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1 Introduction

This diploma thesis deals with the aspect of gluon scattering amplitudes in
the AdS/CFT correspondence. The AdS/CFT correspondence is a conjec-
ture that was established by Juan Maldacena [Mal98]. This conjecture relates
four dimensional N = 4 super Yang-Mills theory with ten dimensional type
IIb string theory with AdS5 × S5 background. The space AdS5 × S5 admits
a conformal boundary which is S1 × S3 with S1 being a timelike compo-
nent. But this means that there are closed timelike curves on this conformal
boundary which is physically counterintuitive. But the universal covering of
this conformal boundary is R × S3 which is the so called “static Einstein
universe”. One half of the universal covering of the conformal boundary of
AdS5× S5 is conformal to a Minkowski space which is conjectured to be the
physical space for the N = 4 super Yang-Mills theory. The conformal sym-
metry of the field theory is related to the isometry group of AdS5. Isometry
transformations in AdS5 act as conformal transformations on the confor-
mal boundary. So the subject of AdS/CFT correspondence is to develop a
dictionary between quantities from the string theory and field theoretically
quantities. The parameters λ (’t Hooft coupling) and N (dimension of the
gauge group) from gauge theory are related with string tension α′ and the
Radius of S5 and AdS5 through

√
λ ≡

√

g2
Y MN =

R2

α′ ,
1

N
∝ gs

where gs is the string coupling constant. One would also like to have a trans-
lation of gluon scattering amplitudes on the gauge theory side into some
quantities on the other side of this duality. Scattering amplitudes are very
important quantities in field theories. It is conjectured in [AM07] that these
gluon amplitudes correspond to certain minimal surfaces in AdS5 × S5. To
be more precise the minimal surfaces correspond to MHV amplitudes (maxi-
mally helicity violating amplitudes). One can perform a color decomposition
of gluon scattering amplitudes and factor off the color structure. These am-
plitudes, that do not carry color indices anymore, are called color ordered
amplitudes. Amplitudes corresponding to the case where all gluons have the
same helicity alignment or where just one gluon has the opposite helicity
alignment are zero. So the maximum helicity violating amplitudes are those
where two gluons have the opposite helicity alignment. It is conjectured in
[AM07] that the counterparts for these MHV amplitudes are certain minimal
surfaces in AdS5 that we will be dealing with in this diploma thesis.
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1.1 The correspondence between gluon scattering am-
plitudes and spacelike minimal surfaces

We will start with the description of the problem. The MHV amplitudes
depend on the momenta of the n gluons. As we are interested in on shell
amplitudes these momenta are all lightlike. Because of momentum conser-
vation the momenta form a closed lightlike polygon in the Minkowski space
which is a part of the conformal boundary of AdS5 × S5. Now we can look
for minimal surfaces in AdS5 × S5 that reproduce this closed lightlike poly-
gon on the conformal boundary. It is convenient to look for surfaces inside
AdS5 (with a trivial factor in S5). Then the color ordered planar scattering
amplitude for n gluons at strong coupling is of the form

A ∼ eiScl = e−
√

λ

2
Area

where Scl is the value of the classical action, i.e. proportional to the area
of the solution. Of course this area is divergent so one has to regularize it.
So we are interested in the dependence of the regularized area on the kine-
matical variables of the scattering process. Without regularization the area
would be conformally invariant as the isometry group of AdSn acts as con-
formal group on the conformal boundary of AdSn. Some of the dependence
on kinematical variables comes from the breaking of conformal symmetry by
introducing a regularization. But for configurations with a large number of
cusps the conformal group (isometries of AdS5) is just not big enough thus
there are some conformally invariant kinematical parameters.

The problem of finding the surface for a given contour on the conformal
boundary is very hard. In the Euclidean case this “Plateau problem” is well
understood. For every closed contour in R3 there is exactly one minimal
surface that has the given boundary. Because this correspondence is one to
one, we do not explicitely need to calculate the surface in order to calcu-
late its area. There is the Douglas functional which is an integral over the
closed contour that allows to calculate the area without finding a suitable
minimal surface first. These methods do not work in our case. Additionally
there is not much mathematical literature on minimal surfaces in noncom-
pact, curved and Lorentzian spacetimes.

A first solution to the problem appeared in [AM07] by Alday and Maldacena
for the tetragon. This solution we will review in chapter 2. In addition we
work out an alternative regularization of the tetragon. In chapter 3 we intro-
duce a Pohlmeyer reduction for AdSn in a similar way we did in [DJW09].
This procedure was first used in [PR79],[Poh76] for an O(N) sigma model.
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We will show that there is up to isometries of AdS5 only one spacelike flat
minimal surface and extend this proof for general AdSn in a following sec-
tion. This is an interesting point, as the tetragon solution is flat - thus this
emphasizes the special role of this solution. We will also examine all lightlike
and spacelike minimal surfaces in AdS5, AdS4 and AdS3. In addition to our
paper we show that the integrability condition in the Pohlmeyer reduction
simply is given by the set of Gauss-, Codazzi-Mainardi- and Ricci-equation for
minimal surfaces and thus that the formalism has a clear mathematical inter-
pretation. We also give a characterization for all constantly curved timelike
minimal surfaces in AdS5 which has some similarities with the Weierstrass
representation of minimal surfaces in R3. In our section about invariants we
will proof a very interesting formula for all minimal surfaces in AdSn that
relate invariant quantities from outer geometry to the curvature. Chapter
4 is dedicated to the generic n-gon case. We will also summarize some re-
cent results in the AdS3 case and the octagon that was studied by Alday
and Maldacena in [AM09b]. Some explicit calculations can be found in the
appendix. In the next section we will start to review some geometric objects
and introduce notation. An introduction of geometric quantities and nota-
tions will be provided in the next section. The first chapter ends with the
introduction of AdSn and the conformal boundary in more detail.

1.2 Some geometry

Whenever a manifold M is embedded in a manifold (N, g) we can split the
tangent space of N in every point of M

TpN = TpM ⊕ NpM (1)

Thus we can introduce a metric on the tangent space of M

gM = g|TM (2)

as the restriction to the tangent bundle of M . On N we have the Levi-
Civita connection∇ that is uniquely determined by the metric via the Koszul
formula. The Levi-Civita connection on Rn is the ordinary derivative and we
will denote it by

∇R
n

X Y = XydY =: X(Y ) (3)

where d means the exterior derivative and y the inner product. Using this
covariant derivative on N , we can write for two vectorfields X, Y ∈ Γ(TM)

∇XY = prTM (∇XY )
︸ ︷︷ ︸

=:∇M

X
Y

+ prNM (∇XY )
︸ ︷︷ ︸

=:II(X,Y )

(4)
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This formula can be seen as a definition for the (“induced”) covariant deriva-
tive which is the Levi-Civita connection on M and for the second fundamental
form. We use the terms “covariant derivative” and “connection” synony-
mously. Then the second fundamental form applied on two vectorfields is a
vectorfield in NM . If we fix a choice of a (orthonormal) local base Bi ∈ NM
we can project II(X, Y ) onto the normal fields and we will find dim(NM)
real valued second fundamental forms IIi. A surface is called a “minimal
surface” if and only if for all i ∈ {1, . . . , dim(NM)} : tr(IIi) ≡ 0. The
second fundamental forms IIi are symmetric bilinear forms. Using that ∇ is
a metric connection, we have for two tangential vectorfields

IIi(V, W ) = 〈∇V W, Bi〉 = V (〈W, Bi〉)− 〈W,∇V Bi〉
= −〈W,∇V Bi〉

(5)

Here we used that the Levi-Civita connection is metric. If we consider a
manifold that is embedded in Rn, the last term becomes

〈W,∇V Bi〉 = 〈W, V (Bi)〉 = 〈W, V ydBi〉 (6)

which we will use later to show that the embedding AdSn−1 ⊂ AdSn is
geodesic.

Minmal surfaces can be introduced as surfaces whose second fundamental
forms are traceless or equivalently as stationary points of the area functional
(which is more intuitive in string theory). The variation of the area functional
leads to

gµν
(
∇µ∂νY

k(σ, τ) + ∂µY
j∂νY

lΓk
jl(Y (σ, τ))

)
= 0 (7)

Here the Christoffel symbol is associated with the covariant derivative in the
ambient space. ∇ refers to the induced connection on the surface. gµν is the
induced metric on the surface. It is always possible to choose a conformal
parameterization of a surface (sometimes called “isothermal” coordinates)
such that the induced metric reads gµν = f(σ, τ)δµν (or ηµν in the timelike
case) where f(σ, τ) is strictly positive. In these coordinates the equation of
motion reads

∆Y k − 2
√

detgY k = 0 (8)

where ∆ is the flat Laplace operator on R2. If we introduce the coordinates
z and z̄ such that ∂ = ∂z = ∂σ − i∂τ and ∂̄ = ∂z̄ = ∂σ + i∂τ in the spacelike
case (or ∂ = ∂z = ∂σ + ∂τ and ∂̄ = ∂z̄ = ∂σ − ∂τ in the timelike case) this
equation reads

∂∂̄Y − 〈∂̄Y, ∂Y 〉Y = 0 (9)
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In these coordinates 〈∂̄Y, ∂Y 〉 = 2
√

g = 2f(σ, τ). If we calculate the curva-
ture tensor for the metric gµ,ν = f(σ, τ)δµ,ν we find that the only independent
entry of the curvature tensor reads

Rσ
τ,τ,σ = −(∂τf)2 + ǫ(∂σf)2 − f(ǫ∂τ∂τf + ∂σ∂σf)

2f 2
(10)

From here we find that the scalar curvature is given by

R =
ǫ(∂τf)2 + (∂σf)2 − f(ǫ∂τ∂τf + ∂σ∂σf)

f 3
= −2e−α∂∂̄α (11)

Here ǫ is one for Euclidean surfaces and minus one for Lorentzian surfaces.
We are dealing with conformally parameterized surfaces. Next we show that
a holomorphic reparameterization does not disturb conformal gauge. If the
surface is given by Y (σ, τ) and we assume 〈∂σY, ∂σY 〉 = 〈∂τY, ∂τY 〉 = f(σ, τ)
and 〈∂σY, ∂τY 〉 = 0. Now we reparameterize the surface by σ(s, t) and τ(s, t).
Calculating the metric we find that two equations have to be fulfilled for the
new induced metric to be conformal:

(∂sσ)2 + (∂sτ)2 = (∂tσ)2 + (∂tτ)2

∂sσ∂tσ = ∂sτ∂tτ

which is fulfilled if
∂sσ = ∂tτ ∂tσ = −∂sτ

which are the Cauchy-Riemann differential equations. This means, that con-
formal gauge is preserved for holomorphic reparameterization.

For (nonflat) minimal surfaces in R3 there is the Weierstrass representation
(see for example [AF01] for a proof). If we identify the parameter space (σ, τ)
with the complex plane C via z = 1

2
(τ + iσ) we can parameterize all nonflat

minimal surfaces in R3 with two holomorphic functions f(z) and g(z). The
coordinate representation is given by

F = Re

(∫
f(z)

2
(1− g2(z))dz,

∫
f(z)

2
(1 + g2(z))dz,

∫

f(z)g(z)dz

)

(12)

The flat minimal surfaces in Rn are planes, i.e. an geodesically embedded
R2.

If we have surface embedded in Rn (which is always possible due to the
embedding theorem of Whitney and Nash), we usually consider an induced
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metric to be a tensorfield on the parameter space R2 (for surfaces), because
we calculate the pull-back from the tangent space of the surface. Also a
second fundamental form is usually given as a tensorfield on R2. So there is
a mathematical question of “integrability”. Is it possible to find a map F :
R2 7→ Rn for given symmetric tensorfields ĨIi and a given symmetric positive
definite tensorfield g̃ such that the induced second fundamental forms and the
induced metric are equal to the given tensorfields, i.e. F ∗g = g̃ and F ∗IIi =
ĨIi on R2 (at least locally)? This is the case when the tensorfields obey the
Gauss-, Codazzi-Mainardi- and Ricci- equation. Then the map F is defined
up to isometries of Rn. We will see later that this mathematical integrability
condition has a counterpart in our Pohlmeyer reduction in chapter 3. In the
next section we review some facts about AdSn.

1.3 AdSn and conformal boundary

There are several useful coordinate charts for AdSn and its conformal bound-
ary, which shall be introduced in this section. AdSn is given by the set of all
points in R(2,n−1) that satisfy

〈X, X〉 = −1 (13)

where R(2,n−1) is the (n + 1) dimensional real space equipped with the stan-
dard scalar product 〈., .〉 of index 2. We will index the components of a vector
X ∈ R(2,n−1) with i ∈ {−1, 0, 1 . . . n− 1}. It shall be mentioned that AdSn is
also a homogeneous space. By definition it is obvious that O(2, n− 1) acts
transitively on AdSn and that the stabilizer of a point under this action is a
conjugacy class of O(1, n − 1). The isometry group of AdSn is O(2, n − 1).
AdSn has constant negative scalar curvature R = −n(n − 1) and constant
sectional curvature −1. We can parameterize AdSn by












cosh α cos β
cosh α sin β
sinh α Ω1

sinh α Ω2
...

sinh α Ωn−1












=












X−1

X0

X1

X2
...

