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Abstract

In this diploma thesis the proposal for evaluating the expectation value of Wilson loops in the
AdS/CFT correspondence will be considered. Many physical observables related to the quarks
depend on how the strings, whose endpoints on some probe branes represent the quarks, are
embedded in certain backgrounds. Using this prescription, quantities like static interquark
potential, screening length, drag force and jet quenching parameter can be determined. Two
backgrounds are of special interest in this work, one background dual to A/ = 2 SYM and the
Lorentz-boosted AdS black hole background dual to N’ =4 SYM at finite temperatures. The
latter background is used as an approximation to explore some interesting properties of the
Quark-Gluon-Plasma.

This thesis primarily concerns the possible dependence of the above mentioned observables
on various quark orientations inside the internal space (S°). It was found that the relative S°-
angle of a quark and an antiquark has strong influence on their static potential and the related
screening length but it does not change the confinement behavior, and the drag force related
to a moving single heavy quark in a QGP is independent from its various internal orientations.
For comparison with QCD a method to average over all relative S°-angles is proposed.

Keywords: AdS/CFT correspondence, Wilson loops, Quark-Gluon-Plasma

Inhaltsangabe

Diese Diplomarbeit untersucht das Konzept zur Bestimmung der Erwartungswerte von Wilson-
Schleifen in der AdS/CFT Korrespondenz. In dieser Beschreibung werden Quarks durch die
Endpunkte des Strings auf Testbranen dargestellt, so dass viele Quarks-spezifische Messgrossen
davon abhéngen, wie der String in verschiedenen Raumzeiten eingebettet ist. Von beson-
derem Interesse fiir die vorliegende Arbeit sind dabei ein zu einer A’ = 2 SYM Theorie dualer
Hintergrund, sowie der als AdS Schwarzes Loch genannte Hintergrund. Letztere Raumzeit
wurde als Approximation gewéhlt um einige sehr interessante Eigenschaften des Quark-Gluon-
Plasmas studieren zu kénnen. So ist es moglich, mittels der beschriebenen Methode physikalis-
che Grossen wie statisches Quarkspotential, Screening-Lénge, die sogenannte Drag-Force und
Jet-Quenching-Parameter zu bestimmen.

Der Schwerpunkt dieser Diplomarbeit liegt dabei auf der Untersuchung einer moglichen
Abhingigkeit der obengenannten Messgrossen von verschiedenen Quarkorientierungen im S°-
Raum. Es wurde festgestellt, dass der relative Winkel zwischen einem Quark und einem An-
tiquark grossen Einfluss auf das statische Interquarkpotential und die dazugehorende Screening-
Lange hat. Fiir das eventuell vorhandene Confinement-Verhalten sowie die Drag-Force beziiglich
eines einzelnen bewegten schweren Quarks konnte jedoch keine Abhingigkeit von der S°-
Orientierung nachgewiesen werden. Um Kontakt mit QCD kniipfen zu konnen, wurde eine
Mittelungsmethode iiber allen relativen S°-Winkeln vorgeschlagen.

Schliisselworter: AdS/CFT Korrespondenz, Wilson-Schleifen, Quark-Gluon-Plasma
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1. Motivation and Introduction

The strong interaction between the quarks described by exchanging of gluons is gov-
erned best by quantum chromodynamics (QCD). The well-known running coupling has
the profound consequence that the interactions become weak at short distances, which is
known as asymptotic freedom, and strong at large distances, which leads to confinement
of charges. QCD theory has been tested and confirmed with success in high energy
experiments and at low energies, where the theory is non-perturbative, lattice calcula-
tions provide strong evidences for the correctness of QCD, but there still seems to lack
a satisfactory description for confinement. Currently there are many indications that
string theory might be useful to describe the strong interactions in the non-perturbative
regimes of QCD.

String theory arose in the late sixties in an attempt to describe the strong nuclear force
which binds the quarks together. This was motivated from experimental data relevant
to hadronic scattering which provided an apparently infinite tower of resonances with
mass and angular momenta related by

/
J~=amj,

where o/ ~ 1GeV =2 is the Regge slope. This relation emerges naturally from considering
a rigid rotating string with constant string tension proportional to 1/’ [I]. But this
bosonic string theory suffered from several unphysical features, the absence of fermions,
the presence of a tachyon and spin-2 particles, and it is only consistent in 26-dimensional
spacetime. Due to these difficulties and the incorrect prediction of the theory at high
energies, the theory was abandoned and taken over by QCD in early seventies. During
the seventies supersymmetry has been built into string theory to form the superstring
theory, which is free of tachyons and consistent in ten-dimensional spacetime [2|. The
theory contains massless spin-2 excitations and has been regarded as a consistent the-
ory of quantum gravity. Due to the discovered connection between superstring and
super-Yang Mills theory in the late nineties [6] called the AdS/CFT correspondence,
the relation between string theory and strongly interacting world of hadrons has been
reconstructed.

The AdS/CFT correspondence [6], for reviews see e.g. [|[8], relates type IIB string
theory on AdSs x S° space-time (AdS) and A/ = 4 superconformal Yang-Mills (SYM)
theory living on the conformal boundary of AdS which is the 4-dimensional Minkowski
space. Taking the 't Hooft limit |5] first and then the Maldacena limit (decoupling or
low-energy limit) [6], the correspondence describes a weak/strong coupling duality. In
these limits, type IIB string theory is approximated to type IIB supergravity (low energy)
and N/ = 4 SYM describes the strongly coupled N’ = 4 SYM theory in the large N limit
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where N denotes the number of colors. The correspondence conjectures the existence of
maps that identify parameters and correlation functions of both theories, thus making
the two theories as two different descriptions of the same theory. Hence, if a physical
observable is hard to compute in one theory, the problem might be solved more easily
using the dual description.

In field theory the static quark antiquark potential can be obtained from the expec-
tation value of a Wilson loop having a rectangular contour C with the temporal sides T
much larger than the spatial sides L representing the separation between heavy quark
and antiquark [I2]. Confinement occurs if the so-called area law holds, which basically
states that the expectation value giving the static interquark potential is proportional to
the area of the loop. A prescription how to evaluate (W [C]) using the dual string picture
was proposed in references [I3|[I4]. There, the quarks are represented by fundamental
strings ending on the boundary of AdS. The quark mass is associated to the string length
and depending on the string orientation, the string endpoint at the boundary can be
seen as quark or antiquark. Hence, a quark pair representing a meson is thought to be
the string with both endpoints on the boundary. The authors of [I3][14] proposed the
Wilson loop to be defined by this open string and its expectation value is given by the
string minimal world-sheet ending on the loop C at the boundary of AdSs x S° . In lead-
ing order, the potential can be extracted from the minimal surface found by extremizing
the Nambu-Goto action. The result describes a potential of coulombic type [T3|[14],
since the dual field theory is a conformal one and hence does not show confinement.

After the proposal of the correspondence, an impressive amount of work has been
taken to understand and extend these ideas with the ultimate aim to find a gravity dual
background to QCD. The technique presented in [I3]|[T4] can serve as a first check to
explore the confinement property of the background. As a first step to this direction,
the temperature was introduced into the background to break the conformal and su-
persymmetry of the theory. This is realized by compactifying the Euclidean time on a
circle with periodic boundary conditions [T6]. Utilizing this idea, explicit calculations in
[T |T8] showed that at finite temperature the quarks potential still has the Coulomb-
behavior, however, only up to some critical separation before it vanishes. The calculation
of Wilson loop along two space directions at finite temperature can be found in [19], the
result exhibits confinement and was interpreted as the potential of the 3-dimensional
pure Yang-Mills theory which is the limit of the discussed cases in [I7|[I8] at infinite
temperature. A general setup for determining the potential was constructed in [20] and
was applied for several models. A theorem that determines the leading behavior of the
classical potential for a generic metric was proven, in particular a corollary of this the-
orem states the sufficient conditions for the potential to have a confining nature. Some
corrections to the leading order of the potential in certain backgrounds can be found in
211 [22][23].



Along the line of development, the technique to obtain the potential has been applied
for most known dual backgrounds whenever the metric can be given in explicit form.
Some of the backgrounds which have dual non-conformal field theory with less symme-
try have been found, e.g.: the background in [24] describes a supersymmetric solution
dual to N' =2 SYM and the potential exhibits confinement at large quarks separation
distances; confining potential has also been found for some backgrounds dual to N’ =1
field theories [25]; and the background described in [26] shows confinement and string
breaking at some critical distance.

Recently, experimental results from the Relativistic Heavy Ion Collider (RHIC) in-
dicated the existence of a new state of strongly interacting matter at extremely high
temperatures and densities called Quark Gluon Plasma (QGP) [33] where the quarks
and gluons are no longer confined in hadrons. This medium is created in Au-Au collision
at velocity close to c. Some observed phenomena like suppression of heavy mesons and
energy loss of a single quark are related to the expectation value of the Wilson loop.
Using lattice QCD to study QGP, one encounters the difficulty that quarks and mesons
are produced with some initial velocity relative to QGP. The dual gravity description
can solve that problem in a natural way, namely by boosting the background, thus this
strongly coupled medium might serve as an ideal testing ground for the AdS/CFT cor-
respondence. Since there exists no known gravity dual background to QCD, the AdS
black hole metric dual to N/ = 4 at finite temperature was used as an approximation,
since there are good reasons that the two theories might share common properties under
these extreme conditions [3§] .

Theoretical analyzes making use of the AdS/CFT correspondence for evaluating the
shear viscosity of the N' = 4 plasma [34], B5, B6] have confirmed the conjecture that this
hot nuclear medium behave like a nearly perfect fluid, an effect which was concluded
from measurements of flow parameters [33]. The resulting value for the viscosity seems
to obey a universal law [36] and is well compatible with the values for QGP found at
RHIC, thus this success motivates the use of AdS/CFT correspondence to study further
properties of the plasma.

Since then there have been many AdS/CFT calculations, e.g. to determine the
velocity-induced suppression of the screening length beyond which quarkonium bound
states dissociate [37|[39]. The result is obtained from evaluating the static quarks po-
tential using gravity dual description in a boosted AdS black hole background. The
investigation on the dependence of the screening length on the relative plasma wind
direction and the chemical potential have been carried out in [A0, 41l @2|. Another
phenomena observed at RHIC are mono-jets and the suppression of back-to-back jets
compared to the case of proton-proton scattering which can be explained by the energy
loss of heavy quarks moving in the N' = 4 SYM plasma [43]. The jet quenching pa-
rameter describing the energy loss can be obtained from the expectation value in the
short distance limit of the closed light-like Wilson loop in the adjoint representation [44].
Another approach to determine the jet quenching parameter comes from considering the
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motion of a single heavy quark moving in the A’ = 4 SYM plasma [46, 47, 48] which
also underlies the concept of the AdS/CFT correspondence.

This diploma thesis mainly concerns the computations of the Wilson loops via string
world-sheets in 10-dimensional backgrounds where an additional degree of freedom is
switched on. This allows the string to move in the internal space which for the to be
considered backgrounds is given by the S°-part of the metric. The string endpoints
representing quark and antiquark at the boundary can have different positions on the
S5, so the string connecting the quarks describes a curve inside the internal space. There
seems to exist only a few papers discussing on the potentials [T3][22][28][29] where the
internal orientation of the Wilson loop is not kept fixed along the rectangular contour.
The reason not to turn on the relative orientation of the quark and antiquark is the
absence of any interpretation of such degree of freedom in QCD. However, when studying
supersymmetric Wilson loops [T3]|3T][32], the correlation between the loop contour in
Minkowski space and the contour on S° is not trivial.

In this thesis the calculation of Wilson loops will include the relative S°-orientation
between the quark and antiquark for the N' = 2 dual background [24] and the Lorentz-
boosted AdS black hole background [16][|37]. Possible dependence of the potential, con-
finement behavior, screening length, drag force and jet quenching parameter on the
relative S°-angle will be considered.

The thesis is organized as follows:

In chapter two there will be a brief review of some main ideas of the AdS/CFT corre-
spondence [[7]|[8], the Wilson loops in field theory will be introduced and the technique
how to evaluate the expectation value of Wilson loops using AdS/CFT [13]|14] will be
presented.

In chapter three the technique applied to the AdSs x S° metric [T3] will be reviewed,
the result for the potential extracted from the background dual to N' = 2 [24] will
be examined and extended by switching on the relative orientation of the quarks. A
proposal on averaging over all relative angles [60] will be introduced, a short summary
and discussions on confinement behavior and concavity [28] of the potential can be found
at the last section.

In chapter four some properties like the screening length [37], drag force [d7] and
jet quenching parameter [38| [44] related to a massive single quark and heavy mesons
moving in QGP will be considered. In each case the internal orientation of quarks will
be switched on. Discussions on the results are attached at the end of each section.

A short summary of the results and the outlook are given in the last chapter.



2. AAS/CFT Correspondence and the Wilson Loops

2.1. The Correspondence

In this section the correspondence between a gauge theory that arises at low energies
on a stack of N coincident D3-branes and a type IIB superstring theory in a certain
spacetime background will be described. Here we follow closely the references [6][7][S].

2.1.1. The Conjecture

The AdS/CFT duality was conjectured by Maldacena [6] and originally states that
N =4 U(N) SYM theory in 3+1 dimensions describes the same physics as type IIB
string theory on an AdSs x S® background, where AdSs is five-dimensional anti-de Sitter
space and S° a five-sphere.

The N' =4 SYM theory is a gauge theory with one gauge field A,,, four Weyl fermions x,
and six real scalars ¢;, all in the adjoint representation of the color group. Its Lagrangian
can be described by [§]

1 1

1 1 1_ _ 1
/d4$ TT(zFWFW + i(Du¢i)2 + §XalDXa - §Xa[¢i> Xa| — Z[@, ¢j”¢u ¢j]) .
(2.1)
It is a conformal field theory (CFT) with vanishing beta function. The theory has two
parameters, the number of colors NV and the gauge coupling gy ;. When the number of
colors is large, the perturbation theory is controlled by the so called ’t Hooft coupling

A=gi,N .

The type IIB string theory is a superstring theory, which contains a finite number of
massless fields, including the graviton, the dilaton and the Kalb-Ramond antisymmetric
2-form. Furthermore it comprises of the fermionic superpartners and an infinite number
of massive string excitations. This theory has two parameters, the string coupling g,
and the string length I, = v/ where o is the slope parameter. In the low energy limit
(long-wavelength limit), when all fields vary over length scales much larger than [, the
massive modes decouple and one is left with type IIB supergravity in 10 dimensions. The
Lagrangian for this theory can be described by [8]

S:

2
9y m

1 _
Ssuens = Jgoaan / 0 =g e (R4 40"0p 0,0p +---),  (2.2)

where G(19) is the ten-dimensional Newton’s gravitational constant, g the determinant of
the metric, R the Ricci scalar, &, the dilation field and the dots denotes contributions
from some other fields.
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To motivate the duality, let us first consider the excitations around the ground state
of type IIB string theory in the presence of N coincident D3-branes in flat, ten dimen-
sional Minkowski space. Dp-branes are massive, charged objects extending in p-spatial
directions which are defined by the property that strings can start and end on them.
The D stands for Dirichlet, there are (10 — p — 1) Dirichlet boundary conditions for
the string endpoint coordinates transverse to the brane and (p+ 1) Neumann boundary
conditions for string endpoint coordinates parallel to the brane. The D3-branes are ex-
tended along a (3+ 1) dimensional plane in ten dimensional space time. The excitations
of the system consist of open and closed strings, as displayed in Fig.2.1(a), in interaction
with each other. Quantization of the strings leads to a spectrum containing a massless
N = 4 vector multiplet plus a tower of massive string excitations. Since the open string
endpoints are attached on the D3-branes, all these modes propagate in the four dimen-
sional worldvolume of these branes. Similarly, quantization of closed strings provides a
massless graviton supermultiplet plus a tower of massive string modes, all propagating
in flat, ten dimensional spacetime.

At energies smaller than the string scale 1/l,, where [ denotes the string length, only
massless string states can be excited. Interactions in gravity are determined by the value
of Newton’s gravitational constant which in ten dimensions is given by [I]

G~ gl15 = g2 (o). (2.3)

Taking the decoupling limit, i.e. keeping the energy and all the dimensionless parameters
like the string coupling constant g, and the number of colors N fixed while sending
ls — 0 (o/ — 0), the closed strings become non-interacting. The interactions between
open strings are controlled by the A" =4 SYM coupling constant g2, ~ gs, so the open
string massless states are governed by the low-energy effective Lagrangian of N = 4
U(N) SYM theory |[I1] and the closed string massless states by the low-energy effective
Lagrangian which turns out to be that of type IIB supergravity. [2]
The complete effective action of the massless modes has the following form

Stotal - Sbulk + Sbrane + Sz'nt + some corrections ) (24)

where Sy, describes the ten dimensional supergravity, Sprqne the physics on the world-
volume of D3-branes containing the AV = 4 SYM and S;,; describes the interactions
between the brane modes and the bulk modes. In the low energy limit S;,; relating the
bulk and the branes vanishes and there is no interactions between closed and massless
“open” strings. In this limit Sy, is left with two decoupled systems: the free gravity
in the bulk; and a conformal field theory which is known to be the pure N'= 4 U(N)
gauge theory in four dimensions.

