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Chapter 1

Summary

In this thesis, we want to explore applications of Hopf algebras to integrable systems
arising in the AdS/CFT correspondence. To do so, we will first provide some details of
the AdS/CFT correspondence in chapter 3, introducing briefly both theories of the cor-
respondence, namely type II.B superstring theory on AdS5 ×S5 background, and N = 4
super Yang Mills theory. We will go on stating the correspondence, and conclude by
giving some details on the BMN limit.

In chapter 4 we will give some self contained introduction to Hopf algebras, starting with
some elementary facts about Lie algebras. Then we will give the definition of Hopf al-
gebras, and finally quasitriangular Hopf algebras, with a brief comment on the general
construction method of the quantum double, and the q-deformation of sl(2) as an exam-
ple. We will hardly make any reference to physical systems in this chapter, which is also
reflected in the mathematical style.

Chapter 5 starts by motivating how spin chains arise in planar super Yang Mills theory,
and by studying the su(2) subsector it is shown how one can use the Bethe ansatz to cal-
culate energies of the spin chain, which turn out to be the anomalous dimensions of the
corresponding Yang Mills operators. We will then study the spin chain whose S matrix is
symmetric under su(2|2), because it is of major interest to the AdS/CFT correspondence.
The chapter ends with some brief comparison to string theory.

In the last chapter we will give some applications of Hopf algebras to the su(2|2) spin
chain. Hopf algebras arise for this spin chain because some of the symmetry generators
change the length of the chain, and the length changing operator is precisely what makes
the Hopf algebra of this chain distinct from ordinary Lie algebra symmetry. We will also
present a universal R matrix for this Hopf algebra, even though it does not reproduce the
S matrix found on the fundamental representation of su(2|2). We will also include a brief
discussion on the Zamolodchikov-Faddeev algebra, and on the crossing relation.
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Zusammenfassung

In dieser Diplomarbeit untersuchen wir Anwendungen von Hopf Algebren auf integrable
Systeme, die in der AdS/CFT Korrespondenz auftauchen. Wir werden zuerst die nötigen
Details der AdS/CFT Korrespondenz vorstellen, II.B Superstring Theorie und Super-
Yang-Mills-Theorie. Dann werden wir werden die Korrespondenz selbst beschreiben, und
das Kapitel mit dem BMN Limes abschliessen.

In Kapitel 4 werden wir dann Hopf Algebren definieren, insbesondere auch quasitrian-
gulare Hopf Algebren. Wir werden kurz dass Quanten Doppel besprechen, mit einer
Anwendung auf die q-deformierte sl(2). Dieses Kapitel ist sehr mathematisch gehalten,
ohne besondere physikalische Anwendungen.

In Kapitel 5 werden wir motivieren, wie Spinketten in planarer super Yang Mills Theorie
auftauchen. Wir werden dies anhand des Beispiels des su(2) Untersektors tun, und zeigen,
wie man den Bethe Ansatz benutzen kann, um die Energien der Ketten zu berechnen,
die den anomalen Dimensionen der Eichtheorieoperatoren entsprechen. Wir werden an-
schliessend Spinketten studieren, deren S Matrizen invariant unter su(2|2) sind, da diese
besonders wichtig für die AdS/CFT Korrespondenz sind. Wir werden das Kapitel mit
einem Vergleich zur Stringtheorie beenden.

Im letzten Kapitel werden wir Anwendungen von Hopf Algebren auf die su(2|2) Spinkette
besprechen. Die Hopf Symmetrie dieser Kette kommt daher, da gewisse Symmetrieopera-
toren von su(2|2) die Länge der Kette ändern. Es ist genau der Längenänderungsoperator,
in dem sich die Hopf Symmetrie von der normalen Lie algebra Symmetrie unterscheidet.
Wir werden das Kapitel mit einer kurzen Besprechung der Zamolodchikov-Faddeev Alge-
bra und der Crossing Symmetrie abschliessen.
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Chapter 2

Introduction

String theory has long been the main candidate for the theory of quantum gravity, or even
the theory of everything. However, so far it has failed to produce any observable data.
Nevertheless, it has shown many interesting and surprising relations to different branches
of mathematics, in a depth not achieved by any other physical theory.
Originally, string theory was introduced in the late 1960’s to explain certain effects of
the strong interaction. However, with the advent of quantum chromodynamics (QCD) in
the early 70’s string theory became less popular within the community, even though at
about the same time it was proposed by Scherk and Schwarz [1] that string theory might
in fact describe gravitation, and not only aspects of the strong force. An interesting rela-
tion between string and gauge theory was noted by ’t Hooft [2], who showed that gauge
theories have string-like behaviour if one allows the rank N of the gauge group to be an
extra free parameter, and studies the large N behaviour of the gauge theory. However,
the focus of the community shifted rather into the direction of regarding string theory as
a theory of gravity. Indeed, in 1984 Green and Schwarz [3] showed that certain previously
encountered anomalies appearing when quantising the string cancelled for supersymmet-
ric string theory in ten dimensions. This showed that superstring theory can be regarded
as a consistent theory of quantum gravity, and helped string theory to become one of the
major branches of theoretical high energy physics and gravitational physics. The problem
of needing ten dimensions for consistency of the theory was also turned into an advantage.
It was shown that when compactifying the six not observed dimensions one can interpret
this compactified space as some space of internal degrees of freedom, as needed for gauge
theories. However, there is a huge number of consistent compactifications, which makes it
difficult to find the correct one which should give in some limit the established standard
model of particle physics. Today, studies of this so called landscape, referring to the huge
number of metastable vacua or possible compactifications, is a very active research area
within string theory. Another important development we should mention is M theory,
which was proposed in the early 90’s as an eleven dimensional theory containing mem-
branes which unifies the five previously known consistent string theories. However, for
the moment, it is far from being a completed theory.

Let us come to the field of string theory on which this thesis tries to give a humble con-
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tribution, the AdS/CFT correspondence. As we noted above already in the 70’s it was
known that large N gauge theories can exhibit string like behaviour, but the strings at
that time were not thought of describing gravity, but only effects of the strong interaction,
i.e. their scale was taken to be in the range of the QCD scale. In late 1997, Maldacena [4]
proposed that type II.B string theory on an AdSd+1 × K background, should be dual
to a conformal field theory on the boundary of AdSd+1, which is d dimensional confor-
mally flat space. K denotes a compact space. This means that on the superstring side
we have a theory of gravity, which is linked to a dual field theory without gravity. The
best understood case of the AdS/CFT correspondence is between strings on AdS5 × S5

and N = 4 super Yang Mills theory on the boundary. Soon after Maldacenas proposal,
Gubser, Klebanov and Polyakov [5] and Witten [6] gave a more precise formulation of the
correspondence.

Since then, this field of string and gauge dualities has become one of the most active
research areas of string theory. Even though in a certain sense string theory on AdS5×S5

is the next simplest thing after flat space and plane wave string theory, in the sense that
the isometry algebra psu(2, 2|4) is as large as possible, and N = 4 super Yang Mills
theory in four dimensions is the most restrictive Yang Mills theory, being the maximally
supersymmetric theory in four dimensions, with the largest possible symmetry algebra,
which is not by chance also psu(2, 2|4), the superconformal algebra. Here, the conformal
symmetry holds, unlike for QCD, also at the quantum level. Despite the large and re-
strictive symmetry, both theories are extremely rich, and far from being fully understood,
or even solved.

One important aspect of the correspondence is that it is a strong/weak duality. Taking
the rank of the gauge group N large, we get a new effective coupling constant λ 1, such
that gauge theory behaves perturbatively for small λ, whereas perturbative string theory
requires λ to be large. Even though this is a problem for precise tests of the correspon-
dence, it can be turned into an advantage, since it allows to study usually inaccessible
strong coupling regimes on both sides of the correspondence via the dual perturbative
theory. In particular, one is interested in the strong coupling behaviour of the strong
interaction, which is confining, and far from being completely understood. Hence, there
is lots of activity in using the AdS/CFT correspondence2 to describe features of strongly
interacting particles such as mesons, or even heavy ions.

An open problem is, even almost ten years after its discovery, a proof of the AdS/CFT
correspondence even in the best understood case of AdS5 × S5. In fact, in the first years
one had to restrict oneself to only a small class of operators for tests of the correspondence.
The situation dramatically improved early this century with a series of remarkable discov-
eries. First of all, the plane wave limit for AdS5×S5 was derived and shown to be another

1We will define the correspondence in some more detail in chapter 3.
2We should mention that N = 4 super Yang Mills theory itself is not confining, and also, unlike QCD,

supersymmetric, so one either restricts to deformations of AdS5×S5, or tries to work with other versions
of gauge/string duality, or one studies only qualitative features.
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maximally supersymmetric background [7], [8]. Then it was realised by Metsaev [9] that
II.B string theory on this background plus Ramond-Ramond fields is exactly quantisable
in the light cone gauge, and detailed solutions were presented by Metsaev and Tseytlin
in [10]. Berenstein, Maldacena and Nastase [11] went on and showed that one can directly
map string states on plane waves to a certain class of gauge theory operators with large R
charge in the large N limit. Minahan and Zarembo [12] made the next big step showing
that one can think of those gauge theory operators, at least in the subsector of scalar
fields, as some integrable spin chains, and that one can use the Bethe ansatz to compute
the energies of those spin chains, which correspond to the one-loop anomalous dimensions
of the gauge theory operators. Beisert and Staudacher [13] could soon thereafter show
that all one-loop anomalous dimensions could be computed using the Bethe ansatz for a
psu(2, 2|4) symmetric spin chain. Since then integrability has played an important role
for the AdS/CFT correspondence, as it promises precise spectroscopic tests, or even a
proof of the correspondence, at least in the large N limit. Important and interesting
progress we want to mention is the investigation of the higher conserved charges, which
one needs for integrability, on the string [14] and gauge side [15], [16]; the development
of novel long range spin chains [17], [18] or investigations of relations to other condensed
matter systems such as the Hubbard model [19], [20]. An important direction was given
by Staudacher in [21] where it was argued that it is the S matrix which one should look
for as the important ingredient for finding the whole spectrum of the theory. For the
spin chain symmetric under the full superconformal algebra, the S matrix was found by
Beisert [22] up to a prefactor, which could later be fixed [23], [24] using constraints coming
from crossing symmetry [25].