Xn−1












(14)

where the Ωi are (n−1) functions of (n−2) parameters that parameterize the
(n − 2) dimensional unit sphere, α ∈ [0,∞) and β ∈ [0, 2π). The universal
cover of AdSn is obtained by allowing β ∈ R. Thus the induced metric on
AdSn is

G = dα2 − cosh2 αdβ2 + sinh2 α
∑

i

dΩ2
i (15)
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Performing a variable transformation yields

sinh α = tan θ

cosh2 α = 1 + tan2 θ =
1

cos2 θ

dα =
1

cos θ
dθ

(16)

Then the induced metric reads

G =
1

cos2 θ
(dθ2 − dβ2 + sin2 θ

∑

i

dΩ2
i ) (17)

The transformation sinh α = tan θ implies that θ ∈ [0, π
2
). In the limit

θ → π
2

the metric has a divergent conformal factor 1
cos2 θ

. If we consider the
metric of AdSn in the same conformal class without this divergent factor,
we can introduce the conformal boundary of AdSn as the limit θ → π

2
and

the metric is now well defined on the conformal boundary. Furthermore we
observe that the conformal boundary simply is S1 × Sn−2 and its universal
covering is R1 × Sn−2. The conformal group on the conformal boundary of
AdSn is the isometry group of AdSn which is O(2, n − 1). If we consider
the universal covering of the conformal boundary, the conformal group is

˜O(2, n− 1), which is a Z -fibration over O(2, n− 1).
However, there is another interesting point of view on the conformal

boundary of AdSn. In Poincaré coordinates we explicitly see that a part
of the conformal boundary of AdSn is conformal to a Minkowski space. The
Poincaré coordinate patch is given by

Xµ =
xµ

r
µ ∈ {0, 1 . . . n− 2}

X−1 + Xn−1 =
1

r

X−1 −Xn−1 =
r2 − x2

0 + x2
1 + · · ·+ x2

n−2

r

(18)

These equations satisfy (13). However, r ∈ R\{0} and therefore we have a
region with positive and negative r that cover both parts of AdSn space that
is cut in two pieces by the X−1 +Xn−1 = 0 hypersurface. The induced metric
reads

G =
1

r2
(−dx2

0 + dx2
1 + · · ·+ dx2

n−2 + dr2) (19)

In this coordinate patch we approach the conformal boundary if we take the
limit r → 0 and take the metric in the same conformal class without the

7



divergent 1
r2 term. Thus we see that a part of the conformal boundary of

AdSn is a (n− 1) dimensional Minkowski space.
The canonical embedding AdSn−1 ⊂ AdSn ⊂ R(2,n−1) of AdSn−1 in AdSn

is geodesic. This means that every minimal surface in AdSn−1 will also be
a minimal surface in AdSn. We will make use of this fact in the following
sections. An embedding is geodesic if and only if the second fundamental
forms that correspond to this embedding are zero. This implies that they
are also traceless which ensures that minimal surfaces in the lower dimen-
sional space are also minimal in the big space. We embed AdSn−1 in AdSn

via AdSn−1 = AdSn

⋂{ ~X ∈ R(2,n−1) | Xn−1 = 0}. But obviously the vec-
tor N = (0, 0, . . . , 1) is orthonormal to the hypersurface and therefore also
orthonormal to the tangent space of AdSn−1. So we can express the second
fundamental form that corresponds to this embedding as

II(V, W ) = 〈∇V W, N〉 = V (〈W, N〉
︸ ︷︷ ︸

=0

)− 〈W,∇V N〉

= −〈W, V (N)〉 = −〈W, V ydN〉
(20)

But we see that
dN = d(0, 0, . . . , 1) = 0 (21)

This means that the second fundamental form of this embedding is zero and
that the embedding is geodesic. So all minimal surfaces in AdSm are also
minimal in AdSn for all m ≤ n.

8



2 The four point amplitude

In this section we examine the surfaces that correspond to four point am-
plitudes. In the generic case we have an arbitrary closed lightlike polygon
with four cusps given on the conformal boundary of AdS5 and we are looking
for a minimal surface that reproduces the given contour on the conformal
boundary of AdS5. As we have seen in the previous chapter, the embedding
of AdS3 ⊂ AdS5 is geodesic, so the minimal surfaces that we find in AdS3 are
also minimal in AdS5 with respect to the canonical embedding X5 = X6 = 0.
So looking for minimal surfaces inside AdS3 will provide solutions in AdS5,
although this is not the generic configuration. We begin to construct a min-
imal surface corresponding to a lightlike cusp. These calculations have been
done in [AM07].

2.1 The lightlike cusp

We are interested in finding a minimal surface inside AdS3 that ends on
x0 = ±x1 on the conformal boundary of AdS3. The following ansatz has the
right boost and scaling symmetry of the problem

x0 = eτ cosh σ x1 = eτ sinh σ r = eτw(τ) (22)

The equation for w(τ) is derived from the variation of the Nambu-Goto

Figure 1: one cusp solution in Poincaré coordinates
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action. The Nambu-Goto action simply reads

A =

∫

dσdτ
√

−det(g̃) (23)

Here g̃ denotes the induced metric on the surface. Now we start to evaluate
this action for the ansatz (22) .

A =

∫

dσdτ
√

−〈∂τ , ∂τ 〉〈∂σ, ∂σ〉+ 〈∂τ , ∂σ〉2

〈∂τ , ∂τ 〉 =
1

w(τ)2
(−1 + (w(τ) + ẇ(τ)))

〈∂σ, ∂σ〉 =
1

w(τ)2

〈∂σ, ∂τ 〉 = 0

⇒ A =

∫

dσdτ

√

1− (w(τ) + ẇ(τ))2

w(τ)2

If we vary w(τ) for this action, we find the following differential equation

d

dτ

w + ẇ

w2
√

1− (w + ẇ)2
=

wẇ + w2 + 2(1− (w + ẇ)2)

w3
√

1− (w + ẇ)2
(24)

This differential equation is solved by w(τ) =
√

2. This choice leads to a
purely imaginary action. But this is only due to (23), which is the action
for lightlike surfaces (string solutions). Our solution here is spacelike. So
the right action would be

∫
dσdτ

√

| detg |. From our calculation which can
be found in the appendix 6.1 can be gathered, that this solution really is a
solution of the equation of motion for the full Nambu-Goto action. Thus the
surface is given by the equation

r =
√

2
√

x2
0 − x2

1 (25)

Using embedding coordinates of R(2,4) , the surface is given by

X2
0 −X2

−1 = X2
1 −X2

4 , X2 = X3 = 0 (26)

2.2 Four light-like segments solution

We now start to consider a surface with four cusps that is a subspace of
AdS4 ⊂ AdS5 by setting x3 = 0. So the set of coordinates for this AdS4 is

10



(r, x0, x1, x2). We assume, that we can use (x1, x2) as the parameterization
space of the surface. The metric of AdS4 reads

ds2 =
−dx2

0 + dx2
1 + dx2

2 + dr2

r2
(27)

The action is the same as (23) with the induced metric g̃. The components
of g̃ are

〈∂1, ∂1〉 =
1

r2
((∂1r)

2 − (∂1x0)
2 + 1)

〈∂2, ∂2〉 =
1

r2
((∂2r)

2 − (∂2x0)
2 + 1)

〈∂1, ∂2〉 =
1

r2
(∂1r∂2r − ∂1x0∂2x0)

(28)

This leads to the action

iA =
∫

dx1dx2

√

1 + (∂1r)2 + (∂2r)2 − (∂1x0)2 − (∂2x0)2 − (∂1r∂2x0 − ∂2r∂1x0)2

r2

(29)

We choose the cusps of the square to be at (x1, x2) = (±1,±1). Thus the
boundary conditions are

r(±1, x2) = r(x1,±1) = 0, x0(±1, x2) = ±x2, x0(x1,±1) = ±x1 (30)

Again, we guess a solution that has the right behavior near the cusps.

x0(x1, x2) = x1x2, r(x1, x2) =
√

(1− x2
1)(1− x2

2) (31)

In the appendix 6.2 we verify that this is also a solution to the equations of
motion. This solution (31) can also be expressed using embedding coordi-
nates.

X3 = X4 = 0, X0X−1 = X1X2 (32)

Remarkably, (32) and (26) are up to a SO(2, 4) transformation the same
solution. To get from (26) to (32) we can use the transformation X3 →
X3, X2 → −X4, X0 → 1√

2
(X0 + X−1), X−1 → 1√

2
(X0 −X−1), X1 →

1√
2
(X1 + X2), X4 → 1√

2
(X1 −X2). This surface lies in an AdS3 subspace.

However, just one cusp lies at a finite position in a Poincaré patch. So we
went one dimension higher and performed an isometry transformation such
that all four cusps are now contained in a single Poincaré patch of AdS4. So
far we only discussed the special case s = t. To get a solution for general s
and t, we perform SO(2, 4) transformations on (32). This will be discussed
in the following section.
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2.3 Boosting the surface and calculation of the area

We start to compute the induced metric on the surface. Starting with (28)
we find

〈∂1, ∂1〉 =
1

r2
((∂1r)

2 − (∂1x0)
2 + 1) =

1

(1− x2
1)

2

〈∂2, ∂2〉 =
1

r2
((∂2r)

2 − (∂2x0)
2 + 1) =

1

(1− x2
2)

2

〈∂1, ∂2〉 = 0

This means

ds2 =
dx2

1

(1− x2
1)

2
+

dx2
2

(1− x2
2)

2
= du2

1 + du2
2 (33)

with xi = tanh ui. Therefore the worldsheet metric is Euclidean and flat.
Using these coordinates we obtain

xi = tanh ui, r =
1

cosh u1 cosh u2

, x0 = tanh u1 tanhu2 (34)











X−1

X0

X1

X2

X3

X4











=











cosh u1 cosh u2

sinh u1 sinh u2

sinh u1 cosh u2

cosh u1 sinh u2

0
0











Via (14) and the described change of coordinates, we can map the whole
surface onto a compact space. The plot below shows how the surface is
embedded in AdS3.
In AdS4 there are isometry transformations such that the surface can be
written

r =
a

cosh u1 cosh u2 + b sinh u1 sinh u2

y0 =
a
√

1 + b2 sinh u1 sinh u2

cosh u1 cosh u2 + b sinh u1 sinh u2

y1 =
a sinh u1 cosh u2

cosh u1 cosh u2 + b sinh u1 sinh u2

y2 =
a cosh u1 sinh u2

cosh u1 cosh u2 + b sinh u1 sinh u2

(35)

12



Figure 2: tetragon solution in 1
2
S2 ×R

The a and b are parameters that belong to SO(2, 4) transformations and
will be translated into the kinematical variables s and t. In the appendix
6.3 we prove that this boosted surface can really be obtained using isometry
transformations of AdS4. The a and b can be translated into the kinematical
variables s and t via

−s(2π)2 =
8a2

(1− b)2
− t(2π)2 =

8a2

(1 + b)2

s

t
=

(1 + b)2

(1− b)2
(36)

This will also be shown in the appendix in 6.4. The calculation of the area
will of course give some infinite result. So we have to regularize it. This
can be done via dimensional regularization or by introducing a cutoff in the
radial component. In [Ald08] and [AM07] the authors use both dimensional
regularization and regularization via a cutoff at small r in Poincaré coordi-
nates. For the cutoff regularization at constant rc they give the following
result

A =
1

4

(

log

(
r2
c

−8π2s

))2

+
1

4

(

log

(
r2
c

−8π2t

))2

− 1

4
log2(

s

t
) + const. (37)

The result is given up to finite pieces that do not depend upon the kine-
matical variables. This results matches the result they obtained from di-
mensional regularization. However, the surface is “boosted” with isometry
transformations. Thus the area would be independent of the actual isom-
etry transformation and thus independent from the kinematical variables if
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the area was finite. But because of the area being divergent it has to be
regularized. Introducing a cutoff breaks this symmetry and makes the area
depending on kinematical variables. So it is a natural question to ask if there
is another natural way to do a cutoff. Therefore we will examine the cutoff in
the coordinate chart that is given by (14). This map is also a natural choice
because it gives a conformal map from the whole conformal boundary onto
the static Einstein universe.

2.4 An alternative approach to calculate the area

We start with the generic four cusp case in (35). Applying the relation
between the embedding coordinates X i and the Poincaré coordinate patch
we find that the surface is given in terms of the embedding coordinates










(a2+1) cosh u1 cosh u2−(a2−1)b sinh u1 sinh u2

2a√
1 + b2 sinh u1 sinh u2

cosh u2 sinh u1

cosh u1 sinh u2
−(a2−1) cosh u1 cosh u2+(a2+1)b sinhu1 sinhu2

2a










!
=









cosh α cos β
cosh α sin β
sinh α cos γ

sinh α sin γ cos δ
sinh α sin γ sin δ









=









X1

X2

X3

X4

X5









(38)
Here {α, β, γ, δ} parameterize AdS4. After applying the coordinate transfor-
mation sinh α = tan θ we have a conformal map of AdS4 to a half Einstein
universe. We approach the boundary for θ → π

2
.

We want to introduce a cutoff in θ by setting θ = π
2
− ǫ. So we have to

extract a relation between θ and the surface coordinates {u1, u2}. Therefore
we find

γ = ArcTan(

√

X2
4 + X2

5

X3

) (39)

and then for

tan2 θ = sinh2 α =

(
X3

cos γ

)2

=

cosh2 u2 sinh2 u1 + cosh2 u1 sinh2 u2+

((a2 − 1) coshu1 cosh u2 − (a2 + 1)b sinh u1 sinh u2)
2

4a2

(40)

The regularized area is hard to compute exactly. We will approximate the
area. In the symmetric case we will be able to show that the error from the
approximation tends to a finite value as ǫ → 0. Then we can approximate
the generic case and assume that the error does not diverge for ǫ→ 0.
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2.4.1 exact solution in the symmetric case

The symmetric case will appear for a = 1 and b = 0. Then we have

tan2 θ = cosh2 u2 sinh2 u1 + cosh2 u1 sinh2 u2 (41)

To calculate the area we have to calculate the area of the “round” rectangle
below (because the metric determinant in this special parameterization is√

det g = 1)

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 3: cutoff for ǫ = 0.1 and external rectangle in the u1u2 plane

The area of the external rectangle can be computed

A = 8



ArcCosh





√
√
√
√1

2
+

1

2

√

2

cos2(π
2
− ǫ)

− 1









2

(42)

However, there is an error near the cusps of the rectangle. And this error
does not tend to 0 as ǫ→ 0. Numerical computations suggest that the error
approaches π2

12
. So if we want to have an exact solution we have to compute
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Aerr and subtract it from the area. The parameterization of the cutoff in the
upper right quadrant is

u2(u1) = ArcSinh





√
1

cos2(π

2
−ǫ)
− cosh2 u1

cosh2 u1 + sinh2 u1



 (43)

With x(ǫ) = ArcCosh

(√

1
2

+ 1
2

√
2

cos2(π

2
−ǫ)
− 1

)

the error can be calculated

Aerr(ǫ)

8
=

∫ x(ǫ)

0

du1



−u1 + 2x(ǫ)− ArcSinh





√
1

cos2(π

2
−ǫ)
− cosh2 u1

cosh2 u1 + sinh2 u1









(44)

=

∫ x(ǫ)

0

du1 log









(√
2

cos2(π

2
−ǫ)
− 1 +

√
2

cos2(π

2
−ǫ)
− 2
)

e−u1

(√
1

cos2( π
2 −ǫ)

−cosh2 u1

cosh2 u1+sinh2 u1
+

√
1

cos2( π
2 −ǫ)

+sinh2 u1

cosh2 u1+sinh2 u1

)









(45)

To obtain the latter term, we used the definition of ArcSinh via logarithms
and applied logarithm laws. The integral is hard to compute exactly, but
we are interested in limǫ→0 Aerr(ǫ). The term Aerr(ǫ) depends on ǫ in two
ways. ǫ appears in the upper integration boundary and in the integrand itself.
Assuming that the integrand I(u1, ǫ) is uniformly convergent in ǫ (which we
show in the appendix in 6.5) we can take

lim
ǫ→0

∫ x(ǫ)

0

du1I(u1, ǫ) = lim
ǫ1→0

lim
ǫ2→0

∫ x(ǫ1)

0

du1I(u1, ǫ2)

= lim
ǫ1→0

∫ x(ǫ1)

0

du1 lim
ǫ2→0

I(u1, ǫ2)

(46)

We get

lim
ǫ→0

log









(√
2

cos2(π

2
−ǫ)
− 1 +

√
2

cos2(π

2
−ǫ)
− 2
)

e−u1

(√
1

cos2( π
2 −ǫ)

−cosh2 u1

cosh2 u1+sinh2 u1
+

√
1

cos2( π
2 −ǫ)

+sinh2 u1

cosh2 u1+sinh2 u1

)









=
1

2
log
(
1 + e−4u1

)

(47)
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So it remains to calculate the integral and we find

lim
ǫ→0

Aerr(ǫ) = 8

∫ ∞

0

1

2
log
(
1 + e−4u1

)
du1 =

π2

12
(48)

So we can calculate the expansion in ǫ of the area via (42).