Next, let us examine the same limit in the second description where the low-energy
limit consists of focusing on excitations that have arbitrarily low energy with respect to
an observer in the asymptotically flat Minkowski region (very far away from the branes).
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1 /
(a) (b)

Figure 2.1.: (a) Ezcitations in the presence of D-branes (b) Excitations in the bulk and
near-horizon region of D3-branes

R

AdS; x S°

Since D-branes are massive charged objects, they deform their embedding space and a
D3 brane solution [7][9] of supergravity is given by

ds* = [7V2(=dt? + da? + da} + dad) + [V (dr? + r2d02) | (2:5)
Fs = (1+ %) dtdeydeydesdf ™"
4
;o= 1+£47 R' = 4ng,d”N .
T

The D3- brane solution above is described by a ten-dimensional metric, a self-dual five-
form field strength F' indicating a four-form potential, since on general grounds a p-brane
will be a source of a p + 1-gauge potential. Because g is non-constant, the energy FE,
of an object as measured by an observer at a constant position r and the energy F
measured by an observer at infinity are related by the redshift factor

E=fYE, . (2.6)

From the point of view of an observer at r — oo, there are two kinds of excitations
at the low-energy limit: the massless graviton supermultiplet propagating at the ten-
dimensional Minkowski region (bulk region); and the whole tower of massive string
excitations which are sent closer and closer to r = 0 (near-horizon or throat region) and
due to the redshift appear to have arbitrarily low energy as seen by observer at infinity,
see Fig.2.1(b).

As argued before, by taking the o/ — 0 limit while keeping the energy fixed, the
massless particles propagating in the bulk become non-interacting providing free gravity.
Moreover, these modes also decouple from the modes in the throat regions, since at low
energies the wave length of these modes becomes much larger than the size of the throat
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which is of order R and therefore cannot enter this region. Similarly, the modes living
near the D-branes cannot escape to infinity, since otherwise they have to climb up a
gravitational potential. As a result, the configuration is again well approximated by two
decoupled systems: free gravity in flat ten-dimensional spacetime and interacting closed
strings in the near-horizon region, whose geometry for r < R turns outll to be that of

AdS5 x S

2 2

L (—df? + da? + da? + da?) + R—zdﬁ + R%dQ: . (2.7)
T

= ﬁ(
Both descriptions contain a subsystem of free closed strings in flat spacetime, so it is
tempting to conjecture that N' =4 U(N) SYM theory in 3+1 dimensions is the same
as (or dual to) type IIB superstring theory on AdSs x S° [6].

ds®

2.1.2. Matching of Symmetries and Parameters

Matching of symmetries In the last subsection a heuristic argument based on a low
energy limit for the AdS/CFT correspondence has been introduced. Let us now consider
the symmetry argument. The isometry group of AdSs is SO(2,4), and this is also the
conformal group in 3+1 dimensions [8]. The isometry group of AdSs can be understood
by the fact that the five-dimensional anti-de Sitter spacetime can be obtained by taking
the hyperboloid

X2, - X0+ XP+ X5+ X5+ X, = R (2.8)

embedded in a flat six-dimensional spacetime with the metric n = diag(—1,—1,1,1,1,1).
R is called the constant anti-de Sitter radius or sometimes the radius of the spacetime.
By a suitable change of variables

r = X_1+X4

R*  2%r
= X 0-Xy=—+— 2.9
v 1 4 , + R2 ( )
X, R
T, = =i nw=0,1,23
r
and using the relations
R*  a? xr
dv = <_ﬁ + ﬁ) dr + Qﬁ dx | (2.10)
the induced metric on the hyperboloid takes exactly the form of the AdSs-part of (271
7,2 R2
ds?gs, = ﬁ(—dﬁ + da? + das + dx3) + —2dr2 : (2.11)
r

Thus this geometry has the symmetry group SO(2,4). The coordinates z,, may be
thought of as the coordinates along the worldvolume of the D3-branes and may be

IThe 1in f = 1 + £; can be neglected.

T
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identified with the gauge theory coordinates. At this point it is interesting to note
that the metric is invariant under the action of the dilatation operator D : z# — Ax*
provided that is accompanied by the rescaling r — r/A, where A is a constant. Since
N =4 U(N) SYM describes a conformal theory, it is also invariant under the action
of D. Hence, if the correspondence hold, that would mean that short-distance physics
in the gauge theory is associated to physics near the AdS boundary (r — oo0) and the
long-distance physics to the physics near the horizon (r — 0).

In addition, the isometries of S® form the group SO(6) ~ SU(4) which can be identified
with the R-symmetry of the A/ = 4 SYM theory. To be more precise, after including
the fermionic generators required by supersymmetry, the full isometry supergroup of the
AdS5 x S° background is SU(2,2[4), which is identical to the N’ = 4 superconformal
symmetry group [§].

Matching of parameters In this paragraph the parameters entering the definition of
each theory and the map between them will be considered. The gauge theory can be
specified by the number of colors N and the 't Hooft coupling constant A = g3,,N. The
string theory is determined by the string coupling constant g, and the size of the AdSs
and S° spaces, which can be expressed by the same radius of curvature R. There is a
precise relation between the 't Hooft coupling and the parameters on the string theory

side, namely
4

A= % = 4mg,N. (2.12)
The number of colors N on field theory side appears on the other side as the flux of the
five-form Ramond-Ramond field strength through the S°, [o; F5 = N.

In its strongest form, the correspondence is supposed to hold for arbitrarily values of
N and \. Since superstring theory on AdSs x S° is still not completely understood, it
proves more convenient to work with its low energy-limit, the supergravity description.

At first the so-called 't Hooft limit is taken which consists in keeping A = ¢%,,N fixed
while sending N to infinity. In this 't Hooft limit, field theory reorganizes itself in a
topological expansion [B]. On the other side, due to g; ~ A/N, this limit corresponds
to the classical type IIB string theory on AdSs x S° . In the second limit o/ — 0,
the curvature radius R is assumed to be large compared to the string length I, = v/a/,
thus this corresponds to the low-energy limit where supergravity becomes an effective
description. On the field theory side, due to A = R*/a/2, this implies large 't Hooft
coupling indicating a strongly coupled theory. Hence in the large N-, large A-limit, the
AdS/CFT correspondence describes a weak/strong coupling duality.

2.1.3. The Field/Operator Correspondence

The correspondence states the duality between type IIB string theory describing on
AdSs x S° and the NV =4 SYM field theory living on the conformal boundary of AdS.
Both theories have the same global symmetries. Then, if these two theories are indeed
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equivalent, it must be possible to specify for each operator O(Z) of the field theory living
on the boundary at r — oo, the corresponding field ¢(Z,r) of the bulk string theory and
to show that the computations of the corresponding correlators in these two theories
should provide the same result. The relation between correlation functions on the two
sides was first proposed in [6] which is expressed by the generating functional on the
field theory side and the string partion function on the other side. The connection is
written as

<6fd4x¢0(r)(9(r)>CFT = Zotring [0 (Z,7) |r—oo = b0 (2)] (2.13)
where O(Z) describes any gauge-invariant local] operator and ¢g (Z) denotes an arbitrary
function specifying the boundary values of the bulk field ¢ (Z,r).

The left-hand side of (2ZI3]) encodes all the physical information in the gauge theory,
since it allows the calculation of correlation function of arbitrary gauge-invariant local
operators by taking the derivatives with respect to ¢ (Z) and taking it to zero afterwards.
The string partition function on the right-hand side is in general not easy to compute,
but in the large N-, large A-limit, it dramatically reduces to

Zstring ~ 6i~55ugm ) (214)

where Sgygrq is the on-shell supergravity action.

2.1.4. Some Comments about D-Branes

D-branes in String Theory A Dp-brane is an extended object with p spatial dimen-
sions where open strings can end, hence p imposes the number of Neumann conditions
on the motion of the open string endpoints [I0)]. With the time dimension the world-
volume of a Dp brane is (p 4+ 1)-dimensional. Not all extended objects in string theory
are D-branes, for example, strings are 1-branes but not D1-branes.

By quantizing open strings ending on a Dp-brane, one has to introduce (p + 1) Neu-
mann conditions for the string endpoints moving freely on the brane and (D —p — 1)
Dirichlet conditions fixing the Dp-brane position in space. Here, D denotes the spacetime
dimension of the embedding space. The massless excitations of open strings coupling to
the Dp-brane describe the low energy dynamics of the brane. Using the light-cone gauge
and taking care all the boundary conditions, the open string wave function satisfies the
equation

(02 -9 X+ =0, (2.15)

where 7 and o are the parameters in the light-cone gauge and X* the string coordinates
[1]. The solution of the wave equation can be written as a Fourier expansion. The
creation a’f and annihilation a! operators can be constructed from the coefficients in the

2Wilson loops are non-local operators, so this prescription must be extended, see next section.
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Fourier expansion and the mass operator of the excited states of the quantized system
can be given a;

e oo D-1
M? = é (—1+Zzp:n agai%—z Z m aﬂain) . (2.16)

n=1 =2 m=1 j=p+1

The operator ala, just counts the number of particles excited in the n-mode. For
oscillators arising from coordinates tangential to the brane, the massless states can be
constructed by applying the creation operator ail on the vacuum state only for n = 1.
Here, i runs from 2 to p, so there are (p + 1) — 2 massless states. Since they carry
Lorentz index for the brane and hence transform as a Lorentz vector, and moreover, the
number of states equals the spacetime dimensionality of the brane minus two, so they
are identified to be photon states whose associated field is a Maxwell gauge field living
on the brane. The other massless states can be realized by acting @’/ on the vacuum
for m = 1. This set of (D — p — 1) massless states arise from coordinates normal to
the brane. They do not carry a Lorenz index and can be interpreted as scalar fields
parameterizing the position of the D-brane in the transverse directions.

D-branes and Gauge Fields We have seen that quantization of open strings in the
presence of D-branes gives the rise for gauge fields living on the brane. A single D-brane
supports on its world-volume a single U(1) multiplet whose massless vector arises from
zero length strings starting and ending at the same point on this brane. In the presence
of more than one brane, let’s say N branes, open strings can be labeled by [ij] meaning
strings extending from brane i to brane j, where ¢ and j are integers running from 1
to N. These strings are also said to be in [ij| sector. The discrete labels 7, j used to
label the branes and the various open string sectors are called Chan-Paton indices [I].
Each of the ends of the strings carries a Chan-Paton label of the gauge group, that is
an index in the fundamental representation, so the vector multiplet is then left with
a fundamental and an antifundamental index (ingoing and outcoming) and hence can
be described by adjoint fields. When no D-branes coincide, there is just one massless
vector each, or U(1)" in all. Now, if N D-branes coincide, there are new massless states
because strings which are stretched between these branes can achieve vanishing length.
In total, there will be N? massless vectors which form the adjoint of a U(N) gauge group
and it was found that the effective action is dimensionally reduced from ten-dimensional
U(N) supersymmetric gauge theory down to (p + 1)-dimensional world-volume of the
D-brane [T0][LT]H.

3In order to use the light-cone gauge, one of the spatial NN string coordinates X® (tangential to Dp)
will be used together with X to define the coordinate X*. So this construction is only valid for
p=>1

4The gauge group U(N) can be written as SU(N) x U(1) and the center group U(1) is identified to
describe the center of mass of motion of the stack of coincident N D-branes.
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2. AdS/CFT Correspondence and the Wilson Loops

Branes Higgsing Now let us consider the situation when two coincident D-branes get
separated. Strings of zero length starting from one brane and ending on the other be-
come massive whose mass is determined by the distance between the branes times the
string tension. These strings carry two Chan-Paton indices, each one from the U(1) of
each brane, and are naturally identified as W-bosons of a broken U(2) gauge group to
U(1) x U(1). This is the stringy version of the Higgs effect which is sometimes called
branes Higgsing. The distance between the branes determines the Higgs expectation
value. For the case of a stack of coincident N D3-branes, the near horizon geometry
will be that of AdSs x S® and the r — oo region describes the flat 10-dim Minkowski
space. The separation of the branes will be realized along the radial coordinate r fixing
the mass of the string and inside the internal spaceﬁ S5, The AdS/CFT correspon-
dence states a duality between type IIB string theory on AdSs x S° and N’ = 4 SYM
theory in 4 dimensions. This gauge theory does not contain quarks in the fundamen-
tal representation. Usually, massive charged particles can be introduced via symmetry
breaking the gauge group by giving expectation values to the scalars of the theory, e.g.
U(N+1) — U(N)xU(1). On the string theory side, that can be realized via separating
a single D-brane far awayll from the stack of coincident (N + 1)-branes. The ground
states of open string stretching between the single brane and the remaining /N-branes
are identified with the W-bosons transforming in the fundamental representation of the
U(N) |13, 14].

Branes as Probes Another possibility to have particles in the fundamental represen-
tation is introducing probe branes into the dual geometry. Having a probe brane in the
background means introducing an additional brane which is assumed not cause any kind
of deformations to the geometry and neglecting all the back reactions of this brane to
the original branes. The open strings between the probe brane and the original branes
are used to represent additional particles in the theory. Probing the background with
a D-brane is one natural way to learn something about string theory from Yang-Mills
theory and vice versa. As described in the previous paragraph, a gauge theory lives on
the world-volume of the D-brane. The background geometry will be encoded in this
gauge theory via the matter content, the amount of unbroken supersymmetry and the
interaction potentials, so solving problems in gauge theory provides information about
the background and vice versa.

5Tt was found that the stationary solution for a single straight string has constant position in the
internal space of AdS, hence the quark mass does not depend on the S®-position of quark in this
background [T3] [T4].

6The meaning of “far away” will be talked in the next chapter.
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2.2. Wilson Loops and the static Quark Antiquark Potential

The expectation value of the Wilson loop in the form of an infinite rectangular with infi-
nite time-like sides 7" and transverse side L denoting the distance between very massive
quark and antiquark gives the static interquark potential [4][T2]. In QCD this quan-
tity is used for characterizing the confinement behavior [T2]. Confinement occurs if the
expectation value of an rectangular Wilson loop gives the famous area law. In this sec-
tion, some properties of the Wilson loop operator in QCD and N' = 4 SYM will be
reviewed. At the end of the section, the construction and calculation of the Wilson loop
expectation value on the string theory side will be presented.

2.2.1. Wilson Loops in Field Theory

The Wilson line has its origin from an operator U (y,z) called parallel transporter of
complex vector fields ® = (P4, ..., Py), which transform in some representation of the
gauge group, along some curve C connecting two spacetime points y and z. This operator
can be expressed by R

U (Cy) B(z) = B(y) . (2.17)

In order to have a local gauge-invariant theory, one needs to introduce a gauge potential
A, (x) with its specific transformation law for constructing the covariant derivative. The
parallel transporter has the transformation law

Uly,2) = 7' (y)U (y,2) 5(z) , (2.18)

where Y is an element of some gauge group. It was found that the expression

U (Cy,) = exp (ig /C Audx”) , (2.19)

respects the gauge transformation laws. Here, C represents a curve connecting y and
z and g the coupling constant of the theory. This object is called the Wilson line.
To construct the Wilson loop one sets y = z and takes trace. These objects can be
generalized to the non-abelian case, where a path-ordering operator P will be introduced
in order to take care the non-commuting property of the theory.

In QCD, the expectation of a Wilson loop has the form

W(C)) = % <Tr736xp <ig fi A“dx“)> | (2.20)

where A, stands for the Vector—potentia]ﬁ of the gluonic field, g the QCD coupling
constant, C some closed contour, P the path-ordering operator, % the averaging over all

"For the non-Abelian case, A, = Ajt* witha=1,.., N2—1and t* = (t%)¥ is the Hermitean generator
of the color group SU(N) in the fundamental representation
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2. AdS/CFT Correspondence and the Wilson Loops

colors, and T'r the trace in the fundamental representation. Since a trace is taken over
this operator, and a gauge transformation for U is given by

i77633}9 (igf{Ade“) — Z_l(x)iPexp <igj{Audx“) Y(x) (2.21)
N g N g

the invariance of the trace under cyclic permutation guarantees the gauge invariance of
the Wilson loop. Another crucial property of the Wilson loop (or Wilson line in general)
is that it depends on the path C. By construction, this quantity is a nontrivial function
of A, and is gauge invariant. In fact, all gauge-invariant functions of A, can be recovered
from Wilson loops for various choices of the path C [3].

2.2.2. ¢q-Potential and the Wilson’s Criterion of Confinement

In order to get the static quark antiquark potential, one considers the Wilson loop with
closed contour C as a rectangular [4][T2] lying in the plane (z1,t) with the size along the
t-axis denoted by T' and the size L along the zi-axis. The expectation value of such a
Wilson loop for T > L gives the static potential of heavy quark and antiquark separated
by the distance L which is given b

Vad(L) =~ Jim log (W(C)).
Quantizing a gauge field theory on a discrete lattice in Euclidean space-time [12], Wilson
showed that, for sufficiently strong coupling, QCD exhibits confinement of colors. The
so-called Wilson’s criterion of confinement says that the confinement of quarks holds if
the Wilson loops obey the area law and the associated string tension is not zero. That
can be written as

<WC> ~ e—a-Areamin(C) — e—a-L-T — 6—qu(L)-T’ (222)

where « is the QCD string tension and Vi 4(L) corresponds to the linearly rising potential
between a quark and an antiquark. From this we learn that the force between the
quarks is constant at every distance. The picture of this QCD string is seen as the
contraction of the gluonic field between the quarks into a color tube (string), whose
energy is proportional to its length.

2.2.3. Heavy Quark and Wilson Loops in N =4 SYM

On the gauge theory side a heavy particle is realized by breaking the gauge group,
e.g. U(N + 1) gauge theory to U(N) x U(1), through the Higgs mechanism. The
resulting W boson transforms in the fundamental of the gauge group U(N) and its

8The Euclidean version is used in this subsection.
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2.2. Wilson Loops and the static Quark Antiquark Potential

mass is proportional to the scalar expectation value. In the dual picture when one D-
brane is separated from a stack of original coincident (N + 1) D-branes, the W boson
is represented by an open string connecting the single brane and the remaining branes.
Its mass is given by the string length times the string tension.

