py), (4.3)

12
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assuming that Di contains py, since otherwise the derivative would vanish. The scalar
products in the last line can then be expressed in terms of propagators, as shown in
section 2. Hence it is possible to express the quantity

px,µ
∂

∂py,µ
I(m2

j , pv · pw) (4.4)

in terms of integrals of the same topology as I(m2
j , pv · pw), because we can take the

partial derivative inside the integral. Now the IBP reduction can be used to write
(4.4) in terms of MIs. And that is the main idea, how to get a system of differential
equations, with one equation for every MI. Fortunately great parts of the system can
be separated, because in the differential equations of MIs from subtopologies will not
appear more complicated ones. That should be clear, if we recall the considerations at
the end of section 3.1. As a result we need to begin with the calculation of the simplest
MI.

As already mentioned, a scalar integral can not depend on the momenta py them-
selves, bot only on scalar products sxy = 2px · py of external momenta. The differential
operator for sxy is a linear combination of the operators (4.1), which can be obtained
using the chain rule.

Alternatively we can set up differential equations in the masses. Because of

∂

∂m2
j

Di = ∂

∂m2
j

(q2
i +m2

i ) =
{

1 for mj = mi

0 else, (4.5)

the quantity

∂

∂m2
j

I(m2
j , pv · pw) (4.6)

can also be expressed in terms of integrals of the same topology.
A scalar integral I can be factorized into a dimensionless function F and a factor,

which carries the mass dimension. It is then possible to set up the differential equations
of F in the dimensionless quantities the function depends on. This is useful, because
scalar integrals usually contain logarithms and polylogarithms.

In the following are two examples.

• The massive three-point function from section 3.1 for d = 4. We consider
one of its MIs:

=
∫ d4k

iπ2
1

D1D2D3
= I{1, 1, 1} =: IV (s,m2)

The other MIs are the tadpole integral I{1, 0, 0} =: IT and the bubble inte-
gral I{1, 0, 1} =: IB. IV can only depend on the kinematical invariant s and the
mass square m2. The mass dimension of the differential d4k is 4, while every
propagator of the integrand reduces it by 2. So a proper ansatz is

IV (s,m2) = 1
s
FV (τs) with τs = m2

s
. (4.7)
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The function FV can only depend on one independent dimensionless quantity,
which we choose to be the quotient τs. The derivative of IV with respect to m2

is given by

∂

∂m2 I{1, 1, 1} = −I{2, 1, 1} − I{1, 2, 1} − I{1, 1, 2}, (4.8)

since the derivative of a massive propagator is

∂

∂m2
1
Di

= − 1
D2
i

. (4.9)

The reduction of I{2, 1, 1} is explained in detail in section 3.1. We do the same
for the other two integrals on the r.h.s. This leads to

∂

∂m2 IV = IT +m2IB
4m6 +m4s

, (4.10)

where the r.h.s does not contain the integral IV itself. That is a feature of this
simple example. In general the differential equations do not take this trivial
form. The inhomogeneous term contains the known MIs of subtopologies and
rational factors. Inserting IT and IB, which can be calculated with Feynman
parametrization (see for example [17]), and using (4.7), we arrive at

∂

∂τs
F (τs) = 1

τs
√

1 + 4τs
log

(√
1 + 4τs − 1√
1 + 4τs + 1

)
. (4.11)

The integrals IT and IB are divergent in 4 dimensions, but their poles cancel.
With the substitution

xs =
√

1 + 4τs − 1√
1 + 4τs + 1 (4.12)

the differential equation simplifies to

∂

∂xs
F (xs) = 1

xs
log(xs). (4.13)

Integration on both sides yields the solution

F (xs) = 1
2 log2(xs) + C. (4.14)

We need a boundary condition to determine the constant C. This topic is ex-
plained in the next section.
We could also start with the differential equation in s = 2p1 · p2. But since FV
only depends on one variable, this differential equation is linear dependent to the
one in m2 and leads to the same in τs.

• The massive four-point function with all external momenta on-shell in d = 4:

=
∫ d4k

iπ2
1

D1D2D3D4
:= I4(s, t,m2)



CHAPTER 4. THE METHOD OF DIFFERENTIAL EQUATIONS 15

This function is a MI of the according topology with arbitrary powers of the
propagators Di (i = 1, 2, 3, 4). Besides m2, this integral depends on two kine-
matical invariant s = 2p1 · p2 and t = 2p2 · p3, because p1 · p3 can be expressed in
terms of s and t. With the on-shell conditions and the conservation of momentum

p2
i =0 (i = 1, 2, 3) (4.15)
p2

4 =(−p1 − p2 − p3)2 = 0, (4.16)

it is easy to prove that

2p1 · p3 = −s− t. (4.17)

A suitable factor to isolate a dimensionless function is (st)−1, because I4(s, t,m2)
is symmetric in s and t. There are two independent quantities, the dimensionless
function F4 can depend on. A convenient choice is m2/s = τs and m2/t = τt. So
the integral can be written as

I4(s, t,m2) = 1
st
F4(τs, τt). (4.18)

To obtain the complete informations on F (τs, τt) we have to consider a system of
partial differential equations, i.e. one equation for each of the arguments τs and
τt.
The differential operators must not violate the conditions (4.15) and (4.16). The
first one is preserved by every linear combination of the operators p1 · ∂p1 , p2 · ∂p2

and p3 · ∂p3 . With the ansatz

(αp1∂p1 + βp2∂p2 + γp3∂p3)(p1 + p2 + p3)2 = 0 (4.19)

we find the possible differential operators (besides the trivial solution α = β = γ,
which only gives a dimensional information)

D(α, γ) = αp1∂p1 + αt+ γs

t+ s
p2∂p2 + γp3∂p3 . (4.20)

Using the chain rule we obtain expressions for ∂τs and ∂τt in terms of two inde-
pendent operators of the form (4.20), e.g.

∂τs = − 1
τs
D(1, 0) + 1

2(τs + τt)
[D(1, 0) +D(0, 1)] . (4.21)

Of course differential operators of m2 automatically satisfies conditions of the
momenta.

In general there is a partial differential equation for every independent dimensionless
quantity, which can be formed with the masses and the kinematical invariants the
integral depends on. But there has to be at least one such quantity. The method only
works for integrals with more than one scale. Differential equations of integrals like
IT , depending only on m2, give only trivial dimensional informations. Especially for
multi-loop topologies, systems of differential equations of two or more MIs have to be
solved, since they can not always be separated.
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4.2 Boundary conditions
In order to obtain the complete expression for a MI, a boundary condition has to be
imposed to the general solution of the differential equation. That means we have to
know the MI in a given kinematical point. A convenient strategy is to analyse the
integrals in special limits, like the massless limit, i.e. m2 → 0, or for small external
momenta. In this thesis we use the latter one. For the integrals calculated in chapter 5,
this refers to the limit s→ 0. We use the Mellin-Barnes (MB) representation (see for
example [17]) together with several tools [22] to obtain the expansions for this limit.
The MB representation allows to write loop integrals as integrals over contours in a
complex plane along the imaginary axis of products and ratios of gamma functions.
The calculations are summarized in appendix A.

4.3 Recursive solution in ε

To handle the divergences of integrals in four dimensions, one uses dimensional regu-
larization. This means to evaluate the integrals for generic dimensions d. In general
the differential equations are too complicated to be solved exactly in d dimensions. An
efficient way to handle this problem involves the Laurent expansion in ε (d = 4− 2ε)
of the equation itself.