A(ǫ) ≈ −π2

12
+

9

2
log(2)2 − 6 log(2) log(ǫ) + 2 log(ǫ)2 + o(1) (49)

By o(1) we mean terms that converge to 0 as ǫ→ 0.

2.4.2 An approximation for the generic case

We go back to (40).

tan2 θ = cosh2 u2 sinh2 u1 + cosh2 u1 sinh2 u2+

((a2 − 1) coshu1 cosh u2 − (a2 + 1)b sinh u1 sinh u2)
2

4a2

(50)

In this section we assume that the error near the cusps always converges to a
fixed number. Then we introduce new variables u1 =: x + y and u2 =: x− y.
By setting x = 0 and y = 0 we can calculate the sections with the axes and
then calculate area of the rectangle (which is generally not a square) that
approximates the cutoff.

-15 -10 -5 5 10 15

-15

-10

-5

5

10

15

Figure 4: cutoff for ǫ = 10−5, a = 1000 and b = 2 in u1u2-plane
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Figure 5: cutoff for ǫ = 10−5, a = 1000 and b = 2 in xy-plane

By setting x = 0 we find for y

y0 = ArcCosh

(√

A + B

(b− 1)2 + a4(1 + b)2 + 2a2(3 + b2)

)

(51)

where

A = −b + b2 + a4b(1 + b) + 2a2(2 + b2)

B = 2

√

a2(4a2 − 2b + 2a4b + ((−1 + b)2 + a4(1 + b)2 + 2a2(3 + b2))Cot2(ǫ))

(52)

Similarly, we find

x0 = ArcCosh

(√

C + D

(b + 1)2 + a4(b− 1)2 + 2a2(3 + b2)

)

(53)

with

C = b + b2 + a4b(b− 1) + 2a2(2 + b2)

D = 2

√

a2(4a2 + 2b− 2a4b + ((1 + b)2 + a4(b− 1)2 + 2a2(3 + b2))Cot2(ǫ))

(54)

The regularized surface is then given by the expansion in ǫ of

A(ǫ) = 2× 4x0y0 (55)
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The extra factor 2 appears because we have calculated the area in the xy
Plane. The series expansion in ǫ yields

A(ǫ) ≈ 2 log

(√

a4(b− 1)2 + (b + 1)2 + 2a2(3 + b2)ǫ

8a

)

× log

(√

(b− 1)2 + a4(b + 1)2 + 2a2(3 + b2)ǫ

8a

)

+ O(1)

(56)

First we observe that if we take the symmetric case b = 0 and a = 1 this
reproduces (49), of course without the constant error term at the cusps.
Resubstituting s and t leads to

A(ǫ) ≈ 2 log





√

− 64s

(
√

s+
√

t)4
− π4t + 16π2(s+t+

√
s
√

t)

(
√

s+
√

t)2
ǫ

8
√

2π





× log





√

− 64t

(
√

s+
√

t)4
− π4s + 16π2(s+t+

√
s
√

t)

(
√

s+
√

t)2
ǫ

8
√

2π



+ O(1)

(57)

In the regularization we approximate the cutoff with a rectangle. If we con-
sider large u1 and u2 we can approximate the hyperbolic functions with ex-
ponential functions. In this approximation we directly see that the sides of
the cutoff really become straight lines. The approximation with exponential
functions yields

tan2 θ =
1 + 6a2 + a4 + (1 + a2)2b2 − 2(a4 − 1)bSg(u1)Sg(u2)

64a2
e2(|u1|+|u2|)

(58)
Due to the Sg(u1)Sg(u2) term this solution is asymmetric and not smooth
when we go from one quadrant to another. The plot below shows this ap-
proximation But result of this approximation is (up to finite parts) equal to
(57). For the discussion we will compare it with a result obtained by Alday
in [Ald08]. In order to compare the results we introduce a substitution.

V =

(√

a4(b− 1)2 + (b + 1)2 + 2a2(3 + b2)

8a

)−1

(59)

W =

(√

(b− 1)2 + a4(b + 1)2 + 2a2(3 + b2)

8a

)−1

(60)
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Figure 6: cutoff for ǫ = 10−5, a = 1000 and b = 2 in u1u2-plane and approx-
imation with exponential functions

Then our result can be transformed into

A(ǫ) ≈ 2 log(
ǫ

V
) log(

ǫ

W
)

= (log(
ǫ√
s

√
s

V
) log(

ǫ√
s

√
s

V

V

W
) + log(

ǫ√
t

√
t

W
) log(

ǫ√
t

√
t

W

W

V
))

= (log
r1√
s
)2 + (log

r2√
t
)2 − log(

V

W
)2

(61)

with

r1 =
ǫ
√

s

V
r2 =

ǫ
√

t

W
(62)

In [Ald08] Alday introduces a radial cutoff in a Poincaré patch. It cannot
be assumed that our ǫ cutoff leads to a cutoff in Poincaré coordinates with
constant cutoff parameter rc. So rc is a function of the coordinates of the
conformal boundary. But the edges and cusps are located on the conformal
boundary and the cutoff rc is evaluated along the contour of the polygon.
So rc in this sense has a dependence on s and t because they define the
contour. In his paper [Ald08] Alday also gives a formula he obtains for cutoff
regularization with a cutoff parameter rc that depends on the coordinates
of the conformal boundary and thus also on s and t. Our terms (log r1√

s
)2 +

(log r2√
t
)2 have the same structure. We cannot make a statement about finite

terms, as we surely discard some of the s and t dependence of the finite
terms.
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3 Minimal surfaces in AdSn

In this chapter we will examine minimal surfaces of AdSn more closely. The
aim is to construct further solutions to the problem. The tetragon solution is
however very special. Throughout this section we will prove that this surface
is the only flat spacelike minimal surface that exists in AdSn. It seems that
there is a similar picture that is familiar in euclidian geometry. The only
flat minimal surface in Rn is the geodesically embedded R2. Another very
interesting fact is that this is not true for timelike minimal surfaces. There is a
big variety of other flat timelike minimal surfaces in AdSn. Many (timelike)
string solutions in AdS5 are explicitly known. See [FT03] for example for
the rigid spinning string, rotating in two different planes. The tetragon
solution corresponds via Wick rotation (setting τ → iτ and interpreting
the imaginary components as lightlike directions) to a folded rigid spinning
string of infinite length with a lightlike trace on the conformal boundary of
AdSn. However, this correspondence cannot be established in the case of
other timelike minimal surfaces with lightlike boundary. The folded spinning
string can be seen as the 2-spiky string. In [DL08] the authors give a timelike
solution for the infinite spiky string with k cusps. In [AM09b] the authors
speculate that there might be a correspondence between those infinite spiky
spinning strings with k cusps and spacelike minimal surfaces with a lightlike
boundary with 2k cusps. However, all these infinite spiky string solutions are
flat. And we show that there are no further spacelike flat minimal surfaces.
So this correspondence would have to be nontrivial. A direct inspection also
shows, that there is no simple Wick rotation that gives the correspondence.

The method that we will use in the next section translates the problem of
finding a minimal surface that is formulated in embedding coordinates, into
a differential equation for an orthogonal frame that moves along the surface.
This may seem more difficult but there will be some gauge transformations
that simplify the problem. We will treat both timelike and spacelike minimal
surfaces simultaneously and specify later. The algorithm that we use was
inspired by [dVS93] where the authors examine timelike minimal surfaces
in the four dimensional de Sitter space. But the algorithm works in every
dimension and on any manifold that can be written as {X ∈ Rn | 〈X, X〉 =
±1} where 〈., .〉 indicates a scalar product of arbitrary index. In [JJKV08],
[SS09], [AM09a] and [AM09b] the authors use a similar formalism for minimal
surfaces in AdS3.
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3.1 A Pohlmeyer reduction in AdSn

In this section we will present the formalism that we used in [DJW09]. For
simplicity we will treat spacelike minimal surfaces here. Nevertheless the
formulas translate one to one into the timelike case. We will give the cor-
respondence at the end of this section. Let Y (s, t) be the parameterization
of our minimal surface. We choose our coordinate functions such that the
induced metric of the surface is conformal to the standard metric of R2, i.e.

gs = f(s, t)

(
1 0
0 1

)

. This is sometimes called isothermal coordinates. The

differential equation for minimal surfaces in conformal gauge reads

∆Y − 2
√

detgY = 0 (63)

Then we introduce a change of variables

z =
1

2
(s + it) z̄ =

1

2
(s− it)

∂ = ∂s − i∂t ∂̄ = ∂s + i∂t

(64)

In these coordinates the induced metric on the surface reads

gs = f(z, z̄)

(
0 2
2 0

)

(65)

Then the equation of motion for the minimal surface is

∂∂̄Y − 〈∂Y, ∂̄Y 〉Y = 0 (66)

On the surface we choose a basis of TR(2,n−1)

e = {Y, ∂̄Y, ∂Y, B4, . . . , Bn+1} (67)

such that 〈Bi, Bj〉 = ηij (with B4 being timelike) and 〈Bi, Y 〉 = 〈Bi, ∂Y 〉 =
〈Bi, ∂̄Y 〉 = 0. Note that here Y is timelike, as it lies in AdSn and the tangent
space of the surface is Euclidean. So the Bi really can be chosen to be an
orthonormal set. Then we can define

eα(z,z̄) := 〈∂̄Y, ∂Y 〉 (68)

Differentiating equation (13) leads to

〈Y, ∂̄Y 〉 = 〈Y, ∂Y 〉 = 0 (69)

Differentiating the (1,1) and the (2,2) component of (65) leads to

〈∂̄Y, ∂̄∂̄Y 〉 = 〈∂Y, ∂∂Y 〉 = 0 (70)
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Now we express the second derivatives of Y in terms of the basis (67). With
the equation of motion (66) it follows

∂̄∂Y = eα(z,z̄)Y (71)

For ∂∂Y and ∂̄∂̄Y we obtain

∂∂Y = AY + B∂̄Y + C∂Y +
n+1∑

i=4

ǫiuiBi = AY + B∂̄Y + C∂Y + uiBi (72)

∂̄∂̄Y = DY + E∂̄Y + F∂Y +

n+1∑

i=4

ǫiūiBi = DY + E∂̄Y + F∂Y + uiBi (73)

Here ǫi = ηi,i. In this formula the coefficients A, B, D, F vanish and C =
∂α and E = ∂̄α. (This can easily be verified by rewriting the equations
in terms of ∂sY and ∂tY , as this gives an orthonormal base and so it is
possible to use the projections.) The {ui} and {ūi} are the scalar products
ui = 〈∂∂Y, Bi〉 and ūi = 〈∂̄∂̄Y, Bi〉, as the basis {Bi} is orthonormal. So the
second derivatives read

∂∂Y = ∂α∂Y +

n+1∑

i=4

ǫiuiBi = ∂α∂Y + uiBi (74)

∂̄∂̄Y = ∂̄α∂̄Y +

n+1∑

i=4

ǫiūiBi = ∂̄α∂̄Y + ūiBi (75)

We need to find the evolution of the basis (67). Thus we express the derivative
of the basis in terms of the basis itself which leads to

∂e = A e ∂̄e = Ā e (76)

The upper 3× n + 1 block of A is completely determined by the differential
equations we found for {Y, ∂̄Y, ∂Y }. As the Bi are an orthonormal base, we
can express their evolution with the scalar products

∂Bi = −e−αui∂̄Y +
n+1∑

j=4, j 6=i

ǫj〈Bj , ∂Bi〉Bj = −e−αui∂̄Y + A j
i Bj (77)

∂̄Bi = −e−αūi∂Y +

n+1∑

j=4, j 6=i

ǫj〈Bj , ∂̄Bi〉Bj = −e−αūi∂̄Y + Ā j
i Bj (78)

For i, j ∈ {4, 5, . . . , n + 1} We will also use the notation

A j
i = ǫj〈∂Bi, Bj〉

Ā j
i = ǫj〈∂̄Bi, Bj〉

(79)
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Whenever a quantity has vector- indices these indices belong to the normal
space of the surface and indices are raised and lowered with the metric on
the normal space. We will use two different conventions. The formulas are
shorter if we use Einstein’s sum convention and calculate with tensor entries.
Then we calculate with upper and lower indices. But we also deal with
mathematical coordinate independent tensor calculus. To relate these cases
we have to insert a base. Then we end up with sums and coefficients of basis
representations that will then be interpreted as tensor entries with upper and
lower indices. This means for example ui = uiǫi . Whenever the matrix A
or Ā carries indices we mean the lower (n− 2)× (n− 2) block of A with the
above convention.