Integrable systems have long been of major interest to mathematicians. Advanced Bethe
ansatz techniques have been developed, especially by the Leningrad school, see e.g. [26]
for a review. In the late 1980’s, certain Hopf algebras with an interesting element, the
universal R matrix, have been investigated [27], [28]. These Hopf algebras are called
quantum groups3. Main classes of quantum groups one gets through certain deformations
of universal enveloping algebras of Lie algebras, namely the q-deformations of affine Lie
algebras, Yangians and elliptic quantum groups. On representations, their respective R
matrices lead to trigonometric, rational and elliptic solutions of the Yang Baxter equation,
which is automatically satisfied for the R matrix of a quantum group. Mathematically,
one can use such R matrix to show that the tensor product of two representation spaces
V,W is almost commutative in the sense that V ⊗ W ∼= W ⊗ V , where the isomorphism
should respect the algebra. This is not trivial, since, unlike for ordinary Lie algebras, a
generic Hopf algebra does not act on the tensor product simply as the sum of the actions
on each individual tensor product factor. The problem of having non-commutative tensor
products in ultimately connected to two dimensional systems, such as spin chains and
string worldsheets. Indeed, Hopf algebras have already been investigated in connection
with conformal field theories in 1 + 1 dimensions, see e.g. [29], [30] [31]. Strangely, even

3We warn the reader that the term quantum group is not consistently defined in the literature. Often,
it is only used to denote certain q-deformations of universal enveloping algebras, which we will study
later.
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though it is now widely believed that the AdS/CFT correspondence in the planar limit
becomes an integrable systems, and various methods from integrability, especially the
Bethe ansatz, have successfully been applied, abstract methods from the theory of Hopf
algebras have not played a major role so far. Albeit, the higher conserved charges explored
in [15], [16] have been shown to be related to a Yangian, but it is probably fair to say
that the Hopf algebraic aspects of Yangian symmetry have not at all been fully explored.

Another application of Hopf algebras was described in [32], [33], where it was shown that
some of the symmetry generators transforming the excitations of an su(2|3) symmetric
spin chain [34], [22] do not act with the usual trivial coproduct4 on tensor products, but
with a slightly deformed one, where a length changing operator appears in the coproduct
of those generators. One might speculate whether the S matrices derived in certain
subsectors, or even for the full model, can be related to a universal R matrix of some
Hopf algebra. Indeed, in [35] it was noted that the S matrix of the su(1|1) sector can be
related to the universal R matrix of a quantum affine algebra. Is this purely coincidental,
because the Lie algebra symmetry is already highly constraining, and any possible Hopf
algebra should naturally be build on the Lie algebra? In this thesis, we cannot give an
answer to this question, but at least we want to speculate on a possible Hopf symmetry,
which would beautifully allow to derive the full S matrix including the prefactor which
would then automatically satisfy the important Yang Baxter and crossing equations. Also,
the Hopf algebra would possibly shed some new light on the higher conserved charges.

4By a trivial coproduct we mean that the symmetry generators act on each tensor product individually,
as one expects this for ordinary Lie algebras. We will explore this further in chapter 4.



Chapter 3

The AdS/CFT correspondence

The AdS/CFT correspondence [4] is one of the most fascinating discoveries in string and
gauge theories of the last decade. In fact, it links two seemingly different subjects, gauge
theory in four dimensional flat space, and string theory on a curved ten dimensional
space, in a holographic way. Before investigating this correspondence further, we want
to summarise some facts from string and gauge theory. For a general introduction to
string theory, we refer the reader to [36], [37], [38], [39], [40]. Reviews of the AdS/CFT
correspondence can be found in [41], [42].

3.1 The AdS5 × S5 superstring

On the string side of the duality, we deal with type II.B superstring theory on a super-
symmetric AdS5 × S5 background. Hereby, we make use of the fact that we can write
AdSn and Sn as homogeneous spaces

AdSn =
SO(n − 1, 2)

SO(n − 1, 1)
, Sn =

SO(n + 1)

SO(n)
, (3.1)

and that we have SO(4, 2) × SO(6) ' SU(2, 2) × SU(4). We can combine those two
bosonic isometry groups into the supergroup PSU(2, 2|4), giving the supersymmetric
target space1

PSU(2, 2|4)

SO(4, 1) × SO(5)
. (3.2)

Sometimes it is useful to think of AdS5 and S5 embedded into flat space. We have
Sn = {∑n+1

k=1 X2
k = R2} and AdSn = {Y 2

0 + Y 2
n − ∑n−1

k=1 Y 2
k = L2}, where Xk, Yk are

the standard cartesian coordinates in flat space. More precisely, whereas for Sn we have
the standard R

n+1 with Euclidean signature as the embedding space, for AdSn we should
choose R

2,n−1 with signature (−, +, +, . . . , +,−), then the isometry groups are easily seen
to be SO(n+1) or SO(2, n−1) respectively. One sees that AdSn describes a hyperboloid
in flat space. Both spaces are homogeneous and isotropic, and have constant curvature

1Which we will, for simplicity, also call AdS5 × S5.
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14 CHAPTER 3. THE ADS/CFT CORRESPONDENCE

RAdSn
= −n(n−1)

L2 , RSn = n(n−1)
R2 . For the combination of both AdS5 and S5 in one super

coset space the radii have to be the same, that is L = R. The isometry group of this
super coset space is PSU(2, 2|4).
Metsaev and Tseytlin [43] wrote down the action for the supersymmetric AdS5×S5 coset
model, however, for simplicity we will only deal with the bosonic part, and mainly follow
the convention of [44]. With the metric given in global coordinates by

ds2 = ds2
AdS5

+ ds2
S5

ds2
AdS5

= dρ2 − cosh2 ρdt2 + sinh2 ρdΩ2
3

ds2
S5 = dγ2 + cos2 γdφ2

3 + sin2γ(dψ2 + cos2 ψdφ2
1 + sin2 ψdφ2

2), (3.3)

we get the bosonic part of the string action

I = −
√

λ

4π

∫

dτdσγab(G
AdS5
mn ∂aym∂byn + GS5

mn∂axm∂bxn). (3.4)

We have used γab =
√

hhab, and
√

λ in the prefactor instead of the standard string tension,
because it will have a natural counterpart on the dual gauge side, namely, we will have

λ = g2
Y MN, (3.5)

the usual ’t Hooft coupling. In the AdS/CFT correspondence it will be related to the
inverse string tension via

λ =
R4

α′2 , (3.6)

with the joint radius R of both AdS5 and S5 We choose the conformal gauge with the
worldsheet metric fixed to γab = diag(−1, 1).
We can also write the action in the (6+6) dimensional embedding space with coordinates
XM , M = 1, . . . , 6 and YP , P = 0, . . . , 5 respectively, when we include the constraints for
the submanifolds via Lagrange multipliers Λ(τ, σ), Λ̃(τ, σ). The Lagrangian reads

LAdS5 = −1

2
η

(−1,+1,···+1,−1)
PQ ∂aY P ∂aY

Q +
1

2
Λ̃(ηPQYP YQ + 1)

LS5 = −1

2
η

(euclid)
MN ∂aXM∂aX

N +
1

2
Λ(ηMNXMXN − 1). (3.7)

We have η
(euclid)
MN = δMN , and η

(−1,+1,···+1,−1)
PQ ≡ ηPQ = diag(−1, +1, · · ·+1,−1). Note that

the fields are rescaled in such a way that the dependence on the radius R appears only in
the overall factor

√
λ which we have in front of the action

I =
√

λ

∫

dτdσ
LAdS5 + LS5

2π
, (3.8)
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so we work with an effective radius 1. We also want to remind the reader that we deal
with closed string and σ ∈ [0, 2π].
Working with the gauge fixed action we should not forget the Virasoro constraints

ẊMẊM + X ′
MX ′M + ẎP Ẏ P + Y ′

P Y ′P = 0, (3.9)

ẎP Y ′P + YMX ′M = 0. (3.10)

The Lagrange equations simply give the constraint for the embedding space

YP Y P = −1 (3.11)

XMXM = 1. (3.12)

The conserved charges corresponding to the global symmetries SO(4, 2) and SO(6) are
given by

SPQ =

√
λ

2π

∫

(YP ẎQ − YQẎP )dσ (3.13)

JMN =

√
λ

2π

∫

(XMẊN − XNẊM)dσ. (3.14)

3.2 Super Yang Mills theory

In this section, we want to introduce the most important facts about the other side of
the AdS/CFT duality, namely N = 4 super Yang Mills (SYM) theory in four dimensions
with SU(N) gauge group. This is the maximally supersymmetric four dimensional Yang
Mills theory [45], [46], [47]. Its Lagrangian is uniquely given by

L = − 2

g2
Y M

tr

(

1

4
F 2 +

1

2
(Dµφi)

2 − 1

4
[φi, φj] [φi, φj] +

1

2
χ̄ΓµDµχ − i

2
χ̄Γi [φi, χ]

)

. (3.15)

The field content consists of six scalars φi, one gauge field Aµ and four Majorana gluinos.
The only free parameters are the coupling constant gY M and the rank of the gauge group
SU(N). One can construct this Lagrangian via dimensional reduction from ten dimen-
sional N = 1 Super Yang Mills theory [45]

L = − 1

2g
tr(FmnF

mn − 2iχ̄ΓmDmχ) (3.16)

after compactifying on a six dimensional torus. That is why we write the gluinos in one
ten dimensional Majorana Weyl spinor field χα, with α = 1, . . . , 16. In this theory one has
one gauge field Am, m = 1, . . . , 10, which splits up after the reduction to four dimensions
to Aµ and φi, and the ten dimensional Lorentz algebra so(1, 9) splits up into the four
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dimensional Lorentz algebra so(1, 3) and the R symmetry algebra so(6) transforming the
scalars. For the four dimensional Yang Mills theory the bosonic space-time symmetry is
enhanced to the conformal symmetry so(2, 4), and using so(6) ' su(4), so(2, 4) ' su(2, 2)
and taking the supersymmetries into account, we arrive at the full symmetry algebra of
this theory, the superconformal algebra psu(2, 2|4). One notes that this global symmetry
algebra is identical to the isometry algebra of AdS5 × S5. Furthermore, we should note
that all fields transform in the adjoint representation of the gauge group.
An important property of N = 4 SYM theory is that the superconformal symmetry sur-
vives at the quantum level. There occur no ultraviolet divergences in correlation functions
of the fundamental fields in the perturbative quantisation, the β function vanishes to all
orders in perturbation theory [48], [49]. That implies that the fundamental fields φi, Aµ, χ
have nonrenormalised mass dimensions

[D,φi] = 1φi (3.17)

[D,χ] =
3

2
χ (3.18)

[D,Aµ] = 1Aµ. (3.19)

Here, D is the dilatation operator, see [50] for an extensive review. One can split it up
into D = D0 + δD, where D0 measures the classical dimension, and δD the anomalous
dimension, i.e. the quantum correction. D0 is part of the superconformal algebra, whereas
δD is an external generator commuting with the full superconformal algebra.