In QCD, an infinitely massive quark in the fundamental representation moving along
the loop C will be described by the phase factor in ([(Z20) [T2]. In the dual description
of N =4, the “quarks” are thought to be W-bosons representing the ground states of
open strings as described above. In order to make the quarks very massive, the length
of the open strings are sent to infinity. Usually, these strings will pull the N branes
and will cause deformations to the branes, which are described by scalar fields. One can
see these couplings explicitly by writing the full U(N + 1) Lagrangian, putting in the
Higgs expectation value and calculating the equation of motion for the massive fields
[T5]. Hence, in the presence of scalar fields, in the N = 4 super Yang-Mills dual to
type IIB superstring theory, the phase factor in the path-integral representation of the
W-boson propagator involves not only the gauge field A, but also scalars ®; [T3] [T5].

W(C) = %TTP exp (2% (Au(x(s))d"(s) + |2|Pr(x(s))8"(s)) ds) : (2.23)

This expression is given in the Lorentziant] signature metric, where s is the curve pa-
rameter, ®; (I = 4,..,9) denote the scalar fields, ! angular coordinates of magnitude
1 and can be regarded as coordinates on S°, so 5(3) can be seen as a function mapping
each point of the loop to a point on the five-sphere. Eq. ([ZZ3) restricts the coupling of
the Wilson loop only to the bosonic fields, a detail derivation of this formula and the
additional coupling to fermionic fields leading to the complete loop equation for N = 4
SYM can be found at |[T5].

2.2.4. The static Quark Antiquark Potential in the dual Picture

As in QCD, where the string is represented by a color tube connecting the quark and
antiquark, a similar situation in string theory will be considered. Let us come back
to the situation where a D3-brane is separated far away from the N D3-branes. A
heavy quark in this picture is represented by an open string stretching between the far
away single D3-brane and the stack coincident N branes, see FiglZ2(a) [I3]. For the
field theory living on the world-volume of the D3-brane, the quarks are referred to the
string endpoints attached to the brane. The string orientation (incoming or outgoing)
determines whether it represents quark or antiquark. Hence, a string starting at some
point on the brane, penetrating along the radial coordinate r of the AdSs x S° metric
down to some distance and turning back to the single brane can be seen as a “meson”.
This situation is sketched in FigZA(b).

In [13] the Euclidean signature metric is used, but with Wick-rotated # which is not the case here.
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Figure 2.2.: (a) Representation of massive W-bosons (quarks) as strings coming from
the far away D-brane at U = 55 — oo down to the stack of N coincident
D3-branes situated at U = 0. (b) A string connecting quark and antiquark
(depending on whether it is a starting or an ending endpoint) at the bound-
ary. The quark antiquark potential is given by the difference of the total

length of the strings in (a) and (b).

In order to compute the expectation value of the non-local operator (Z23)), and hence
the quark antiquark potential, the field/operator correspondence (I3) has to be gener-
alized by the condition that the string world-sheet has to end on the loop C at the bound-
ary. This mapping between the non-local Wilson loop operator W (C) in the gauge theory
and the string partition function Z(C) with the above-mentioned boundary condition
was first proposed in [I3], [T4] through the relation

(W(C)) = Z(C) = "5 (2.24)

where S(C) is the classical action of the string. This proposal comes from the agreement,
in studying the dynamics of the type IIB open string using supergravity limit at large N
and large 't Hooft coupling constant A and of the same string realized as world-volume
soliton on D3-brane using Born-Infeld world volume action [T4]. For a rectangular con-
tour C of the form L x T, the static potential V,;(L) between the heavy quark and
antiquark [T2] in the large N-, large A-limit can be extracted from the following relation

iVaa (DT _ (W(C)) = £i"8(C) (2.25)

In these limits when all quantum fluctuations can be neglected, the string action S(C)
describing the proper area of the string world-sheet is calculated by the Nambu-Goto
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L

(a) (b)

Figure 2.3.: (a) The basic setup of the Wilson loop with U = r/a’ denoting the radial
coordinate. (b) The rectangular shape of the loop at the boundary with the
quarks separation distance L, large time T and the S° positions of quark 6,
and antiquark 0.

action

SNG:ﬁ/deU\/—(i%t [GMNaaXMaﬂXN] . (2.26)
In the above equation, G,y gives the ten-dimensional background metric, X™ the string
coordinates in ten-dimensional spacetime, 7 and o parameterize the string world-sheet
and «, § can take the value of the set {7, o}.

For evaluating the static interquark potential we need to find the string configuration
yielding the minimal surface S which satisfies condition that the surface ends on the
rectangular loop at the boundary. The problem of determining the expectation value of
the Wilson loop is mapped to the problem of solving the classical equations of motion
for extremizing the Nambu-Goto action.

Usually, the minimal Nambu-Goto action S diverges since the surface has to go all
the way to the boundary at infinity, thus an appropriate method is needed for regularizing
this action. In field theory, due to the interaction of the quarks with the gluonic field,
the self-energy of the quarks need to be subtracted from the total energy to obtain
the length-dependent interaction potential. In the present case, the infiniteness of the
minimal surface is interpreted as if it contains terms for the infinitely massive W-bosons,
which need to be subtracted from the action in order to get the potential. The mass of
the W-boson, which from now on will always be called “quark”, is proportional to the
length of the string stretching along the radial coordinate r from the far away D3-brane
down to r = 0.

Consider a metric of the generic form

ds® = GundXMdXN = —Goo(r)dt? + Gz (r)dah + Grp(r)dr® + Gy (r)dat , (2.27)
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2. AdS/CFT Correspondence and the Wilson Loops

where 7 describes the radial coordinate (the fifth coordinate of AdSs), x| = {x1, z2, 3}
and t are the coordinates of the usual 4-dim Minkowski space My, and x7 the coordinates
transverse coordinates.

Let us consider the computation of a rectangular Wilson loop as described in FigfZ3
Because of the rotational invariance in the four-dimensional Minkowski space My, the
quark and antiquark position can be set along the z; = z-coordinate, let us say at —L /2
and L/2, respectively. Here, the string only stretches along the radial coordinate and
within the (z,t)-plain in M, (as in Fig.2.3(a)). For the moment, all the quark positions
in the transverse coordinates are assumed to be constant. For the static case and the
limit 7" — oo, the translation invariance along ¢ can be assumed. Choosing the world-
sheet coordinates o = x and 7 = ¢, the Nambu-Goto string action (Z20) takes the form

L/2
Svo = gy [ doVF @) + G (o) (00r) (2.29)
~L)2
with
Fi(r(o)) = Goo(T(U))GIHxH(T(O’)) (2.29)
G*(r(o)) = Gol(r()G(r(o)) . (2.30)

In this setting, the mass of the quark can be read off from a straight string with a constant
value of x stretching from r = 0 to r = 7,4, the position on the radial direction where
the single D-brane is placed. Each quark has then the mass

2ma!

my = — /0 " Grydr (2.31)

For the AdSs x S® metric the solution for the minimal surface traced out by the single
string implies constant position in the transverse space [14]. For other backgrounds
considered in this thesis, the same result is found and will be discussed later. Then, the
quark antiquark potential can be calculated by extremizing the Nambu-Goto action and
afterwards subtracting the quark masses 2m, from it.

Assuming the string not to move in the transverse coordinates, the analysis in [20] for
the generic metric (227) showed that if there exists a minimum surface satisfying the
boundary condition, the potential can be brought to the general form

Vg = F(ro) - L+ K(ro) , (2.32)

where L denotes the separation between the quark and antiquark, ro the fathermost
position of the string along the radial coordinate r from the boundary which due to
the symmetry occurs at ¢ = 0 and K is some function of the coefficients of the generic
metric.

It has been shown in [20] that (assuming without loss of generality that F(r) has a
minimum or G(r) diverges at v = 0) confinement occurs if and only if F(0) > 0 and the
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corresponding non-vanishing string tension is F(0). This observation comes from the
fact that if a minimal surface can still be found for very large L, (232) describes an area
law, and since ro will be then very close to zero, F(0) can be interpreted as the effective
string tension.

In the frame of this diploma thesis, the string can also stretch in the internal space,
which is described by the zp- coordinates in (Z21). In order to have different internal
positions of quark and antiquark, it is necessary to break the U(N + 2) gauge group
into U(N) x U(1); x U(1)y by giving two expectation values to the two U(1) factors
[13]. Picturally, this can be realized by moving two D3-branes far away along the radial
coordinate r from the stack of original (N + 2) D3-branes with the additional requiring
that the two far away D3-branes can have different positions in the transverse space.
Although this degree of freedom is absent in QCD, it is given in superstring theory
where strings are allowed to move in ten-dimensional space-time, and hence have some
interpretation in N/ = 4 SYM (coupling to the scalar fields). In the next chapters,
it will be shown how quantities like quark antiquark potential, screening length, drag
force, jet quenching parameter and confinement behavior depend on the relative internal
orientations of the quark and antiquark.
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3. Conformal and non-conformal Backgrounds

In the following chapter, the method for calculating the quark antiquark potential pre-
sented in the last chapter will be applied for two different backgrounds. The first one will
be that of AdSs x S°. Since the string theory of type IIB described in this background
is conjectured to be equivalent to the conformal A" =4 SYM theory, a non-confinement
behavior of V,4(L) is expected. The second background is claimed to be dual to N = 2
SYM [24], and hence non-confinement behavior of V;(L) might be changed. In each
case, the additional dependence of V,;(L) on the relative internal orientations of quark
and antiquark will be considered.

3.1. The Prototype of AdS; x S°

3.1.1. The near-horizon Region

The near horizon geometry of a stack of coincident D3-branes is described by the AdSs5 x
S® metric (7). In order to introduce the quarks into the theory, one or more D3-branes
need to be moved “far away” from a stack of coincident D-branes. In the following, the
meaning of “far away” will be explained. The AdS5 x S° metric has the form

2 2
dshas = %(—dt? +daf + daj + dz3) + %dﬁ + R, R*=4mg,d?N  (3.1)

Define a new variable U = r/a’, the metric becomes

2

U R/2
ds? g = o {ﬁ(—dﬁ + dx? + das + dx3) + WdU2 + R’2d§2§} : (3.2)

where R = 47g,N. In most calculations, the prime in R’ will be omitted. We should
keep in mind the explicit form of R while using r» or U as the radial coordinatd]. We
are interested in the static potential between the quarks, so the quark and antiquark
mass should be sent to infinity. Note, U has the dimension of energy, so the mass of
the quark is proportional to the distance along the U-direction between the single and
the stack of the remaining D-branes. By taking the decoupling limit o/ — 0, the only
requiring condition is keeping fixed the energy measured from infinity, which is expressed
by r/a’ [d]. Hence, it is possible to have very massive quarks (large separation in U)
while keeping r small (staying in the near horizon region). Effectively, introducing the

!Thoughout this thesis, R is dimensionful in a metric with r representing the radial coordinate and is
dimensionless if the coordinate U = r/a/ is used instead of r.
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very massive quarks can be realized by moving one single brane very far away along the
U-coordinate from the remaining branes, then taking the decoupling limit o/ — 0 while
keeping the energy proportional to the distance along U = r /o’ fixed, r becomes very
small and the geometry ([Z3) can be seen as AdSs x S® everywhere.

3.1.2. Case of constant Angle

The computations of the potential in this and the next subsection follow closely the
calculations in [T3]. The quark antiquark potential can be extracted from the expectation
value of the Wilson loop in the form of an rectangular as in Fig. EZ3(b). Following the
prescription described in subsection 224, the potential will be calculated. For T — oo,
the problem is translational invariant along the time direction. The quark and antiquark
are set at —L/2 and L/2 along the x direction, respectively, and for the case of constant
S5-position, f(z) = const for all values of z, so 0, = 0(—L/2) = 6(L/2) = 6,. Because of
the static configuration it is natural to take ¢ = 7 and x = o to parameterize the string
world-sheet. The boundary conditions are set on the single D-brane to be

U(£L/2) = Uppgz — 0
in order to make the quarks very massive. Applying the Nambu-Goto action (Z26) on
the AdS metric (B2), we get
T L/2

S = do/(0,U)2 + U*/R* . (3.3)
27 —L/2

The Lagrangian density does not depend explicitly on o, thus from equation

do ou’
one gets a conserved quantity €, along o
U*/R* 0
= EM = —_—
VU?+U* /R R?
where Uj is defined to be the minimum value of U, which by symmetry occurs at o = 0.

From this expression it is possible to express OU /0o as a function of U alone, and so o
can be given in the following form

R2 /Umaz/UO dy
1

U 2V 1)

where y = U% and U,,.. gives the distance of the single D-brane to the remaining D-

branes along the radial coordinate. Taking the limit U,,,, — oo for infinite massive

quarks, the position Uy can be uniquely determined for a given separation distance L
R? [ dy B R? /2732

SR R e R e 0

4 (E _ oL U’) =0, U'=0,U (3.4)

(3.5)

(3.6)

g
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Using the relation (B) to rewrite the square root term in the action (B3)) and replacing
U by y and by doing so do by dy, the equation ([B3)) takes the form

TUO Umar/UO y2
I (y*—1)

This expression diverges for U, — 00, since it contains the quark masses (2231), which
need to be subtracted. The quark and antiquark mass together is given by

S dy . (3.8)

TU Umar/UO
mg +mg = 2m, = TO dy . (3.9)
0

The regularized potential Vz(L) (Z28) becomes

/loo dy (\/% - 1) - 1] : (3.10)

The integration gives a finite result

o0 2 3/2
. y V2T
lim [ dyy | —— -1 —-1= -, 3.11
oy Y (W —1 ) r(1/4)? 31

then using relation R?* = \/dwg,N = /g% ,,N and ([B) to express Uy in term of L, the
final expression for V ;(L) reads

VialD) = L (3.12)

_ Y

™

Vv

Due to the conformal invariance, the 1/L dependence of the coulombic potential occurs
as expected, and that can serve as a first test for the correctness of the proposal (Z24),
since due to the conjecture the AdSs x S° geometry is dual to a conformal field theory.
Furthermore, in the large \-limit the /g% ,,N = VA dependence in the leading order is
a non-trivial fact of strong coupling which differs from weak coupling where the result
usually depends on g%,,N at the leading order. This information confirms the before
mentioned weak/strong duality of the AdS/CFT at large N-, large A-limit.

3.1.3. Case of non-constant Angle

In this subsection the S°-dependence of the quark and antiquark will be turned on. This
means that 6; = 6(—L/2) on one vertical line of Fig.2.3(b) will differ from 65 = 6(L/2)
on the other vertical line [I3]|. The configuration can be realized by separating two
D3-branes from the original (IV + 2) coincident D3-branes. The positions of these two

D3-branes in the internal space S° are not necessary identical, hence the S® position of
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the quark and antiquark sitting on each brane can be different. The considered world-
sheet traced out by the string connecting the quarks goes at 0 = —L/2 to U = co and
to the point #; of the five-sphere and at ¢ = L/2 to U = oo and to the point #5. The
time-translational invariance is still assumed for large 7', hence to any time, this string
describes a U-shape in the AdS5 space with the tip going down into the radial direction
and on the S5-sphere it connects the two points (—L/2) and (L /2).

Due the symmetry of the problem this string will lie along a great circle of the sphere.
By an appropriate parameterization of the sphere the relative positions of the quarks on
the five-sphere can be completely determined by an angl

0= |9(—L/2) —9(L/2)| . (3.13)

where (o) is one of the five angles parameterizing the S°. Due to the symmetry around
o = 0 one can set the boundary conditions as

)= . (3.14)

The Nambu-Goto action (226]) for this case contains an additional term describing the
string stretching inside the internal space and reads

g= 2L /L/2 dor/(0,U)2 + U*/R* 4 U2(9,9)? . (3.15)

27 —L/2

The Lagrangian in (BI5) does not explicitly depend on o and ¥, thus one obtains two
conserved quantities £, and j,,. From the equation (B4 one has

Ut _ o 661
U2 + U4/ R & 2972 Em UA /R + U292 !
0 + Ugvy

(3.16)

where Uy again gives the radial position of the tip of the U-shape string occurring at
o = 0, and 9} the slope of the angle ¥(o) at 0 = 0. The second conserved quantity
arises, when we demand

d oL oL
%W—%zo, (3.17)
namely
2y = 19_2 _ (3.18)
\/U/2 + U4/R4 + U292 UO

Giving the quark antiquark separation L on the boundary and the angle difference 6
in the internal space, it is necessary to solve the equations (BI6) and (BIR) in order

2Note, 6 without indices gives the angle difference between quark and antiquark or in other words a
segment of the great circle, while 6; (with indices) gives the position on S°
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3.1. The Prototype of AdSs x S®

to determine the string configuration with the minimal world-sheet. After doing some
basic algebra and using the boundary conditions (BI4l), one get the following relations

_ R o= dy
R L N = ek .

U/Ug dy
9 = ¢ / , (3.20)
1 V-1
where y = U/Uy and ( is identified by
R419,2
2z 0 3.21
¢ U2 + R*E (3:21)

By this definition ( is restricted on the interval (—1,1), but due to the symmetry it is
sufficient to take values of ¢ € [0,1). Using the boundary conditions (BI4), one finds
the characteristics of the stationary string’s shape Uy and df expressed by {Uy,(} for
given values of L and 6, namely

L - o B AaaEn (3.22)

where

L) = ﬁf’( %) (3.25)

with F, E/ are complete elliptic integralda of the first and second kind, respectively. Using
relation (BI0) to replace the term under the square root of the action ([BIH) by a function
depending on U, Uy and ¥}, and carrying out a change of variable y = U/U, by making
used of the relation (BJ9), one ends up with the following expression for the action

T Umaz/UO 2
S== / dy —— on2 _ . (3.26)
™) V=D +1-03)

dy

_ [z do _rt
3 F(m) - fOQ V1—m2sin26 fO /(1_y2)(1_,’n2y2)

E(m) = fog dOvV1 — m2sin20 = fol (1_(:152))
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3. Conformal and non-conformal Backgrounds

Subtracting the infinite quark masses [BY) (Upar — o0) from the last equation, the
renormalized quarks potential can be determined

_ U " y 1) -
V(lo.Q) = — /1 dy <\/(y2—1)(y2+1—(2) 1) 1] (3.27)
V(Lo = -2V e (3.29

Equation (B23) gives an one-to-one relation between ¢ and ¢ with (0) = 0 and 6(1) = .
For vanishing angle 6, the potential above reduces to the case of constant angle (B12)
as expected. It is interesting to note that for 6 = 7 (this special case can only achieved
for ( = 1 demanding R*J) > Uy — 0 which follows from the definition (B21]) ) the
potential goes to zero. This behavior is expected since it is a BPS construction [T4].
The picture of this 1/4 BPS “loop” is also in agreement with the Zarembo’s construction
[31], in the sense that the tangent vectors of the two large sides of the rectangle point
to two opposite poles on the S°.