We can find the expression for A and Ā

A =












0 1 0 0 . . . 0
0 ∂α 0 ǫ4u4 . . . ǫn+1un+1

eα 0 0 0 . . . 0
0 0 −e−αu4 0 . . . ǫn+1〈∂B4, Bn+1〉
...

...
...

... ǫj〈∂Bi, Bj〉
...

0 0 −e−αun+1 ǫ4〈∂Bn+1, B4〉 . . . 0












(80)

Ā =












0 0 1 0 . . . 0
eα 0 0 0 . . . 0
0 0 ∂̄α ǫ4ū4 . . . ǫn+1ūn+1

0 −e−αū4 0 0 . . . ǫn+1〈∂̄B4, Bn+1〉
...

...
...

... ǫj〈∂̄Bi, Bj〉
...

0 −e−αūn+1 0 ǫ4〈∂̄Bn+1, B4〉 . . . 0












(81)

(82)

Note that the lower (n−2)×(n−2) blocks in these matrices are antisymmetric
(except the fourth line and column) and conjugate to each other. For the
system (76) we have to demand

∂∂̄ei = ∂̄∂ei (83)

which leads to the commutation relation

∂̄A− ∂Ā +
[
A, Ā

]
= 0 (84)

If we considered timelike minimal surfaces, some adoptions would have to be
made.

24



• The tangent space of the surface is now lorentzian. So we choose a

parameterization such that the metric is conformal to

(
1 0
0 −1

)

. In

order to introduce our light cone coordinates z and z̄ we define

z =
1

2
(s− t) z̄ =

1

2
(s + t)

∂ = ∂s + ∂t ∂̄ = ∂s − ∂t

(85)

These variables are now two independent real variables.

• The normal space of the surface in AdSn is now Euclidean, such that

〈Bi, Bj〉 = δi,j ǫi ≡ 1∀i (86)

• The ui and ūi are again no longer conjugate to each other but are two
independent real quantities.

Taking the right metric on the normal space and the proper definition for
∂̄ and ∂, we can evaluate the equation (84) for both timelike and spacelike
minimal surfaces.

0 = ∂∂̄α− e−αubūb − eα

0 = ∂ūa − A b
a ūb = ∂̄ua − Ā b

a ub

e−α(ūau
b − uaū

b) = ∂Ā b
a − ∂̄A b

a + Ā c
a A b

c − A c
a Āb

c

(87)

The matrices A a
b are the lower (n− 2)× (n− 2) block of A, i.e. with indices

from the normal space. The bar means complex conjugation in the spacelike
case. In the timelike case these two are real independent quantities. The
metric on the normal space is δi,j in the spacelike case and ηi,j in the timelike
case.

3.2 Spacelike minimal surfaces

Next, we examine these equations in the spacelike case. We will start with
AdS5. The known tetragon solution is a flat spacelike minimal surface. So
it is a natural question to ask if there are further flat spacelike minimal sur-
faces that belong to other scattering amplitudes. In this section we will proof
that the symmetric tetragon solution is the only (up to isometries of AdS5)
spacelike flat minimal surface in AdS5. Later we will use similar arguments
to show that his result can be extended to AdSn.

The curvature depends on α (which was shown in the introduction). As-
suming that our surface is flat, we will be able to integrate the system of
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differential equations (76) and prove that the solution is unique up to isome-
tries of AdS5.

3.2.1 The AdS5 case

In the AdS5 case, the ei = {Y, ∂Y, ∂̄Y, B4, B5, B6} are a basis of TR(2,4). Here
the vectors Bi are chosen to obey 〈Bi, Bj〉 = ηi,j with B4 being timelike. So
the matrices A and Ā read

A =











0 1 0 0 0 0
0 ∂α 0 −u4 u5 u6

eα 0 0 0 0 0
0 0 −e−αu4 0 〈∂B4, B5〉 〈∂B4, B6〉
0 0 −e−αu5 〈∂B4, B5〉 0 〈∂B5, B6〉
0 0 −e−αu6 〈∂B4, B6〉 −〈∂B5, B6〉 0











(88)

Ā =











0 0 1 0 0 0
eα 0 0 0 0 0
0 0 ∂̄α −ū4 ū5 ū6

0 −e−αū4 0 0 〈∂̄B4, B5〉 〈∂̄B4, B6〉
0 −e−αū5 0 〈∂̄B4, B5〉 0 〈∂̄B5, B6〉
0 −e−αū6 0 〈∂̄B4, B6〉 −〈∂̄B5, B6〉 0











(89)

The evaluation of the commutation relation (84) yields some differential equa-
tions that have to be fulfilled.

∂∂̄α + e−α(u4ū4 − u5ū5 − u6ū6)− eα = 0 (90)

∂̄u4 − u5〈∂̄B4, B5〉 − u6〈∂̄B4, B6〉 = 0

∂̄u5 − u4〈∂̄B4, B5〉 − u6〈∂̄B5, B6〉 = 0

∂̄u6 − u4〈∂̄B4, B6〉+ u5〈∂̄B5, B6〉 = 0

(91)

∂ū4 − ū5〈∂B4, B5〉 − ū6〈∂B4, B6〉 = 0

∂ū5 − ū4〈∂B4, B5〉 − ū6〈∂B5, B6〉 = 0

∂ū6 − ū4〈∂B4, B6〉+ ū5〈∂B5, B6〉 = 0

(92)

So the equations (91) and (92) are conjugate. Based on these equations,
we see that ∂̄(u2

4 − u2
5 − u2

6) = 0 and ∂(ū2
4 − ū2

5 − ū2
6) = 0. So they lie

on a hyperboloid whose radius just depends on z (or z̄). Whenever u2
4 −

u2
5− u2

6 is not constantly zero can locally (near a point where u2
4− u2

5− u2
6 is

nonzero) choose a conformal transformation (that preserves conformal gauge)
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to choose this radius to be identically 1.

z →h(z)

ui = 〈∂∂Y, Bi〉 = 〈∂
2Y

∂h2

(
∂h

∂z

)2

+
∂2h

∂z2

∂h

∂z

∂Y

∂z
, Bi〉

= 〈∂
2Y

∂h2

(
∂h

∂z

)2

, Bi〉 = ũi(∂h)2

(93)

In order to achieve u2
4 − u2

5 − u2
6 = 1 we have to integrate

∂h

∂z
=

1
4
√

u2
4 − u2

5 − u2
6

(94)

This can be done locally whenever the denominator is nonzero. Then h(z)
is a holomorphic function. Holomorphic functions on the parameter space
respect conformal gauge. However, u2

4 − u2
5 − u2

6 may have zeros. In this
case the transformation is valid at least locally in an open neighborhood of
a point where u2

4 − u2
5 − u2

6 6= 0. If u2
4 − u2

5 − u2
6 ≡ 0 on an open set then

we have an “exceptional” case that we will discuss later in the section about
invariants.

The last 3 lines of the integrability condition (84) yield

A5,6Ā4,6 − Ā5,6A4,6 + e−α(u5ū4 − u4ū5) + ∂̄A4,5 − ∂Ā4,5 = 0 (95)

A4,5Ā5,6 − Ā4,5A5,6 + e−α(u6ū4 − u4ū6) + ∂̄A4,6 − ∂Ā4,6 = 0 (96)

A4,5Ā4,6 − Ā4,5A4,6 + e−α(u6ū5 − u5ū6) + ∂̄A5,6 − ∂Ā5,6 = 0 (97)

Now we have to make an explicit choice for the basis Bi to calculate the
matrices and differential equations. From now on we will regard the ui as
components of the vector

∑

i ǫiuiBi = uiBi in the three dimensional complex
space that is spanned by {B4, B5, B6}. As ui is a complex vector, we can
decompose it into two real vectors.

ui = ai + ibi. (98)

By our choice 1 = uiui = aiai − bibi + 2iaibi. So these two equations must
hold

1 = aiai − bibi (99)

0 = aibi (100)
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Now we consider three cases where bi is spacelike, timelike and lightlike.
There is a relation between scalar curvature and α (which was shown in the
introduction)

R = −2e−α∆α (101)

We will be looking for flat minimal surfaces. This is by (101) equivalent
to solutions with harmonic α. The following analysis will be done locally.
Nonetheless the solutions of (76) will be defined globally. So the result, that
there are no spacelike flat minimal surfaces in AdS5 will be valid globally.

spacelike case

If bibi > 0 we can choose a basis, such that bi = (0, µ, 0). But then biai =
µa5 = 0. So ai = (a4, 0, a6). But now we can apply a boost in the 4-
6 Plane such that we do not change bi but make ai = (0, 0, a6). This is
always possible if ai is not timelike or zero. If ai is timelike (or zero) we
get aiai − µ2 = 1, which is never true. So let us assume ai = (0, 0, a6).
But aiai − bibi = a2

6 − µ2 = 1. As a6 and µ are real functions, we can
parameterize them with a real parameter β(z, z̄). So ai = (0, 0,± cosh β)
and bi = (0,± sinh β, 0). We start to examine the +-case.

+ case

We have

ui = (0, +i sinh β, cosh β) (102)

ūi = (0,−i sinh β, cosh β) (103)

The evaluation of the differential equations (91) and (92) with this ansatz
yields

〈∂̄B5, B6〉 = i∂̄β (104)

〈∂̄B4, B6〉 = −iρ sinh β (105)

〈∂̄B4, B5〉 = ρ cosh β (106)

〈∂B5, B6〉 = −i∂β (107)

〈∂B4, B6〉 = iρ̄ sinh β (108)

〈∂B4, B5〉 = ρ̄ cosh β (109)

Here ρ is a complex-valued function. With this ansatz the equation (90)
becomes

∂∂̄α− e−α cosh 2β − eα = 0 (110)
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The equations (95) take the form

0 = 2(∂̄βρ̄− ∂βρ) sinh β + (∂̄ρ̄− ∂ρ) cosh β (111)

0 = 2(∂̄βρ̄ + ∂βρ) cosh β + (∂̄ρ̄ + ∂ρ) sinh β (112)

0 = (ρρ̄ + e−α) sinh 2β + 2∂∂̄β (113)

From (110) it is obvious that there is no solution for beta if we impose the

condition ∂̄∂α = ∆α
!
= 0.

- case

We need to consider the minus in the cosh-term only, as sinh is antisymmetric.

ui = (0, +i sinh β,− cosh β) (114)

ūi = (0,−i sinh β,− cosh β) (115)

But here we already see that this does not change the equation (110). So
again there is no solution if α is harmonic.

lightlike case

If bibi = 0 we can perform a transformation such that b = (1, 1, 0). From
aibi = 0 we know that a4 = a5. The a4 = a5 = 0-case will be described
below. And again from aiai − bibi = 1 we know that a6 = ±1. We start to
examine the +-case.

+ case

We have b = (1, 1, 0) and a = (β, β, 1). So we can parameterize u and ū with

ui = (β + i, β + i, 1) (116)

ūi = (β − i, β − i, 1) (117)

The evaluation of the equations (91) and (92) yields

〈∂̄B4, B6〉 = 〈∂̄B5, B6〉 = ρ (118)

〈∂̄B4, B5〉 =
1

β + i
(∂̄β − ρ) (119)

〈∂B4, B6〉 = 〈∂B5, B6〉 = ρ̄ (120)

〈∂B4, B5〉 =
1

β − i
(∂β − ρ̄) (121)
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The equation (90) for α becomes

∂∂̄α− e−α − eα = 0 (122)

The equations (95) only give 2 independent equations.

0 = ∂̄(
1

β − i
(∂β − ρ̄))− ∂(

1

β + i
(∂̄β − ρ)) (123)

0 = (β + i)∂βρ− (β − i)∂̄βρ̄− 2iρρ̄ + (∂̄ρ̄− ∂ρ− 2ie−α)(1 + β2) (124)

Again, we look for solutions with harmonic α. From (122) we see that if α
is harmonic we have a contradiction.

- case

Again, we have the same result. Taking

ui = (β + i, β + i,−1) (125)

ūi = (β − i, β − i,−1) (126)

will not change equation (122).

case with a4 = a5 = 0

If a4 = a5 = 0 it follows that a6 = ±1. But then we evaluate (90) with
harmonic α and find

e−α + eα = 0 (127)

which is a contradiction.

timelike case

If bibi < 0 then we can choose a boost such that b = (µ, 0, 0). Because
0 = aibi = −a4µ we have a4 = 0. So we can perform a rotation in the
5− 6-plane such that a = (0, a5, 0). The case ai = 0 will be discussed below.
Then we know that 1 = aiai − bibi = a2

5 + µ2. Thus, we can parameterize u
and ū with

ui = (+i cos β, sinβ, 0) (128)

ūi = (−i cos β, sin β, 0) (129)

Again, we evaluate the Equations (91) and (92) with this ansatz and we
obtain

〈∂̄B4, B5〉 = −i∂̄β (130)

〈∂̄B4, B6〉 = ρ sin β (131)

〈∂̄B5, B6〉 = iρ cos β (132)

30



〈∂B4, B5〉 = i∂β (133)

〈∂B4, B6〉 = ρ̄ sin β (134)

〈∂B5, B6〉 = −iρ̄ cos β (135)

Thus the equation (90) becomes

∂∂̄α + e−α cos 2β − eα = 0 (136)

The equations (95) read

0 = (ρρ̄ + e−α) sin 2β − 2∂∂̄β (137)

0 = 2 cosβ(∂̄βρ̄− ∂βρ) + sin β(∂̄ρ̄− ∂ρ) (138)

0 = 2 sin β(∂̄βρ̄ + ∂βρ)− cos β(∂̄ρ̄ + ∂ρ) (139)

Here we see that (138) and (139) are not independent. The sum and the
difference of (138) and (139) are conjugate to each other. Therefore we only
consider the sum.

cos β(2∂̄βρ̄− 2∂βρ− ∂̄ρ̄− ∂ρ) + sin β(∂̄ρ̄− ∂ρ − 2∂̄βρ̄ + 2∂βρ) = 0 (140)

From (136) we conclude that if α is harmonic

β =
1

2
ArcCos(e2α) (141)

α =
1

2
log(cos(2β)) (142)

Now we assume α to be nonzero and calculate

2∂∂̄β = ∂∂̄ArcCos(e2α) = ∂(− 2e2α

√

(1− e4α)
∂̄α) (143)

= (− 2e2α

√

(1− e4α)
) ∂∂̄α
︸︷︷︸

=0

− 4e2α

(1− e4α)
3
2

∂̄α∂α = − 4e2α

(1− e4α)
3
2

∂̄α∂α

(144)

sin(2β) =
√

1− e4α (145)

and insert into (137)

0 = ρρ̄ + e−α +
4e2α

(1− e4α)2
∂α∂̄α (146)

Here we used the fact that α 6= 0 is real, so ∂̄α = ∂̄α. But in (146) all terms
are real and strictly positive. So again, we conclude that there is no solution
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if α 6= 0 is harmonic. If α ≡ 0 we know from (136) that β ∈ {0, π}. Equation
(137) is fulfilled. For equation (140) to be true

∂̄ρ̄ + ∂ρ = 0 (147)

So the only case where there exist minimal surfaces, is when α ≡ 0 and
β ∈ {0, π}.

case where ai = 0

If ai is zero for all i, we find that u = (iµ, 0, 0). Inserting into (90) leads to

µ2e−α + eα = 0 (148)

which cannot be fulfilled.