First order differential equations are of the general form

∂

∂x
F (x; ε) = A(x; ε)F (x; ε) +B(x; ε). (4.22)

Every quantity of this equation can be expanded in ε:

• The coefficient A(x; ε) of the unknown function F (x; ε) is a rational function of
the dimensionless variable x. It has the form

A(x; ε) =
∞∑
i=0

εiA(i)(x), (4.23)

since in general it does not contain poles.

• The inhomogeneous term B(x; ε) is related to the subtopologies (cf. (4.10)). Its
expansion

B(x; ε) =
∞∑

i=−p
εiB(i)(x) (4.24)

starts with the pole of highest order (O(ε−p)).

• We expects the same to be true for the unknown MI and the according function
F (x; ε):

F (x; ε) =
∞∑

i=−p
εiF (i)(x) (4.25)
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Inserting (4.23), (4.24) and (4.25) in (4.22) allows to write down a series of coupled
differential equations, e.g. for p = 2:

∂

∂x
F (−2)(x) = A(0)(x)F (−2)(x) +B(−2)(x)

∂

∂x
F (−1)(x) = A(0)(x)F (−1)(x) + A(1)(x)F (−2)(x) +B(−1)(x)
∂

∂x
F (0)(x) = A(0)(x)F (0)(x) + A(1)(x)F (−1)(x) + A(2)(x)F (−2)(x) +B(0)(x)

... (4.26)

The first equation, for the coefficient F (−2)(x) of the highest pole, is the first one to
be solved. The solution can than be inserted in the second equation for F (−1)(x) and
solved for the latter function, and so on. We usually stop with the order of ε0, because
it refers to the value for d = 4. It is sometimes necessary to compute integrals for higher
orders in ε, since these terms appear in differential equations of more complicated MIs.

The individual equations are solved with the method of variation of constants.
Let us consider, for instance, the equation for the coefficient F (−2)(x). Let F̂ (x) be
the solution of the associated homogeneous equation, i.e. the equation with the non-
homogeneous part, in this case B(−2)(x), set to zero:

∂

∂x
F̂ (x) = A(0)(x)F̂ (x) (4.27)

It is important to notice, that the above equation is the same for every order in ε. It
is solved with separation of variables:

F̂ (x) = exp
[∫ x

dx′A(0)(x′)
]

(4.28)

The solution of the non-homogeneous equation is then given by

F (−2)(x) = F̂ (x)
[∫ x

dx′F̂−1(x′)B(−2)(x′) + C
]
. (4.29)

The integration constant of (4.28) can be neglected, since it is included in (4.29).
Often differential equations of some MI can not be separated. One way to solve

the resulting systems of differential equations is to start from (4.22) and treat F (x; ε)
and B(x; ε) as l-component vectors and A(x; ε) as a l × l matrix (l is the number of
differential equations). The steps leading to (4.29) can be reinterpreted as well. But
in practice this method turns out to be inappropriate. The problem is, that due to the
matrix exponential in (4.28) the matrix F̂ (x) or rather its inverse is to complicated to
be integrated in (4.29).

Another way is to build the associated differential equation of order l. The eq.
(4.29) can be generalized for this case. The solution of a differential equation of order
l

∂l

∂xl
F (x) =

l−1∑
i=0

Ai(x) ∂
i

∂xi
F (x) +B(x) (4.30)

is then given by

F (x) =
l∑

i=1
F̂i(x)

[∫ x

dx′W−1(x′)Mi(x′)B(x′) + Ci

]
, (4.31)

where
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• F̂i are independent particular solutions of the homogeneous equation, i.e.

l∑
i=1

ĈiF̂i (4.32)

is the general solution with constants Ĉi.

• Ci are the constants of integration.

• W (x) is the Wronskian

W (x) =

∣∣∣∣∣∣∣∣∣∣∣

F̂1(x) F̂2(x) · · · F̂l(x)
F̂ ′1(x) F̂ ′2(x) · · · F̂ ′l (x)

... ... . . . ...
F̂

(l−1)
1 (x) F̂

(l−1)
2 (x) · · · F̂

(l−1)
l (x)

∣∣∣∣∣∣∣∣∣∣∣
(4.33)

• Mi(x) are the minors of the F̂ (l−1)
i (x) in (4.33).

The main problem of this way is, that there is no universal procedure for finding the
homogeneous solutions F̂i. This has to be done by trial and error. To carry out the
integrations in (4.28) a special type of functions is necessary: the harmonic polyloga-
rithms. Their definitions and characteristics are summarized in the next section.

4.4 Harmonic polylogarithms
With the method of variation of constant (4.29) the general solutions of the coupled
differential equations (4.26) take the form

F (−2)(x) =F̂ (x)
∫ x

dx′F̂−1(x′)B(−2)(x′)

F (−1)(x) =F̂ (x)
∫ x

dx′F̂−1(x′)B(−1)(x′)

+ F̂ (x)
∫ x

dx′(x′)A(1)(x′)
∫ x′

dx′′F̂−1(x′′)B(−2)(x′′)

F (0)(x) =F̂ (x)
∫ x

dx′F̂−1(x′)B(0)(x′)

+ F̂ (x)
∫ x

dx′(x′)A(2)(x′)
∫ x′

dx′′F̂−1(x′′)B(−2)(x′′)

+ F̂ (x)
∫ x

dx′(x′)A(1)(x′)
∫ x′

dx′′F̂−1(x′′)B(−1)(x′′)

+ F̂ (x)
∫ x

dx′(x′)A(1)(x′)
∫ x′

dx′′A(1)(x′′)
∫ x′′

dx′′′F̂−1(x′′′)B(−2)(x′′′),
(4.34)

where we omitted the constants. We note, that these expressions require repeated inte-
grations of products of the function F̂−1(x) and the coefficients of the non-homogeneous
terms B(i)(x). The idea is to express these integrations in terms of functions with a
recursive definition. These are the harmonic polylogarithms (HPL) [16].
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The integrands in (4.34) consist of rational factors and logarithms or polyloga-
rithms. The rational part can be expressed as a linear combination of a minimal set of
fractions. For most of the integrals, used in this thesis as MIs, the fractions

f(−1;x) = 1
1 + x

f(0;x) =1
x

f(1;x) = 1
1− x (4.35)

are sufficient. The simplest HPLs, the ones of weight one, are defined as integrals of
these factors:

H[−1;x] =
x∫

0

dx′

1 + x′
= log(1 + x)

H[0;x] =
x∫

1

dx′

x′
= log(x)

H[1;x] =
x∫

0

dx′

1− x′ = − log(1− x) (4.36)

This seems to be needless, because these are simple logarithms. But since there are
repeated integrations in (4.34), it may be necessary to perform one of these:

x∫
1

dx′

x′
log(x′) = 1

2 log2(x)

x∫
1

dx′

x′
log(1 + x′) = Li2(x), (4.37)

where Li2(x) is the dilogarithm. Those two examples are HPLs of weight two. So
for higher orders in ε, polylogarithms of increasing order appear beside the rational
factors. This is also true for more complicated integrals, because the non-homogeneous
parts of their differential equations, which are part of the integrands in (4.34), contain
simpler MIs. The integration of such terms is nontrivial. This is where the recursive
definition of the HPLs becomes useful:

H[a, ~w;x] =
x∫

0

f(a;x′)H[~w;x′]dx′ (4.38)

for [a, ~w] 6= [0,~0w] and

H[0,~0w;x] = 1
w! logw(x), (4.39)

where a is a index, which takes the values −1, 0 or +1. The vector ~w is list of w
indices, each one taking the values −1, 0 or +1 and ~0w is a list of w zeros.
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We need additional fractions for the calculations in this thesis:

f(−r;x) = 1√
x(4 + x)

f(r;x) = 1√
x(4− x)

(4.40)

The definition of the related HPLs stays the same. We just need to extend the list
of possible indices. These functions are related to integrals with thresholds or pseu-
dothresholds at s = ±4m2 [12].