3.2.1 The superconformal algebra

Let us briefly describe the full superconformal algebra psu(2, 2|4). It consists of the
spacetime rotations Lα

β , L̇α̇
β̇
, α, β, α̇, β̇ = 1, 2 forming two su(2)’s as the Lorentz part of

the conformal algebra su(2, 2) ' so(2, 4), which is completed by the translations Pα̇β,
the conformal boosts Kβα̇ and the dilatation generator D. Furthermore, one has Ra

b ,
a, b = 1, . . . , 4 forming the su(4) ' so(6) R symmetry algebra. Additionally, one has
the supersymmetry generators Qa

α, Q̇α̇a,S
α
a , Ṡα̇a. For the full commutation relations we

refer the reader to the appendix of [50], but the structure is clear: The odd generators
form a representation of the even Lie algebras, and the indices are chosen in such a way
that one can think of the even generators as acting on the appropriate indices of the odd
generators.
One can extend psu(2, 2|4) by a one dimensional nontrivial central charge C and gets
su(2, 2|4). Additionally, one can add an external automorphism j to the algebra, which
we will call the hypercharge2. Then one gets u(2, 2|4).

2psl(n|n) is the only series of classical Lie superalgebras which allows for a nontrivial central extension
and an external automorphism. We will elaborate a bit more on this fact later. We should also warn the
reader that j, C introduced here are not the same j,C we will use later in chapter 5 as central charge or
automorphisms of psu(2|2), even if psu(2|2) is regarded as a subalgebra of psu(2, 2|4).
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3.2.2 Operators

We are interested in getting all local gauge invariant operators of super Yang Mills theory.
They are composed of the fundamental operators φi, Aµ, χ, or rather, we should take the
gauge covariant objects Fµν , Dµ instead of the gauge field. Let X = Dkφi, D

kχ,DkF ,
then a generic operator is a linear combination of multi trace operators

O = tr(X1 . . .Xn)tr(Xn+1 . . .Xn+m)tr(. . . ) . . . . (3.20)

Such operator is required to be local, that is, all fields are taken at the same space time
point x. Making use that the theory is conformal, two point functions of two quasi-primary
operators3 O1,O2 have only one free parameter (see [51], [52] for general informations
on conformal field theory), the scaling dimension, which has to be the same for both
operators, and we simply have

〈O1(x)O2(y)〉 ∝ δ∆1,∆2

|x − y|2∆1
. (3.21)

This is why the scaling dimensions play a key role in conformal field theory.
In general, for generic operators, the scaling dimension receives quantum corrections,
which can be calculated perturbatively as a series in the free parameters of the theory,
i.e. in g2

Y M and 1
N

. However, we want to write the expansion in terms of the ’t Hooft
coupling λ = g2

Y MN , getting

∆ = ∆0 +
∑

k=1

∑

l=0

λk

N2l
∆k,l (3.22)

Now a fundamental task is to diagonalise the dilatation operator order by order in pertur-
bation theory. This is generically a difficult problem. We will see later how one can use
methods of integrability to dramatically simplify this in the planar limit, i.e. N → ∞.

3.3 The AdS/CFT conjecture

The so far unproven AdS/CFT correspondence simply states that the two theories we
discussed in this chapter, ten dimensional type II B superstring theory on an AdS5 × S5

background and N = 4 Super Yang Mills theory in four dimensions with SU(N) gauge
group, are equivalent.
In fact, the correspondence is a duality. It links weakly coupled gauge theory to strongly
coupled string theory, and vice versa. On the one hand this fact makes it hard to test the
conjecture, on the other hand, it opens up the possibility to investigate nonperturbative
effects on the one side of the correspondence by ordinary perturbative methods on the
other side.
The full conjecture is supposed to hold for all values of gY M and N . But neither is
N = 4 super Yang Mills theory solved, nor is it known how to fully quantise string theory

3These operators scale like O(x) →
∣

∣

∣

∂x′

∂x

∣

∣

∣

∆/4

O(x′) under global conformal transformations.
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on a curved background, not even on this highly (in fact maximally) supersymmetric
background AdS5 × S5. This is why one usually restricts oneself to certain limits. The
easiest one is as follows: On the gauge theory side, it has long been known [2] that the
theory can dramatically simplify in the so called ’t Hooft limit: One sends the gauge
coupling gY M to zero and the number of colours N to infinity, but in a controlled way
such that λ = g2

Y MN = fixed. In this limit of large N , nonplanar diagrams are suppressed
by powers of 1

N
. On the string side, due to the identification g2

Y M = gs,
4 the string

coupling also goes to zero, hence we deal with classical string theory. The word classical
is somehow misleading, it simply means that there are no string loops, but we can still
have a quantum theory on the worldsheet, which is then restricted to an ordinary cylinder.
A further simplifying limit is sending additionally λ → ∞, this gives II.B supergravity on
the AdS side.
A further remarkable feature of the AdS/CFT correspondence is that it is holographic.
This is not merely related to the fact that one theory lives in four and the other in ten
dimensions. One can even think of the four dimensional gauge theory as living on the
boundary of AdS5. This can be seen as follows: If one considers II.B string theory with
N coincident D3 branes, the low energy excitations of open strings ending on the branes
correspond precisely to N = 4 SYM with SU(N) gauge group. On the other hand, we
have closed strings in the theory, whose low energy behaviour is described by supergravity.
We can also look at the theory from a different point of view. Instead of treating the D3
branes simply as Dirichlet boundary conditions for the open strings, we consider them as
massive objects which curve spacetime. In particular, a solution for the metric with N
D3 branes of II.B supergravity is given by

ds2 = (1 +
R4

y4
)−

1
2 ηijdxidxj + (1 +

R4

y4
)

1
2 (dy2 + y2dΩ2

5). (3.23)

The constants are linked via R4 = 4πgsα
′2N . In the near horizon y ¿ R the metric

reduces to

ds2 = R2(
du2 + ηijdxidxj

u2
+ dΩ2

5), u =
R2

y
(3.24)

which is precisely the AdS5 × S5 metric.
Having stated the correspondence as an equivalence of two theories, and having motivated
a bit how it was originally derived, the main question is how one can test the correspon-
dence, i.e. which quantities on both sides one has to calculate and compare. We have seen
that the symmetry groups PSU(2, 2|4) are the same, physical fields are given in terms
of the representations of the group, so we require a matching of the representations. In
particular, for each operator on the gauge side with a definite scaling dimension ∆, there
should be a corresponding string state with definite energy E, with the matching

∆ = E. (3.25)

4Sometimes, one puts a factor 4π between both couplings.
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As we mentioned above, we have a strong/weak duality, which means that the natural
expansion for ∆ is in terms of small λ, but for E we need large λ, making it insufficient
to apply standard perturbative methods on both sides. Hence, in the first years after the
discovery of the AdS/CFT duality one had to restrict oneself to comparatively simple
limits, i.e. supergravity, and operators such as BPS operators on the gauge side, which
are protected from quantum corrections. The situation improved dramatically with the
discovery of an interesting limit, the plane wave and BMN limit. There, one has a string
and gauge duality where, at least for certain parts, one can compare perturbative results
on both sides.

3.3.1 Plane wave strings and BMN limit

Besides the flat space and AdS5 × S5, or rather, its analogue superspaces, there is one
other maximally supersymmetric background, the plane wave background, which is also
a solution to type IIB supergravity [7]. Later, in [8] it was shown that this plane wave
background can arise as the Penrose limit from supersymmetric AdS5 × S5. In fact, the
existence of such background was already shown for any classical space-time manifold
by Penrose. Here we have the case that the dimension of the isometry algebra is not
changed when going from AdS5 × S5 to the plane wave, but merely contracted [7]. On
the string side type II.B string theory on the plane wave Ramond-Ramond background
gives a quadratic Lagrangian in the light-cone gauge [9], [10], which allows for an exact
quantisation. We will see soon that the plane wave geometry can be seen as a kind of
deformation of flat space. Taking certain strings with large angular momentum J on
the S5, one can compare them with simple single trace operators with J scalar fields in
the trace [11]. This opened up completely new opportunities of testing and using the
correspondence, see [53] for an extensive review on this subject.
Let us first describe the geometric picture. Starting with the AdS5 ×S5 metric (3.3), and
a light-like geodesic, e.g. along the φ3 direction, with ρ = 0, θ = 0, we want to look at
the geometry close to this trajectory. We will choose suitable light cone coordinates

x+ =
t + φ3

2µ
x− = R2µ

t − φ3

2
(3.26)

r = Rρ y = Rγ, (3.27)

where we have performed an additional rescaling with the radius R and a new parameter
µ having energy dimension one. Recalling that in front of the action (3.4) we had a factor√