3.2.2 Integration of the flat case

In general, it is a hard task to integrate this system of differential equations.
But in the case α ≡ 0 it can be performed quite simply. If α ≡ 0 we consider
the timelike case from the last section. In this case the matrices A and Ā are

A =











0 1 0 0 0 0
0 0 0 ∓i 0 0
1 0 0 0 0 0
0 0 ∓i 0 0 0
0 0 0 0 0 ∓iρ̄
0 0 0 0 ±iρ̄ 0











(149)

Ā =











0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 ±i 0 0
0 ±i 0 0 0 0
0 0 0 0 0 ±iρ
0 0 0 0 ∓iρ 0











(150)

Here ± corresponds to β being β = 0 or β = π. A and Ā are not constant as
they depend on z and z̄ via ρ. But as the matrices have a lower 2× 2 block,
the system of differential equations decouples. We are only interested in the
first line of the solution (as it describes the development of Y , which is the
surface itself). So we just need to calculate

ẽi = exp(A[4]z) exp(Ā[4]z̄) (151)
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where A[4] means the upper 4× 4 block of A. This leads to

ẽi =







A C B D
B A −iD −iC
C iD A iB
D iB −iC A







(152)

with

A = cosh
s√
2

cosh
t√
2

B =
1√
2

(
1

2
+

i

2

)(

sinh
s− t√

2
− i sinh

s + t√
2

)

C =
1√
2

(
1

2
+

i

2

)(

−i sinh
s− t√

2
+ sinh

s + t√
2

)

D = sinh
s√
2

cosh
t√
2

(153)

The first line is the coordinate representation of the solution (with the co-
ordinates to B5 and B6 being zero) in the basis {Y, ∂Y, ∂̄Y, B4}. We have
to express the solution in an orthogonal frame. So we calculate back into
{Y, ∂sY, ∂tY, B4}, keeping in mind that 〈∂sY, ∂sY 〉 = 〈∂tY, ∂tY 〉 = 1

2
if α = 0.

But now we have the solution given in an orthogonal frame. So we can iden-
tify the timelike vectors with the timelike standard vectors of R(2,2) and the
others with the spacelike. Here we see that our minimal surface lies entirely
in AdS3. It has the coordinate representation

Y =








cosh s√
2
cosh t√

2

sinh s√
2
sinh t√

2

sinh s√
2
cosh t√

2

cosh s√
2
sinh t√

2








(154)

This is the tetragon solution. Here the case β = 0 was considered. For the
case β = π there appears a minus sign in the first line of (152) in the last
place. This sign however does not change the surface. So the conclusion of
this calculations is: The Maldacena surface is up to isometries of AdS5 the
only spacelike flat minimal surface. When integrating (76) we can choose
a matrix M ∈ SO(2, 4) as a starting frame in which the solution is given.
Here we explicitely see that the solution is given uniquely up to the isometry
group of AdS5. The crucial point why there is a bigger variety of flat minimal
surfaces in the timelike case is that the corresponding ρρ̄ terms in (137) and
(241) can have both signs in the timelike case (because ρ and ρ̄ are two real
independent parameters) while its positive semidefinite for the spacelike case,
where ρ and ρ̄ are complex conjugate.
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3.2.3 Spacelike flat minimal surfaces in AdSn

In this section we will proof for general n that the symmetric tetragon solution
is up to isometries the only flat spacelike minimal surface in AdSn. We do
the proof for the nonexceptional case (the exceptional case will be excluded
in the section about invariants 3.6). Again we split ui = ai + ibi and have

1 = aiai − bibi (155)

0 = aibi (156)

Similarly to previous sections we assume bi to be spacelike, lightlike and
timelike. Contrary to the AdS5 section we will not give the whole set of
differential equations because we are not so much interested in all the details
for generic spacelike minimal surfaces for n > 5. We only compute those
equations which lead to the conclusion that α has to be zero if α is harmonic.
Then we show that the system of differential equations (76) decouples and
we have the same upper 4× 4 block as in the AdS5 case. This completes the
proof.

spacelike case

Assuming that bi is spacelike we can perform an transformation such that
b = (0, b, 0, . . . , 0). So we have 1 = aiai − b2. This means that ai has to be
spacelike. Because of orthogonality we know that a5 = 0. So we perform an-
other transformation that leaves B5 invariant to achieve a = (0, 0, a, 0, . . . , 0).
So we have 1 = a2 − b2. We parameterize a and b with a = cosh β and
b = sinh β. So we have

u = (0, i sinh β, cosh β, 0, . . . , 0) (157)

Now we calculate uiūi = sinh2 β +cosh2 β > 0. Assuming that α is harmonic
this is a contradiction to the first line in (87).

lightlike case

If bi is lightlike we know by 1 = aiai − bibi that a is spacelike. So there is a
base such that a = (0, 0,±1, 0, . . . , 0) and b = (1, 1, 0, . . . , 0). That means

u = (i, i,±1, 0, . . . , 0) (158)

This means uiūi = 1 > 0. Assuming that α is harmonic this is a contradiction
to the first line in (87).

timelike case
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When bi is timelike we chose a transformation such that b = (b, 0, . . . , 0).
From the orthogonality we know that a4 = 0. So ai is spacelike. So we chose
ai to be a = (0, a, 0, . . . , 0). We have 1 = a2 + b2. So we parameterize a and
b with a = sin β and b = cos β. So we find for ui

u = (i cos β, sinβ, 0, . . . , 0) (159)

So uiūi = − cos2 β + sin2 β = − cos 2β. Now we use the second line in (87)
to parameterize the Ai,j .

The second line of (87) : a = 4 and a = 5

∂̄u4 − Ā 5
4 u5 = 0 (160)

∂̄u5 − Ā 4
5 u4 = 0 (161)

From these two equations we see that

Ā 5
4 = Ā 4

5 = −i∂̄β (162)

The second line of (87): a > 5

For this case we find
0 = ∂̄ua = Ā 4

a u4 + Ā 5
a u5 (163)

which leads to

Ā 4
a = −ρa sin β (164)

Ā 5
a = iρa cos β (165)

(166)

The other Ā j
i and A j

i are not affected by the choice of ui and can be regarded
as independent complex functions of z. The reason why these “unparame-
terized” A j

i appear in dimensions n > 5 is simple. We use SO(1, n − 3)
transformations on the normal bundle to obtain a specific choice of the vec-
tor ui. In higher dimensions we have several zeros in the vector ui on which
we still can act with orthonormal transformations without changing any-
thing. In higher dimensions we do not fix the gauge anymore. We are left
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with the following expressions for our matrices A j
i and Ā j

i

Ā j
i =










0 −i∂̄β −ρ6 sin β −ρ7 sin β . . .
−i∂̄β 0 −iρ6 cos β −iρ7 cos β . . .
−ρ6 sin β iρ6 cos β 0 Ā 7

6 . . .
−ρ7 sin β iρ7 cos β Ā 6

7 0 . . .
...

...
...

...
. . .










(167)

A j
i =










0 i∂β −ρ̄6 sin β −ρ̄7 sin β . . .
i∂β 0 iρ̄6 cos β iρ̄7 cos β . . .

−ρ̄6 sin β −iρ̄6 cos β 0 A 7
6 . . .

−ρ̄7 sin β −iρ̄7 cos β A 6
7 0 . . .

...
...

...
...

. . .










(168)

Now we need to compute the first line and the first column of the commutator
for these two matrices. We find

[
A, Ā

] j

i
=








0 V W . . .
V > > . . .
W > > . . .
...

...
...

. . .








(169)

with

V = −i sin 2β
∑

a

ρaρ̄a

W = cos β(ρ6∂β − ρ̄6∂̄β) + sin β
∑

a

(ρaA
6
a − ρ̄aĀ

6
a )

Next we evaluate the third line of (87) for a = 4 and b = 5. This leads to

0 = (e−α +
∑

a

ρaρ̄a) sin 2β − 2∂∂̄β (170)

Note that this is the same equation (137) we found in the AdS5 case with
the substitution ρρ̄ ←→ ∑

a ρaρ̄a. Like in this case we conclude that if α is
harmonic (and nonzero) we have

β =
1

2
ArcCos(e2α) (171)

2∂∂̄β = − 4e2α

(1− e4α)
3
2

∂̄α∂α (172)

sin 2β =
√

1− e4α (173)

36



Inserting this into (170) leads to

0 =
∑

a

ρaρ̄a + e−α +
4e2α

(1− e4α)2
∂α (174)

Again this equation has no solution and is a contradiction to the assumption
that α is nonzero. This means if α is harmonic it is automatically zero.
If alpha is zero it follows by the first line in (87) that β ∈ {0, π}. But if
β ∈ {0, π} the first line and the first column in (167) vanish. So again the
system (76) decouples and we can integrate the upper part. That means that
we have a proof that the symmetric tetragon solution is the only spacelike
flat minimal surface AdSn.

3.2.4 The AdS4 and AdS3 case

The AdS4 case

In the AdS4 case we proceed similarly to the AdS5 case. We just have one
independent A4,5 left.

∂ū4 − A4,5ū5 = 0

∂ū5 − A4,5ū4 = 0
(175)

Again, we treat the non-exceptional case (uiui only has discrete zeros) here
and perform a holomorphic transformation such that uiui = ūiūi = 1. We
start with splitting ui into

uiui = ūiūi = 1 ui = ai + ibi

aibi = 0

aiai − bibi = 1

(176)

From these equations it is easy to see that b necessarily has to be timelike.
So we can choose a transformation on the normal space such that

~b = (b, 0) ~a = (0, a) (177)

and we are left with
1 = a2 + b2 (178)

So we introduce a parameter β(z, z̄) such that a = cos β

2
and b = sin β

2
.

Because ai and bi were real vectors, β should also be real-valued. From (175)
we find that A4,5 is given by

A4,5 = −i
∂β

2
(179)
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We no longer have the commutator term in the third line of (87). So the
third line yields

sin βe−α = −∂∂̄β (180)

The first line in (87) yields

0 = ∂∂̄α− e−α cos β − eα (181)

The AdS3 case

In the AdS3 case we just have one normal direction, so we just have u4. If u4

is not identically zero we can locally choose conformal transformations such
that u4 = 1. Thus the first line in (87) leads to the sinh Gordon equation
(the other lines vanish)

∂∂̄α− 2 sinh α = 0 (182)

Together with the equation for the curvature we find

R = −4e−α sinh α (183)

Thus we see that
infα∈R(−4e−α sinh α) = −2 (184)

This means that there is no minimal surface in AdS3 that has a smaller scalar
curvature than R = −2.

3.3 Geometric interpretation

In this section we demonstrate that the vector ui encodes the second fun-
damental forms of the surface in AdSn. For any codimension the second
fundamental form is a (2, 0) - tensorfield with values in the normal bundle of
the immersion. It is defined by

II(V, W ) = (∇V W )⊥ (185)

where V and W are tangential vectorfields and ()⊥ means the projection on
the normal space. When we choose a basis of the normal space (in our case
{Y, B4, B5, B6}) we can write down several second fundamental forms with
values in R by calculating the projections on every basis vector. We are
considering a surface that lies in R(2,4). Because for R(2,4) the covariant and
ordinary derivative are equivalent, we can write

II(V, W )i = 〈V (W ), Bi〉 (186)

Here V (W ) means the derivative of the vectorfield W in the direction of V .
To get the matrix S that represents II(V, W ) = 〈V, S(W )〉 we will evaluate
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II(V, W ) on an orthogonal base. The natural choice for an orthogonal base
of TM2 is ∂sY and ∂tY . So the second fundamental forms read

Si =

(
〈∂s∂sY, Bi〉 〈∂t∂sY, Bi〉
〈∂s∂tY, Bi〉 〈∂t∂tY, Bi〉

)

=:

(
α β
β γ

)

(187)

But now we have because of (71)

0 = 〈∂∂̄Y, Bi〉 = 〈∂s∂sY + ∂t∂tY, Bi〉 (188)

This means γ = −α. But we also know that

ai + ibi = ui = 〈∂∂Y, Bi〉 = 〈∂s∂sY − ∂t∂tY − i2∂s∂tY, Bi〉 (189)

So β = − bi

2
and α = ai

2
. Finally, we find

Si =
1

2

(
ai −bi

−bi −ai

)

(190)

Note that this is the formula for the second fundamental forms of the surface
inside AdS5. The second fundamental form for the normal direction of AdS5

inside R(2,4) (so the i indicates Y ) is given by

SY = −eα

2

(
1 0
0 1

)

(191)

Note here that the trace of S in (190) is zero. This is equivalent to the
fact that our surface is minimal inside AdS5. In equation (191) the trace is
nonzero. So this indicates that the surface will not be minimal if regarded as a
surface inside R(2,4). These equations ((190) and (191)) match with those we
gave in [DJW09]. However, it is easier for the following calculations to express
the second fundamental form in the orthonormal frame {

√
2e−α∂s,

√
2e−α∂t}.