3.2. N =2 Dual

We have seen from the last section that the quark antiquark potential exhibits only
a Coulomb branch and does not show confinement behavior. That is a good match
to the dual picture since the N' = 4 SYM theory describes a conformal field theory
and hence does not have running coupling. In order to make contact with QCD, it is
necessary to investigate dual backgrounds to SYM theories with less supersymmetry
and those which break conformal invariance. In [24] the form of F5 as in the case of
AdSs5 x S° remains unchanged, the SO(6) symmetry of the S° is preserved, and since it
is of interest to have gauge theory defined on four dimensional Minkowski space-time,
the Poincaré invariance 1SO(1, 3) for the remaining metric without the radial part will
be assumed. The deformation of the AdS5 x S° metric occurs when the couplings to the
dilaton and axion field are turned on. Solutions with non-constant dilaton field will be
crucial to the confinement behavior, since the expectation value of the dilaton is directly
related to the coupling “constant” of the theory. A supersymmetric solution for this
specific problem has been found in [24] which breaks half of the supersymmetries. The
boundary gauge theory is identified to be N'= 2 SYM which, due to the non-vanishing
beta function, turns out to have running coupling. Using the method presented in the
last chapter, the quark antiquark potential will be evaluated.

3.2.1. The metric dual to N =2 SYM

Now we are going to consider above mentioned deformed version of the AdS background
which is claimed to be dual to the N' = 2 SYM, the metric for the supersymmetric

26



3.2. N =2 Dual

solution in the string frame in that case reads

1/2

2 [ R* | xoR ! 2 " 2 10)2

ds* =« s + 217t (dp® + dx,dat + p°d3) (3.29)
Js

and by changing the variable p = 1/U and interpreting U as the energy of the boundary
field theory [24], the metric is

1/2
2 4 Xo R dU* 2 2

ds* = o (R + 10! W) (W + Udz, dat +dQs | . (3.30)
where U denotes the radial coordinate, R = (47rgsN)l/4 the curvature radius of the
AdSs, gs the string coupling constant, and Yo is a dimensionless positive integration
constant.

3.2.2. Quark Antiquark Potential with constant Angle on S°

Following the computational techniques described in subsection 224 the result for
the potential in [24] will be examined. The expectation value of a rectangular Wilson
loop, from which the quark antiquark potential can be extracted, is determined from
the minimal surface described by a dual string lying in space with endpoints on the
boundary representing the quark and antiquark positions. We take the ansatz for the
background string as

=1, x1=0, U=U(0)

and rest of the string positions remains constant in 7 and o. The quarks separation
distance will be further denoted by L and the boundary conditions are set at U — oo,
where the probe brane is placed in order to make the quark masses very massive,

L
U(j:E) =00, ¥(o) = const. (3.31)
The Nambu-Goto action for the string world-sheet is

1/2

S = L /dUdT (3.32)
2m

The Euler-Lagrange equation can be solved using the fact that the Lagrangian density
does not explicitly depend on o, so we demand L — 885, U’ = const, where the prime
denotes differentiating with respect to o, and get

1/2 .
I J — e . (3.33)
497U Ut + (8,U)°

xo R
<R4 + 49{’/4@) (U* + (0,U))
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3. Conformal and non-conformal Backgrounds

Again, defining Uy to be the minimum value of U, which by symmetry occurs at o = 0,
and taking care the vanishing of (0,U) |,—0, the constant ex along o-axes can be given
in terms of U,

ex = (RUE+4)7 (3.34)
_ XoR

The relation (B33) can be brought to the following form by writing U = Upy

VUR Y+ A [Umas/Uo 1
o= 03—2+ —dy, (3.36)
Ug R 1 Vytyt=1)

and using the boundary conditions (B31l), a relation between Uy and L is found to be

L JUIR + A _VEDB/M) 3.37)

o = wire T "T T/

Since at the end it is of interest to have the potential as a function of the separation
distance, we need to express Uy in terms of L. Noting by definition the positivity of the
turning point of the trajectory Uy, (B31) is equivalent to

f(z) = 22—P2*-P’B=0, (3.38)

2n X0
— = —"—. 3.39
L Y ( )

A
— 2 —
Zz = UO 5 P: ﬁ_ R34g;/4

B

Since f(z;) < 0 for Vz; with (0.f(2))|.=., = 0, f(2) has only one real solution and Uy is
given by

1 2 p+ p2\'~?
— [ZAVB L Z i
Go (6 HEVNEREE ’
A = 108P°B +8P°+ 12V12P8B + 81PB? . (3.40)

In order to calculate the action, (B33) will be inserted in ([B32). Carrying out the
integration dr we have

o T /Umaz R2U2 N A iU
T o, \VUI-Ug RU/U'-Ug

The action consists of two parts, while the second term in the integral converges the first
one diverges. This infiniteness of the action is due to the contribution from the masses
of the quark and antiquark, which in the dual picture are represented by open strings

(3.41)
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3.2. N =2 Dual

connecting the N branes with the far away “probe” brane. This quantity is related to
the length of the fundamental string stretching between those two regions, and in this

case ([B30) it is
1 Umaz A

Subtracting this contribution from the total energy extracted from (BZII), the potential
becomes finite [l can be found. For more details about this subtraction procedure, see

appendix [AJ5
= 1VT LB (—R2U0 + i) . (3.43)
m I'(1/4) R2U}

Here we have introduced an cutoff not only at some U,,,, but also at some U;g, since
the integral diverges as U approaches to zero. We are only interested in the behavior
of the quark antiquark potential depending on Uy(L), so basically the terms containing
Urr can be left out and serve as a shift of the potential. Hence, this finite result is exact
up to a constant depending on where the cutoff Urg is taken. From (BZA0) and BZ3) it
is possible to examine the behavior of V,; depending on the quark antiquark separation
distance L.

It is of interest to have some analytic expressions showing how the potential depends on

the quarks separation distance for small and large values of L compared to the constant
BY4 = AY4/R. From (BA0) one has for L < B~Y4

2
A~8PS Uy~ P =21
L
2772 R2

This usual Coulombic law behavior as in 13| [[4] is expected, since for large U the metric
(B30) turns to that of AdSs x S° by a reparametrization U — U’/R?. However, in the
opposite limit where L > B~/  the second term in B23) dominates, giving

1/3 1/6
~ 216P? ~ (PR — (21) (A
A ~216P°B, Uy~ (P’B) _(L> (R4)

1
Vag = VAL . (3.45)

This confining behavior is new compared to the case of AdS where we have only the
Coulombic term in the potential. The confinement is a consequence of the running
coupling in the dual field theory. From another point of view, this result once more
suggests the correctness of the conjectured mapping (Z24).

4This result is identical with that of [24] by a rescaling Uy — Y3. In [24] the change of variable

R2"
p = R?/U was taken, instead of p = 1/U as in (B30).
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3. Conformal and non-conformal Backgrounds

Potentia
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Figure 3.1.: Plot of the quark antiquark potential, in units of RAY*, as a function of
separation distance L, in units of RA™Y/4 = B~1/4,

To have a whole picture how the quark antiquark potential depends on the distance L
. . . . 1/4
between the quarks, a plot of V; is given in Fig.3.1. Here we rescaled Uy by Uy = %Ur

and the potential (BZ3) becomes

LymI'(3/4) 1, 4174 1
Vg = ;WRA / (—UT + W) : (3.46)

and from (B31) the relation between L and U, is given by

VU1
L=2 1%141—1/4[;73+ . (3.47)

T

From the last equation it is possible to give a relation between U, and L (in units of
RA™Y4), then replacing U,(L) in the potential (BZf), a plot of the general course of
V,g(L) can be generated, see Fig. Bl

3.2.3. Quark Antiquark Potential with non-constant Angle on S°

In this subsection we are going to consider the case where the quarks have different
positions on the S° of the deformed AdS metric (B30). Because of the symmetry, as
described in chapter 1, the relative quarks position on the S° can be fully determined by
an angle J(s) where s parameterizes the loop variable. Taking the configuration where
the Wilson loop contour C forms an rectangular as usual and letting the angle 9 be
time-independent and vary only along the spatial coordinate o, we can write the angle
as (o).

In the following, we want to investigate how the coulombic and confinement behavior
of the quark antiquark potential are influenced by the relative angle 6, we also want
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3.2. N =2 Dual

to check whether a BPS configuration as considered in [T3), [[4] exists. At the end, the
results will be compared to those of the case of the vanishing relative angle.

Considering the string stretching on the (x1,t)-plain, along the radial coordinate and
on the S%, we take the following boundary conditions

L L 0
U(:EE) — 00, 19(:&5) = j:§ . (3.48)

Taking the usual parameterization of the world-sheet by z; = ¢ and t = 7, and applying
the Nambu-Goto action

S =5 / drdo |~ det (Gary0a XMO5X ) (3.49)
on ([B30), we have
5= L /L/2 do KR‘* + i) (Ut + U+ U*9?) - (3.50)
21 J_r) U4 ’ '

where the prime denotes the partial differentiation with respect to . The Lagrangian
does not depend explicitly on ¢ and is independent of 1), thus we have two conserved
quantities.

A Ut

4 ~ —
Bt T
gy

The quantities ¢, and j; are conserved quantities along o. Due to the symmetry, it is
then convenient to determine their values at ¢ = 0 by expressing ([BX21) as functions of
the turning point Uy and the slope of the angle in the internal space v;,.

A Us
e = |R'+ 5—=——, (3.52)
Uy + Ug¢
A Ug;
Je o= g RY (3.53)
Dividing (B53) by (B22), one finds
(VA v/ A
— =3 & ¥=U". 3.54
i 02 (3.54)
Inserting the above relation for ¢ in (B52) and after some calculations one gets
(U*R* + A) (U§ + U0$) Uz,
U =,U4 — 1+ =98] - 3.55
USR + AUZ Tt (3.35)
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3. Conformal and non-conformal Backgrounds

From this it is possible to determine the U-coordinate of the string depending on o when
Uy and v, are known. After setting y as U = yU, and introducing a new parameter [
being identified with

o OR(UIR + 4) 550
UsR* (U5 +9¢)
we end up with
U/Ug
oo L / dy . (3.57)
O Ji V(-1 +1-13)
Using the relation (B34), (o) can be given by
Yo 70 2
v(o) = U2U (0)do =1y | y“do
U/Uo
= dy (3.58)

V-

Using the boundary conditions (BAZ8), where U in the integration boundary goes to
infinity, relations between the quarks separation distance L, the relative angle 6, the
turning point along the radial coordinate Uy and the slope 9 at ¢ = 0 are given by

)
L = 21T
19/ 1(l)

o = 21L(1) , (3.59)

where

1 ) 1— 12 112
L(l) = (1_l2)m[(2—z)ﬁ;< Q_ZQ)—F< 2—z2)] (3.60)

1 1—12
Bl) = —— F(w/m) (3.61)

with I, E are complete elliptic integralsﬁ of the first and second kind, respectively.

From equation (B59) one has an one-to-one relation between ¢ and [ . Since [ is
restricted to the interval (—1, 1), the relative angle 6 can take values between —7 and
7. Because of the symmetry, it is sufficient to let [ having values in [0,1). A plot of
equation (B0J) is given in Fig.3.2.

my=[F —2 _ _l____d
0 V1i—-mZ2sin®6 0 /- yz) (1—m2y2)

E(m) = f dOv/1 — m2sin? —fo j/ﬂi—y'z))dy
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-1.0 -0.5 L 0.5 1.0

Figure 3.2.: Plot of the relative angle # and the parameter [.

The quark antiquark potential The next step is to calculate the extremal Nambu-
Goto action as a function of L and 6 which is expressed through [ in this case. Because
of the symmetry of the problem around ¢ = 0 in the (o, U)-plain, the action (B20) now

reads
oT [L/? A
— 4 4 2 2972 62
S 27T/0 dx\/(R + 4)(U + U + U?9?) (3.62)

From (B52) we have

V(U +U? + U?07) = — /(U + U262) (3.63)

then using (BX20) for replacing do by dU and afterwards introducing y as usual U = Uy,
the action takes the following form

U/Us 2
S:Z/ dy f2 1 + R, J .
™) UoR? 2 /(y? — 1) (42 + 1 - I?) V2= 2 +1-13)
(3.64)
The action diverges because of the second term. After regularizing this expression by
subtracting the contribution from the mass of the quark and antiquark (B2)) (for more

details see appendix [A] for the case of non-constant angle), the action becomes finite

S 1] A4

T== [WH(Z) — R*UI3(1) | = Vig (3.65)
0
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3. Conformal and non-conformal Backgrounds

where

L(l)=E (g = 1) _F (g 2 1) . (3.66)
Similarly to the case of vanishing relative angle, this expression for the potential is exact
up to a constant shift, since in order to get a finite result, an cutoff Uyg — 0 has been
taken. From the equations (B359), for given values of L and 6, Uy and ¥, can be fully
determined.
Let us fix the relative angle between quark and antiquark at the boundary by choosing
a constant value for [ € [0,1). Taking care the positivity of Uy and A, the following
expression

V2 (USRY + A 214 (1
po Yo Wolird) - 2h() (3.67)
UsR* (U3 + 9¢) L
is equivalent to
M NB
_ .3 2 _
where
=U2 M=4*1)(1 -1 N =471%(1 B—A 3.69
= =Up, - 1()(_ )7 - 1()7 _ﬁ ( )

Since f(z;) < 0 for Vz; with (0, f(2))].=-, = 0, equation ([B:68) has only one real solution
and which is given by

123 2 M2 1M
0= \/ 617 T30 3D (3.70)
with
7 = 108NBL* + 8M?® + 12V/3\/NB (2TNBL* + 4M3) L* (3.71)

With these results we are able to consider the cases where L becomes large or small
_12 3/4
comparedd to (1317)4 L) .

9)\3/4
For L > (15}17/)4 I1(1), the terms proportional to M3 will be neglected, and we have

1 1/3
Z ~216NBL* Uy~ (\/NBE)

Vg @L — R*(NB)'/¢ Ig(l)i +0 (L)] . (3.72)

1
T L1/3 1,5/2

6The reason why L should be compared with this quantity comes from considering EZ1)) in order to
see which terms dominate for various values of L while keeping [ (6) fixed.
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3.2. N =2 Dual

Compared with the constant angle case (B4H), there exist additional terms in ([BZ3),
but for very “large” L the potential shows the same confinement behavior in both cases
expressing by the same slope parameter denoting the constant force between the quarks
for all distances.

e 3/4
In the opposite case, where L < (1317/)4 I (1), we have

Z~8M3, Uy~

R2

L)_4 VMo (3.73)

3
= |t T

Vg =
The second term in the above equation dominates for “small” L showing a Coulombic
behavior. This behavior differs from the case of constant angle (844]) by the dependence
on [(#). As a mild check of consistency [ is set to be 0 and the second term in the above
expression is

—21,(0)15(0) R*  —2n* R?
T L  r L°

Hence, for [ = 0 (0 = 0) equation (BZ3)) reduces to the case of constant angle (B44) as
it should.

Plotting the Potential
Recall the quark antiquark potential
1 { A

s e

™

I(l) — R2U0]3(l)] : (3.74)
We can rescale Uy by Uy = LRMUOT and the potential becomes
yap, 1] 1
Vag=ATR-— | —=1(l) = UpI3(l)| . (3.75)
m | Up,

Since we want to investigate the dependence of the potential on L, we need to know the
relation between L and Up, and that can be done by solving the equation (B68) after
rescaling Uy as above and L by L, = LAY*R~!. Equation (B68) is the equivalent to
A3/? M N

Solving this equation gives a relation between Uy, and L,, which is L in units of AY*R~.
Making use of this relation, the potential V in units of A/*R can be completely expressed
by terms depending on L, and [(#). The plots are given in Fig B3
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Figure 3.3.: (Ihs)The potential, in units of AV*R, as a function of separation distance
L, in units of AY*R™Y, and 0. (rhs) V,q(L) with 6 = (.99, 3%, 5 3.0) from
the top to bottom ,respectively

3.3. Summary and Discussions

Summary We have applied the proposal ([Z24) for evaluating the quark antiquark
potential in two different backgrounds. The AdSsx S% background is dual to a conformal
field theory which does not have running coupling. As expected, the calculated static
potential shows only a Coulombic branch, which states that the quarks behave like
two static charged points at all separation distances. However, when one considers the
background proposed in [24], which is claimed to be dual to A/ =2 SYM with running
coupling, the potential determined via string dual picture indeed shows confinement
behavior at large quarks separation distances. Both results can be interpreted as positive
tests for the proposal (224)). Furthermore, the weak /strong coupling duality in large N,
large A\-limit is expressed by the /g% ,,N = VA dependence in the leading order which
is a non-trivial fact of strong coupling which differs from the perturbative YM results
which usually depend on ¢%,,N in the leading order.

We are also interested in the case where an additional degree of freedom is turned
on which allows the movement of the open string inside the internal space S°. In this
picture, the quarks are represented by the endpoints of open strings on some probe
brane. This degree of freedom can be expressed through the relative angle 6 between
the quarks on the five-sphere.