A lot of progress has been made in analysing the characteristics of these functions,
see e.g. [23][24]. For the analysis of the HPL in chapter 5, we used the package HPL
[25] for Mathematica.



Chapter 5

Computation of previously
unknown three-point integrals

5.1 Detailed calculations
We want to calculate two versions of two-loop three-point integrals, a planar and a non-
planar one, shown in fig. 5.1. The masses of massive internal propagators are uniform,
two external lines are on-shell (p2

1 = p2
2 = 0) and the third obtains (p1 + p2)2 = s. We

use the same approach for the integrals as in [13]:

Ix =
(

Γ(1 + ε)
1− ε

)l
(m2)mdim/2Fx (5.1)

where

• l is the number of loops.

• mdim is the mass dimension of Ix. For an integral with b propagators of powers
ai (i = 1, 2, ..., b) it is given by

mdim = l · d− 2
b∑
i=1

ai. (5.2)

• Fx is the dimensionless function.

The factor with the gamma function has the advantage, that the dimensionless function
of the tadpole integral takes the simple form FT = −ε−1.

The results of the integrals calculated in this chapter are summarized in the last
section.

5.1.1 Planar topology
The first topology we want to consider is the planar one (fig. 5.1 (a)):∫ ddk1

iπd/2

∫ ddk2

iπd/2
1

Da1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7

= Ip{a1, a2, a3, a4, a5, a6, a7} (5.3)

A possible choice for the propagators is given in (5.46). The MIs of this topology are
shown in fig. 5.2. We chose this set to use as many already known integrals as possible.

21
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Figure 5.1: Planar (a) and non-planar topologies (b) with D7 and D7 as auxiliary
propagators.

The integrals in the first two lines are factorizable. There is no need to calculate them
by means of their differential equations, because they can be written as products of
simple one-loop integrals shown in fig. 5.3 (for the calculation of these integrals see for
example [17]), e.g.

That is where the simple form of FT is useful. The integrals in lines three and four
have been calculated in [13] and [12]. The computation of the remaining two integrals

= Ip{1, 1, 1, 1, 0, 1, 0} =: Iα(s,m2)

= Ip{1, 1, 1, 1, 1, 1, 0} =: Iβ(s,m2)

is explained in the following.

Calculation of Iα
Let us start with the integral Iα(s,m2), because it appears in the differential equation of
Iβ(s,m2) but not vice versa. Taking the derivative with respect to m2 and performing
the IBP reduction on the r.h.s., we get

∂

∂m2 Iα =d− 4
2m2 Iα + (d− 2)2(30 + (d− 12)d)

8(d− 5)(3− d)(3d− 10)m8 ITT

+ 4(d− 4)m2 + (18− 5d)s
4(30− 19d+ d2)m4 I31 + (d− 4)(4m2 + s)

(30− 19d+ 3d2)m4 I32

− d− 2
4m4 I41 + 3d− 10

4m4 I42 + s

2m4 I43, (5.4)

where the arguments of the integrals are omitted from now on. The MIs on the r.h.s.
are defined in fig. 5.2. Using (5.1), we obtain the differential equation for Fα with the
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Figure 5.2: Master integrals of the planar topology. We use the same notation as in
[13]: Wavy lines denote massless particles both external and internal. Internal massive
lines are denoted by single straight lines. Double straight lines denote external lines
with mass square s. Each dot on a propagator line denotes an additional power of the
propagator.

Figure 5.3: One loop integrals: the massive tadpole, the massless bubble, the massive
bubble and the massive vertex integral
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product rule:

∂

∂m2Fα =
(

1− ε
Γ(1 + ε)

)2

(m2)1+2ε ∂

∂m2 Iα + 1 + 2ε
m2 Fα (5.5)

Then we substitute m2 for a dimensionless quantity, where we choose xs from (4.12).
The ε-expansion (4.26) leads to the differential equations for the coefficients of Fα.
Since the non-homogeneous part is finite for d = 4, we can start with the order O(ε0):

∂

∂xs
F (0)
α = 1 + xs

xs(1− xs)
F (0)
α + 1 + xs

(1− xs)3 {2ζ(3)−H[0, 0, 0;xs]

−2H[1, 0, 0;xs] +H[r, r, 0; τ̂s]} (5.6)

The HPL with the argument τ̂s = 1/τs comes from the MIs I42 and I43. This function
can not be expressed in terms of xs. We use the method of variation of the constants
(4.29) to solve this equation. So we need to start with separation of variables (4.28)
to obtain the solution of the corresponding homogeneous equation. Partial fraction
decomposition is useful to perform the integration:

F̂α = exp
[∫ xs

dx′s
1 + x′s

x′s(1− x′s)

]

= exp
[∫ xs

dx′s

(
1
x′s

+ 2
1− xs

)]
= exp [log(xs)− 2 log(1− xs)]

= xs
(1− xs)2 (5.7)

We use a hat to denote homogeneous solutions, i.e. F̂α is the solution of the differential
equation of F (0)

α with the non-homogeneous terms set to zero. We omit the index (0),
since the homogeneous equations are the same for every order in ε.

The next task is to perform the integration in (4.29). The integrand is the product
of the non-homogeneous part in (5.6) and the inverse of the homogeneous solution
(5.7). We obtain

1 + xs
xs(1− xs)

(2ζ(3)−H[0, 0, 0;xs]− 2H[1, 0, 0;xs] +H[r, r, 0; τ̂s])

=
( 4

1− xs
+ 2
xs

)
ζ(3) +

(
− 2

1− xs
− 1
xs

)
H[0, 0, 0;xs]

+
(
− 4

1− xs
− 2
xs

)
H[1, 0, 0;xs] + 1 + xs

xs(1− xs)
H[r, r, 0; τ̂s], (5.8)

where we used partial fraction decomposition to bring it in a form, which allows to use
the definitions of the HPLs (4.38) and (4.39). The integration of the first three terms is
then straightforward. To integrate the last term we change the variable of integration:∫ xs

dx′s
1 + x′s

x′s(1− x′s)
H[r, r, 0; τ̂ ′s] =−

∫ τ̂s dτ̂ ′s
τ̂ ′s
H[r, r, 0; τ̂ ′s]

=−H[0, r, r, 0; τ̂s] (5.9)
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Thus the general solution of (5.6) is

F (0)
α = xs

(1− xs)2

{
C + 2ζ(3)H[0;xs] + 4ζ(3)H[1;xs]−H[0, 0, 0, 0;xs]

− 2H[1, 0, 0, 0;xs]− 2H[0, 1, 0, 0;xs]− 4H[1, 1, 0, 0;xs]