This leads to the following expressions

Si = e−α

(
ai −bi

−bi −ai

)

(192)

SY = −
(

1 0
0 1

)

(193)

As a fundamental theorem of the theory of surfaces states, a (parameterized)
surface is uniquely defined (up to isometries of the ambient space) by it is
first fundamental form and the second fundamental forms if they obey the
Gauss-, the Codazzi-Mainardi- and the Ricci-equation. The first fundamen-
tal form is the induced metric on the surface (it is called first fundamental
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form for historical reasons). So we can evaluate these three equations. These
equations can for example be found in [Lan99].

A very great feature of the formalism that we use here is its incapabil-
ity to distinguish between timelike and spacelike minimal surfaces (the ρρ̄
terms are an exception). So if we continue to calculate in terms of z and
z̄ all calculations are valid in both cases. However, our second fundamental
forms are given in an unadopted base. So we have to explicitly calculate
the second fundamental forms for timelike minimal surfaces. In the base
{
√

2e−α∂s,
√

2e−α∂t} this leads to

Si = e−α

(
ai bi

bi ai

)

(194)

SY = −
(

1 0
0 −1

)

(195)

The evaluation on the vectors ∂̄ and ∂ is however unaffected if we remember
the Lorentzian metric on the tangent space in the timelike case. So the
calculation for Ricci and Codazzi-Mainardi equation are automatically valid
in both cases.

3.3.1 The Gauss equation

The Gauss equation relates the curvature tensor of the ambient manifold
with the curvature tensor of the submanifold.

〈R(X, Y )Z, W 〉 − 〈R̃(X, Y )Z, W 〉
=〈II(Y, Z), II(X, W )〉 − 〈II(X, Z), II(Y, W )〉 (196)

Here R(X, Y )Z is the curvature tensor of R(2,4) (hence it is vanishing) and
R̃(X, Y )Z the curvature tensor of the surface. R̃(X, Y )Z is defined

R̃(X, Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (197)

We compute the components of the curvature tensor. For a conformally
parameterized surface (gi,j = f(σ, τ)δi,j or f(σ, τ) = eα

2
) there is only one

independent component. We find

R̃1
2,2,1 = −(∂τf)2 + (∂σf)2 − f(∂τ∂τf + ∂σ∂σf)

2f 2
(198)

=
1

2
∂̄∂α (199)
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Hence we find

R̃1,2,2,1 =
1

4
∂̄∂αeα (200)

The right hand side of (196) becomes

R̃1,2,2,1 = ηa,b(S
a
1,2S

b
2,1 − Sa

2,2S
b
1,1) (201)

=
1

4
(−b2

4 + b2
5 + b2

6 + ...− a2
4 + a2

5 + a2
6 + ... + e2α) (202)

=
1

4
(−u4ū4 + u5ū5 + u6ū6 + ... + e2α) (203)

Here we used ηa,b as the induced metric on the space that is spanned by
{Y, B4, B5, B6, . . . } so ηa,b = diag(−1,−1, 1, 1, . . . ). In this calculation we
used the base {∂σY, ∂τY } and the second fundamental forms from (190).
This is possible because there are no covariant derivatives of the second
fundamental forms in the Gauss equation. We find that the Gauss equation is
in fact one of the differential equations that we derived from the integrability
equation

0 = ∂̄∂α − e−α(uiūi)− eα (204)

Here the index i just labels the normal directions inside AdSn. There are
no further independent entries in the curvature tensor of a surface. So the
Gauss equation is equivalent to the first line in (87). The calculation is also
valid for timelike surfaces.ηa,b would be ηa,b = diag(−1, 1, 1, 1, . . . ) then but
with the positive definite metric on the normal space and the right second
fundamental forms we still arrive at

0 = ∂̄∂α − e−α(uiūi)− eα

3.3.2 The Codazzi- Mainardi equation

The Codazzi-Mainardi equation for a submanifold of any dimension reads

(R(X, Y )Z)⊥ = (∇̃XII)(Y, Z)− (∇̃Y II)(X, Z) (205)

Here (R(X, Y )Z)⊥ is the normal projection of the curvature transformation
of the ambient space. We now consider the ambient space to be R(2,4). So
the curvature tensor vanishes. The vectorfields X, Y, Z are arbitrary tangent
vectorfields of the surface. The connection ∇̃ is defined

(∇̃XII)(Y, Z) = ∇⊥
X(II(Y, Z))− II(∇XY, Z)− II(Y,∇XZ) (206)

Here ∇⊥ is the covariant derivative of the ambient space applied to two vec-
torfields (one tangent vectorfield and one normal vectorfield) and projected
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onto the normal bundle. ∇ is the covariant derivative on the surface. On
the surface we choose the basis ∂ and ∂̄. We want to evaluate the Co-
dazzi Mainardi equation on this base. We calculate (205) for X = ∂ and
Y = Z = ∂̄ (complex conjugation will lead to a conjugate set of equations -
for every other choice of basis vectorfields this equation is trivially satisfied).
Therefore we need the covariant derivatives, which can be read off from (75),
(74) and (71).

∇∂̄ ∂̄ = (∂̄∂̄Y )‖ = ∂̄α∂̄

∇∂∂ = (∂∂Y )‖ = ∂α∂

∇∂̄∂ = ∇∂ ∂̄ = (∂̄∂Y )‖ = 0

(207)

Here ()‖ denotes the projection onto the tangent space of the surface. Further,
we have to calculate S∂ and S∂̄.

Si∂ = Si(∂s − i∂t) =

√

eα

2
Si(e1 − ie2) =

ui√
2eα

(e1 + ie2) = uie
−α∂̄

Si∂̄ = ūie
−α∂

SY ∂ = −∂

SY ∂̄ = −∂̄

(208)

We are dealing the spacelike and timelike case simultaneously here. All
formulas are valid in both cases. In the timelike case the middle of the first
line of (208) is different but the left hand side and right hand side are equal
in both cases.

Whenever we have a sum over all normal directions (including Y ) we use Ni

to label the normal fields. If this sum is only over the normal directions of
the surface inside AdSn we use Bi.

The Codazzi Mainardi equation for the ambient space R(2,4) reads

0 =

T1
︷ ︸︸ ︷

∇⊥
X(II(Y, Z))−

T2
︷ ︸︸ ︷

II(∇XY, Z)−
T3

︷ ︸︸ ︷

II(Y,∇XZ)

−∇⊥
Y (II(X, Z))

︸ ︷︷ ︸

T4

+ II(∇Y X, Z)
︸ ︷︷ ︸

T5

+ II(X,∇Y Z)
︸ ︷︷ ︸

T6

(209)

For our special choice some covariant derivatives vanish. So we have

T2 = T3 = T5 = 0 (210)
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Calculation of T1:

II(∂̄, ∂̄) =
∑

i

〈Si∂̄, ∂̄〉ǫiNi =
∑

i

ūiǫiBi

∇⊥
∂ II(∂̄, ∂̄) = ∂(

∑

i

ūiǫiBi)
⊥ =

∑

i

(

∂ūiǫiBi + ūiǫi

∑

j

ǫj〈∂Bi, Bj〉Bj

)

(211)

Calculation of T4:

II(∂, ∂̄) =
∑

i

〈Si∂, ∂̄〉ǫiNi = −eαY

∇⊥
∂̄
II(∂, ∂̄) = −∂̄(eαY )⊥ = −∂̄αeαY

(212)

Calculation of T6:

II(∂,∇∂̄ ∂̄) = ∂̄αII(∂, ∂̄) = ∂̄α〈SY ∂, ∂̄〉
= −∂̄αeαY

(213)

So we have

0 = T1 − T4 + T6 =
∑

i

(

∂ūiǫiBi + ūiǫi

∑

j

ǫj〈∂Bi, Bj〉Bj

)

= ∂ūiBi + ūiA j
i Bj

(214)

Now we consider each of the (n−2) normal components of the surface inside
AdSn. Then we see that this result (and the complex conjugate of this
equation) is equivalent to the equations in the second line of (87). Taking
only the Ba component yields

0 = ∂ūa + ūbA a
b

= ∂ūa + ūbAb,a

= ∂ūa − ūbAa,b

= ∂ūa − A b
a ūb

(215)

which is precisely the second line in (87).
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3.3.3 The Ricci equation

If we have a submanifold M that is embedded in an ambient space N , we
can always define a “normal” curvature tensor. Let X, Y be two tangential
vectorfields and A, B two normal fields. Then a covariant derivative on the
normal space can be defined by

∇XA := ∇̂XA− (∇̂XA)‖ (216)

Here ∇̂ is the covariant derivative of the ambient space. Then we can build
two curvature tensors out of ∇̂ and ∇ and compare them. The curvature
tensor corresponding to ∇̂ is the ordinary curvature tensor of the ambient
space and we define

R⊥(X, Y, A, B) := 〈∇X∇Y A−∇Y∇XA−∇[X,Y ]A, B〉 (217)

Then the Ricci equation is

R(X, Y, A, B) = R⊥(X, Y, A, B)− 〈[SA, SB]X, Y 〉 (218)

SA is the matrix that corresponds to the second fundamental form with
respect to A. Now we evaluate this equation on some basis vectorfields. Let
us assume X = ∂, Y = ∂̄, A = Bi and B = Bk (again, this is the only

independent possibility). Using Si = 1
2

(
0 ui

ūi 0

)

, we compute

[Si, Sk] = e−2α

(
ūiuk − ūkui 0

0 ūkui − ūiuk

)

(219)

So we have to verify

R⊥(∂, ∂̄, Bi, Bk) = 〈[Si, Sk]∂, ∂̄〉 (220)

R⊥(∂, ∂̄, Bi, Bk) = 〈∇∂∇∂̄Bi −∇∂̄∇∂Bi, Bk〉
=〈∇∂(

∑

j

ǫjĀi,jBj)−∇∂̄(
∑

j

ǫjAi,jBj), Bk〉

=〈
∑

j

(
ǫj∂Āi,jBj + ǫjĀi,jA

l
j Bl − ǫj ∂̄Ai,jBj − ǫjAi,jĀ

l
j Bl

)
, Bk〉

=∂Āi,k − ∂̄Ai,k + Ā j
i Aj,k − A j

i Āj,k

(221)

The right hand side reads

〈[Si, Sk]∂, ∂̄〉 = e−α(ūiuk − ūkui) (222)

Putting it together we find

e−α(ūiuk − ūkui) = ∂Āi,k − ∂̄Ai,k + Ā j
i Aj,k − A j

i Āj,k (223)

which is precisely the last line of (87). Again the calculation is valid in the
timelike and spacelike case.
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3.4 Gauge fixing for timelike minimal surfaces in AdSn

As we are dealing with timelike minimal surfaces, all quantities in (87) are
real. At first, we assume that neither uiui, nor ūiūi are constantly zero (again
a “non-exceptional” case). Away from their zeros we can locally perform two
conformal transformations to achieve

uiui = 1 = ūiūi (224)

So we can still choose SO(n−2) transformations Ω on the normal space that
depend on z and z̄. We get the following transformations

ui 7−→ Ω j
i uj

ūi 7−→ Ω j
i ūj

A j
i 7−→ (ΩAΩ−1 + ∂Ω Ω−1) j

i

Ā j
i 7−→ (ΩĀΩ−1 + ∂̄Ω Ω−1) j

i

(225)

First, we note that it is possible to choose Ā j
i = 0. To achieve this we have

∂̄Ω = −ΩĀ (226)

This differential equation can be solved. So we can still choose a z depending
SO(n− 2) transformation. With this transformation we transform ui to be

ui = (0, . . . , 0, 1) (227)

Because ūiūi = 1 we have for ūi

ūi =



χ4, χ5, . . . , χn,±

√
√
√
√1−

n∑

a=4

χ2
a



 (228)

Now the last line in (87) reads

∂̄A = −e−α










0 . . . 0 χ4
...

... χ5
...

...
...

0 . . . 0 χn

−χ4 . . . −χn 0










(229)

We still have the gauge freedom to do z-dependent SO(n−2) transformations
that leave Bn+1 invariant. Using this degree of freedom, we can achieve that
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all elements of A vanish, except those in the last line and in the last column.
Then using the second line in (87) we find

λa = ± ∂χa
√

1−∑n

a=4 χ2
a

, ∂̄λa = −e−αχa (230)

So for A, we have

A =










0 . . . 0 λ4
...

... λ5
...

...
...

0 . . . 0 λn

−λ4 . . . −λn 0










(231)

Now we completely fixed the gauge. We finally have a non-linear system of
second order differential equations for the (n− 2) parameters α, χ4, . . . , χn.

0 = ∂∂̄α∓ e−α

√
√
√
√1−

n∑

a=4

χ2
n − eα

0 = ∂∂̄χb ± e−αχb

√
√
√
√1−

n∑

a=4

χ2
n +

∑n

a=4 χn∂̄χn

1−∑n
a=4 χ2

n

∂χb

(232)

The AdS3 case

In the AdS3 case no χ appears in these equations. We find the sinh-Gordon
and a “cosh”-Gordon equation

∂∂̄α− 2 sinhα = 0

∂∂̄α− 2 coshα = 0
(233)

depending on whether or not the signs of u4 and ū4 are equal.