For the case of AdSs x S° the Coulombic behavior of the potential does not change
by switching on the S°-orientation, but compared to the case of constant angle (§ = 0)
there exists a prefactor X (0) which scales the V(6 = 0, L)-potential. The prefactor X
depends only on 6 which can be expressed by the parameter

x(¢)= S0 g (3.7
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3.3. Summary and Discussions

If the relative angle approaches to w, X ({ — 1) goes to zero and the potential vanishes
independently from L. This situation was mentioned before as a BPS state which can be
realized only for Uy — 0. The solution then looks like two strings starting from infinity
going straight all the way down to U = 0. For the second background (B30) we do
not observe an BPS state (non-vanishing potential for any L at § = 7). That can be
explained by the breaking of conformal and supersymmetry, also there is a shift in the
potential which we do not consider.

Averaging the Results It is clear that SYM theory differs from QCD in many ways,
and there is no degree of freedom in QCD which can be interpreted as the internal
degree of freedom described above. However, if one carries out calculations in the string
dual picture and wants to get rid of the S® degree of freedom, one could average over
all possible f-angles [60]. That is one possibility to reduce the degrees of freedom in
going towards QCD. Our ansatz comes from letting the quarks and antiquarks having
arbitrary positions on the five-sphere and average over all possible configurations. The
weight to each configuration of relative angle 6 will be w(f) given by the volume per 6
on S° divided by the total S® volumdi

volS* ., 8 .4
w(f) = olgs Sin 0 = 3, Sin 6. (3.78)

The integration of the weight over all angles 6 € [0, 7] gives unity as it should. To have
a picture of what is meant above let us consider the simplified case where the quark
and antiquark are assumed to have arbitrary positions on the S2-sphere. For the static
configuration the string connecting them is a segment of the great circle. Due to the
symmetry the relative position between the quarks can be parameterized by an angleﬁ 0.
The weight is then given by the circumference of the circle at the polar angle 6 divided
by the surface area of S%. By doing this, § = 0 and § = 7 have the minimal weight while
0 = 7/2 has the maximal one.
Applying this method on ([BXZ1), then the average

X0) — / X(0) w(6) do (3.79)
0
can be evaluated numerically by

X(0) = /le(l) w(l)%dl ~ 0.623 . (3.80)

7 o 5
n __ s
volS™ =tz
8We are just interested in the relative positions between the quarks, not in the precise positions of
them on the sphere
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Figure 3.4.: (lhs) Curvature for § =0 . (rhs) Plot of [B88) for the whole(L,0)-plane

Due to our proposed method, after averaging over all angles @, this factor of 0.623 will
stand infront of (BI2) giving

— 472\/ g% N

For the second discussed background (B30) dual to A/ = 2 SYM, the S°-angle depen-
dence does not cause any change to the confinement behavior (the same slope parameter
for V(L,0) at any 0), since the attractive force between the quarks for large enough L
remains the same for both cases, namely for the case of vanishing and non-vanishing rel-
ative angle. At small L compared to some constant given by the geometry, the potential
is Coulombic and at large L it shows confinement. Switching on the relative angle 6, the
definition of “small” and “large” L changes, it depends strongly on #. As an extremal
case for § = 7, the sufficient condition for L to be considered as “large” holds, if it has
a non-vanishing value.

From the analysis in the last chapter for the non-constant angle case, L is considered

9)\3/4
as large (small) when it is much greater (smaller) than %h(l). We can consider

this quantity as the separation distance, proportional to which confinement behavior
sets in, then using the averaging method presented before, a suppression factor to the
case of constant angle can be found by averaging over all angles 6

/O (1- 12)3/4%w(1)2—?dz ~ 7799 . (3.82)

Check of Concavity In the last chapter, the quark antiquark potential have been de-
termined using string dual picture for two different backgrounds, one dual to a conformal
and the other to a non-conformal field theory. To check whether the proposal [Z24) is
a good one, it needs to pass certain consistency checks. One of which is the stability
condition under small fluctuations. For the case of AdSs x S® | equations of motion for
the fluctuations have been obtained in [27] which provide positive results.

38



3.3. Summary and Discussions

In this paragraph we follow the analysis in [28] to check the concavity of the potential
obtained via string dual picture in all directions of the (L,#) plane. From the field
theoretical point of view the potential has to be concave and monotonically growing
with L [30],

ov 0*V

3L > 0, 902 <0, (3.83)
which states that the force between the quarks is always attractive and its magnitude
is a never increasing function of separation distance. In [28| a general expression for

those conditions has been found if the string does not extend in the S°-part of a general
10-dimensional metric (Z27)

1 dbo(Uo) aUO

—/by >0 — <0, .84

3 Vi >0, dUy OL (3.84)
with by = b(Up) for b = —GuG). There is no known dual geometry violating the

above condition. If the S° degree of freedom is turned on, it is necessary to check
the concavity condition case by case. Concavity for the whole (L, #)-plane holds if the
following inequation is valid

( 0? 0? 0?

2 O 2 O <
LP o + 2L + 0 aez)V(L,e)_O. (3.85)

In large T-limit it reduces to a milder condition, namely standard concavity at 8 = 0
and V(L,0) < V(L,6). Due to the complexity of the problem, the validity of (B8
for quarks potential [BB3) could not be solved analytically. In Fig.3.4 we present two
graphical representations indicating the concavity of the potential for the non-conformal
case.
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3. Conformal and non-conformal Backgrounds

40



4. Quark-Gluon-Plasma

Hadronic matter undergoes a phase transition to a deconfined phase above some critical
temperature T, ~ 200MeV, where a gas of hadrons turns into a gas of quarks and
gluons. This critical temperature can be obtained from models in lattice QCD and there
are many hints from experiments at RHIC[33| indicating that this QCD state of matter
has been realized by Au-Au collision at velocity close to ¢. Due to the strong coupling of
the medium, conventional theoretical methods for investigating the properties of QGP
encounter many difficulties. The gauge/gravity correspondence provides a stimulating
framework to explore the strong coupling regime of the gauge theories using the dual
string description. Although QCD and N = 4 SYM are very different theories at zero
temperature, they might share some common properties above the critical temperature
[38]. Considering the QGP as a N' = 4 SYM plasma, physical quantities like viscosity,
drag force, jet quenching parameter, interquark potential of heavy meson mouving inside
the plasma and its screening length can be explored. In the following chapter, phenomena
registered by experimental data like suppression of charmonium states and back-to-back
jets compared to the case of proton-proton collision will be analyzed via string dual
description.

4.1. The AdS Black Hole background

According to the AdS/CFT, raising the temperature of the gauge theory corresponds to
introducing a black brane (black hole) in to the center of AdSs [16], and the Hawking
temperature of the black hole related to the horizon of the geometry is identified with
the temperature of the gauge theory living on the boundary. In thermal field theory,
expectation values of physical observables in thermal ensemble can be calculated using
partition function Tr e=## which is written in the form of Euclidean functional integral.
In order to have Euclidean time one needs to carry out a Wick rotation ¢ — 7 and
the trace may be implemented in that way that the partion function is (anti)-periodical
with respect to 7 ~ 7 4+ (3, where the inverse of 3 gives the temperature of the system.
From the other side, the metric dual to A" = 4 SYM theory at non-zero temperature
is the black three-brane metric|T6],
2
ds? = — fdi® + =

1 2 4
7 (dat - dad + dad) + —dr + B9, f - (1 - T—H) L (41)

f Eﬁ réd

The event horizon is located at » = ry, where GG; = 0. The horizon is the three
dimensional flat space (in x1, s, x3 directions), that is the reason why this metric is
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4. Quark-Gluon-Plasma

called black three-brane. The Hawking temperature is determined completely by the
behavior of the metric close to the horizon r — 7. The interesting part in this region
are the terms containing Gy and G,.., so let us concentrate only on the (7, ) part of the
metric. After Taylor expanding f(r) in the neighborhood of ry,

4’/’H
fr)= ﬁ(r —r)+ O ((r— TH)2) (4.2)
the metric takes the form
4’/“H R2
ds”? = ——Z(r — >+ ———— dr?. 4.3
s 72 (r —ry)dt* + PP — r (4.3)

Changing the radial variable from 7 to ¢ by r = rg + ¢?/ry and Wick-rotating t — i7,
the metric has the form of the flat metric in cylindrical coordinates

R? 4r?

ds”? = —(d¢® + =H2dr?). 4.4

(A 4 ) (4.4)
By doing so, the Euclidean time coordinate 7 just gets compactified since 7 plays the
role of the angular coordinate in this parameterization. Identifying the periodicity men-
tioned above and noting that the Hawking temperature gives the value where the conical
singularity (¢ = 0) disappears, the Hawking temperature reads

1 Ty

3 _TH_TFR2 . (4.5)
This so-called Hawking temperature will be identified with the temperature of the field
theory living at the boundary of the spacetime [}

Since we are still working with geometry dual to N/ = 4 SYM, and the dual field
theory contains only fields in the adjoint representation of the gauge group, we have
to add a probe brane into the geometry in order to have particles in the fundamental
representation. A D3-brane will be introduced at the boundary of AdSs and lying along
i on S® where 7 is a unit vector in R®. The D-brane is situated at some large, fixed value
of the radial coordinate. The reason is twofold, first the quark masses proportional to
the string length have to be large since we are interested in the static potential between
them, and as a second reason the contour of the Wilson loop should be in a 4-dimensional
Minkowski spacetime. If the quark and antiquark can have different positions on the
five-sphere, two probe D3-branes sitting at the same radial coordinate r but different
positions in the transverse space (having different 77) need to be introduced, hence in
this picture the quark and antiquark are placed on different D3-branes.

1 To be more precise, there is another geometry competing with this geometry in the Euclidean partion
sum Z = Y exp[—[H]. The temperature is introduced by replacing the conformal boundary geome-
try R* of AdS by S® x S!, where S! represents the periodic imaginary time. There are two different
manifolds with this conformal boundary, the finite temperature version of AdS and the AdS black
hole metric. The dominant one is the one with smaller Euclidean action, which at sufficient high
temperature turns out to be the AdS black hole metric [T6].
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4.1. The AdS Black Hole background
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Figure 4.1.: Schematic illustration of the shape of Wilson loop at different velocities with
respect to the medium. Cgapie corresponds to v = 0, Cpoosteq 10 0 < v < ¢ and
Clight—like t0 v = C.

In heavy ion collisions quark antiquark pairs are produced moving with some velocity
v with respect to the medium. This causes great challenges when the conventional
methods are applied for studying the physics of the moving quarks. Using the string dual
description, this problem can be solved in a very natural way. It proves very convenient
to work in the rest frame of the pair, so the geometry will be Lorentz-boosted. Let the qq
pair with constant length extending along the z; direction move with constant velocity
v in z3 direction, i.e. perpendicular to its separation, we boost the system to the rest
frame (¢, x%) of the ¢¢ pair using the Lorentz transformation

dt = dt' coshn — dafsinh,
drs = —dt’'sinhn + dxfcoshn, (4.6)

where the rapidity is given by tanhn = v or v = 1/4/1 —v? = coshn. Then the ¢q
pair can be seen as at rest in a moving quark-gluon plasma wind and after dropping the
prime, the boosted AdS black hole metric reads

2
1
ds® = —Adt? — 2Bdtdrs + Cda? + %(dﬁ Fdi) RS ()
with ) . 5 o 5 "
T Tl T1T2 r T2
A:ﬁ_rsz ’ T 2R O:ﬁersz ’ (48)
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4. Quark-Gluon-Plasma

and

r{ =1 cosh®n = ryy?, 1y = risinh®n = riy%0? .

Working in this frame, the Wilson loop is static and the QGP is moving with some
velocity v in the negative x3-direction. This Wilson loop can be used to calculate the
quark antiquark potential in a moving quark gluon plasma in the next section. In Fig.
BTl one finds an illustration of the Wilson loops at different velocities [3§].

4.2. Quark-Antiquark System at finite Temperature

The quark antiquark potential in a background atfinite temperatures has been calculated
in [T, 18| using the proposal in [I3, [[4]. It was found that there is a maximal separation
length, above which no stationary solution exists. This phenomenon is interpreted as
string breaking and the critical length is called the screening length. Below the screening
length, the turning point along the radial coordinate is a double-valued function of the
separation distance L. Accordingly, the potential V z(L) is a double-valued function
describing two classical string configurations satisfying the same boundary conditions.

In this section there will be a review of ref.[37, B8] showing how the screening length
and the potential are effected when the quarks are not at rest, but moving though the
QGP with some velocity v. Furthermore we will extend the problem by switching on
the relative orientation # on the five-sphere between quark and antiquark and examine
how the screening length and potential depend on the additional parameter 6. At the
end there is a discussion from the field theoretical point of view showing that one of the
two classical string configurations mentioned above is unstable.

4.2.1. Screening Length and ¢g-Potential at § =0

First we need to set up the shape of the rectangular Wilson loop in the Minkowski space
at the boundary. The short side L of C is chosen to lie along the x; direction and long
side along the time direction ¢. By doing so the problem is restricted to the case where
the plasma wind is blowing perpendicular to the quark antiquark pailﬁ.

The ansatz for the background string can be taken as

t=71, m=06¢€[-L/2,L/2], r=r(5)

2Tt is possible to chose the short side L lying in the (21, x3)-plane by introducing an angle ¢ between
the extention of L and the zs-coordinate. Then the problem will be generalized to any direc-
tion with respect to plasma wind. The problem can be solved numerically and it was found that
the wind direction has very mild influence on the screening length and potential (¢ only causes a
shift, the shape of of the curve Lp,qq(¢) and Vi4(¢) does not change). It was found in ref. [41]
that the screening length has the minimum when ¢ = 7/2 and the maximum when ¢ = 0, while
Loz (7/2)/ Linag(0) ~ 0.9. For the sake of simplicity and clarity, ¢ = 7/2 is assumed thoughout
the thesis
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4.2. Quark-Antiquark System at finite Temperature

and the rest of the string positions remains constant in 7 and 6. The quark and antiquark
are set at 6 = —L/2 and 6 = L/2, respectively. The probe D3-brane at the boundary
of AdS black hole is located at some radial coordinate which will be taken to infinity
in order to make the quarks infinitely massive. Both, the quark and antiquark are
situated on this brane, so they are sitting at the same position in the internal space S°.
Introducing following dimensionless variables

y=r/ry, {=Lry/R*= LTy, (4.9)
and rescaling o = 61y /R?, the boundary conditions become
14

y (i§) =AN— . (4.10)

Applying the Nambu-Goto action for the string world-sheet on the background (ET)

1 L/2 r2  (0sr)?

S=— dodry[A | —= z 4.11
2ma J_p 7 7—\/ <R2 i S ) 7 (411)

transforming all the dimensionful parameters above into dimensionless variables defined
in (@Y) and after intergrating over 7, one gets

T l/2
S = — doy | (y* — cosh®n)(1 +

2o —2/2

y/2

2/2 2
= T TH\/X/ da\/(y4 — cosh?n)(1 + y4y 1) ) (4.12)

o _
Here, T denotes the proper time, which should be assumed to be large, A = R*/a/? the
't Hooft coupling, Ty the Hawking temperature and the prime in 3 the differentiation
with respect to . At this place, it is interesting to note that the action can be real
or imaginary depending on the sign of (y* — cosh?7) inside the square root. Actually,
the reality or imaginarity of the action for a given velocity will depends on where the
probe brane is placed at some the radial coordinate A, where the boundary conditions
are set. The action above has real value if v/A > coshn and the string will start from
the boundary at A going down to some radial coordinate yo > +/coshn, make a turn
there and come back to the boundary. From the Lagrangian above, a conserved quantity

along o can be constructed, namely

4 h2
L— y/% = \/ —— =\/yt —cosh?n | (4.13)
Y (y

— cosh? n)(1+ y’_Ql)

y4

where yo gives the turning point of the string world-sheet along the radial coordinate i}
One can rewrite the above equation as

340 plays the role of Uy, but is dimensionless. Note our earlier convention, in a metric with radial
coordinate denoted by U, R is dimensionless and is defined by R* = R"* = 47g,N, while in metric
with 7 as radial coordinate, R* = 47rg,Na'? is dimensionful.
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4. Quark-Gluon-Plasma
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Figure 4.2.: Separation ¢ length as a function of the turning point yo forn = {0,.5,1,2}
(v = coshn) from the top to bottom, respectively.

dy

/ 1 4
5~ Y " \/ (y' = Dy" = v

), (4.14)

where cosh 1 has been replaced by v = 1/4/1 — v2. From the boundary conditions (EI0),
using y(0) = yo and £ = f(f do, we have

A T .2
(=2 Vi (4.15)

dy .
o V- D =)

Substituting y by yo/w and taking the limit where A goes to infinity, the following
expression can be found for the ¢g separation length

2\/313—772 ! w?dw
/ = 4.16
Yo /0 V(1 —w?) (y§ — w?) (416

2ﬁr(7/4)¢ﬂ2F1(1 35 1) | (4.17)

3 I(5/4) 4 27474 yd

where o] (a, b, ¢; z) is the standard hypergeometric function. This equation states that
for any given velocity and separation length, yy determined by (EIT)) would describe the
characteristic value of the stationary U-shape string which minimizes the string world-
sheet. One can then ask the question whether it is always possible to find a stationary
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4.2. Quark-Antiquark System at finite Temperature

string shape with some g, satisfying the minimizing problem for given values of L and
v. Let us take a look at Fig. showing the above relation between ¢ and y, for various
velocities.

The screening length The plot shows that a solution for ¥, exists only for values of £
up to a critical £,,,,.. From now on this maximal value ¢,,,,, will be called screening length,
since above this value no stationary solution for the minimal world-sheet bounded by the
Wilson loop C can be found. Later we will see this behavior again when the potential
is evaluated. It is interesting to note that for every distance ¢ < /¢,,,, there are two
solutions for g, satisfying the same boundary conditions. This signifies the existence of
two classical string configurations, the one with larger value of y, is called the “short”
string and the other one with smaller value of y, the “long” string.