λ ∼ R2 we include the R2 in the metric and perform the limit R → ∞, getting the
simplified metric

ds2 = −4dx+dx− − µ2(xI)2(dx+)2 + (dxI)2. (3.28)

Here, we introduced new transverse coordinates xI , i = 1, . . . , 8, of which half come
from AdS5, the others from S5. We also see that µ controls the correction to flat space,
which we get for µ → 0. Later we want to study the light cone energy of string states in
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this limit. The canonical momenta corresponding to the light cone variables x± are given
by

p+ = −i∂x+ = −iµ(∂t + ∂φ3) (3.29)

p− = −i∂x− = − i

µR2
(∂t − ∂φ3). (3.30)

We will often use p+, p−, where the raising with the metric (3.28) in light cone coordinates
changes plus and minus and one picks up a factor −2. In the old coordinates the time
derivative corresponds to the energy, E = i∂t, whereas the derivative with respect to the
angle φ3 corresponds to the angular momentum J = −i∂φ3 in S5.
Let us go on and consider string theory on this simplified plane-wave background. We
will work in the light cone gauge, setting

X+ = p+τ, (3.31)

where τ is the standard worldsheet time, and get

I =
1

2πα′

∫

dτ

∫ 2πα′p+

0

dσ

(

1

2
(∂XI)2 − 1

2
µ2(XI)2 + fermions

)

. (3.32)

This is simply a theory with eight massive bosons satisfying the Klein Gordon equation

(∂2
τ − ∂2

σ + µ2)XI = 0. (3.33)

We can do the standard mode expansion subject to the periodic boundary conditions on
the world sheet cylinder, which gives

XI = xI
0

cos(µτ)

µ
+ pI

0

sin(µτ)

µ
+

∑

n 6=0

i√
2ωn

(

αI
ne

−i(ωnτ−knσ) + α̃I
ne

−i(ωnτ+knσ)
)

P I = ẊI (3.34)

with the dispersion relation ωn = sign(n)
√

k2
n + µ2, kn = n

α′p+ . Then the canonical
quantisation of the oscillator modes reads

[

αI
n, α

J
m

]

= δn,−mδIJ
[

α̃I
n, α̃

J
m

]

= δn,−mδIJ

[

pI
0, x

J
0

]

= −iδIJ
[

αI
n, α̃

J
m

]

= 0, (3.35)

hence for n ≥ 1 the oscillators are interpreted as annihilation operators, and for n ≤ −1
as creation operators. The Hamiltonian is given by

Hlc ≡ 2p− =
1

p+

∫

dσ((P I)2 + (∂σX
I)2 + µ2(XI)2 + fermions)

= µα†I
0 αI

0 +
∑

n≥1

√

k2
n + µ2

(

α†I
−nαI

n + α̃†I
−nα̃I

n

)

+ fermions, (3.36)
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where we defined the zero modes αI
0 = 1√

2π
(pI

0 + iµxI
0) and its conjugates, which also

appears in harmonic oscillator form in the Hamiltonian. For µ → 0 we recover the flat
space results. We get the eigenvalues

Elc = µN0 +
∞

∑

n≥1

(Nn + Ñn)

√

µ2 +
n2

(α′p+)2
, (3.37)

where Nn, Ñn, N0 are the occupation numbers of the n-th left or rightmoving mode and the
zero mode, respectively. We want to skip further details and refer the reader to [10], [11]
or the review [53]. We will also ignore the scale µ in what follows. Instead, we want
to investigate how we can compare string states to gauge theory operators. Let us start
with a light cone string ground state, i.e. Elc = 0. It is additionally characterised by
p+. In the rescaled coordinates we had 2p+ = E+J

R2 . Furthermore, we have argued above
that in the AdS/CFT correspondence we should identify the energy E with the scaling
dimension ∆. We have angular momentum J in one direction on the S5, and the single
J is a u(1) = so(2) ⊂ so(6) generator as part of the isometry algebra of S5, which is on
the gauge side identified with the R symmetry algebra, so we expect an so(2) invariant
operator in the scalar sector to correspond to this string state. The one to identify with
the string state Elc = 0, i.e. ∆ = J , is uniquely given by

1√
JNJ

tr(ZJ), (3.38)

with Z = φ5 + iφ6 written in complex language. Such operator is protected from quantum
corrections.

We want to take the Penrose limit, so to keep p+ finite for R → ∞ we see that we should
have J2 ∼ N . The complete, so called BMN limit, is given by

N → ∞, J → ∞ (3.39)

J2

N
, gY M fixed, gY M ¿ 1. (3.40)

On the string side this limit makes no trouble, as we argued above, it corresponds to the
Penrose plane wave limit, but on the gauge side we recall that λ = g2

Y MN , hence λ → ∞
in this limit, so in principle we cannot do perturbation theory. The new feature of this
limit is that one can still deal with a certain class of operators, which are somehow close
to those operators protected from quantum corrections. Let us see how this works. We
start with the Elc = 0 operator as given above, and insert a small number of the other
fields into the trace. We want to deal with operators which are eigenvectors of ∆−J , and
starting with the eigenvalue ∆ − J = 1 we get the eight bosonic operators 1

NJ Tr(φiZ
J),

1
NJ Tr(DµZZJ−1) and the eight fermionic operators5 1

NJ Tr(ψAZJ). These operators are

5These are the eight fermions with J = 1
2 , hence ∆ − J = 1.
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again protected, and have the following corresponding supergravity modes on the string
side:

α†i
0 |0, p+〉 ≡ 1√

NJ
tr(φiZ

J) (3.41)

α†µ
0 |0, p+〉 ≡ 1√

NJ
tr(DµZZJ−1) (3.42)

θ†0A|0, p+〉 ≡ 1√
NJ

tr(ψAZJ) (3.43)

Here we split up the index I = 1, . . . , 8 of the transverse coordinates in two parts µ =
1, . . . , 4 living on AdS and i = 1, . . . 4 living on S, and θ0A denotes the previously dropped
fermionic zero mode. If one excites more than one other supergravity mode, one has to
symmetrise the corresponding insertion of fields on the gauge side, e.g. one has

α†j
0 α†i

0 |0, p+〉 ≡ 1√
JNJ

J
∑

l=0

tr(φiZ
lφjZ

J−l), (3.44)

which has eigenvalue ∆− J = 2. So far, the BMN limit gave nothing new, we dealt with
supergravity states corresponding to some protected operators. The great virtue of this
limit is that one can go on and get operators corresponding to massive string excitations
like

αj
−n|0, p+〉, (3.45)

with the corresponding operator [11] proportional to

J
∑

l=1

tr(φjZ
lZJ−l)e

2πinl
J , (3.46)

but such operator vanishes by the cyclicity of the trace, which is not surprising, since the
corresponding string state doesn’t satisfy the level matching condition. Let us instead
look for the corresponding operator of the string state

αj
−nα̃

i
−n|0, p+〉, (3.47)

which turns out to have a similar form as the supergravity ones, but will not be protected
anymore. One gets

1√
JNJ

J
∑

l=0

tr(φiZ
lφjZ

J−l)e2πinl/J . (3.48)

Indeed, one can calculate that the scaling dimension of this operators gives perturbatively

∆ − J = 2 +
g2

Y MN

J2
n2 + ..., (3.49)
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which is written as an expansion in the new effective coupling

λ′ :=
g2

Y MN

J2
. (3.50)

In the stringy variables this coupling is given by λ′ = 1
(α′p+µ)2

, and one can expand the

square root of the string energy (3.37) and gets the same answer as ∆ − J . So one can
go on and one obtains a one-to-one correspondence between all type II.B string states on
the plane wave background and the gauge theory operators described above in this BMN
limit.
Another feature of the BMN limit we should emphasis is that it allows to go beyond the
planar limit, since J2

N
appears as a new genus counting parameter, and is finite. Now a

natural question is what happens if one take instead of the large angular momentum J
on S5 a large spin S on AdS5. This has been investigated in [5]. The next step, allowing
for large momenta on both S5 and on AdS5, was done in [54], [55], see [44] for a review
of these so called spinning string solutions, and [56] for a review which also includes the
comparison to the gauge side using methods of integrability, which we partially want to
introduce in chapter 5.
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Chapter 4

Hopf Algebras

In this chapter we want to give a short introduction to Hopf algebras, and follow the main
references [57], [58], [59], [60], [61]. We will start with some basic definitions about Lie
algebras and superalgebras, and go on with the definition of Hopf algebras. For simplicity
we will mainly not explicitly work with Hopf superalgebras, even though we will need
them in chapter 6, because the generalisation is straightforward. The last section will
be on quasitriangular Hopf algebras, which form an interesting class of Hopf algebras
because they have a universal R matrix, an object which can serve as an intertwiner
of modules, and which automatically satisfies the Yang Baxter equation. We will also
briefly introduce the quantum double. In the case of q-deformed universal enveloping
algebras, the double has an interesting additional element, which will be interpreted as a
length-changing operator in chapter 6.

4.1 Lie algebras and Lie superalgebras

Let us briefly recall some well known facts about Lie algebras and Lie superalgebras which
we will need later. We mainly used the standard references [62], [63], [64], [65] [66], [67].
Explicit informations about superalgebras can be found in [68], [69].

Definition 1 (Lie algebra). A Lie algebra g is a vector space over a field K
1, equipped

with a bilinear mapping [, ] : g × g → g called the Lie bracket, which satisfies

[A,B] = −[B,A] (4.1)

[A, [B,C]] + [B, [C,A, ]] + [C, [A,B]] = 0. (4.2)

The last equation is called the Jacobi identity.

Definition 2 (Lie superalgebra). A Lie superalgebra g is a vector space over a field K

equipped with a bilinear mapping2 [, ] : g× g → g, and a Z2-grading such that g = g0 + g1,

1We will only use K = R, C
2We will usually just use one symbol [, ] for the generalised Lie bracket. When dealing exclusively

with the symmetric or antisymmetric bracket we will add a subscript ± .