−H[0, r, r, 0; τ̂s]
}
. (5.10)

To determine the constant of integration C, we analyse the behaviour of F (0)
α for small

external momenta, i.e. for τ̂s = s/m2 → 0. To obtain the expansion of F (0)
α in this

limit, we calculate the MB representation of Iα for d = 4 (see (A.17)). With the tools,
also listed in the appendix, we obtain the following expansion for small τ̂s:

m2Iα = 3
2 −

1
2 log (τ̂s) +O (τ̂s) (5.11)

Now we need the same for the general solution (5.10). The part with the HPLs with
indices 0 and 1 can be expanded, using the HPL package:

xs
(1− xs)2

{
C + 2ζ(3)H[0;xs] + 4ζ(3)H[1;xs]−H[0, 0, 0, 0;xs]

− 2H[1, 0, 0, 0;xs]− 2H[0, 1, 0, 0;xs]− 4H[1, 1, 0, 0;xs]
}

=
(
C − π4

30

)
τ̂−1
s +O

(
τ̂ 0
s

)
(5.12)

For the HPL with indices r and 0 we use the approximation∫ τ̂s

0

dx√
x(4± x)

τ̂s→0−→
∫ τ̂s

0

dx√
4x
. (5.13)

Thus we can write

H[0, r, r, 0; τ̂s] =
∫ τ̂s

0

da

a

∫ a

0

db√
b(4− b)

∫ b

0

dc√
c(4− c)

log(c)

τ̂s→0−→ 1
4

∫ τ̂s

0

da

a

∫ a

0

db√
b

∫ b

0

dc√
c

log(c)

=
(
−2 + 1

2 log(τ̂s)
)
τ̂s. (5.14)

This yields the expansion

− xs
(1− xs)2H[0, r, r, 0; τ̂s] =

(
2− 1

2 log (τ̂s)
)

+O (τ̂s) . (5.15)

Now we can compare the sum of (5.12) and (5.15) with (5.11). Because there is neither
a term of order O(τ̂−1

s ) in (5.11) nor in (5.15) the coefficient in (5.12) must vanish.
This is the case for

C = π4

30 . (5.16)
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Calculation of Iβ
The steps for the calculation of Iβ are essentially the same as those for Iα. The
differential equation in m2 after the IBP reduction is

∂

∂m2 Iβ =
(
d− 4
m2 + 6− 2d

4m2 + s

)
Iβ + (d− 2)2(210 + d(9d− 91))

8(d− 5)(d− 3)(3d− 10)m8(4m2 + s)ITT

+ d− 3
m2(4m2 + s)IBV + d− 2

2m4(4m2 + s)IV T

+ 3(4(d− 4)m2 + (18− 5d)s)
2(30− 19d+ 3d2)m4(4m2 + s)I31 + 6(d− 4)

(30− 19d+ 3d2)m4 I32

+ 6− 3d
8m6 + 2m4s

I41 + 3d− 10
m4(4m2 + s)I42 + 2s

4m6 +m4s
I43

+ d− 3
m2(4m2 + s)I51 + 4− d

4m4 +m2s
Iα. (5.17)

The non-homogeneous part of this equation is finite for d = 4. With the general
approach (5.1) the ε-expansion leads to the following differential equation for the coef-
ficient of Fβ of order O(ε0):

∂

∂xs
F

(0)
β =2(1 + xs + x2

s)
xs(1− x2

s)
F

(0)
β + xs

(1 + xs)(1− xs)3 {18ζ(3)− 3H[0, 0, 0;xs]

+ 4H[0, 0, 1;xs] + 4H[0, 1, 0;xs]− 14H[1, 0, 0;xs]
+4H[r, r, 0; τ̂s]} (5.18)

Using separation of variables for the associated homogeneous equation we get

F̂β =− x2
s

(1 + xs)(1− xs)3 . (5.19)

The product of the inverse of (5.19) and the non-homogeneous part of (5.18) can then
be written in the following form:

−18
xs
ζ(3) + 3

xs
H[0, 0, 0;xs]−

4
xs
H[0, 0, 1;xs]−

4
xs
H[0, 1, 0;xs]

+14
xs
H[1, 0, 0;xs]−

4
xs
H[r, r, 0; τ̂s] (5.20)

The integration is easily done, using the definition of the HPL. We need to change the
variable of integration for the last term again:∫ xs

dx′s
1
x′s
H[r, r, 0; τ̂ ′s] =−

∫ τ̂s

dτ̂ ′s
1√

τ̂ ′s(4 + τ̂ ′s)
H[r, r, 0; τ̂ ′s]

=−H[−r, r, r, 0; τ̂s] (5.21)

Thus the general solution of (5.18) is

F
(0)
β = x2

s

(1 + xs)(1− xs)3

{
− C + 18ζ(3)H[0;xs]− 3H[0, 0, 0, 0;xs]

+ 4H[0, 0, 0, 1;xs] + 4H[0, 0, 1, 0;xs]− 14H[0, 1, 0, 0;xs]

− 4H[−r, r, r, 0; τ̂s]
}
. (5.22)
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Now we determine the constant C. The MB representation of Iβ for d = 4 is given in
(A.16). The expansion for small τ̂s is

(m2)2Iβ = −1
6 log (τ̂s) + 13

36 +O(τ̂s). (5.23)

We expand the part of the solution with the ordinary HPLs:

x2
s

(1 + xs)(1− xs)3

{
− C + 18ζ(3)H[0;xs]− 3H[0, 0, 0, 0;xs]

+ 4H[0, 0, 0, 1;xs] + 4H[0, 0, 1, 0;xs]− 14H[0, 1, 0, 0;xs]
}

=
(
C + 5π4

9

)(
− 1

2τ̂ 3/2
s

+ 1
16τ̂ 1/2

s

)
+ 1

6 log(τ̂s)−
31
36 +O(τ̂s) (5.24)

For the HPL with indices ±r we use the approximation (5.13). This results in the
following expansion for the remaining term:

− x2
s

(1 + xs)(1− xs)3 4H[−r, r, r, 0; τ̂s] = −1
3 log(τ̂s) + 11

9 +O(τ̂s) (5.25)

The sum of (5.24) and (5.25) must equal (5.23). This only holds for

C = −5π4

9 . (5.26)

5.1.2 Non-planar topology
With the propagators (5.49) the non-planar topology of fig. 5.1 (b) is given by∫ ddk1

iπd/2

∫ ddk2

iπd/2
1

D
a1
1 D

a2
2 D

a3
3 D

a4
4 D

a5
5 D

a6
6 D

a7
7

= Inp{a1, a2, a3, a4, a5, a6, a7}. (5.27)

The MIs of this topology are shown in fig. 5.4. Most of the MIs are identical to those
of the planar topology, e.g. Iα from the last section. The others are factorizable or
have been calculated in [13] and [12]. There are three integrals remaining:

= Inp{0, 1, 1, 1, 1, 1, 0} =: Iγ(s,m2)

= Inp{1, 1, 1, 1, 1, 1, 0} =: Iδ(s,m2)

= Inp{1, 1, 1, 1, 1, 1,−2} =: Iη(s,m2)

Their calculation is explained in the following.
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Figure 5.4: Master integrals of the non-planar topology

Calculation of Iγ
The differential equation in m2 for the integral Iγ after performing the IBP reduction
on the r.h.s. is