In QGP the screening length gives the maximal interquark distance above which heavy
mesons (like charmonium bound states) dissociate. This quantity depends strongly on
the relative velocity between the quark antiquark pair and the medium. Unfortunately,
an analytical expression for £,,,, can not be found from (I7). However, for the high
velocity limit, which is assumed for particles produced inside the QGP at RHIC, ~ is
considered to be large. Due to the reality condition for ¢, yo > /7 is large, thus we
can take the first derivative of ¢ with respect to yo, and after neglecting all the terms
proportional to 1/9%, an approximated expression for £,,,, depending on the velocity
can be written as

1 135 1
Umaz (7) = € (3Y4/7) :0'7433ﬁ o Fy (— — = —) : (4.18)

Numerical analysis of equation ([EEI1) shows that £,,,,, = 0.869 for v = 1 which does not
differ much from the value of 0.837 obtained by interpolating to v = 1 from the above
approximation for large ~, and this motivates writing the screening length as [37]

g9(v) 2\1/4
Loz = 1-— . 4.19
7TTH( v ) ( )

The introduced function of velocity g(v) can be plotted for velocity between [0,1] and
it was found in [37] that g(v) has a very mild influencel] on L,,,, and the dominant
v-dependencel] of L,,q, is the factor (1 — v?)1/4. At this place a first statement about
the velocity-dependence of physical observables can be made, namely that the screening
length decreases with increasing velocity which as an approximation can be expressed
by

Linaz(0) = Lypae(0)(1 — v?)V* (4.20)

4Numerical analysis shows g(0) = 0.869 and g(1) = 0.7433.

®Another analysis of screening length [39] shows that the Lg behavior for some region of v not close
to c is actually closer to (1 —v?)/3 than (1 —v?)'/4. Throughout this thesis we work with the large
~-limit.
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4. Quark-Gluon-Plasma

It was argued in ref.[44] that if the discovered velocity-scaling of L., holds for QCD,
it will have qualitative consequences for quarkonium suppression. For example, lattice
calculations of quark antiquark potential indicate that J/W state dissociates at tempera-
ture around 2.17, where as excited states of cc like x. and ¥’ cannot survive temperatures
above 1.2T, [44]. If collisions at RHIC reach temperature between 1.27,. and 2.17,, one
would expect the suppression of the excited charmonium states, but not the suppres-
sion of the J/W. However, taking the equation ([E20), the temperatureﬁ Taiss ~ 1/ Linas
needed to dissociate J/¥ decreases as (1 — v?)'/* and that might be one of the reasons
for the observed suppression of the production of charmonium states.

The Potential For evaluating the minimal surface traced out by the stationary string,

relations ({LI3)) and (EI4) will be substituted into (EI2),

A 4 _ A2
S=T TH\/X/ A — . (4.21)
w V=D -y
This action diverges when the limit A — oo is taken. In order to have a finite result,
a subtraction for removing the “self-energies” of the quark and antiquark propagating
independently along the long sides of the Wilson loop has to be carried out. The quark
masses are proportional to the minimal surface of two straight string stretching along
the radial coordinate from the boundary to the horizon of this background. Since we
are working in the rest frame of the quark antiquark pair in a flowing medium (boosted
background), we need to check whether this straight string configuration still describes
the stationary solution.

In the following a stationary solution for a single quark in a moving plasma, let us say
in x3-direction, will be considered. The string world-sheet of the single quark stretches
in a three dimensional subspace spanned by t-, r- and x3-coordinate. This world-sheet
can be parameterized by two variables 7 and o as

T =1, o=r, xg = x3(0) . (4.22)

The quark mass m, = S/T can be obtained after extremizing the Nambu-Goto action
applied on the boosted AdS black hole metric (E1)

T

2o

rgA
S, = / ) dr\/ ? 4 (AC + 4B2)(9,3)? (4.23)

where A denotes the radial position of the probe brane in the usual y = é coordinate.

Introducing the dimensionless variable z = 432, the action S, becomes

T Tuvx A 4 2
Sq:%f/l dy\/y4_71 + (y* —1)22 . (4.24)

Y

61t was found from lattice QCD that the critical temperature needed to dissociate a quark antiquark
pair is proportional to 1/ L4, [38].
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4.2. Quark-Antiquark System at finite Temperature

This action does not depend explicitly on z, thus the Euler-Lagrange equations of motion
implies a conserved quantity

%:[¢ﬁ1f+@hﬂwﬂ Syt 1), (1.25)

which leads to

= . 4.26
Cq(y4_1)2y4_1_cg ( )

We are still interested in the case where A > /7 which, as discussed at the beginning of
the last subsection, is necessary in order to avoid imaginary action. The string related
to the single quark stretches between the horizon at y = 1 and the boundary at y = A.
The only possible solution for the above equation is called drag solution [46|[47 which
arises from the observation that the denominator and the numerator of the last factor
have to change sign at the same radial coordinate. Otherwise 2> would be negative
when the string passes some critical point on the way from the boundary at /7 to the
horizon at y = 1. This condition restricts the value of ¢, to be

a=~-1. (4.27)

Integrating z’ above for cg = ~2 — 1 gives the drag solution describing the shape of the
open string stretching from the boundary down to the horizon

2(y) =2 -1 (i log(y — 1) — ilog(y +1)— %n(y)) + const . (4.28)

After inserting the relation 2’(¢,) into [@24)), the quark mass reads

T A
my = HQ\E/1 dy . (4.29)

Subtracting quark masses 2m, from the action (EZII), substituting y by w = %0 and
sending A to infinity, one obtains the interquark potential from the regularized action

V.- 1 4 4.2
Ban) /y—(i e —1 ) dw— (30— 1) (4.30)
VAT 0w \ydy/(1—w?) (yg — )

Varer [5P it +100R (5,45 5) - %A (3.5.3 %)
r(1/4)° 58

Both, the separation length ¢ from (EI7) and the potential are functions of velocity v
and the turning point yo. There is no analytical expression giving the explicit relation
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4. Quark-Gluon-Plasma
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Figure 4.3.: Plot of the potential, in units of VATy, as a function of the separation ¢,
in units of %, form = {0,.5,1,2} (v = coshn) from the top to bottom,
respectively.

between ¢ and V4, but it is possible to show the dependence of V,; on ¢ graphically
via parametric plotting using yy as curve parameter for certain values of y. A plot of
Vyq(L) for various v is given in Figl3 From the plot we see again the presence of
a maximal separation distance above which only trivial solution for two disconnected
strings exist. Below the critical distance there are two branches of the potential. As seen
in Figl.2 and keeping in mind the meaning of y, as the furthermost radial point from the
boundary, one expects that the configuration with larger value of yo has shorter length
and so energetically more favorable configuration. Then the short string configuration
with larger value of gy, corresponds to the lower branch of the potential. That can also
be conceived by the fact that the world-sheet traced out by the short string is smaller
compared to the one traced out by the longer string. Later we will show in the discussion
that due to concavity conditions the longer string with smaller value of 1, represents an
unstable string configuration.

Another characteristic of the quarks potential evaluated via N/ = 4 dual background
at finite temperature can be seen from the above figure. For small values of v and ¢ close
t0 ¥ q. the potential can cross zero which means that this configuration has higher total
energy than the “straight’ﬂ parallel string pair. This configuration is sometimes called
metastable and will be suppressed by higher velocities as seen from the above plot.

"Due to the drag force the shape of the single string (2 is not straight.
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4.2. Quark-Antiquark System at finite Temperature

4.2.2. Screening Length and ¢g-Potential at 0 # 0

The content of this subsection is closely related to [60]. Allowing the background string
to stretch additionally in the internal space S° and basically taking the same ansatz for
the remaining directions and using all the notations mentioned in subsection, a string
world-sheet obeying the following boundary conditions will be considered:

y <:|:§) —A—oo, ¥ <:|:§) = :l:g : (4.31)

where 9 is the o-dependent angle on the great circle connecting the S° position of ¢
and ¢. Then the Nambu-Goto action with the induced metric for a string world-sheet,
approaching on the boundary of AdS black hole (r — oo) the just discussed rectangle,
turns out to be (as usual using translation invariance in time for large T')

L
2

sC) = 27:@, /_ __ d&dr\/A <%+%(0&7’)2+R2 (a&ﬁf) (4.32)

é y/2 19/2
= \/XTTH/ doy [ (y* —~?) (1 + - + —2) , (4.33)
. _

Y

with the prime denoting the differentiation with respect to o. Since the Lagrangian does
not depend explicitly on ¢ and is independent of 1), there are two conserved quantities
€ and j

. yt — 2 _ Y5 (Yo — %)
= y/Q 19_/2 - 2+/19,2 9
1 + yi—1 + 2 yO 0
d A
j =€ = e (4.34)
Yy Yo

The rightmost sides express these conserved quantities in terms of geometric character-
istics of the string world-sheet: 3 the minimal y value realized for symmetry reasons at
o0 = 0 where y' = 0, and ¥} = 9'(0) giving the slope of the angle at ¢ = 0. Replacing
¥ = 9yy*/y2 in equation ([E34), we find

. (4.35)

I LUt U u3) (W2ys + v*ud0s + ys + 120
Yo (Yo —7?)

Screening length for § £ 0 Using the above equation, the boundary conditions (EL3T])
and after changing the coordinate y to w as w = yy/y, relations between ¢, 6 and yo, 9,

51



4. Quark-Gluon-Plasma

can be found

! dw
0 = 2vi—h ,
2V |
2k1/4

! w? dw
L= 'h_k/o VI k21— )L+ ha?) (4.36)

where we switched from yo, 0 parameterizing the conserved quantities in ([E34) to h
and k defined by

N

I R

TR
Real € and j in ([@34) require y5 > 2, i.e. k € (0,1], which together with reality for 6
and ¢ in (E36) constrains the parameters h and & to

ko= (4.37)

S

0<k<h<l1. (4.38)

Unfortunately we can not find some exact analytical expressions for these two integrals,
but in the large velocity limit expanding the first factor under the square root in the
integrals for large «, one gets a representation in terms of elliptic integrals

6=2v1_h {K(—h) + %272 <2(h “1D)E(—h) + (2 - h)K(—h)) + 0(7—4)} , (4.39)
(= 26D =k B(=h) = K(=h) i (8 + h(8h — T))E(—h)  (4.40
YD { . t Some < +h(8h —=T))E(=h)  (4.40)

+ (A3 —4h) = 9K (-h)) +O( )},

where K and E denote the standard complete elliptic integrals of the first and second
kind. In leading large v approximation the relative S°-angle 6 depends on h only and, in
addition, the # < h relation is one to one with #(0) = 7w and #(1) = 0. This simplifies the
further analysis considerably, and we will restrict ourselves to this level of approximation
throughout this section.

For fixed 6, i.e. fixed h, the rescaled dimensionless ¢-¢ separation ¢ depends on the
remaining conserved quantity & via the trivial k*/*v/h — k factor taking into account the
constraint (E38). This defines a maximal value ¢,,,,, = ¢(k = h/3) which plays the role
of a screening length, since for larger ¢-q separation one obviously finds no solution of
the stationarity condition for the Nambu-Goto action (E33)

lnae = Z(0) '7_1/2 + 0(7_5/2) )

Z(0) = ?),;f E(—(};L)(e_))[f/i—h)- (4.41)
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Figure 4.4.: (a) The quark antiquark separation {, in units of (7Ty)™', as a function of

k= Z—i with 6 = {O, o 5g} from the top to bottom ,respectively. The dark
0
lines refer to the "short strings" while the gray lines to the "long strings”.

(b) The prefactor Z as a function of the angle 6.

The large velocity scaling £, o< ¥~*/2 holds for all # € [0,7). The prefactor Z(6)
monotonously decreases from Z(0) = 0.7433, known already from [37], to Z () = 0, see
also Fig.4.4. For ¢ < {,,,, there are two solutions to the stationarity condition, one for
k < h/3, the “short string” and one for k > h/3, the “long string”.

We have seen that the screening length depends strongly on the relative S° orientation
of quark and antiquark. This maximal separation even shrinks to zero if the quarks were
situated at antipodal points on the five-sphere. To get out of this analysis something
which, assuming some kind of universality, should be compared to QCD, we apply the
in chapter 2 presented method to average Z(#) over all § with a weight w(6) given by
the volume per 6 on ()5 divided by the total {25 volume. Then the average

Z(0) = /0 " 2(0) w(9) do (4.42)

using (E239) up to the leading order can be expressed as an integral over 4 and evaluated
numerically. The result is Z = 0.5797 and gives a suppression factor Z/Z(0) = 0.7797
relative to ref. [37].

The ¢q potential for 6 20 The next step is to examine the dependence of ¢ potential

(EE33) on ¢ and 6. Using relations ({E34) and ([E33), one gets
T W —~?) d
Vo= H\F (y"' =~ dx—THf/ W =dy (g
VYt =1yt =2 — & — %)
The integral is divergent at y — oco. We adopt the usual procedure to subtract the
minimal action for a string world-sheets described by two independently straight string
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4. Quark-Gluon-Plasma

hanging down from the boundary to the horizon. In this case we allow quark and
antiquark to have different positions on the five-sphere, so one might wonder whether
the quark masses depend on this additional degree of freedom. Intuitively, one might
expect an increasing quark mass due to the fact that the single string must stretch also
on the S°, and by doing so it will gain additional length.

The analysis is similar to the one carried out explicitly for the constant angle case.
The only difference is that we have to consider the string moving in ¥ direction along
the way from the boundary to the horizon. Taking the ansatz

T =1, o=r, x3 = x3(0), v =19(0), (4.44)
the action for the single string reads
T [t A
Sy = = /TH dr 7 + (AC + 4B?)(0,x3)%* + AR?¥7? |
TTuvh [t [yt =12 yt =
= d 4— 1)z "2 4.4
= y\/y4_1+<y e (L) ()

where the prime in the last line denotes differentiation with respect to y. The above
action contains an additional term for the S° part and does not depend on z and 4.
Solving the equation of motions and identifying two conserved quantities c, and cy
along z and 9, respectively, one finds

2 = 463 ( L, 19—/2) ik (4.46)
yt=1\y* =1 2 )yt —1-c
cyt =7+ —1)%"
e (e O e e T
The expressions on the right hand sides of the two equations above have to be non-
negative, and since we are interested in a string configuration stretching from the A > /v

down to the horizon at y = 1, the only solution satisfying the stationary conditions of
such a string world-sheet turns out to be

cg=0, Z=+"-1, (4.48)

19/2

(4.47)

which is exactly the same solution obtained for the vanishing relative angle casdl. Thus
the quark mass does not depend on its various orientations on the five-sphere. Subtract-
ing the quark and antiquark mass from the minimal Nambu-Goto action, expressing in
addition € and v via ([E34),[@31D) by h and k and transforming the integration variable
by y = yo/w we get

1

Vaq v2 ! 1 — kw? dw
e =1 —1+/ ( — -5 b (a9)
H i 0 (1= (1 — w) (1 + hu?)

,YQ

8Later, this solution will be used for studying the possible S°-dependence of the drag force.
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4.2. Quark-Antiquark System at finite Temperature

Figure 4.5.: (a)A numerical plot of potential V', in units of VATy, as a function of the
separation £, in units of ﬁ, and the angle 6 for v = 1 using [E30) and
EZ9). The upper “plane” corresponds to the long strings while the lower one
to the short ones. (b)The leading order of potential V' for the short string
branch, in units of VAT, as a function of the separation £, in units of ﬁ,
and the angle 6 for v = 1.

As above in the integrals for ¢ and 6, the expansion for large v allows a representation
in terms of elliptic integrals

VialL,6,0) = TuAl? (1+W(K<—h>—fz<—h>) FOG) L (ws0)

A graphical representation of the potential as a function of the ¢-g separation ¢ for
various values of the velocity v and the S® angle 6 can be generated by fixing h(#) and
using (E40) and ([E30) for parametric plots with k as parameter.

4.2.3. Summary and Discussions

We have evaluated the screening length and the potential of the quark antiquark pair
produced with high transverse momentum in a QGP. As an approximation to QCD at
high temperature, a boosted background dual to A/ = 4 SYM has been used. Turning on
the relative S° angle, we still found two possible string configurations satisfying the same
stationary boundary conditions. The large velocity scaling law (EI9) for the screening
length holds for any angle 8, but the screening length strongly depends on an additional
prefactor which is a function of #. Averaging over all possible relative S° orientations
gives a suppression factor of 0.7797 compared to the case of the quark and antiquark
having the same position on the five-sphere.

In the following we will discuss the instability of the long string configuration from
the field theoretical point of view and will give an argument why the averaging method
makes sense for all # ranging between zero and 7 at large velocity limit.
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4. Quark-Gluon-Plasma

(a) (b)

Figure 4.6.: (a) Potential V(¢) for v =1 and 6 = %”, RS O} from the top to bottom,
respectively. The dark lines refer to the "short strings” while the gray lines

to the "long strings". (b) Basically the same representation in(a) but for
v = cosh(2).

In ref.[50] a stability analysis via small fluctuations in various directions to the quark
antiquark axis have been discussed with the result that the long string configurations are
unstable and hence physically irrelevant. Using the generalization of concavity conditions
for the whole (L, 0)-plane given in [28|, we will examine the stability of the solution

[EXD0). Using (E40), (ERT) one gets

(5‘/@) _ wWh—k
o/, Wk

02‘/@ B h273/2
< o )9 ~ 2(h - 3k)KA(E (—h) — E(—h)) (4.52)

(4.51)

With @38) and K(—h)—E(—h) <0, Vh € (0, 1] we see that, while monotony is always
realized, concavity holds on the short string branch (k < h/3) only. This perfectly fits
with the stability analysis on the string side, where it has been shown that the short
(long) string branch is stable (unstable) with respect to small fluctuations. We did not
analytically check the extended concavity in the (L, #)-plane, but the graph in Fig.4.5(b)
suggests its validity.