25
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and [gi, gj] ⊂ g(i+j)mod2. We will say A ∈ g is even (or of degree 0 or bosonic) if A ∈ g0,
and A is called odd (or of degree 1 or fermionic) if A ∈ g1. We denote the degree of A by
degA or |A|. The generalised Lie bracket satisfies

[A,B] = (−1)|A||B|+1[B,A] (4.3)

(−1)|A||C| [A [B,C]] + (−1)|A||B|[B, [C,A, ]] + (−1)|C||B|[C, [A,B]] = 0 (4.4)

It is obvious from the definition that the even part of a Lie superalgebra forms a Lie
algebra. Now let us introduce some notions and results from the classification theory of
simple Lie algebras and superalgebras.

Definition 3 (Basic classical Lie superalgebra). A basic classical Lie superalgebra is
a Lie superalgebra with a non-degenerate, supersymmetric, consistent invariant bilinear
form.

Supersymmetric simply means (a, b) = (−1)|a||b|(b, a), and invariant means (a, [b, c]) =
([a, b], c). Consistent means that (a, b) = 0 when a is odd and b is even.
For semisimple Lie algebras, such form is given by the Killing form. For superalgebras,
some subtleties can arise, and the Killing form can be zero even for simple Lie super-
algebras. We will encounter such cases in chapter 5, namely, for superalgebras of type
A(n|n). There, the bilinear form will be provided via the supertrace of generators in the
fundamental representation.

Definition 4 (Serre-Chevalley basis). 3 Let g be a Lie (super)algebra. Then the al-
gebra is described in terms of its Cartan elements h := {h1, ..., hr}, a simple root system
∆0 = {α1, ...αr} and its corresponding simple root generators e±i (i = 1, ...r), the (sym-
metric)4 Cartan matrix Aij, an index set τ ⊆ {1, ..., r} determining the odd generators
(i.e. dege±i = 1 if i ∈ τ)and the following relations:

[hi, hj] = 0 (4.5)

[hi, e
±
j ] = ±Aije

±
j (4.6)

[e+
i , e−j ] = δijhi (4.7)

(ade±i )Nije±j = 0 i 6= j (4.8)

The last equation is called the Serre relation. One gets the Matrix Nij from the Cartan
matrix in the following way:

Nij =







1 if Aij = Aii = 0
2 if Aii = 0, Aij 6= 0

1 − 2
Aij

Aii
if Aii 6= 0

(4.9)

For a basic Lie superalgebra there are some mathematical subtleties, one needs supplemen-
tary conditions for odd roots of zero length, see e.g. [66]. We will ignore those subtleties
in what follows.

3Here we use the notation of [70] because we will follow their notations later for quantised enveloping
algebras.

4It can be obtained from the usual Cartan matrix by multiplication with a diagonal matrix D
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4.2 Basics of Hopf algebras

4.2.1 Algebras

In this section we will briefly review some basic facts about associative algebras5. We
will formulate the standard multiplication and the unit as maps, and properties like
associativity in terms of compositions of those maps. This might look awkward at first,
but having established this language it is straightforward to formulate the axioms for
coalgebras, and finally, Hopf algebras.

Definition 5 (Associative Algebra). An associative algebra a over a field K with
identity is a linear vector space over K together with linear maps µ : a ⊗ a → a, the
multiplication, and η : K → a, the identity, such that the following diagrams commute:

a ⊗ a ⊗ a
id⊗µ−−−→ a ⊗ a

µ⊗id





y





y

µ

a ⊗ a
µ−−−→ a

a ⊗ K
id⊗η−−−→ a ⊗ a

∼=




y





y

µ

a
id−−−→ a

K ⊗ a
η⊗id−−−→ a ⊗ a

∼=




y





y

µ

a
id−−−→ a

The ∼= denotes the canonical identification λ ⊗ a = λa, λ ∈ K, a ∈ a .
It is easily seen that the first diagram expresses the well known associativity law: Let
a, b, c ∈ a, then we get6 µ(µ(a, b), c) = (µ(a, µ(b, c)), or, writing simply ab := µ(a, b),
(ab)c = a(bc). The diagrams involving the identity express nothing else than µ(η⊗ id(λ⊗
a)) = λ1a = λa = aλ = µ(id⊗ η(a⊗λ)), λ ∈ K. Commutativity, which we do not require
in general, can be expressed with the help of the permutation map σ : a ⊗ a → a ⊗ a

defined by σ(a ⊗ b) = b ⊗ a. Then commutativity is equivalent to the commutativity of
the following diagram:

a ⊗ a
µ−−−→ a

σ





y





y
id

a ⊗ a
µ−−−→ a

5When we just speak about an algebra, we usually assume associativity, unless otherwise stated.
6Writing µ(a, b) might seem to be not completely correct, since this would usually mean that (a, b) ∈

a × a, and not in a ⊗ a, as we required in the definition. Nevertheless, defining µ just on the cartesian
product is still sufficient, since it would then uniquely extend to the tensor product. Indeed, this is the
way one usually proceeds.
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This simply gives µ(a, b) = µ(b, a).

4.2.2 Coalgebras

With the definition of an algebra given in the way above, it is easy to give the definition
of a coalgebra, whose structure can be understood as dual to the structure of an algebra.
One simply reverses the arrows in the defining diagrams for algebras.

Definition 6. A coalgebra a over a field K is a linear vector space with linear maps
∆ : a → a ⊗ a, ε : a → K, such that the following diagrams commute:

a ⊗ a ⊗ a
id⊗∆←−−− a ⊗ a

∆⊗id

x





x




∆

a ⊗ a
∆←−−− a

a ⊗ K
id⊗ε←−−− a ⊗ a

∼=
x





x




∆

a
id←−−− a

K ⊗ a
ε⊗id←−−− a ⊗ a

∼=
x





x




∆

a
id←−−− a

We call ∆ the comultiplication, or coproduct, and ε the counit. Unlike in the case for
multiplication in an algebra, there might, at first, not be an intuitive way of writing
the coproduct, like µ(a, b) = ab. It is conventional to use Sweedlers notation, ∆a =
∑

a(1) ⊗ a(2). The sum goes over some elements in a ⊗ a, to be specified for a particular
coproduct. Then, coassociativity is written as7

(∆ ⊗ id)∆a = (∆ ⊗ id)a(1) ⊗ a(2) = a(1)(1) ⊗ a(1)(2) ⊗ a(2)

≡ a(1) ⊗ a(2)(1) ⊗ a(2)(2) = (id ⊗ ∆)∆a

We ask the reader to wait for the examples to get a more intuitive understanding. Similarly
to the notion of commutativity of an algebra, one calls a coalgebra cocommutative if the
following diagram commutes:

a ⊗ a
∆←−−− a

σ

x





x




id

a ⊗ a
∆←−−− a

7As usual, we drop the sum sign.
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Later, it will become a task of major importance to investigate coalgebras which are not
cocommutative, but almost in a well defined sense. That is why we introduce an extra
symbol for the opposite comultiplication, ∆op := σ∆. Then cocommutativity simply
means ∆a = ∆opa, ∀a ∈ a.

4.2.3 Hopf algebras

In this section we want to merge the two structures of the previous sections, algebras and
coalgebras, into one object called bialgebra. This is to be done in a compatible way. If
such a bialgebra allows for an additional map called antipode, we get a Hopf algebra.

Definition 7 (Hopf algebra). A bialgebra a over a field K is a bialgebra, i.e. an algebra
and a coalgebra s.t. the comultiplication and counit are algebra homomorphisms, i.e.

∆(ab) = ∆(a)∆(b) ∆(1) = 1 ⊗ 1 (4.10)

ε(ab) = ε(a)ε(b) ε(1) = 1, (4.11)

and the multiplication and unit are coalgebra homomorphisms. This means that the first
three diagrams below commute. If there exist an additional antihomomorphism S : A → A,
i.e. S(ab) = S(b)S(a) such that the last two diagrams below commute, we call the bialgebra
a Hopf algebra.

a ⊗ a
∆◦µ−−−→ a ⊗ a

∆⊗∆





y

x





µ⊗µ

a ⊗ a ⊗ a ⊗ a
id⊗σ⊗id−−−−−→ a ⊗ a ⊗ a ⊗ a

a ⊗ a
ε⊗ε−−−→ K ⊗ K

µ





y





y

∼=

a
ε−−−→ K

a ⊗ a
η⊗η←−−− K ⊗ K

∆

x





x





∼=

a
η←−−− K

a ⊗ a
S⊗id−−−→ a ⊗ a

∆

x









y

µ

a
η◦ε−−−→ a

a ⊗ a
id⊗S−−−→ a ⊗ a

∆

x









y

µ

a
η◦ε−−−→ a
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The first three diagrams express the homomorphism properties of the appropriate maps,
and the last two are part of the definition for the antipode. The appearance of the per-
mutation map in the first diagram can be understood as follows: In general, if a, b are
two coalgebras, then their tensor product a ⊗ b can naturally be equipped with a coal-
gebra structure with the counit εa⊗b(a ⊗ b) = εa(a)εb(b) and coproduct ∆a⊗b(a ⊗ b) =
a(1) ⊗ b(1) ⊗ a(2) ⊗ b(2), where we used Sweedlers notation ∆c(c) = c(1) ⊗ c(2), c = a, b. The
permutation of the second and third factor is necessary, since the coproduct should live
in a ⊗ b ⊗ a ⊗ b. If a = b, the permutation of course remains.

Before introducing some examples, let us emphasise that the definitions of this section
can be easily generalised to superalgebras. Basically, one can use physicists intuition,
i.e. one should always pick up a minus sign whenever interchanging two odd elements.
For instance, the permutation map should be substituted by the graded permutation
σ(a ⊗ b) = (−1)|a||b|(b ⊗ a).

4.2.4 Examples

Universal enveloping algebra

Let us come to a very easy example of a Hopf algebra, which we will also generalise later.
We will show that, in a certain sense, all Lie algebras can be equipped with a Hopf struc-
ture. However, Lie algebras themselves are not even associative algebras, so they cannot
be directly turned into Hopf algebras. Instead, we will introduce the universal enveloping
algebra of a Lie algebra, and show that it is indeed a Hopf algebra.