The AdS4 case

In the AdS4 case there is only χ4. If we set χ4 = sin β and cos β = ±
√

1− χ2
4

we find

∂∂̄α− e−α cos β − eα = 0

∂∂̄β + e−α sin β = 0
(234)

Note that these equations match those we found in the spacelike case.
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3.5 Timelike minimal surfaces in AdS5

From the second equation in (87) we see that uiui is not a function of z̄
and ūiūi is not a function of z. Assuming that none of them is zero, we can
perform a coordinate change locally such that uiui = ūiūi = 1. Similarly to
the spacelike case we set

ui = ai + bi ūi = ai − bi (235)

with a and b being two real vectors. Then it follows that

aibi = 0

aiai + bibi = 1
(236)

Now we act with SO(3) transformations on the normal space. If ai 6= 0 and
bi 6= 0 we can choose a transformation such that

ai = (a, 0, 0)

bi = (0, b, 0)
(237)

which leads to a2 + b2 = 1. Thus we parameterize a and b with β

u = (cos β, sin β, 0)

ū = (cos β,− sin β, 0)
(238)

With these ui and ūi we find

A4,5 = −∂β

A4,6 = ρ sin β

A5,6 = ρ cos β

(239)

Ā4,5 = ∂̄β

Ā4,6 = ρ̄ sin β

Ā5,6 = −ρ̄ cos β

(240)

Inserting this into the third equation of (87) yields

0 = (ρρ̄ + e−α) sin 2β + 2∂∂̄β (241)

0 = 2 cosβ(ρ̄∂β − ρ∂̄β) + sin β(∂ρ̄− ∂̄ρ) (242)

0 = 2 sin β(ρ∂̄β + ρ̄∂β)− cos β(∂ρ̄ + ∂̄ρ) (243)

Inserting this into the Gauss equation yields

∂∂̄α− e−α cos(2β)− eα = 0 (244)
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3.5.1 A Weierstrass like representation of time like minimal sur-
faces in AdS5 with constant curvature

As remarked in previous sections, the curvature of the surface is given by

R = −2e−α∂̄∂α (245)

So if α is a function that fulfills the Liouville equation, the corresponding
minimal surfaces will have constant curvature. The generic solution of this
differential equation is given by

α = log

(

− 2f ′(z)g′(z̄)
(
1− R

2
f(z)g(z̄)

)2

)

(246)

with two arbitrary free functions f(z) and g(z̄) (such that log is defined)
that only depend on z and z̄. From the Gauss equation for timelike minimal
surfaces in AdS5 (244) we find

cos 2β = −e2α

(
R

2
+ 1

)

(247)

Thus we can express β and every function of β in terms of f(z) and g(z̄).
By (241) we can express ρρ̄ as a function of of f(z) and g(z̄).

ρρ̄ = −∂∂̄(2β)

sin 2β
− e−α =: χ(f, g) (248)

Now we multiply (242) with sin β and (243) with cosβ. Then we calculate
(242)+(243) and (242)-(243) and find

∂̄ρ = sin 2β∂(2β)ρ̄− cos 2β∂ρ̄ =: C1ρ̄− C2∂ρ̄ (249)

∂ρ̄ = sin 2β∂̄(2β)ρ− cos 2β∂̄ρ =: C3ρ− C2∂̄ρ (250)

Here C1(f, g), C2(f, g) and C3(f, g) are via β functions of f and g. From
(248) we know further that

ρ̄ =
χ

ρ
ρ =

χ

ρ̄
(251)

This leads to

∂ρ =

(
C1C2

1− C2
2

+
∂χ

χ

)

ρ− C3

χ(1− C2
2 )

ρ3

∂̄ρ =
C1χ

1− C2
2

1

ρ
− C3C2

1− C2
2

ρ

(252)
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Similarly one finds for ρ̄

∂̄ρ̄ =

(
C3C2

1− C2
2

+
∂̄χ

χ

)

ρ̄− C1

χ(1− C2
2 )

ρ̄3

∂ρ̄ =
C3χ

1− C2
2

1

ρ̄
− C1C2

1− C2
2

ρ̄

(253)

All coefficients are fully determined by the free functions f(z) and g(z̄). Then
the partial differential equations (which can be solved separately for ρ and
ρ̄) have to be solved. After that the differential equation for the orthogonal
frame (76) has to be integrated with all entries solely depending on f(z)
and g(z̄) (and of course on the constant R). Thus the two functions f(z)
and g(z̄) parameterize all constantly curved timelike minimal surfaces in
AdS5. Here is some analogy to the minimal surfaces in R3. In Weierstrass
representation they are parameterized by two functions, too. To get the
coordinate representation a integration has also to be performed.

3.6 Invariants of minimal surfaces in AdSn, n > 3

In this section we will introduce a torsion quantity T and a further quantity
C. T encodes the curvatrue of the normal bundle of the surface. Both quan-
tities will prove to be invariant under both transformations on the normal
space and isothermal reparameterization of the surface. With these quan-
tities we will retrieve (together with the Gauss equation) an equation that
relates scalar curvature to the torsion T and C.

3.6.1 The torsion quantity

Examining the last equation of (87) we see that the right hand side has the
structure of a field strength corresponding to the gauge field A ν

µ . Thus we
define

T =
1

8 | det g |ǫ
α,βǫµ,νtr(Fα,βFµ,ν) (254)

in conformal coordinates we find with (87)

T =
1

2
e−2αtr(F 2) = e−4α

(
(ūau

a)2 − (ūaū
a)
(
ubu

b
))

(255)

This quantity is invariant (for a brief proof see appendix 6.6). Together with
gauss equation (first line in (87)) and the equation for the scalar curvature
(101) we find

0 = R + 2± 2e−2α
√

(ūaūa) (ubub) + Te4α (256)
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C := e−4α (ūaūa)
(
ubub

)
(257)

For timelike surfaces T ≤ 0, while T can have both signs for spacelike sur-
faces. All cases that we excluded in the last chapters (when at least ūiū

i ≡ 0
or uiu

i ≡ 0) are described by C = 0. However, C is also an invariant quantity
and positive semidefinite for spacelike minimal surfaces.

It is very interesting to ask, how many gauge invariant scalar parameters are
encoded within Fi,j . The trace of F 2 leads to one. Despite its interpretation
as a field strength, F is also just a function on the two vectors ui and ūi. So all
invariants that come from Fi,j have to be functions of these two vectors. The
three possible scalar products are the only invariants under transformations
on the normal space, that can be constructed. Two of them are conjugate in
the spacelike case. But the overall computation leads to three real parame-
ters. Now we have to multiply certain powers of e−α in order to obtain an
invariant expression. But only the product (uiui)(ū

jūj) can lead to an in-
variant. So the only two invariants are e−2α(uiūi) and C = (uiui)(ū

jūj)e
−4α.

Equivalently T and C are the only invariant scalars of outer geometry. Over-
all we have three independent quantities that characterize a minimal surface
in AdSn. The gaussian curvature R(z) describes the whole inner geometry
of the surface at a given point. The outer geometry has two scalar quantities
- C(z) and T (z). These three quantities are related with

C =
(R + 2)2

4
− T (258)

This equation is very remarkable. Normally quantities of inner and outer
geometry are not related in this manner. The relation comes from the fact
that we are dealing with minimal surfaces here which gives a relation to the
outer geometry, as minimality is an obstruction for the second fundamental
forms which is an inherent feature of this formalism.

We also get a necessary condition for two minimal surfaces inside AdSn being
equal. Given two functions of z R(z, z̄) and T (z, z̄) we can via (258) compute
C(z, z̄). Then we have a complete set of invariants.

We also remark that these invariants are quite comfortable to calculate if
we have an explicitely given minimal surface. To calculate quantities in
our formalism you would normally start to calculate the normal vectors
{B4, . . . , Bn−1} in every point of the surface which can be quite difficult.
This is not necessary if we are only interested in the invariant quantities.
At first we need the conformal factor of the metric to calculate R. Then we
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start to calculate two vectors u and ū by setting

u = ∂∂Y − prTM(∂∂Y )− prY (∂∂Y ) (259)

ū = ∂̄∂̄Y − prTM(∂̄∂̄Y )− prY (∂̄∂̄Y ) (260)

Here prTM denotes the projection. Now we construct the scalar products
and multiply with e−4α. The scalar products are computed with the metric
in R(2,n−1). This is possible because the metric on our normal space is the
induced metric from R(2,n−1). However, these vectors u and ū cannot be used
in any other sense in this formalism as they are not given in an orthonormal
base of the normal space.

3.6.2 Exceptional case C = 0

For this case we have
0 = R + 2± 2

√
T (261)

Let us first consider timelike surfaces. Here we know that T ≤ 0 and so we
have T ≡ 0. Thus R ≡ −2. From the definition of C we also see that there
are two possibilities. If ūiū

i ≡ uiu
i ≡ 0 the surface is a geodesically embed-

ded AdS2 ⊂ AdSn. There is however the possibility that either ūi or ui is
not zero. In this case the surface is an AdS2 ⊂ AdSn but not geodesically
embedded.

For spacelike surfaces and if T = 0, the surface is a hyperbolic plane embed-
ded in AdSn with R = −2. If T 6= 0 it follows by (258) that T > 0. In this
case we can formulate an even stronger equation and have

0 = R + 2 + 2
√

T (262)

which will be done in the appendix 6.7. Here we see that in the exceptional
case there are no flat minimal spacelike surfaces in AdSn because setting
R = 0 and taking T > 0 is a contradiction. We can even conclude that for
all spacelike exceptional (which both are invariant attributes) the curvature
has to be R ≤ −2.
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4 The generic problem

In [AM09b] the authors calculate a regularized area of the eight cusp solution
without reconstructing the surface explicitely. However they restrict them-
selves to a surface that is embedded in an AdS3 ⊂ AdS5 subspace. In the
four cusp case it was possible to reconstruct the generic four cusp case via
certain SO(2, 4) transformations. But if we increase the number of cusps we
also increase the number of conformally invariant parameters of the configu-
ration on the conformal boundary. Therefore it is not possible to reconstruct
the generic eight cusp case in AdS5 from one given solution. In this section
we will first count the number of invariant parameters. Then we will outline
the results given in [AM09b].

4.1 Conformal invariants

We want to characterize a scattering process in R(1,3) with SO(1, 3) invariant
quantities. To give a n-cusp configuration on the conformal boundary, we
have n vectors with 4 components each. Because the whole configuration has
to be closed, we are left with 4(n−1) parameters. Every vector is lightlike so
the number is reduced to 4(n− 1)−n. We are looking for SO(1, 3) invariant
parameters. So we end up with

#M = 4(n− 1)− n− 6 = 3n− 10 (263)

lorentz invariant quantities to characterize a generic n cusp configuration on
the conformal boundary of AdS5. For the four cusp case we see that we need
2 quantities to characterize the configuration - s and t.

The conformal group Õ(2, d) on the conformal boundary has (d+1)(d+2)
2

= 15
generators. 6 generators belong to a SO(1, 3) subgroup, so they do not
change the invariant quantities. The four translations also do not change the
configuration. So there remain five generators in the conformal group that
change the invariant parameters. So for n > 5 we surely cannot reconstruct
the generic case from a single solution via conformal transformations. In the
N = 5 case we have 15 − 10 = 5 independent scattering parameters. So
it might be possible to reconstruct the generic case from a single solution.
In [Mey09] the author shows that in the 5 cusp case it is at least locally
possible to reconstruct the generic case out of a single solution via conformal
transformations, i.e. that the functional determinant of the transformation
is nonezero.
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4.2 The octagon

Throughout this thesis we dealed with minimal surfaces inside AdSn using
a Pohlmeyer reduction. In [AM09b] and [AM09a] Alday and Maldacena use
an analogous formalism for the AdS3 case. They are able to calculate the
area in the octagon case in AdS3. This is remarkable as they are able to give
this result without explicitely solving the problem. As this is a significant
progress we will summarize their results in this chapter. They use almost
the same variables and vectorfields. For a better comparison we will adopt
their notation in this chapter. They introduce z = σ + iτ , ∂ = 1

2
(∂σ − i∂τ )

and the following basis frame in R(2,2)

q1 = Y q2 = e−α∂̄Y q3 = e−α∂Y q4 = N

q2
1 = −1 〈q2, q3〉 = 2 q2

2 = q2
3 = 0 q2

4 = 1
(264)

Their definition of α,N and p is

α =
1

2
log(

1

2
〈∂Y, ∂̄Y 〉)

Na =
e−2α

2
ǫa,b,c,dY

b∂Y c∂̄Y d

p = −2〈N, ∂∂Y 〉 , p̄ = 2〈N, ∂̄∂̄Y 〉

(265)

Basically, their vectorfield N corresponds to our B4 in the AdS3 case and
their p corresponds to our u4 which is a holomorphic function. The area of
the surface is then given by

A = 4

∫

e2αd2z (266)

In the AdS3 case the problem of integration of (76) is in general much more
simple because we can use the decomposition of SO(2, 2) into SO(2, 2) =
SL(2)×SL(2). Furthermore they use this fact to prove the behavior of their
solution for large z. They also find the analogon of our Sinh-Gordon equation
(182).

∂∂̄α− e2α+ | p(z) |2 e−2α = 0 (267)

The main difference between their analysis and our calculations is that they
do not a priori introduce a conformal transformation on the surface in order
to achieve p2 = p̄2 ≡ 1. They consider p(z) to be an holomorphic function.
According to them p(z) is the only function or parameter in the calculation
that can carry information about the conformal boundary of the surface in-
side AdS3. As we mentioned before, the conformal transformation to achieve
p2 ≡ 1 is locally possible away from the zeros of p(z). So they assume that
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the information about the conformal boundary of the surface is encoded in
the zeros of the holomorphic function p(z). Of course it is possible to locally
introduce a w-plane by setting

dw =
√

p(z)dz (268)

This transformation leads to the real Sinh-Gordon equation.

∂w∂w̄α̂− e2α̂ + e−2α̂, α̂ := α− 1

4
log pp̄ (269)

However, the information about the zeros of p is not lost because the variable
w has branch cuts at the zeros of p. In their paper [AM09b] Alday and
Maldacena use this w plane to study the behavior of the surface at large
| z |. In the case of the tetragon solution the planes w and z are identified
with each other. This solution is given by α = α̂ = 0 and p(z) = 1.

They argue that a polynomial of degree n− 2 should lead to a solution with
2n cusps. In the octagon case they take the polynomial p(z) to be

p(z) = z2 −m (270)

They introduce x± = x0 ± x1 on the conformal boundary in Poincaré coor-
dinates and observe that only one coordinate changes when we go from one
cusp to the next. So there are four x+

i and four x−
i that define the cusps.

Out of these x±
i they construct two conformally independent cross ratios χ±.

Then they work out a relation between m ∈ C and these two cross ratios χ±

where χ± only depends on the x±
i . The computation of the area is done via

an asymptotically approximation of the solutions of the Painleve III equation
for their α̂. The result is an expression of the regularized area of the octagon
solution with dependence on m.
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5 Conclusions and discussion

In this diploma thesis we examined minimal surfaces in AdSn inspired by
the conjectured correspondence between certain gluon scattering amplitudes
and spacelike minimal surfaces with a lightlike polygonal boundary on the
conformal boundary of AdS5 (see [AM07]). We started to review the generic
tetragon solution and used an alternative regularization to calculate the area.
Our term for the expansion can be interpreted to be similar to an expression
that was given in [Ald08] for a cutoff in the radial direction of AdS5 with
a cutoff parameter that is a function of the coordinates on the conformal
boundary.