As seen from figure above, for large enough @, part of the short string branch reaches
positive values for the potential. Due to our renormalization prescription this implies
a metastable situation [b0]. In spite of the stability with respect to small fluctuations,
the configuration of two separated world-sheets located at fixed ¢ and stretching along
y from the horizon to infinity would be favored.

At first sight this metastability in the neighborhood of the screening length could
obstruct our averaging proposal for the screening length advocated above. However,
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4.3. Comment on Drag Force
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Figure 4.7.: Stability analysis represented on the v-0-plane, the short string configuration
is stable (metastable) in the regions above (below) the curve.

another look at Fig.4.6(b) indicates a weakening of this effect for increasing v such that
the critical value for € is driven to 7 for v — co. That can be seen at Fig.4.7. where
the curve describes the zero value of V({,,,,) in the (v,6)-plane. Since after all our
discussion of the screening length concerns its leading behavior for large v, no objection
to an averaging over the whole S° remains.

4.3. Comment on Drag Force

In this section we make a comment about the S°-dependence of the drag force [46|[47]
acting on a moving heavy quark in a thermal medium described by the AdS black hole
metric. In ref.[A7] it was argued that due to the infinite mass of the quark, after some
initial fluctuations its velocity should be constantf] relative to the plasma. The below
derivation of drag force follows closely the description in [A7]. Working in the restframe
of the plasma, the motion of the string along the x3 coordinate can be described by

xg(r,t) = vt + &(r), (4.53)

where £(r) describes the trajectory of the dual string along the radial coordinate. Recall
the metric for AdS-Black hole

ds® = — fdt? + ~
R2

1 2 4
(dx? + das + da3) + ?dTQ +R¥O:Z, f= 7’2 ( — Z—IZ) , (4.54)

=y

9This ansatz can also be understood as assuming the constant velocity of the quark, then it is of
interest to find out how much force is needed to maintain the constant motion.
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4. Quark-Gluon-Plasma

and taking the usual parameterization ¢ = 7, » = ¢ while all other coordinates are
independent of 7 and o, the Nambu-Goto action (226)) reads

S ! /dd 14 e ™ (4.55)
ora | R T RS
2 R*
= drdr —5’2 - — : H=—, n=fVH. (4.56)
2ol r4
A conserved quantity m, = 8—5, can be obtained from the above equation since the
Lagrangian does not depend on &, and from this relation we get
s H?* n—?
2
= 4.
5 ﬂ-f n2n 71.2]_1 ( 57)

£(r) describes the string shape dangling from the boundary at infinity to the horizon
at ryz, so £ has to be non-negative in this intervalld. Since n takes the values in [0,1),
(n — v?) will switch its sign at some radial position for v > 0. To avoid a negative left
hand side of the above equation, n — W?H has to change its sign at the same radial
position as its numerator. Hence, this condition leads to

2 4
2 v e
= — 4.58
T T T2 R (4.58)
Plugging 7, into (LX), we get
¢ - r? R (4.59)
oty '

which after integrating & gives the same string shape along the radial coordinate com-
pared to the resuldt] of (2]). This solution describes a bending string trailing out
behind the quark, arcing downwards into the horizon. This string exerts a drag force on
the external quark which will be determined next.

The equations of motion for the Nambu-Goto action may be expressed as

opP.  IP; P:)

P, and P; are the current densities in the 7 and o directions of the p, component of
the spacetime momentum. The drag force is then described by the time derivative of

d
the momentum Zﬁ where

s (T /737 7,0) (4.61)

OFor zero velocity ¢'(r) vanishes giving the usual straight string hanging from the boundary down to
the horizon.

"'The same result is obtained after boosting back to the plasma restframe. In @28) z = ™32 and
y=r/rH.
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4.3. Comment on Drag Force

The momentum p,, above is computed by integrating the flux P,, over a constant 7-path
on the string world-sheet and since the P7_ is parallel to any constant 7-path it does
not contribute to the flux. From another point of view p,, can be seen as the conserved
charge obtain by integrating the zeroth component P7_ of the current over space.
Using (E60) the drag force is

dpx3 _ 87);:—3 _ 87)53 — o
i Bl R (462)

We have calculated P, = 25 = g—gf = m¢ before in (ELRY), using this result the final
3

expression for the drag force reads

dpzs 1 vy ™AXTE v

dt  2ma/ VI —_ o2 R? 2 V1—02

(4.63)

There is a world-sheet momentum P7 flowing into the horizon. In order to maintain
the constant motion, a force acting on the quark has to be added which depends on the
velocity of the quark and the temperature of the medium]

We have seen that in the absence of an additional force, the quark will slow down
while transferring its momentum into the medium. However, this solution might still be
in agreement with the ansatz ([EL53) if there were a force acting on the string endpoint
and feeding momentum into the string. In ref.|46] it was argued that a constant electric
field on the probe brane would provide precisely such a force so that the quark will
approach an equilibrium value v at which the rate of momentum loss to the plasma is
balanced by the driving force exerted by the electric field. This was proposed to be
anothel™ back-to-back jet solution with external forcing in which quark and antiquark
move apart at constant velocity after dissociation.

At this point we want to make a comment about the possible dependence of the drag
force on the S° position of the single quark. This situation was analyzed in the last
section in order to find out whether the quark mass depends on its internal orientation,
see (A6 and (D). It was found that there exists no minimal surface traced out by
a single string which changes its S° position along the radial coordinate. For any S°
orientation of the string endpoint the shape of the string is described by (E28) and
¥'(0) = 0. Hence, Pg, keeps the same form for all quark’s internal orientations and we
conclude that the drag force does not depend on the S° position of the quark.

12For a string with both endpoints on the probe brane there is no drag force [57] acting on its endpoints,
which can be interpreted as that a color singlet state does not interact with the thermal medium.

13The other “solution” is the trivial one where the dissociation process occurs near the boundary trans-
verse to the plasma where the quarks can escape the medium without suffering significant loss of
energy.
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4. Quark-Gluon-Plasma

4.4. Jet Quenching Parameter

When a quark antiquark pair is produced inside a particle collider, the quarks will
typically end up hadronizing into back-to-back jets. If the pair is produced in a QGP
and gets dissociated close to the boundary of the plasma ball, the situation could be
different. One of the quarks might be able to escape the plasma without significant loss
of energy and form the jet as usual, while the other one has to travel through the plasma
and will lose energy to the medium. This event will be observed as a single jet and the
phenomenon is known as jet quenching telling us something about the interaction of the
quarks with the QGP. The plasma is a strongly interacting medium and the string/gauge
duality might be appropriate to compute physical quantities describing this process of
energy loss. The result for the drag force discussed in the last section can be used to
compute the jet quenching parameter [46] which describes the energy loss of a quark
moving in the QGP, since the quantity

sy _1IE _dE
dt v dt  dxs

can be interpreted as energy loss per distance traveled. The analysis in [46] gives the
result

(4.64)

d

£<(5¢)2> =2rVA T} (4.65)
which is the rate of change of the mean square transverse momentum of a quark and is
sometimes called the jet quenching parameter.

In this section, however, we are going to consider another method arising from inves-
tigating radiative loss of a light-like projectile in a strongly interacting thermal medium
[44], since it is believed that the dominant energy loss is due to gluons radiation.

4.4.1. Field Theoretical Background

The authors of ref.[44] proposed a non-perturbative definition of jet quenching parameter
G which can be obtained by computing the thermal expectation value of a Wilson loop
in the adjoint representation whose contour has the form of a rectangular loop C with
large parallel light-like edge L~ separated by a small extension L,

(WAQC)) ~ expl—~d2_17] . (4.66)

47./2

There exists a relationl] between the expectation value of the Wilson loop in the adjoint
and fundamental representation, which in the large N is approximated as

(W) ~ (WF(C)* . (4.67)

141~ is in light cone coordinates.
5For SU(N), there is an identity for Wilson lines TrW = trW - trW' — 1, where Tr and tr denote
traces in the adjoint and fundamental representations, respectively.
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4.4. Jet Quenching Parameter

According to the AdS/CFT correspondence, the calculation of the expectation value
of the Wilson loop in the fundamental representation is equivalent to the probem of
finding minimal surface presented before. Until now, the expectation of the Wilson
loop is evaluated as the exponential exp(iS) of the Nambu-Goto action for a string with
boundary conditions corresponding to the Wilson loop C on the probe brane. To have the
correct behavior compared to (E66), the exponential suppression requires an imaginary
action. In [38|[44] this requiring is fulfilled by taking the light-like limit of the spacelike
strings. Memorizing the discussion at the beginning of this chapter, the spacelike string
configuration is realized if we place the probe brane at some radial coordinate smaller
than /7 yielding imaginary action. We will come back to more details in the next
subsection. Using this method and assuming the physics of QGP can be described by
N =4 SYM, a theoretical prediction for ¢ can be compared to the results at RHIC.

The complete argumentation why the jet quenching parameter ¢ obtained by (G0
should give information about the medium-dependent energy loss of a single quark mov-
ing in a strongly coupled medium is beyond the scope of this diploma thesis, more
details about this proposal can be found at [38][6T|[52][53] and references therein. We
follow the description in [38] will try to give a sketch how the Wilson loop in the adjoint
representation arises in the calculation of interest.

We start from the eikonal formalism in which S-matrix amplitudes are determined in
terms of eikonal Wilson lines in the target field. This formalism comes from the idea
that at high energy, the propagation time through the target is short (the target gets
Lorentz-contracted), then the partons propagate independently of each other and do
not change their transverse potisions during the propagation. The gluons can only be
produced before or after interacting with the target. An incoming hadronic projectile
can be described as a superposition of the partonic state

e = (0)) + / dx f(x) T,|3(0); b(x)) (4.68)

In the above equation |«(0)) describes a quark with color a at transverse position 0,
the ket |3(0); b(x)) describes the two-parton state, consisting of a quark with color [ at
transverse position 0 and a gluon of color b at transverse position x. The Weizsicker-
Williams field f(x) oc g5 with g describing the strong coupling constant is built up by
the coherent state of quasi-real gluons. Subscripts in greek letters denote the fundamen-
tal while latin ones the adjoint indices.

In the eikonal approximation, the process of scattering of the projectile with the target
at high energy is described by adding an eikonal phase to each projectile component
denoting its color rotation, then the outgoing wave can be written as

W = WEO) )+ [ WO Wik ielx) . (169

16Lorenz, spin indices and integration over the distribution of radiated gluon are suppressed in the
following expression.
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4. Quark-Gluon-Plasma

where W"(x) = Pexp{i [ dz"T"Af(x,27)} is a straight light-like Wilson line in light-
cone coordinates where the lightcone gauge A~ = 0 was used, z gives the moving direc-
tion of the projectile, A is the gauge field in the targe and T" are the generators of
the gauge group in a r-representation corresponding to a given parton.

The interaction in the target field changes the relative phases between the components
of the wave function and thus decoheres the initial state. As a result, the outgoing state
differs from the initial one and one can interpreted the finale state as if it contains
emitted gluons. The next step is to calculate the number spectrum of the produced
gluons. The difference between the incoming and outgoing state is the subspace of W
which is orthogonal to ¥, and can be expressed by

e ) (4.70)

out

|5\Ila> = [1 - Z |\Ij;yn><\lj;yn

Y

- / dx F(x) [T0 ,WE (0) Wik(x) — TS WEL(0)] |yse(x)) . (471)

The number spectrum of the produced gluons with momentum k is obtained by calculat-
ing the expectation value of the number operator in the state |0V, ) averaged over the
incoming color index «

Noroa (k) = %Z <5\pa\a;(k) aq(k)| 5\11a> . (4.72)

a,d

Noting the annihilation and creation operator acting on [dW®) as

ca0%) = [ dx f0) [T2WE O Wikx) = TEWE(0] 1) . (0T
0viay) = [ay il i) (W) - @wrie),,],
and using the relations
Tr [T'T¢] = %bc . Wa(x)=Tr [T°"WF(x) T*WF(x)] , (4.74)
then number spectrum of the produced gluons reads
Npwa(k) = [ dxdy <0960 ()57 (W@ WAO]) (@)

—(Tr (WA (x) WA(0)]) — (Tr [WT(y) WA(0)]) + (Tr [W*T(y) W (x)])

17The gauge fields in the target can be seen as static classical sources and the field distribution is taken
care by a method called target averaging [53)
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4.4. Jet Quenching Parameter

The x and y denote the transverse positions of the gluon in the amplitude and complex
conjugate amplitude. The only information about the target which enters in the above is
that encoded in the transverse size dependence of the expectation value of two light-like
adjoint Wilson lines.

We have seen that due to the color algebraic identities (EZZ4) all the eikonal phases in
the fundamental representation have been replaced by adjoint ones. This allows us to
write the gluon spectrum in terms of expectation values of products of adjoint Wilson
lines. Determining the expectation values of the above expressions means averaging
over the gluon field of the target. There are many procedures which describing how the
target averaging is taken, depending on the what type of scattering process we want to
consider [53]. Using the dipole approzimation which is valid for small transverse distance
L = |x—y]|, and is taken in the limit where the projectile undergoes many scatterings. In
this approximation the vector potentials of different scattering centers are uncorrelated
in color space and the result for averaging is [38][53]

1
N2 -1

(T [ 4105) WAG0)]) — (WA (Coc)) = exp | =i 12| + 0 (55

(4.76)
where the light-cone distance L~ /v/2 = Az is identified with the in-medium path length
and ¢ characterizes the average transverse momentum squared transferred from the
target to the projectile per unit path length. By the “arrow” it is meant that in order
to obtain a gauge-invariant formulation, the two long light-like Wilson lines will be
connected by two short transverse segments of length L yielding the closed rectangular

loop Ciight—like, that is how the adjoint light-like Wilson loop arises in the CalculationE.

4.4.2. The Calculation in the dual Picture

This computation of Wilson loop at small ¢-limit follows closely the calculation in [38].
Until now, in order to calculate the screening length and gg-potential in large velocity
limit, the probe brane radial position A > /v is taken to infinity first and the limit
v — oo afterwards. For calculating the jet quenching parameter the order of taking
large limit of A and = changes. Since we are interested in constructing the light-like
Wilson loop, the v — oo limit with large and fixed A is taken first, so that \/y > A. In
this case the action becomes imaginary which yields a real quantity in the exponent of
et

Assuming the string to extend in the z; = ¢ and the radial direction y, introducing the
boundary conditions y + (¢/2) = A, using the result in ({LT2) and noting the condition

18To describe the energy loss of a quark moving through a QGP, one has to go beyond the eikonal
approximation, since gluons are produced within the target. However, this refined kinematical
description [B8][AT] does not involve additional information about the medium beyond that already
encoded in the jet quenching parameter ¢ that has been introduced above.
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V¥ > A, the action becomes

g — TTH\/X/O£/2CZU\/(?J4—V2)(1+ y” )

yt—1

= 0T TH\/X/O[Z/2 da\/(w — (1 + y” ). (4.77)

yt—1

This action does not depend explicitly on o, thus we have a conserved quantity q

¢ = \/(72 -y <1+ yf/f 1)_1

—y = é\/(y‘1 - =¢ -y (4.78)

From this equation we see, that the string connecting —¢/2 and ¢/2 has two possible
turning points along the radial coordinate, namely at the horizon y = 1 and at the
position where y = (7% — ¢?)/*. Since y runs from the horizon at y = 1 to the boundary
at y = A and the right hand side of the last equation should be real, it is necessary to
demand (72 — ¢?) > A*. By doing so the latter turning point can only be realized at
y = A which indicates the trivial solution y(o) = A = const.

However, this trivial solution does not fulfill the Euler-Lagrange equation derived from
D), so we are left with the only string configuration which starts from A at 0 = —¢/2,
goes all the way down to the horizon at 0 = 0, due to symmetry makes a turn there and
comes back to the boundary A at o = £/2. Note, the string always touches the horizon

¢
for any value of . From the boundary conditions, using % = f02 do and (E1J), we have

A 1
¢ = d , .
S A e LS (479)
S = iTT \/X/Ad -y (4.80)
SR R/ (v ey '

In order to have analytical expressions for the equations above and according to the
discussion at the beginning, the v — oco-limit will be taken first followed by the A — oo-
limit

2q/A 1 (1)

¢ = 2| dy————+ 0| =

v )i y\/y4—1 73
, 2q/A 1 2¢ ~I'(3)

¢ ~ lim = | dy—— =2 . 4.81
Pl B s e G € (4.81)

19That means the necessary condition for the existing of the purely imaginary extremal surface for
certain £ requires the placing of the probe brane not to close to /7, so that 2= A > @3, ).
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4.4. Jet Quenching Parameter

q(7y) was assumed to be small when the above limits was taken. The reason is that we
are interested in evaluating the expectation value of the Wilson loop at small /-limit,
and that indicates small ¢g. This comes from considering the conserved quantity ¢ in
[E1R) along 0. Let us determine at ¢ at o = ¢/2 indicating y = A

g = \/(72 — A4 (1 + Aj“j 1)_1 , (4.82)

where y) denotes the slope of y(o) at o = ¢/2. For £ — 0 at given values of v and A, y),
goes to infinity since the string goes straight down to the horizon, thus making ¢ small.
In the following the action will be Taylor-expanded in small g-limit, i.e. small ¢

S() =89 + ¢S + 0(q*), (4.83)

SO = zTTHf/ dyw/ (4.84)

50 = ZTTH\F / VD)

ZTTH\Fq r() fﬂ3/2r()
\/7
2y rE  sr@)
where in the last equation ([I81l) and ¢ = 7 L Ty have been used and the integral was
carried out in leading order of 7. The equation (L8] describes the infinite part of the

action and should cancel out with the minimal surfaces traced out by two straight strings
dangling from the boundary at y = A to the horizon.