As a physicists, one usually thinks of Lie algebras as some matrix algebras. For such, it
is no problem to perform operations like the ordinary product of two or more generators,
or compute things like Casimirs. However, from the purely mathematical side, a Lie
algebra g is only defined as a vector space with an antisymmetric Lie bracket which
satisfies the Jacobi identity. Only on representation spaces, this Lie bracket becomes the
ordinary commutator, i.e. [A,B] = AB − BA, in general, [A,B] simply denotes another
element in g. Additionally, as mentioned above, a Lie algebra is not associative (except
for few, simple cases). Mathematically, one would like to have associativity, to carry over
general results from the theory of associative algebras to Lie algebras. And for physics
one would like to have a mathematically rigorous defined object which somehow confirms
the physicists intuition. For all this, one introduces the universal enveloping algebra of
a Lie algebra. One starts with the tensor algebra T (g), which consists formally of all
powers of elements of g, but one would like to identify an element like AB −BA with the
Lie bracket [A,B]. For this, one divides out the ideal I generated by elements of the form
AB−BA− [A,B]. This gives the universal enveloping algebra of a Lie algebra g. Besides
the standard literature cited at the beginning of this chapter, some explicit informations
on universal enveloping algebras can be found in [71].

Definition 8 (Universal enveloping algebra). The tensor algebra T (g) of a Lie alge-
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bra8 is defined as

T (g) =
∞

⊕

n=0

g⊗n, (4.12)

where g0 ≡ K. It has the tensor product as its natural product, i.e.

(a1 ⊗ · · · ⊗ an)(b1 ⊗ · · · ⊗ bm) := (a1 ⊗ . . . an ⊗ b1 · · · ⊗ bm). (4.13)

The universal enveloping algebra is defined by

U(g) = T (g)/I, (4.14)

where I is the ideal generated by elements AB − BA − [A,B], A,B ∈ g.

An element like the quadratic Casimir C = κabT
aT b of a semi simple Lie Algebra lives in

the universal enveloping algebra. Whereas it is easily seen that U(g) forms an algebra,
with the product inherited from the tensor product of the tensor algebra, it turns out that
it can also be equipped with a coproduct and an antipode, making U(g) a Hopf algebra:

∆(J) = J ⊗ 1 + 1 ⊗ J (4.15)

ε(J) = 0 (4.16)

S(J) = −J ∀J ∈ g (4.17)

∆(1) = 1 ⊗ 1 (4.18)

ε(1) = 1 (4.19)

S(1) = 1 (4.20)

For all other elements of U, one gets ∆, ε, S via the homomorphism property. What one
needs to show is that these definitions are compatible with the Lie algebra structure,
e.g. that ∆(AB − BA) = ∆([A,B]). This is easy to show using the homomorphism
property of ∆. One notices that, independently of whether we started with an abelian
Lie algebra, U(g) is always cocommutative. From the construction it is clear that U(g) is
infinite dimensional. By the Poincare-Birkhoff-Witt theorem, a basis is given by ordered
monomials in the basis elements Ti of the Lie algebra, i.e. elements Ti1Ti2...T1k, with
i1 ≤ i2 ≤ ... ≤ ik form a basis. However, the representation theory of U(g) is basically
the same as the one of g.
Let us show by an example that the introduced structures appear naturally in physics.
To calculate the quantum numbers of a tensor product, that is, a multi particle state,
which are associated to certain continuous symmetries, one expects additivity. Take for
simplicity an su(2) symmetry, and two spin s particles, with z-components s1, s2. Then

8This definition works for any vector space.
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the tensor product state |s1s2〉 = |s1〉⊗ |s2〉 is expected to have total spin s1 + s2, that is,
the eigenvalue of the Sz acting on the tensor product should be s1 + s2. Mathematically,
the generators of a Lie algebra act on double tensor products via the coproduct. We get

π ⊗ π(∆Sz)|s1s2〉 = (π(Sz) ⊗ 1 + 1 ⊗ π(Sz))|s1s2〉 = (s1 + s2)|s1s2〉, 9 (4.21)

which is exactly what we want. The action of the other generators is given in the same
fashion.
Now there is the obvious question of how to act with the Lie algebra on higher tensor
products. Let us see what happens for the triple tensor product. We have two possibilities
to get an action on it: either via (∆⊗ 1)∆, or via (1⊗∆)∆. But those two are the same
by the coassociativity property of the Hopf algebra. Let us see what happens for U(g).
We simply get

∆(2)(J) := (1 ⊗ ∆)∆(J) ≡ (∆ ⊗ 1)∆ (4.22)

= 1 ⊗ 1 ⊗ J + 1 ⊗ J ⊗ 1 + J ⊗ 1 ⊗ 1. (4.23)

Inductively, we define

∆(n) := (1 ⊗ ... ⊗ 1 ⊗ ∆)∆(n−1).10 (4.24)

We see that the coproduct gives us precisely what we want, namely, that a symmetry
algebra acts on a tensor product as a sum of the actions on the individual factors of the
tensor product.

Group algebras

If we have a (finite) group G, we can also embed it into a larger, associative structure
which can be equipped with a Hopf structure. If {g1, . . . gn} are the elements of the group,
we can consider the space KG of formal linear combinations a =

∑

akgk, ak ∈ K, gk ∈ G
of those elements, so we get a vector space. Then the product is naturally given by the
group multiplication, the unit by the unit of the group, and the additional Hopf algebra
structures are defined by

∆(g) = g ⊗ g

ε(g) = 1 (4.25)

S(g) = g−1 ∀g ∈ G.

Again, by linearity of the maps, those definitions extend to the whole group algebra KG .
The Hopf algebra axioms are easily verified. One notices that the antipode plays the role
of the inverse. We will not deal with pure group algebras in what follows. However, we
will encounter certain important elements in our Hopf algebras of interest which satisfy
equation (4.25), they will be called grouplike.

9π denotes the representation. We will often be sloppy and drop π, using the same symbol for a
generator and its matrix representation.

10This definition remains valid for any coalgebra.
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4.3 Quasitriangular Hopf algebras

4.3.1 Definitions

In the examples we encountered so far, the additional Hopf algebraic structures, that
is ∆, S, ε, were rather trivial. They have simply cast some expected things, e.g. the
additivity of quantum numbers of continuous symmetries, into a new language. The Hopf
algebras have also been cocommutative, i.e. ∆ = ∆op. In this section we want to drop this
property of cocommutativity, though not completely, but in a controlled way. We want
to consider Hopf algebras where the opposite coproduct is given via conjugation of the
standard coproduct. This leads us to the notion of quasi cocommutative Hopf algebras11.

Definition 9 (quasi cocommutative Hopf algebras). A Hopf algebra is called quasi
cocommutative if there exists R ∈ a ⊗ a, which is invertible and satisfies

∆op(a) = R∆(a)R−1 ∀a ∈ a. (4.26)

For reasons which will become clear later, we are especially interested in quasi cocom-
mutative Hopf algebras where R satisfies two additional conditions. This leads us to the
notion of quasitriangularity. Before giving the definition, let us fix some notation. Let us
write R =

∑

ri ⊗ rj. This sum is not necessarily understood as a base expansion, but
a formal sum over any elements ri, rj ∈ a. We will also allow for infinite series, ignoring
mathematical subtleties arising in such case. Furthermore, we will use the handy expres-
sions R12 = R ⊗ 1, R13 =

∑

ri ⊗ 1 ⊗ rj, R23 = 1 ⊗ R when working in the triple tensor
product.

Definition 10 (quasitriangular Hopf algebra). A Hopf algebra is called quasitrian-
gular, if it is quasi cocommutative and the following additional identities hold:

(∆ ⊗ 1)(R) = R13R23 (4.27)

(1 ⊗ ∆)(R) = R13R12 (4.28)

The element R of a quasitriangular Hopf algebra is called the universal R matrix. The
importance of this abstract definition becomes clear with the following theorem:

Theorem 1. The universal R matrix of a quasitriangular Hopf algebra satisfies the fol-
lowing relations:

R12R13R23 = R23R13R12 (4.29)

(S ⊗ 1)R = (1 ⊗ S−1)R = R−1 (4.30)

These equations are called the Yang Baxter equation (YBE) and the crossing equation.
They play an important role in the theory of integrable systems, as we will see later.

11also called almost cocommutative
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4.3.2 Quantised universal enveloping algebras

Let us come to a first example of a Hopf algebra which is not cocommutative anymore, but
still quasi triangular. We start with a semisimple Lie algebra or basic Lie superalgebra g,
or more precisely, its universal enveloping algebra U(g). It turns out that U(g) allows for
a deformation Uq(g) with a complex parameter q 6= 0, such that the resulting structure is
a quasitriangular Hopf algebra. Unlike U(g), it is not cocommutative anymore. However,
one recovers U(g) in the limit q → 1. We will first give the definition in terms of the de-
formed Serre-Chevalley generators. Later, we will briefly discuss the general construction
method of the quantum double.