∂

∂m2 Iγ =d− 4
m2 Iγ −

(d− 2)2(5d− 18)
8(30− 19d+ 3d2)m8 ITT + (5d− 18)s− 4(d− 4)m2

2(30− 19d+ 3d2)m4 I31

− 2(d− 4)(4m2 + s)
(30− 19d+ 3d2)m4 I32 + d− 2

2m4 I41. (5.28)

The non-homogeneous term is finite in 4 dimensions. The differential equation for F (0)
γ

is

∂

∂xs
F (0)
γ = 1 + xs

xs(1− xs)
F (0)
γ + 2(1 + xs)

(1− xs)3 {−2ζ(3) +H[0, 0, 0;xs]

+2H[1, 0, 0;xs]} . (5.29)

With separation of variables we obtain the solution of the homogeneous part:

F̂β = xs
(1− xs)2 . (5.30)
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The term that has to be integrated in order to get the general solution is(
− 4
xs
− 8

1− xs

)
ζ(3) +

( 2
xs

+ 4
1− xs

)
H[0, 0, 0;xs]

+
( 4
xs

+ 8
1− xs

)
H[1, 0, 0;xs]. (5.31)

Thus we arrive at

F (0)
γ = xs

(1− xs)2

{
C − 4ζ(3)H[0;xs]− 8ζ(3)H[1;xs] + 2H[0, 0, 0, 0;xs]

+ 4H[1, 0, 0, 0;xs] + 4H[0, 1, 0, 0;xs] + 8H[1, 1, 0, 0;xs]
}
. (5.32)

The expansion of the MB representation (A.19) for small τ̂s is

m2Iγ = 1 +O (τ̂s) . (5.33)

There are no HPLs with arguments ±r in this general solution. The expansion of the
complete expression can be computed with the help of the HPL package. We get

F (0)
γ =

(
C + π4

15

)
τ̂−1
s +O

(
τ̂ 0
s

)
. (5.34)

There is no term of this order in (5.33), so we have

C = −π
4

15 . (5.35)

Calculation of Iδ and Iη

The differential equations of Iδ and Iη are coupled. We concentrate on the homogeneous
parts, with the solutions Îδ and Îη:

∂

∂m2 Îδ = 8(d− 5)m2 + (d− 3)s
16m4 −m2s

Îδ + 14− 4d
16m4s−m2s2 Îη (5.36)

∂

∂m2 Îη = (2d− 7)(8m2 − s)
16m4 −m2s

Îη + s2(−4(d− 1)m2 + (d− 3)s)
32m4 − 2m2s

Îδ (5.37)

We build the differential equations for the corresponding dimensionless functions in the
quantity τ̂s. Since they are the same for every order in ε, we can write

∂

∂τ̂s
F̂δ = − 24− τ̂s

τ̂s(16− τ̂s)
F̂δ + 2

τ̂ 2
s (16− τ̂s)

F̂η, (5.38)

∂

∂τ̂s
F̂η = − 8− τ̂s

τ̂s(16− τ̂s)
F̂η + τ̂s(12− τ̂s)

2(16− τ̂s)
F̂δ. (5.39)

The associated second order differential equation for F̂δ is

∂2
τ̂s
F̂δ =− 64− 5τ̂s

τ̂s(16− τ̂s)
∂τ̂sF̂δ −

4(9− τ̂s)
τ̂ 2
s (16− τ̂s)

F̂δ. (5.40)
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With the ansatz

F̂δ = F̄δ

τ̂
3
2
s

, (5.41)

we obtain

∂2
τ̂s
F̄δ =− 2(8− τ̂s)

τ̂s(16− τ̂s)
∂τ̂sF̄δ + 1

4τ̂s(16− τ̂s)
F̄δ. (5.42)

If we substitute τ̂s → τ̄s = 16τ̂ 2
s we get a differential equation, which can be written in

the following form:

∂τ̄s

[
τ̄s(1− τ̄ 2

s )∂τ̄sF̄δ
]

= τ̄sF̄δ (5.43)

The solution of this differential equation is the complete elliptic integral of the first
kind K(τ̄s). Elliptic integrals are integrals of square roots of polynomials of degree
three or four. This special type is defined as

K(x) =
1∫

0

dt√
(1− t2)(1− x2t2)

. (5.44)

A second solution to equation (5.43) is K
(√

1− τ̄ 2
s

)
. Thus the general solution of (5.40)

is

F̂δ = C1

τ̂
3
2
s

K
(√

τ̂s
4

)
+ C2

τ̂
3
2
s

K
√1− τ̂s

16

 . (5.45)

It is not possible to represent any master integral in terms of harmonic polylogarithms,
when elliptic integrals are involved (for a general mathematical introduction, see for
example [26]). Indeed finding any closed analytical representation is an unsolved prob-
lem (see for example [27][28][29][30]). In [29] similar non-planar MIs (with different
mass configurations) were also found to contain elliptic integrals.

5.2 Results of the calculated integrals
In this section we summarize the results from the last section. We note, that all
calculated integrals are finite for d = 4. The ordinary HPLs with indices 0 and 1 are
real valued in the region s > 0, whereas the generalized HPLs with a index r are real
valued in the region 0 < s < 4m2. To express the following integrals in other regions,
one has to use analytic continuation (see for example [13]). The following MIs have
also been computed numerically with FIESTA [31]. The analytic expressions agree fully
with the numerical evaluation.
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5.2.1 Planar topology
Propagators:

D1 = (k1 + p1 + p2)2

D2 = k2
1

D3 = (k2 + p1 + p2)2 +m2

D4 = (k2 + p1)2 +m2

D5 = k2
2 +m2

D6 = (k1 − k2)2 +m2

D7 = (k1 + p1)2 (5.46)

Calculated MIs:

=
∫ ddk1

iπd/2

∫ ddk2

iπd/2
1

D1D2D3D4D6

=
(

Γ(1 + ε)
1− ε

)2

(m2)−2ε−1F 0
α +O(ε)

F (0)
α = xs

(1− xs)2

{
π4

30 + 2ζ(3)H[0;xs] + 4ζ(3)H[1;xs]−H[0, 0, 0, 0;xs]

− 2H[1, 0, 0, 0;xs]− 2H[0, 1, 0, 0;xs]− 4H[1, 1, 0, 0;xs]

−H[0, r, r, 0; τ̂s]
}

(5.47)

=
∫ ddk1

iπd/2

∫ ddk2

iπd/2
1

D1D2D3D4D5D6

=
(

Γ(1 + ε)
1− ε

)2

(m2)−2ε−2F 0
β +O(ε)

F
(0)
β = x2

s

(1 + xs)(1− xs)3

{
5π4

9 + 18ζ(3)H[0;xs]− 3H[0, 0, 0, 0;xs]

+ 4H[0, 0, 0, 1;xs] + 4H[0, 0, 1, 0;xs]− 14H[0, 1, 0, 0;xs]

− 4H[−r, r, r, 0; τ̂s]
}

(5.48)
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5.2.2 Non-planar topology
Propagators:

D1 = (k2 − k1 + p2)2

D2 = (k1 − k2 + p1)2

D3 = (k2 + p2)2 +m2

D4 = (k1 + p1)2 +m2

D5 = k2
2 +m2

D6 = k2
1 +m2

D7 = (k1 − k2)2 (5.49)