Recall the results in ({24)) and (Z20)
T Tyvx (A Yt — A2
Sy = —— | dyy|F=F—— 4—1)z2
4 5 /1 y\/y4_1+(y )27,
4 _ A2 -
o - [\/ e 1>z'2] 1),

S2 = 2 1 94—72
q(y4—1)2y4—1—cg :

We are looking for solutions with imaginary action for ,/y > A, so inserting 2’ into the
action and demanding the expression under the square root to be negative for all values
of y € [1, A], we need to set condition for ¢, so that

yielding

2Ty L2 (4.85)

4 2
Yy =7
5 <0. (4.86)

yt—1-c2
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Since /7 > A the numerator is always negative, then the sufficient condition for having
imaginary action is y*—1—c > 0 which is trivial due to the definition of purely imaginary
¢, above. Z Note, 2/ is well-defined (non-negative) for any value of imaginary value of
¢q- The action for a single space-like string is

(4.87)

Motivating from the physical expectation that

lim [S(£) — 25,] = SO 25, =0 (4.88)
since, as argued in [38], the expression inside the square bracket of (ELTH) giving the
probability amplitude for the scattering process should vanish at this limit. On the
mathematical side, the solution in this case would look like a string going straight from
the boundary touching the horizon and coming back at almost the same o-position,
hence subtracting two times the quark mass should yield zero. From (84 and (27
the only reasonable solution for the subtracting procedure is ([E87) with ¢, = 0.

The jet quenching parameter ¢ in ([Z0) can now be read off from ([E8H). Identifying
(T7) = L™ /+/2, where L~ is the extension in light-cone coordinates of the Wilson loop
in the light-like direction, and noting the expectation value of the adjoint Wilson loop
differs by a factor of 2 in the exponent S from the expectation value of the fundamental
Wilson loop, the jet quenching paramete reads

3/21 (3
) ?54) VATS. (4.89)
4

Once again, we see the non-trivial v/ A-dependence which is a consequence of strong
coupling. In order to compare this result with experimental data at RHIC and thinking
agep = 1/2 being reasonable for temperature not far above the QCD phase transition,
the authors of [44] have set N = 3 and agyy = 1/2. From (ERJ), one finds for the
temperature of 300 MeV, which is an estimated value the average the temperature at
RHIC, the jet quenching parameter

G =4.5GeV?/fm (4.90)

compared to the RHIC data with values for the time—averaged@ g around 5-15 GeV?/fm
[54].

20¢, is purely imaginary in this case, since the action is imaginary.

21The jet quenching parameter can be obtained directly using light-cone coordinates [44] where the
extremal surfaces are finite yielding the same result.
22§ decreases with time as the QGP expands and cools.
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4.4. Jet Quenching Parameter

4.4.3. Discussions

The result for jet quenching parameter evaluated by the proposed method described
above is close to the experimental estimate. Anyway, one should have in mind that
the calculation was done for a NV = 4 dual background which is not a dual background
to QCD. Clearly, QCD is very different from A/ = 4 SYM which is a conformal, su-
persymmetric theory with no fundamental quarks, no running coupling and hence no
confinement. Compared to QCD N = 4 SYM has additional scalars, fermionic fields in
the adjoint representation and it contains additional global symmetry. However, as ar-
gued in reference [38], these two theories might share common properties at temperature
higher than 7, where supersymmetry is badly broken and in QCD, there is no confine-
ment. In order to make a meaningful statement for QCD, the authors of [38| propose
that the ratio of the QCD jet quenching parameter to that of AV =4 SYM is given by
the square root of the ratio of the number of degrees of freedom between the two theo-
ries yielding a suppression factor of 0.63 for (E89). This suppression would enlarge the
discrepancy between theoretical prediction and experimental measurement which could
be interpreted as signal indicating that additional energy loss sources besides gluons
radiation might be important.

The jet quenching parameter has been calculated also for non-conformal background
B3], deformed background [56], background dual to N' = 4 with non-zero chemical po-
tential [07], or background with no asymptotical AdSs; component [59] with the main
lesson that the proposed definition of jet quenching parameter [44] is gauge theory spe-
cific and therefore not universal. It was found that the jet quenching parameter increases
as one goes from a confining gauge theory to a conformal theory.

The result for the jet quenching parameter ([L6H) evaluated via drag force is 16.5%
smaller than the one calculated from the expectation value of the light-like Wilson loop
[ER9). One argument for this difference is that the describing of the energy loss of a
quark moving in a QGP in these two methods arises from different perspectives, one
coming from the dragging reason and the another from the gluon radiation reason.

In this diploma thesis we are interested in the possible dependence of physical observ-
ables on the internal degree of freedom (S°). It has been found that the drag force does
not depend on the S°-orientation of the string endpoint on the probe brane, thus the jet
quenching parameter obtained directly via drag force [46] is independent of various inter-
nal quark orientations. The jet quenching parameter as proposed in [38][44] is obtained
from the expectation value of a light-like Wilson loop with small transverse distance in
the adjoint representation. However, due to the relation [L61) the expectation value of
the Wilson loop in the fundamental representation is evaluated. Hence, this loop relates
to the quarks and it is tempting to raise the question what happens if the long light-like
edges of the loop are assumed to have different positions in the internal space.
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4. Quark-Gluon-Plasma

Taking the boundary as usual for a string connecting two points on the probe brane
and switching on the internal dependence, we are going to extremize the action

0/2 Y2 972
S=iT TH\/X/ doy[(v2 —yH)(1+ +—) . (4.91)
0

yt—1 gy

Since the action does not depend explicitly on ¢ and is independent of 1, there exist
two conserved quantities

oL oL . p;
=q; — =, th .
oy’ S0 gy =k W q Yy

Using the relation between ¢; and p;, one finds

1

V=l = D0 =y - ) (4.92)
j

Reality condition for the above expression is necessary for the extremal surface to exist

and this imposes a maximal value for y given in terms of v, ¢; and p;. This critical value

gives the largest possible radial coordinate where a probe brane can be place

1 1/2
Am:[§<¢%a_gg+ﬁ_mg} . (4.93)

For the light-like Wilson loop the large ~-limit at fixed A will be taken first. Then using
the boundary condition and g = foe/z do, we get for the small /-limit
21 I'(5/4) ¢; 1

(="—"27 4+ 0O(=), 4.94
EZ RISl 49

where the large v-limit was taken first, followed from the large A-limit. The relative

angle 6 can be evaluated using the boundary conditions, § = 09/2 di = f(f/2 %y2da and

after transforming y = \/w, we have

A2
6:/ duw pj - Jw
t = 1) (w0 A2 ) (A2, - w

(4.95)

~—

Unfortunately, we do not know how to solve this integral explicitly. To have an idea of
what is represented by (E93), let us look at a short numerical analysis of this integral.
Noting the condition (E93)), taking large v and then large A limit would mean that the A
in the integration boundary approaches A,,. Numerical analysis shows that the relative
angle can take values between zero and 7 for various combinations of A,, and p;.

Z3Placing the probe brane between A,, and /7 does not give purely imaginary action.
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Figure 4.8.: Numerical plot of (E3O0)

The action (EAI) in the small ¢;, i.e. small ¢ limit@, can be brought to the following
form

S() = SO +¢5"+0(q)

A N2 gy
SO — 47 TH\/X/ dy : (4.96)
! \/(y4 —1) (v —y* — v*3)
T Tyva 5 " 2y
250(0) #qg . T (4.97)
N R v ) MRVATEE

Compared that to the case of vanishing relative angle, there is an additional term de-
pending on p;. This remnant can be explained by the enlargement of the extremal
surface for 6 # 0 since it has to stretch additionally inside the internal space.

At small ¢ and in large -, large A-limit, the leading order the conserved quantity g; is
completely determined by ¢ ([E94]), then the jet quenching parameter ¢ can be extracted
from the coefficient of £* ~ ¢.

At this place I encounter many difficulties, since I do not know how to solve the above
integrals explicitly. The large ~-limit cannot be taken properly, since this would change
the original geometry and hence p;. From Fig.4.8. one recognizes that angle 6 close to
7 demands p; > A, hence from [E33) that would mean pj > 49* — 4¢7. When the
angle 6 is close to zero, it just describes the opposite case. Because I have not found
any sufficient approximation to the solution of the problem, the answer to the question,
whether the jet quenching parameter obtained via light-like Wilson loop in the adjoint

24Compared to ¢ in @ZR), [EXD), the denominator of g; gets an additional positive term arising from
the slope of the angle, thus the small-¢ small g;-relation still holds.
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4. Quark-Gluon-Plasma

representation at small distance ¢ depends on the relative S°-angle, will be left for future
work.
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5. Summary and Outlook

Summary We have applied the method proposed in [I3|[T4] to calculate the quark
antiquark potential using the dual description. The quarks and antiquarks in this de-
scription are represented by string endpoints on the probe brane, thus a meson can be
seen as a string with its both endpoints on this brane. It is known from field theory
that the static quark antiquark potential can be extracted from the expectation value
of a Wilson loop, whose shape has the form of a rectangular with the sides along the
time direction much larger than the spatial sides representing the distance between the
quarks [I2]. Using the AdS/CFT correspondence, the expectation value of a Wilson
loop in the fundamental representation of ' =4 SYM can be evaluated by solving the
problem of finding minimal surface in the dual background. Since the Wilson loop is
a non-local operator, the field/operator correspondence (2I3), which is only valid for
gauge invariant local operator, has been extended. The proposal basically said that the
minimal surface described by the extremal Nambu-Goto action has to end on the Wilson
loop lying on the probe brane at the boundary. The extremal surface is infinite since
the integration is taken up to the boundary at infinity. In order to have a finite expres-
sion for the potential, a subtraction procedure needs to be introduced for removing the
infinite part of the action.

Motivated from the fact that the potential depends only on the separationﬂ between
the quarks, the infinite part, which does not depend on variables parameterizing the
separation, is found to be the mass of the string with one endpoint on the brane and
the other entpoint at the horizon of the geometry, which sometimes is interpreted as the
quark mass. After subtracting twice this mass, the potential becomes finite.

The superstring connecting the quarks lives in ten-dimensional space-time, hence the
problem can be extended by letting these endpoints having different positions in the
internal space. In all the discussed backgrounds the internal space is identified with the
five-sphere. The situation of a meson with a quark and an antiquark having different
positions on the five-sphere is realized by introducing two probe D3 branes into the
geometry which have coincident world-volume and position along the radial coordinate,
but different S° orientations. Then the relative angle can be introduced by setting the
quark and antiquark on different probe brane.

The main motivation of this diploma thesis is confronted with the problem how some
physical quantities related to the quarks depend on the additional degree of freedom,
the S°-orientation of the quarks. We found:

!Separation between the quarks at the boundary includes also the #-depending part for the case of
non-vanishing relative angle on S°.
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5. Summary and Outlook

(i) For the metric dual to N =2 SYM [24], the confinement behavior does not depend
on the relative angle 6 between the quark and antiquark, which is expressed by the
same force strength for large quarks separation L in four-dimensional Minkowski
space. However, the meaning of large separation L depends strongly on 6, see
discussion in

(ii) The screening length /,,,, of heavy meson produced with some velocity v =
1/v1 —v? relative to the QGP still scales with 1/,/4 [37], but there exists a
prefactor which gives the dependence of the screening length on 6, see eq. (EZT]).

(iii) The drag force of a single quark moving relative to the QGP does not depend on
its position on S°, thus the jet quenching parameter obtained via drag force is
independent of 6.

(iv) Since all the results were obtained from dual backgrounds to SYM theories, in
order to make contact to QCD, where the discussed internal degree of freedom
is absent, we proposed a method to average the results over all possible relative
SP-orientations of the quarks [60].

Outlook We have investigated the two backgrounds whose internal space is the five-
sphere. There are many other dual backgrounds, for example those given in [25][26],
where the internal space is a deformed version of S°. It would be interesting to consider
the internal degree of freedom of such metrics. In contrast to the five-sphere, where
the geodesics are the great circles and the relative position between the quarks can be
parameterized by one single angle, it is not easy to find the geodesic line connecting
two arbitrary points inside the deformed S°. However, the deformed internal space can
always be parameterized by five angles, so one could let the string be constant along
some internal coordinates and investigate the dependence of the expectation value of the
Wilson loop on the remaining angles of interest.

Recently, a prescription for computing planar gluon scattering amplitudes at strong
coupling using the AdS/CFT correspondence was proposed in [64][65]. In the classical
approximation the calculation of gluon scattering amplitudes is formally the same to
the calculation of the expectation value of a Wilson loop by finding the minimal surface
which ends on a sequence of lightlike segments at the boundaryd which are specified by
the momenta of the gluons. In [65] the configuration of the gluons is approximated as
a rectangular Wilson loop with no couplings to the scalar. The computation was done
only for the AdSs-part of the AdS metric, so it raises the question whether it is physical
to turn on the S®-part of the metric.

2In this case the boundary conditions are set at r — 0!
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A. Appendix: Regularizing the Action

The method in general
We have to deal with some expressions of the form

v~

/f(U) dU—/h(U) dU (A.1)

— 00

with the hope that the difference provides a finite value. Fortunately, all the integrals
have the form

/oog(U) dU with ¢ (U — oo0) — finite . (A.2)

and after a transformation of parameters as U = %, the integral takes the form

/aoog(U)dU:/lﬁa—g(l/x)dx:/El/a@dxgg(e) , (A.3)

2 2

with € = limy_.o . Because of (A2) g(x — 0) — finite. If a is zero, it is necessary to
introduce an cutoff U;g which can take values arbitrarily close to zero. The term G (¢)
can be seen as

co - [" (=80 =270) , IO+2TO) ,, )

x? x?
1/a ~ = ot 1
_ / g(ﬂ?) g(;)g g (O)d,f _ g(o) . ;‘i/a +§/(0) logx‘i/a ’

where the prime denotes partial differentiation on z. Giving explicit expressions for f(U)
and h(U), we can find f(z) and h(x) like above and then determine F'(e€) and H(¢) in
the form of ([A4)). In some cases the difference F'(¢) — H(e) might provide finite result.

N = 2 background: The case of constant angle

From (B41)) and (B22) we have

VT = S—2m, (A.5)

T [Umas 272 A T [Umas A
= —/ BU dU——/ W R+ dU
o, \JUT—UZ RUJU—UQ m Jo U
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The second part in the first integral is finite and after changing of variables as U = Upy,
one finds

/UW A g A Umas/Uo dy A JmI(3/4)
v, RU2\/U—U{ R2US J, Vyii—1) RO T(1/4)
(A.6)

Identifying [ f(U)dU with the remaining part of the first integral and [ h(U)dU with
the second one, we have

R2
V1—Uix* ’
Since h(U) is integrated over the interval [0,U,,q.| and will diverge as U gets closed to

zero, a cutoff at Urg is introduced. Using ([A4) and since f'(0) = A'(0) = 0, f(0) =
h(0) = R? the difference F(¢) — H(€) reads

1 1
U5 R2 1 T VR + Art — R?
F—H:/U0 Z\ g ! dx_/Um . 293 dz—R* (Uy — Urg) -
€ X 1—U61$4 € Z
(A.8)

We are only interested in the behavior of the quark antiquark potential depending on L
and will consider such term like

Ur VR + Azt — R?

T2

f(z) = h(z) = VR* 4+ Ax* . (A.7)

dr + RQU[R (A9)

as a constant value, which shifts the curve V;(L) along the energy axis. Thus, we will
not consider this term in further calculations. Setting ¢t = Upz and taking the limes
e — 0, the rest of [AR) becomes [l

lim (F(e) — H(e)) = R*U, Volt% (ﬁ - 1) dt — 1}

_ T ) B (T ) s VTt
- RUO[F<2, T) E<2, 1)+ ——— 51
27y VT T(3/4)
— — . Al
R*Uq O (A.10)
With (A6) and (AI0)we have found a finite result for the potential
1vrTB/4) (o
Vg = —R°U, . A1l
“Tr T(1/4) T R (A1)

—Jo 1— m2szn20 _fo \/(1 y2) 1 m2y?)

E(Z,m) = f dOv/1 — m2sin? —fo j/m—i))dy
1—y
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N =2 background: The case of non-constant angle
Recall the equation (B:64)

T Umaz/UO
S = —/ dy
1

™

A 1 y?
+ R°U,
UsR? 2 /(2 = 1) (42 + 1 — I2) N ER RS TR

The first part of the action is finite, namely

Umaz /Uo A dy A l
p— ] ,
/1 UsR? 2\ /(> 1) (2 +1-12)  UgR? 1)

1 N L E el s
M= e [(Q_Z)E<5’\/;> _F<5\/;>]

The second part of the action diverges, so we are going to subtract the quark masses
2m,, from this term. While A(U) in ([AJ) keeps the same form, f(U) is identified with
the second part of the action which in U coordinate looks like

(A.12)

with

Umaz/UO 9 y2dy y:U/U() Umaz R2 U2dU
R UO —
1 VE- D 1-P) o VU0 U+ 0 - PU)
U=1/x /1/U° R? dx
_)
e 2 /(1—2203) (1 +22(UZ — 2U3))

/0o qy

- / ) (A.13)

Taking the difference F(€) — H(€) in the form of ([(AZ) with f(0) = R? and f'(0) = 0 we
have

1/Uo RQ 1
— — 1| dz— R*Uq
AV =2203) (1+ 22U (1= 7))

1/Uo 1 1
/ S D
0 2y/A-2)1+2(1-12) t

here we left out the "constant" term (depending on Urg)

Y

vz VR T ATt — R

1’2 dz -+ R2U[R .
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lim (F'(e) — H(e))

e—0

R?U,
R?U,

R?U,

5 ()T o £ (7T -
'<—_1|1+ VI=B e —12>>‘1> o
n 0

t 0

2 2

Adding ([(AT2)and [AT4) together the potential becomes
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b (1) o (5 VD) = s
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