Definition 11 (Quantised (super)algebras). The quantised (super)algebra Uq(g) of
a Lie (super)algebra g is defined by the generators hi, e

±
i , i = 1, ...r, a set τ ⊆ {1, . . . , r}

denoting the odd generators and relations

[hi, hj] = 0 (4.31)

[hi, e
±
j ] = ±Aije

±
j (4.32)

[e+
i , e−j ] = δij

ki − k−1
i

q − q−1
(4.33)

(adq±e±i )Nije±j = 0 i 6= j (4.34)

We used12 ki := qhi , and the notations of definition 4. Furthermore, we introduced the
q-commutator or q-deformed adjoint

(adqe)e
′ = [e, e′]q := ee′ − (−1)(|e||e′|)q(e,e′)e′e, (4.35)

with the scalar product of the corresponding roots (e, e′) in the root space.
Uq(g) can be equipped with a coproduct, counit and antipode, making it a Hopf algebra:

∆(hi) = hi ⊗ 1 + 1 ⊗ hi (4.36)

∆(e+
i ) = e+

i ⊗ 1 + k−1
i ⊗ e+

i (4.37)

∆(e−i ) = e−i ⊗ ki + 1 ⊗ e−i (4.38)

S(hi) = −hi (4.39)

S(e+
i ) = −kie

+
i (4.40)

S(e−i ) = = −e−i k−1
i (4.41)

ε(hi) = ε(e±i ) = 0 ε(1) = 1 (4.42)

This Hopf algebra is quasitriangular with the following universal R matrix (see [70]):

12Rigorously, one should consider ki, k
−1
i as two independent generators with kik

−1
i = 1, and not as an

infinite series. One could write the commutation relations without explicitly referring to hi. However, to
write down the universal R matrix one needs hi anyway, so we will ignore those mathematical subtleties
and allow those infinite power series to live in the algebra.
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R =

(

∏

γ∈positive roots

Rγ

)

K (4.43)

Rγ := expqγ
((−1)|eγ |a−1

γ (q − q−1)e+
γ ⊗ e−γ ) (4.44)

K := q(
∑

ij(A
−1)ijhi⊗hj) (4.45)

Here we introduced the q-exponential function expq(x) :=
∑

xn

(n)q !
, where (n)q := 1−qn

1−q
,

(n)q! := (1)q(2)q...(n)q and qγ := (−1)|eγ |q−(γ,γ). 13 The number ai one gets for the non

simple roots γ fixing appropriately the relation [eγ, e−γ ] = aγ
kγ−k−1

γ

q−q−1 .

The quantum double

After giving these direct definitions of a quantised universal enveloping algebra Uq(g), we
want to sketch how one can obtain it via the quantum double. The quantum double is
a much more general method to construct quasitriangular Hopf algebras, which is one of
the reasons we want to discuss it here. The other reason is that the quantum double for
the q deformed enveloping algebra contains an extra central grouplike element, which we
will relate in chapter 6 to a length changing operator of a certain spin chain.
The quantum double can be constructed for any two Hopf algebras a, b, provided there
exists a non-degenerate bilinear pairing 〈, 〉 : a× b → K which makes the Hopf structures
of a, b dual to each other, that is

〈a, b1b2〉 = 〈∆a, b1 ⊗ b2〉
〈a1a2, b〉 = 〈a2 ⊗ a1, ∆b〉

〈1, b〉 = ε(b)

〈a, 1〉 = ε(a)

〈S(a), S(b)〉 = 〈a, b〉 . (4.46)

We see that this bracket makes the product and unit of the one Hopf algebra dual to the
coproduct and counit of the other Hopf algebra.
The quantum double D of a and b is the unique Hopf algebra which contains a, b as Hopf
subalgebras and satisfies the additional requirements

a ⊗ b 3 a ⊗ b 7→ ab ∈ D is a vector space isomorphism

ba =
∑

〈a1, S(b1)〉 〈a3, b3〉 a2b2. (4.47)

We do not want to dwell too long on those details, we simply want to mention that the
first requirement means that a ⊗ b is canonically and isomorphically embedded into D,

13There are different conventions in the literature concerning the definition of the q-exponential. A one

often used is expq2(x) =
∑ q−m(m−1)/2

[m]! xm, with [n] = qn−q−n

q−q−1 .
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i.e. if one has bases ai ∈ a, bj ∈ b, then aibj is a basis in D. The second line tells us
how to express elements ba ∈ D in terms of elements of the form ab, hence gives us the
opportunity to express those elements in terms of the above mentioned basis aibj. Instead
we want to emphasise that the quantum double is a quasitriangular Hopf algebra, with
the simple looking universal R matrix

R =
∑

ai ⊗ bi, (4.48)

where ai is, as before, a basis of a, but bi is now the corresponding dual basis of b,
identified with the dual bracket.
Let us sketch as an example how one can use this construction for our deformed universal
enveloping algebras. We can take a = b+, b = b−, where b± are the q deformed Borel
subalgebras containing the positive and negative roots, respectively. Both also contain
the Cartan subalgebra h. Indeed, we can find a non degenerate dual pairing between
those two. Let us restrict to Uq(sl(2)), with the Borel subalgebras a = ẽ, k± = q±h and
b = f̃ , k̄± = q±h̄. Here we doubled the Cartan subalgebra, getting k±, k̄± as independent
elements. Roughly speaking, k and k̄ are dual via the dual bracket, as are ẽ and f̃ .
Interestingly, one can do the variable transformation e = ẽ, f = Bf̃ , k = Bt, k̄ = B−1t,
where it turns out that B is grouplike and central. Let us state the complete relations for
the quantum double in this form14:

tet−1 = qe, tft−1 = q−1f,

[e, f ] =
t2 − t−2

q − q−1
(4.49)

(4.50)

∆(e) = e ⊗ t + (Bt)−1 ⊗ e, ∆(f) = f ⊗ t + Bt−1 ⊗ f

∆t± = t± ⊗ t±, ∆B± = B± ⊗ B±

ε(e) = ε(f) = 0, ε(t±) = ε(B±) = 1

S(e) = −B−1e, S(f) = −Bf,

S(t±) = t∓, S(B±) = B∓ (4.51)

We see that B decouples from the commutation relations, e.g. it is not only central,
but also doesn’t appear on the right hand side of the products of the other elements.
Hence one has the algebra isomorphism D ∼= Uq(sl(2)) ⊗ span(Bn, n ∈ Z). However, the
comultiplication part is twisted. One can use a so called twist element to untwist the
coproduct, i.e. one can recover the usual Uq(sl(2)) coproduct and antipode. However,
usually in the literature one obtains Uq(sl(2)) directly by setting B → 1. We presented

14Note the slight change of definition of the Hopf structure of the q-deformed part, compared to
definition 11. Both definitions are equivalent. One can use different conventions by rescaling the roots
with some powers of qh.
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the quantum double in this form due to the similarity of this element B with a length
changing operator appearing at a spin chain, which we will discuss in section 6
Let us finally present the universal R matrix (4.48) in terms of the generators used before.

We need to set t = q
h
2 , B =: ew with w as a new central generator, and for convenience

we will also rescale v := w
ln(q)

, t = qh and get [58]

R = q
−1
2

h⊗v(q−
1
2
v⊗vq

1
2
h⊗he

(1−q−2)q
h
2 e⊗q−

h
2 f

q−1 )q
1
2
v⊗h. (4.52)

As we said, in the literature one usually takes the limit B → 1, i.e. w, v → 0. Then the
pieces to the left and right of the bracket would vanish, and one would get the universal
R matrix of Uq(sl(2)). Here, we want to take q → 1 instead15. Then the part in the

middle would vanish, except for the piece q−
1
2
v⊗v = e−

1
2 ln(q)

w⊗w, which would diverge, but
it is central and quasitriangular on its own, so discarding it leaves us with a universal R
matrix

R = q
−1
2

h⊗vq
1
2
v⊗h = e

−1
2

h⊗we
1
2
w⊗h (4.53)

which is still quasitriangular, and intertwines (4.51) for q → 1 , i.e. t → 1. In this limit
the ordinary sl(2) commutation relations are restored. The remaining deformation of the

coproduct can be undeformed with a twist16 F = e
−1
2

h⊗w, which then automatically gives
the universal R matrix.

15I thank A. Torrielli for showing the consistent interchange of the two limits.
16I thank P.Schupp for showing me this twist deformation.
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Chapter 5

Spin chains and the AdS/CFT
correspondence

In 2002, Minahan and Zarembo [12] made the exciting discovery that there is a corre-
spondence between operators in planar SYM theory in the sector of the scalar fields,
which transform under the so(6) R symmetry algebra, and so(6) symmetric spin chains.
The one-loop dilatation operator corresponds to the Hamiltonian of this spin chain, i.e.
the energy eigenvalues correspond to the scaling dimensions. This correspondence was
soon generalised to all sectors at one-loop in [13]. The strength of this correspondence
lies in the fact that the spin chain is integrable, allowing the use of the Bethe ansatz
to diagonalise the Hamiltonian. This method was originally introduced by Bethe [72]
to solve the Heisenberg XXX spin chain, with much more advanced mathematical tech-
niques being developed later, see the review [26] for algebraic Bethe ansätze. We will
only briefly sketch how one can use Bethe ansätze to obtain scaling dimensions of gauge
theory operators, starting with the simplest example of operators in the su(2) subsector.
For more details concerning the applications of spin chains, Bethe ansätze and the role
of the dilatation operator in the AdS/CFT correspondence we refer the reader to the re-
views [56], [50], [73], [74]. We then want to shift our interest towards the S matrix of the
spin chain with the full superconformal symmetry, because the S matrix, as argued in [21],
is the object of greatest importance to uncover the spectrum in this, as widely believed,
integrable model. This S matrix is invariant under a residual u(1) n (psu(2|2))2

n R
3 as

part of the full superconformal algebra, and has been, up to a prefactor, derived in [22]. In
fact, the invariance under the additional u(1) symmetry could not been shown directly for
the spin chain S matrix, since it could not be represented on the standard representation
space. We will study the fundamental representation of psu(2|2)n R

3 in some detail, and
present a novel infinite dimensional representation space on which on can also represent
the u(1). We will then argue that the S matrix is also invariant under this u(1). We will
conclude the chapter comparing the results from the spin chain with results from string
theory.