Calculated MI:

=
∫ ddk1

iπd/2

∫ ddk2

iπd/2
1

D2D3D4D5D6

=
(

Γ(1 + ε)
1− ε

)2

(m2)−2ε−1F 0
γ +O(ε)

F (0)
γ = xs

(1− xs)2

{
− π4

15 − 4ζ(3)H[0;xs]− 8ζ(3)H[1;xs] + 2H[0, 0, 0, 0;xs]

+ 4H[1, 0, 0, 0;xs] + 4H[0, 1, 0, 0;xs] + 8H[1, 1, 0, 0;xs]
}

(5.50)



Chapter 6

Reduction of the four-point
topology

In this chapter we want to consider four-point functions of the type shown in fig. 6.1.
All external momenta are on-shell:

p2
i =0 (i = 1, 2, 3) (6.1)
p2

4 =(−p1 − p2 − p3)2 = 0 (6.2)

These integrals depend on the invariants m2, s = 2p1 · p2 and t = 2p2 · p3. Since there
are three independent external momenta and two loops, we need, according to (2.2),
nine independent propagators to construct the corresponding topology. We write the
topology as
∫ ddk1

iπd/2
ddk2

iπd/2
1

D̃a1
1 D̃

a2
2 D̃

a3
3 D̃

a4
4 D̃

a5
5 D̃

a6
6 D̃

a7
7 D̃

a8
8 D̃

a9
9

= Ibox{a1, a2, a3, a4, a5, a6, a7, a8, a9},

(6.3)

where D̃8 and D̃9 are auxiliary propagators. The diagram of this topology is in fig.
6.2. A possible choice for the propagators is

D̃1 = k2
1 +m2

D̃2 = (k1 + p1)2 +m2

D̃3 = (k1 + p1 + p2)2 +m2

D̃4 = (k2 + p1 + p2)2 +m2

D̃5 = (k2 + p1 + p2 + p3) +m2

D̃6 = k2
2 +m2

D̃7 = (k1 − k2)2

D̃8 = (k1 + p1 + p2 + p3)2 +m2

D̃9 = (k2 + p1)2 +m2. (6.4)

The reduction with FIRE gives 27 MIs. It is important to identify all symmetries of
this topology. This is explained in appendix B. In fig. 6.3 are the six factorizable MIs.
They can be factorized into the massive one-loop tadpole, bubble and vertex integrals,
which were also of interest for the planar three-point topology (fig. 5.3). In fig. 6.4 are

33
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Figure 6.1: Two-loop four-point function

Figure 6.2: Diagram for the topology of (6.3). All external momenta are incoming.
The auxiliary propagators are D̃8 and D̃9.

the two- and three-point MIs. Some of them occur with different external momenta,
e.g. the two-point functions can have p1 + p2 or p2 + p3 as external momenta. We
choose the basis to match the set of MIs in [13]. Indeed all the integral except Iγ were
calculated in this reference. Thus all two- and three-point MIs are known.

Let us concentrate on the remaining 12 four-point functions. They can be classified
into the four topologies in fig. 6.5, where we omitted the auxiliary propagators. There
are

• 4 MIs of the type T1,

• 3 of T2,

• 2 of T3

• and 3 of the standard type T4.

Both T1 and T2 can be computed separately, e.g. the IBP reduction of every integral
of type T1 leads to the 4 MIs of this topology and to the MIs in fig. 6.3 and fig. 6.4.
The MIs of T1 and of T2 are necessary to calculate the MIs of T3 and all MIs these
three topologies are needed for the computation of the MIs of T4:

The considerations for the one-loop four-point function in section 4.1 also applies
to the four-point MIs of this topology: The corresponding dimensionless functions
depend on two independent dimensionless quantities and we need to consider one partial
differential equation in each of them. For example we need to solve two systems of four
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Figure 6.3: Factorizable MIs of the four-point topology

differential equations, e.g. one in m2/s = τs and one in m2/t = τt, to obtain the MIs
of T1. It is possible to simplify this task by using the ε-expansion and symmetries in s
and t.

Let us start with T1. A suitable choice for the MIs is

= Ibox{1, 1, 0, 1, 1, 0, 1, 0, 0} =: IT1;1(s, t,m2)

= Ibox{1, 1, 0, 1, 1, 0, 1,−1,−1} =: IT1;2(s, t,m2)

= Ibox{1, 1,−1, 1, 1,−1, 1, 0, 0} =: IT1;3(s, t,m2)

= Ibox{1, 1, 0, 1, 1, 0, 2, 0, 0} =: IT1;4(s, t,m2).

The integral IT1;1 is obviously symmetric with respect to the exchange s ↔ t. If
we solve the differential equation in τs, we automatically know the solution for the
equation in τt. The same is true for IT1;4. Exchanging s and t in IT1;2 yields the inte-
gral IT1;3 and vice versa, i.e. the solution of IT1;2 in τs with s↔ t solves the differential
equation for IT1;3 in τt and so on.

Another advantage of this set of MIs is, that the differential equation of IT1;4 de-
couples within the ε-expansion from the equations of IT1;1, IT1;2 and IT1;3. Hence we



CHAPTER 6. REDUCTION OF THE FOUR-POINT TOPOLOGY 36

Figure 6.4: Two- and three-loop MIs of the four-point topology. The diagram with a
dot in the middle contains a numerator and is defined in [13]. The double straight lines
denote external legs with masses s = 2p1 · p2 or t = 2p2 · p3.

need to solve a third order differential equation and a single one instead of a fourth
order equation.

Decoupling within the ε-expansion means the following: Supposed we have two MIs
I1 and I2 with coupled differential equations, where I2 appears in the equation of I1
with a factor of (d−4) = 2ε. Than the equations for the coefficients of the ε-expansion
of I1 only contain coefficients of lower order of I2. For example the coefficient I(p)

1
appears in the equation for I(p)

2 , but not vice versa. We need to start with the lowest
order in ε and calculate higher orders recursively as usual. But in every order O(εp)
we start with the differential equation of I(p)

1 and substitute the result in the equation
of I(p)

2 .
Alternatively to IT1;2 or IT1;3 we can use the integral

= Ibox{1, 1, 0, 1, 1, 0, 3, 0, 0} =: IT1;5(s, t,m2)

as a MI, since it also decouples from IT1;1, IT1;2 and IT1;3. Thus we need to handle
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Figure 6.5: Types of four-point MIs. The external legs are according to fig. 6.2 with
the missing propagators contracted to points, i.e. p1, p2, p3 and p4 = −p1 − p2 − p3
beginning from the lower left leg and going clockwise (like in fig. 6.1).

two systems of two differential equations. In general this is easier to handle than a
system of three equations, but of course it depends on the coefficients of the equations.
It turns out that they are very extensive for the system of IT1;4 and IT1;5.

It is not possible to use any s-t-symmetries for the other topologies in fig. 6.5. But
there are also integrals, whose differential equations decouple due to the ε-expansion.
A proper choice for the basis of T2 is

= Ibox{1, 1, 1, 0, 1, 0, 1, 0, 0} =: IT2;1(s, t,m2)

= Ibox{1, 1, 1,−1, 1, 0, 1, 0, 0} =: IT2;2(s, t,m2)

= Ibox{1, 1, 1, 0, 1, 0, 2, 0, 0} =: IT2;3(s, t,m2),

where the differential equation of IT2;3 is decoupled from the system of IT2;1 and IT2;2.
For the topologies in fig. 6.5 this is probably a feature of integrals with higher powers
of the massless propagator and can also be used for T3 and T4.