Then we developed a Pohlmeyer reduction for minimal surfaces in AdSn

in a similar way we did in [DJW09] and extended the results. We were
able to treat both timelike and spacelike minimal surfaces simultaneously.
Using this formalism we showed that the Gauss-, Codazzi-Mainardi- and
Ricci- equation for minimal surfaces appear as integrability conditions in the
formalism. Further we proved that there is a bigger variety of flat timelike
minimal surfaces in AdSn than in the spacelike case. This is due to the fact
that the corresponding ρρ̄ term can have both signs in the timelike case.
Further we showed that every spacelike flat minimal surface in AdSn is (a
part of) a surface that is obtained from the tetragon solution with isometry
transformations of AdSn. So necessarily all further minimal surfaces that
correspond to other scattering amplitudes are nonflat. We also derived the
differential equations for spacelike and timelike minimal surfaces in AdS5,
AdS4 and AdS3. We also noticed that there are no spacelike minimal surfaces
inside AdS3 that have a scalar curvature R ≥ −2. Further we were able
to describe all constantly curved timelike minimal surfaces with two free
functions. In the timelike case it was also possible to do a complete gauge
fixing for timelike minimal surfaces for every dimension.

For every dimension n > 3 we found two invariant scalar quantities C and
T that describe the outer geometry of minimal surfaces. They are connected
to the scalar curvature with a simple algebraic equation.

C =
(R + 2)2

4
− T (271)

This is remarkable because normally invariants of inner and outer geometry
are not related in this way. The relation derives from the minimality condi-
tion which on one hand is a critical point of the area functional but on the
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other hand also an obstruction for the second fundamental forms.

We introduced the term “exceptional” surface for the case where C = 0 and
further showed that every spacelike exceptional minimal surface in AdSn has
a scalar curvature R ≤ −2. The invariants are also comfortable to use as
they can be calculated easily for a given minimal surface.

In the last chapter we added some notes on the conformal invariants of an ar-
bitrary lightlike n-gon in the four dimensional Minkowski space and sketched
the new results in [AM09b] where the authors use a similar formalism for
AdS3.
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6 Appendix

6.1 Proof that the one cusp solution is a minimal sur-
face

We now explicitely verify that this solution satisfies the equation of motion
for the Nambu-Goto action (23).

d

dτ

∂L
∂ẋµ

+
d

dσ

∂L
∂x′µ −

∂L
∂xµ

= 0 (272)

A dot refers to the derivative with respect to τ and a prime refers to the
derivative with respect to σ. The Lagrangian Density L is simply the inte-
grand from the action

L =
1

r2

√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

(273)
We will evaluate the equation of motion for every µ ∈ {0, 1, 2} and we start
with µ = 0.

∂L
∂ẋ0

=
x1

′2ẋ0 − x0
′x1

′ẋ1 + r′2ẋ0 − r′x0
′ṙ

r2
√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

= −cosh σ

2eτ
i

∂L
∂x0

′ =
−x1

′ẋ0ẋ1 − r′ẋ0ṙ + x0
′ẋ2

1 + x0
′ṙ2

r2
√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

= −sinh σ

2eτ
i

Now it follows that

d

dτ

∂L
∂ẋ0

+
d

dσ

∂L
∂x0

′ =
cosh σ

2eτ
i− cosh σ

2eτ
i = 0

For µ = 1 we obtain

∂L
∂ẋ1

=
−x0

′x1
′ẋ0 + x0

′2ẋ1 − r′2ẋ1 + x1
′r′ṙ

r2
√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

=
sinh σ

2eτ
i

∂L
∂x1

′ =
−x0

′ẋ0ẋ1 + r′ẋ1ṙ + x1
′ẋ2

0 − x1
′ṙ2

r2
√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

=
cosh σ

2eτ
i
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And again, it turns out that

d

dτ

∂L
∂ẋ1

+
d

dσ

∂L
∂x1

′ = −sinh σ

2eτ
i +

sinh σ

2eτ
i = 0

The last remaining case µ = 2 is the only case where the Lagrangian density
explicitly depends on x.

∂L
∂r

= −2
√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

r3

= − 1√
2eτ

i

∂L
∂ṙ

=
−x0

′r′ẋ0 + x0
′2ṙ + x1

′r′ẋ1 − x1
′2ṙ)

r2
√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

=
1√
2eτ

i

∂L
∂r′

=
r′ẋ2

0 − r′ẋ2
1 − x0

′ẋ0ṙ + x1
′ẋ1ṙ

r2
√

−(−ẋ2
0 + ẋ2

1 + ṙ2)(−x′2
0 + x′2

1 + r′2) + (−x′
0ẋ0 + x′

1ẋ1 + r′ṙ)2

= 0

Finally, we have

d

dτ

∂L
∂ṙ

+
d

dσ

∂L
∂r′
− ∂L

∂r
= − 1√

2eτ
i + 0 +

1√
2eτ

i = 0

So we see that (22) actually is a solution of the equations of motion.

6.2 Proof that the tetragon solution is a minimal sur-

face

We verify that (31) solves the equations of motion.

d

dx1

∂L
∂(∂1xµ)

+
d

dx2

∂L
∂(∂2xµ)

− ∂L
∂xµ

= 0 (274)

The action we are using here is

iA =
∫

dx1dx2

√

1 + (∂1r)2 + (∂2r)2 − (∂1x0)2 − (∂2x0)2 − (∂1r∂2x0 − ∂2r∂1x0)2

r2
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For µ ∈ {1, 2} this is automatically true. So let us consider µ = 0.

∂L
∂(∂1x0)

=
1

r2
√

X
((∂1r∂2x0 − ∂2r∂1x0)∂2r − ∂1x0)

= − x2

(1− x2
2)

2

∂L
∂(∂2x0)

=
1

r2
√

X
(−(∂1r∂2x0 − ∂2r∂1x0)∂1r − ∂2x0)

= − x1

(1− x2
1)

2

Here

X = 1 + (∂1r)
2 + (∂2r)

2 − (∂1x0)
2 − (∂2x0)

2 − (∂1r∂2x0 − ∂2r∂1x0)
2

So both total derivatives vanish and the equation of motion holds. The last
remaining case is µ = 3, xµ = r.

∂L
∂r

= −2
√

X

r3
= − 2

√

(1− x2
1)(1− x2

2)
3

∂L
∂(∂1r)

=
1

r2
√

X
(−(∂1r∂2x0 − ∂2r∂1x0)∂2x0 + ∂1r)

= − x1

(1− x2
2)
√

(1− x2
1)(1− x2

2)

∂L
∂(∂2r)

=
1

r2
√

X
((∂1r∂2x0 − ∂2r∂1x0)∂1x0 + ∂2r)

= − x2

(1− x2
1)
√

(1− x2
1)(1− x2

2)
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So we have

d

dx1

∂L
∂(∂1r)

+
d

dx2

∂L
∂(∂2r)

− ∂L
∂r

=
−1

(1− x2
2)
√

(1− x2
1)(1− x2

2)
− x2

1
√

(1− x2
1)(1− x2

2)
3

− 1

(1− x2
1)
√

(1− x2
1)(1− x2

2)
− x2

2
√

(1− x2
1)(1− x2

2)
3

+
2

√

(1− x2
1)(1− x2

2)
3

=0

So this is really a minimal surface as stated above.

6.3 Boosted tetragon solution

We proof that (35) is connected with (34) via a SO(2, 3) transformation.
The (35) solutions depends on a and b. Setting a = 1 and b = 0 retrieves the
surface (34). First we apply the relation (18) on (34) and find

X(u1, u2) =









cosh u1 cosh u2

sinh u1 sinh u2

sinh u1 cosh u2

cosh u1 sinh u2

0









(275)

Further we can show that

A B X(u1, u2) =










(1+a2) cosh u1 cosh u2−(a2−1)b sinh u1 sinhu2

2a√
1 + b2 sinh u1 sinh u2

sinh u1 cosh u2

cosh u1 sinh u2
−(a2−1) cosh u1 cosh u2+(a2+1)b sinh u1 sinh u2

2a










(276)

with

A =









1+a2

2a
0 0 0 1−a2

2a

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

1−a2

2a
0 0 0 1+a2

2a









B =









1 0 0 0 0

0
√

1 + b2 0 0 b
0 0 1 0 0
0 0 0 1 0

0 b 0 0
√

1 + b2









(277)
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But applying the relation (18) we see that (276) is exactly (35). But A, B ∈
SO(2, 3). So (35) is the image under a SO(2, 3) transformation from (34),
as stated above.

6.4 Dependence of s and t on a and b

We are considering the boosted tetragon solution

r =
a

cosh u1 cosh u2 + b sinh u1 sinh u2

y0 =
a
√

1 + b2 sinh u1 sinh u2

cosh u1 cosh u2 + b sinh u1 sinh u2

y1 =
a sinh u1 cosh u2

cosh u1 cosh u2 + b sinh u1 sinh u2

y2 =
a cosh u1 sinh u2

cosh u1 cosh u2 + b sinh u1 sinh u2

(278)

In Poincaré coordinates we approach the conformal boundary for r → 0. So
if either u1 or u2 goes towards ±∞ we approach the conformal boundary.
Thus the four cusps of the tetragon are given via

1. u1 →∞ and u2 →∞

In this case we find

y0 =
a
√

1 + b2

1 + b
y1 =

a

1 + b
y2 =

a

1 + b
(279)

2. u1 →∞ and u2 → −∞

This yields

y0 =
a
√

1 + b2

b− 1
y1 =

a

1− b
y2 =

a

b− 1
(280)

3. u1 → −∞ and u2 →∞

We find

y0 =
a
√

1 + b2

b− 1
y1 =

a

b− 1
y2 =

a

1− b
(281)

4. u1 → −∞ and u2 → −∞

Finally, we have

y0 =
a
√

1 + b2

1 + b
y1 = − a

1 + b
y2 = − a

1 + b
(282)
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So these four points are the corners on the conformal boundary of AdS4.
Here it is easy to see that the vectors (the four momenta) that join two
consecutive corners are lightlike. The four momenta are

P12 =





−2a
√

1+b2

b2−1
2ab

b2−1

− 2a
b2−1



 P13 =





−2a
√

1+b2

b2−1

− 2a
b2−1
2ab

b2−1





P43 =





−2a
√

1+b2

b2−1

− 2ab
b2−1
2a

b2−1



 P42 =





−2a
√

1+b2

b2−1
2a

b2−1

− 2ab
b2−1





(283)

Here Pij means the coordinates from corner i minus the coordinates from
corner j. So the mandelstam variables are

s(2π)2 : = (P12 + P14)
2 = − 8a2

(b− 1)2

t(2π)2 : = (P43 + P14)
2 = − 8a2

(b + 1)2

s

t
=

(b + 1)2

(b− 1)2

(284)

which is the result (36).

6.5 Proof of the uniformly convergence

Here we show how to calculate the integral

Aerr

8
= lim

ǫ→0

∫ x(ǫ)

0

du1 log









(√
2

cos2(π

2
−ǫ)
− 1 +

√
2

cos2(π

2
−ǫ)
− 2
)

e−u1

(√
1

cos2(π
2 −ǫ)

−cosh2 u1

cosh2 u1+sinh2 u1
+

√
1

cos2( π
2 −ǫ)

+sinh2 u1

cosh2 u1+sinh2 u1

)









(285)

with x(ǫ) = ArcCosh

(√

1
2

+ 1
2

√
2

cos2(π

2
−ǫ)
− 1

)

. The correct way would be

to calculate the integral for all ǫ and then take the limit ǫ→ 0. However this
turns out to be difficult. So we label the ǫ in the upper integration boundary
with ǫ1 and the ǫ in the integrand with ǫ2. If we call the integrand I(u1, ǫ2)
we have

Aerr

8
= lim

ǫ1→0
lim
ǫ2→0

∫ x(ǫ1)

0

du1I(u1, ǫ2) (286)
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Now we would like to take the limit ǫ2 → 0, integrate then and finally take
ǫ1 → 0. For this procedure to be correct we have to verify that the integrand
converges uniformly.

lim
ǫ2→0

I(u1, ǫ2) =
1

2
log
(
1 + e−4u1

)
=: I(u1) (287)

Now we show that this convergence is uniformly. Therefore we have to show
that

lim
ǫ2→0

supu1∈(0,x(ǫ1)) | (I(u1, ǫ2)− I(u1)) |= 0 (288)

By direct inspection we see that | I(u1, ǫ2)−I(u1) |= I(u1)−I(u1, ǫ2). Further
this term is monotonely falling and therefore

supu1∈(0,x(ǫ1)) | (I(u1, ǫ2)− I(u1)) |= I(0)− I(0, ǫ2) (289)

But the limit
lim
ǫ2→0

(I(0)− I(0, ǫ2)) (290)

is 0. That means that we can first take the limit ǫ2 → 0 and integrate then.

6.6 Proof of the invariance of T and C

First, let us consider transformations on the normal space. A matrix A ∈
SO(1, n− 3) or A ∈ SO(n− 2) acts on the normal space

ua → A b
a ub (291)

So every scalar product on the normal space is invariant under this action.
However, it is not invariant under conformal reparameterization of the sur-
face. We already mentioned that if we reparameterize the parameter space
with a holomorphic function z → h(z) we find

ui → ui(∂h)2

ūi → ūi(∂̄h̄)2 (292)

Under this reparameterization the metric transforms

eα → eα | ∂h |2 (293)

So the following combinations are invariant : (uiūi)e
−2α and (uiui)(ū

jūj)e
−4α.

But the right hand side of (255) is constructed out of invariant quantities thus
T and C are invariant.
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6.7 Proof of 0 = R+2+2
√

T in the exceptional spacelike
case for T 6= 0

Because we are examining the exceptional case C = 0 here. We start with
the equation for the curvature together with the Gauss equation.

R = −2e−α∂∂̄α = −2(uaūae
−2α + 1) (294)

So we have for C = 0

R + 2 + 2uaūae
−2α = R + 2 + 2

√
T = 0 (295)

as stated above.
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