The calculation of the four-point topology is much more complicated than it was
for the three-point integrals in the last chapter. The number of MIs is greater and
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their differential equations can not always be separated. Thus systems of differential
equations or higher order differential equations respectively have to be solved. In
addition we need to handle partial differential equations. This results in finding a
proper basis of two-dimensional HPLs.



Chapter 7

Conclusion

We have calculated three previously unknown three-point scalar integrals with massive
propagators, which are of particular interest for N = 4 super Yang-Mills theory. Two
of them are MIs of a planar topology. Since all the other MIs are known, we can find
an analytical expression for every integral of this topology. The results are presented
as Laurent series in ε in terms of HPL and are finite in four dimensions. This is also
true for the third integral, which is a MI of a non-planar topology. It is not possible
to obtain an expression for the two remaining non-planar MIs in terms of HPLs, since
we have shown, that they contain elliptic integrals. It is an open problem, to find a
closed analytical representation for such integrals.

The method of differential equations has proven to be a useful procedure for cal-
culating massive multi-loop integrals not only in this thesis. It is remarkable, that the
computation is done without performing any loop integrations.

The solutions of simpler integrals are also of interest for more complicated ones.
Especially one of the planar integrals evaluated in this thesis is necessary to com-
pute four-point functions, which are the subject of [19]. We have performed the IBP
reduction of this topology and proposed a suitable choice for the MIs.

This method also has its limits. Instead of solving loop integrations, differential
equations have to be evaluated. This is not always straightforward. Systems of dif-
ferential equations or higher order differential equations respectively lack in universal
solution procedures. The main problem is the evaluation of the corresponding homoge-
neous equations. The more complex the topology, the greater the number of MIs with
coupled differential equations. But we have seen, especially for the four-point integrals,
that in some cases this number can be reduced by using the freedom of choosing the
basis of MIs. Due to the ε-expansion differential equations of some MIs can be sepa-
rated. So it is a good criterion for the IBP reduction, to use MIs, whose differential
equations decouple within this expansion.

Integrals which depend on more kinematical invariants, e.g. integrals with more
external legs or different internal or external masses, require the analysis of higher
dimensional systems of partial differential equations. This is the case for the four-point
integrals considered in this thesis. Partial differential equations in two independent
variables have to be solved. We have seen, that this task can be simplified by taking
advantage of symmetries in these quantities. Furthermore two-dimensional HPLs are
needed to find analytical expressions for these integrals.
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Appendix A

Mellin-Barnes representations of
the integrals

In this section we give the Mellin-Barnes (MB) representations of the integrals com-
puted in chapter 5. A detailed description of this method can be found in [17]. We
use the same strategy as in [19]. Since we need these representations to get bound-
ary conditions for the differential equations, we use the tools MB, MBasymptotics and
barnesroutines [22] to expand the integrals for small s. We describe the calculation
of the integral Iβ in detail. The MB representations of Iα and Iγ are achieved with the
same steps. The representations are derived for d = 4, because we only need boundary
conditions for the coefficients of the ε-expansion of order O(ε0).

The required formulae are the following:

(a1 + a2 + . . .+ an)−λ = 1
Γ(λ)

∫ dz1

2πi · · ·
∫ dzn−1

2πi Γ[−z1] . . .Γ[−zn−1]

· Γ[z1 + . . .+ zn−1 + λ]az1
1 . . . a

zn−1
n−1 a

−z1−...−zn−1−λ
n

(A.1)
1∫

0

n∏
j=1

dαjα
qj−1
j δ

(
n∑
i=1

αi − 1
)

= Γ(q1) . . .Γ(qn)
Γ(q1 + . . .+ qn) (A.2)

MB representation of Iβ
The integral can be written in terms of dual coordinates:

Iβ =
∫ d4xi

iπ2

∫ d4xj
iπ2

1
P1iP3iP1j,mP2j,mP3j,mPij,m

, (A.3)

where Plk,m = x2
lk +m2 and Plk = x2

lk with xlk = xl−xk. Detailed informations on this
notation can be found in [19]. We start with the xj subintegral

Iβ,j =
∫ d4xj

iπ2
1

P1j,mP2j,mP3j,mPij,m
, (A.4)

so that

Iβ =
∫ d4xi

iπ2
Iβ,j
P1iP3i

. (A.5)
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We introduce α parameters (see e.g. [17]) to transform the loop integrations into
one-dimensional integrals:

Iβ,j =
∞∫
0

dα1,2,3,4δ(
∑
i αi − 1)

[α1α3s+ α4(α1P1i + α2P2i + α3P3i) + (α1 + α2 + α3 + α4)2m2]2
(A.6)

The range of the sum in the delta function is arbitrary. We choose ∑4
i=1 to simplify

the m2 term. Thus we get

Iβ,j =
1∫

0

dα1,2,3,4δ(
∑4
i=1 αi − 1)

[α1α3s+ α4(α1P1i + α2P2i + α3P3i) +m2]2
. (A.7)

Now we can use (A.1) to transform the denominator:

Iβ,j =
∫ dz1,2,3,4

(2πi)4 Γ(2 + z)Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)sz1(m2)−2−z

· P z2
1i P

z3
2i P

z4
3i

∫ 1

0
dα1,2,3,4δ(

4∑
i=1

αi − 1)αz1+z2
1 αz3

2 α
z1+z4
3 αz2+z3+z4

4 , (A.8)

with z = z1 + z2 + z3 + z4. The α-integrals can then be evaluated with (A.2):

Iβ,j =
∫ dz1,2,3,4

(2πi)4 f
(j)(z1,2,3,4)sz1(m2)−2−zP z2

1i P
z3
2i P

z4
3i , (A.9)

where

f (i)(z1,2,3,4) = Γ(2 + z)
Γ(4 + 2z)Γ(−z1)Γ(−z2)Γ(−z3)Γ(−z4)Γ(1 + z3)

· Γ(1 + z1 + z2)Γ(1 + z1 + z4)Γ(1 + z2 + z3 + z4). (A.10)
Substituting the above integral in (A.5), we obtain

Iβ =
∫ dz1,2,3,4

(2πi)4 f
(j)(z1,2,3,4)sz1(m2)−2−zIβ,i, (A.11)

with the subintegral

Iβ,i =
∫ d4xi

iπ2
1

P 1−z2
1i P−z3

2i P 1−z4
3i

. (A.12)

With the α-representation this can be written as

Iβ,i = Γ(−z2 − z3 − z4)
Γ(1− z2)Γ(−z3)Γ(1− z4)

∞∫
0

dα1,2,3δ(
∑
i

αi − 1)sz2+z3+z4

· αz3+z4
1 α−1−z3

2 αz2+z3
3 (α1 + α2 + α3)−2−z1−z2−z3 . (A.13)

We choose ∑3
i=1 as the range of the sum. As a result we do not have to introduce

additional MB parameters. We can directly perform the α-integrations by using (A.2):
Iβ,i = sz2+z3+z4f (i)(z2,3,4), (A.14)

where

f (i)(z1,2,3,4) = Γ(−z2 − z3 − z4)Γ(1 + z3 + z4)Γ(1 + z2 + z3)
Γ(1− z2)Γ(1− z4)Γ(2 + z2 + z3 + z4) . (A.15)

Plugging (A.14) into (A.11), we arrive at the result

Iβ =
∫ dz1,2,3,4

(2πi)4
1

(m2)2

(
s

m2

)2+z
f (j)(z1,2,3,4)f (i)(z2,3,4). (A.16)
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MB representation of Iα

Iα =
∫ dz1,2

(2iπ)2
1
m2

(
s

m2

)z
f(z1,2) (A.17)

with

f(z1,2) = Γ(−z1)Γ(−z2)Γ3(1 + z)Γ(1 + z1)Γ2(1 + z2)Γ(−z)
Γ(3 + 2z)Γ(1− z1)Γ(2 + z) (A.18)

and z = z1 + z2.

MB representation of Iγ

Iγ =
∫ dz1,2,3,4

(2iπ)4
1
m2

(
s

m2

)z4

f(z1,2,3,4) (A.19)

with

f(z1,2,3,4) =Γ(−z1)Γ2(−z2)Γ(−z3)Γ(−z4)Γ(1 + z4)Γ(1 + z2 + z4)Γ(z3 − 2z2)
Γ(3 + z2 + 2z4)Γ(−2z2)

· Γ(1 + z1 + z3)Γ(1 + z1 + z2 + z4)Γ(−z1 + z2 − z3). (A.20)



Appendix B

Algorithm FIRE

B.1 Input and Output
As an example we give the input for the IBP reduction of the massive three-point
topology of section 3.1 with IBP and FIRE. The algorithm is explained in detail in [5].
Most of the variables are self-explanatory.
Input:
Get [ " ibp .m" ] ;
Get [ " FIRE_3 . 0 . 0 .m" ] ;
I n t e r n a l = {k } ; External = {p1 , p2 } ;
Propagators = {k^2 + m^2 , ( k + p1)^2 + m^2 ,
( k + p1 + p2)^2 + m^2};

PrepareIBP [ ]
r eps = {p1^2 −> 0 , p2^2 −> 0 , p1∗p2 −> s /2} ;
s t a r t i n g l i s t = {IBP [ k , k ] , IBP [ k , p1 ] , IBP [ k , p2 ] } / . reps ;
SYMMETRIES = {{3 , 2 , 1}} ;
Prepare [ ]
Burn [ ]
Output:
FIRE , ve r s i on 3 . 0 . 0
UsingIBP : True
UsingFermat : Fa l se
Prepared
Dimension s e t to 3
The reduction of any integral of this topology can then be started with a command
like F[2,1,1]. The answer is a linear combination of terms looking the same way, but
with G instead of F.
Input:
F[ {2 , 1 , 1} ]
Output:
((−2 + d) G[{0 , 0 , 1 } ] ) / ( m^2 s (4 m^2 + s ) )
+ ((−4 + d) (−2 + d) G[{0 , 1 , 0 } ] ) / ( 4 m^4 s )
+ ( 2 (−3 + d) G[{1 , 0 , 1 } ] ) / ( s (4 m^2 + s ) )

This reduction matches with (3.17), since G[0,0,1] and G[0,1,0] are identical.
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B.2 Symmetries
It is important to specify all symmetries of a topology in the variable SYMMETRIES. This
reduces both the times for the calculations and the number of MIs. The symmetry in
the example of the last section is related to the invariance with respect to the exchange
of the on-shell momenta p1 and p2. Since this integral depends only on s = 2p1 · p2 and
m2, this symmetry is quite obvious. One has to provide a list of possible permutations
of indices for the variable SYMMETRIES. In this example, the replacement p1 ↔ p2 is
apparently realized through exchanging the propagators D1 and D3 (cf. (3.2)). So the
list has just one entry: {3,2,1}.

This symmetry also applies for the three-point topologies in fig. 5.1. From these
diagrams, the corresponding permutations should also be obvious: {2,1,5,4,3,6,7}
for the planar and {2,1,4,3,6,5,7} for the non-planar topology. This is the only
symmetry for these three-point functions.

It is worth to take a closer look on the four-point topology in fig. 6.2. There are
three independent symmetries. These integrals depend on s = 2p1 · p2, t = 2p2 · p3 and
m2, hence there is one symmetry related to

p1 ↔ p2

and p3 ↔ p4 = −p1 − p2 − p3 (B.1)

and one related to

p1 ↔ p4 = −p1 − p2 − p3

and p2 ↔ p3. (B.2)

In addition we have a symmetry referring to the exchange of the two loop momenta.
It is not always straightforward, to obtain the corresponding permutations with the
help of the diagram, like it was for the three-point functions. So we take the explicit
propagators (6.4), apply the symmetric exchanges and try to transform the resulting
propagators into the standard ones, e.g. for (B.1):

propagators in (6.4) transformations (B.1) k1,2 → −k1,2 − p1 − p2
D̃1 k2

1 +m2 k2
1 +m2 (−k1 − p12)2 +m2 D̃3

D̃2 (k1 + p1)2 +m2 (k1 + p2)2 +m2 (−k1 − p1)2 +m2 D̃2
D̃3 (k1 + p12)2 +m2 (k1 + p12)2 +m2 (−k1)2 +m2 D̃1
D̃4 (k2 + p12)2 +m2 (k2 + p12)2 +m2 (−k2)2 +m2 D̃6
D̃5 (k2 + p123) +m2 (k2 − p3) +m2 (−k2 − p123) +m2 D̃5
D̃6 k2

2 +m2 k2
2 +m2 (−k2 − p12)2 +m2 D̃4

D̃7 (k1 − k2)2 (k1 − k2)2 (−k1 + k2)2 D̃7
D̃8 (k1 + p123)2 +m2 (k1 − p3)2 +m2 (−k1 − p123)2 +m2 D̃8
D̃9 (k2 + p1)2 +m2 (k2 + p2)2 +m2 (−k2 − p1)2 +m2 D̃9

with pij = pi+pj. The transformations in the column to the right are allowed, due to the
symmetric limits of integration and the invariance in shifting the loop momentum. So
we can directly read the permutation, which is related to (B.1): {3,2,1,6,5,4,7,8,9}.
This also works for the other symmetries. Since the variable SYMMETRIES has to contain
all symmetries, not only the independent ones, the complete input for the four-point
topology should be
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{{3 , 2 , 1 , 6 , 5 , 4 , 7 , 8 , 9} , {6 , 9 , 4 , 3 , 8 , 1 , 7 , 5 , 2} ,
{1 , 8 , 3 , 4 , 9 , 6 , 7 , 2 , 5} , {4 , 9 , 6 , 1 , 8 , 3 , 7 , 5 , 2} ,
{3 , 8 , 1 , 6 , 9 , 4 , 7 , 2 , 5} , {6 , 5 , 4 , 3 , 2 , 1 , 7 , 9 , 8} ,
{4 , 5 , 6 , 1 , 2 , 3 , 7 , 9 , 8}}
We note, that the symmetry, which is related to the exchange of the loop momenta,

applies only if one chooses the propagators D̃8 and D̃9 to be massive. It can also be
seen in fig. 6.2, that the diagram is less symmetric for massless D̃8 and D̃9. Therefore
it is useful to choose a mass configuration for the auxiliary propagators, which yields
a higher symmetry of the topology.
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