39
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5.1 su(2) chain

Let us consider the subsector su(2) of the so(6) R-symmetry algebra, and let Z,W be two
complex scalars transforming as an su(2) doublet. They are given in terms of the real
scalars from section 3.2 via Z = φ5 + iφ6 and W = φ3 + iφ4. We consider gauge theory
in the planar limit, and are interested in gauge invariant single trace local operators 1

transforming under this symmetry. They looks like

OJ1J2 := tr(ZWWZ . . . W ) + . . . , (5.1)

where J1, J2 denote the number of fields Z,W inside the trace. The dots behind the
trace should indicate some linear combinations of traces with permutations of the fields
Z,W , which we will later choose such that the resulting operators are diagonal with
respect to the dilatation operator. Setting |↑〉 := Z, |↓〉 := W , we can write the operator
TrZWWZ . . . W as a spin chain

OJ1J2 = |↑↓↓↑ ... ↓〉 (5.2)

which transforms in the spin 1
2

representation of su(2). One thing to note is that the trace
is cyclic, hence, we should implement periodic boundary conditions for the spin chain.
Now as usual in conformal field theories we are interested in the scaling dimensions ∆
of the operators. The scaling dimensions are the eigenvalues of the dilatation operator,
which we write in planar perturbation theory as

D =
∑

n=0

g2n
Y MD2n. (5.3)

The classical dimension is simply the length of the spin chain ∆0 ≡ L = J1 + J2, because
the dimension of a scalar field is one. As was first observed by Minahan and Zarembo
in [12] for the full so(6) sector, it turns out that the one-loop correction to the dilatation
operator is the Hamiltonian of the spin chain, which is in the case of su(2) in spin 1

2

representation the Heisenberg XXX 1
2

spin chain:

D2 = g2H (5.4)

H =
L

∑

k=1

Hk,k+1, where (5.5)

Hk,k+1 = Ik,k+1 − Pk,k+1 =
1

2
(1 −−→σ k

−→σ k+1) (5.6)

This operator acts on nearest neighbours, Ik,k+1 is simply the identity, and Pk,k+1 permutes
the two sites k and k+1. Hence, diagonalising the dilatation operator (to one loop order)
is equivalent to finding the spectrum of this Hamiltonian. One could do so by ordinary
methods of linear algebra, but for longer chains the Hilbert space is too large to do this

1Multi trace operators need not be considered in the planar limit, since the different traces of a multi
trace operator do not interact.
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efficiently. However, the eigenvalue problem can also be solved by the much more efficient
Bethe ansatz techniques, which were first developed by Bethe [72].
Let us start with the vacuum state of the XXX spin chain. Due to the positive sign in
front of the Hamiltonian, the vacuum is ferromagnetic. We choose

|0〉 = |↓ . . . ↓〉. (5.7)

Then obviously H|0〉 = 0. Let us find the first excited states, the magnons. We denote
by

|n〉 := |↓ ... ↓↑↓ ... ↓〉 (5.8)

the state where an up spin sits at the n-th site, and all others are spin down.
Due to the homogeneity of the Hamiltonian we expect a plane wave as the energy eigen-
state. We find

|p〉 =
L

∑

n=1

eipn|n〉, (5.9)

where we regard p as the magnon momentum. Such state is an eigenvector of the Hamil-
tonian with eigenvalue

H|p〉 = 4 sin2 p

2
|p〉. (5.10)

Lets go on and find two particle eigenvectors. Again, we first define the position eigenstate
as

|n1n2〉 = |. . . ↓↑↓ . . . ↓↑↓ . . .〉, (5.11)

where the upspins sit at the n1-th and n2-th site, and n1 < n2. To find the general two
magnon energy eigenstate we make the general ansatz

|Ψ〉 =
∑

n1<n2

Ψ(n1, n2)|n1n2〉, (5.12)

which we plug into the Schrödinger equation H|Ψ〉 = E|Ψ〉. Now we have to distinguish
two cases, whether or not the two magnons are adjacent:

n1 < n2 − 1 : EΨ(n1, n2) = 2Ψ(n1, n2) − Ψ(n1 + 1, n2) − Ψ(n1, n2 + 1)+ (5.13)

+2Ψ(n1, n2) − Ψ(n1 − 1, n2) − Ψ(n1, n2 − 1)

n1 = n2 − 1 : EΨ(n1, n2) = 2Ψ(n1, n2) − Ψ(n1 − 1, n2) − Ψ(n1, n2 + 1) (5.14)

The solution was found in [72] to be a linear combination of an incoming plane wave, and
and outgoing plane wave where the particles have exchanged their momenta, namely

Ψ(n1, n2) = eip1n1+ip2n2 + S(p2, p1)e
ip2n1+ip1n2 . (5.15)
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Here we introduced the two particle scattering matrix S(p1, p2). We can also easily see
that the energy of the two magnon state is simply the sum of the energies of both magnons,
i.e.

E = 4 sin2 p1

2
+ 4 sin2 p2

2
. (5.16)

One can also read off the two particle S matrix to be

S(p1, p2) = −ei(p1+p2) − 2eip1 + 1

ei(p1+p2) − 2eip2 + 1
. (5.17)

In particular, no particle production or annihilation takes place, and the magnons can
only exchange their momenta.
We should also implement appropriate boundary conditions for a finite system of length
L, i.e. the wave function should satisfy

Ψ(n1, n2) = Ψ(n2, n1 + L). (5.18)

Note that we have interchanged the arguments due to the convention that the first argu-
ment is always smaller than the second. From this we get the Bethe equations

eip1L = S(p1, p2) (5.19)

eip2L = S(p2, p1). (5.20)

Together with S(p2, p1) = S(p1, p2)
−1, this gives the solutions p1 + p2 ∈ 2πZ for the two

magnon problem. Implementing also the total momentum constraint p1 = −p2 one can
solve the two magnon problem and gets p1 = 2πn

L−1
.

As we mentioned before, the XXX spin chain is an integrable model, meaning that we
have infinitely many conserved charges. This implies that not only the total momentum
is conserved, but the momenta of each magnon are conserved individually. Scattering can
at most exchange the momenta of the particles, and no particle production or annihilation
can appear. Additionally, the process of M magnon scattering factorises into several two
magnon scatterings, and the order of those two particle scattering processes does not
matter. We only need to show this for the three magnon scattering process, as in figure
5.1.
This leads to the Yang Baxter equation

S12S13S23 = S23S13S12. (5.21)

For the su(2) chain this means when scattering one magnon with the M − 1 others we
just pick up one phase for each individual two particle scattering process, i.e. instead of
the Bethe equation above we simply have the M magnon Bethe equations

eipkL =
M
∏

i6=k

S(pk, pi). (5.22)
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Figure 5.1: Yang Baxter equation

The Yang Baxter equation is trivial because the S matrix has no real matrix structure, it
is only a one by one matrix. Let us end the discussion of this sector by writing the Bethe
equation in an algebraic form, via the transformation uk = 1

2
cot pk

2
:

(

uk + i/2

uk − i/2

)L

=
M
∏

i6=k

uk − ui + i

uk − ui − i
(5.23)

The total momentum constraint
∑

pk = 0 can be expressed as

M
∏

k

2uk + i

2uk − i
= 1, (5.24)

using cot−1 z = i
2
ln z+i

z−i
.

The other two rank one sectors of super Yang Mills theory, su(1|1) and sl(2, R) are given
by operators of the form TrψMZL−M and Tr(DZ)MZL−M , respectively, where ψ denotes
an adjoint fermion of super Yang Mills theory and D is the covariant derivative. One can
write down appropriate Bethe ansätze for those sectors, see, e.g. [21] for some discussions.
The results so far have been simple. We were only dealing with a rank one subsector, and
the nearest neighbour Hamiltonian (5.4) only gives the dilatation operator to one loop.
So one might wonder whether one can use similarly nice and, compared to direct diago-
nalisation of the dilatation operator, simple Bethe ansätze for the other sectors of higher
rank and/or for higher loops. This is indeed true. In [13] it was shown that the complete
one loop dilatation operator for the full superconformal algebra can be regarded as a spin
chain Hamiltonian, and the appropriate Bethe ansätze were generalised. However, the
more fundamental object suitable to proceed to higher loops and larger sectors turned
out to be the S matrix [21]. Conjectures for all order S matrices and its associated Bethe
ansätze have been proposed in [18], and the S matrix for the su(2|1) subsector has been
derived using symmetry in [35]. The object of main interest, the S matrix for the spin
chain transforming under the full superconformal symmetry, which itself transforms under
a residual u(1) n psu(2|2) n psu(2|2) n u(1) symmetry [50] after choosing an appropriate
vacuum, has been derived in [22]. We will investigate this model in the next section.
Before doing so we should address some of the questions arising from the discussions in
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this section. One of them is that we argued that for integrability we need infinitely many
conserved charges 2. These charges arise as part of a Yangian symmetry and have been
investigated to leading order in gauge theory in [15], [16]. Recent progress on Yangian
symmetry at higher orders in certain subsectors has been done in [75], [76].

Let us finish this section with some thoughts about the meaning of higher orders, and the
dual string theory. We were starting with N = 4 super Yang Mills theory in the planar
limit, i.e. N → ∞, and started as usual perturbatively, i.e. looked at the first corrections
to the scaling dimensions in λ. Indeed, it seems integrability holds beyond one loop, so we
do not need to calculate higher loop Feynman diagrams, as would be the standard case
in perturbative quantum field theory, but can use the Bethe ansatz instead to calculate
energies of spin chains. As we learned in chapter 3, this particular gauge theory is dual to
a string theory on AdS5×S5, so we might wonder if integrability also shows up there. This
is indeed the case. In [14] infinitely many nonlocal charges of the classical superstring on
AdS5×S5 have been shown to exist, and it was possible to construct Bethe ansätze for the
quantum string, see [77], [78]. So we have an integrable model both at large λ, the classical
superstring, and at small λ, a spin chain which describes Yang Mills operators, and on
both sides quantum corrections were calculated and integrability persisted. This lets one
hope that actually the complete model at large N is integrable! Above, we argued that
the S matrix plays a key role for integrability. Hence, naively one would expect that the S
matrices derived on the string and gauge side in some corresponding subsector, or for the
full model, should agree. Indeed, the matrix structure is the same, but from perturbative
calculations on both sides the matrices differ by a dressing factor [79], which is an overall
scalar factor depending only on the spectral parameter and the coupling g ∝

√
λ. This is

precisely caused by the fact that string and gauge theory are perturbatively treatable only
in exactly opposite limits. In fact, getting the correct dressing factor is crucial for the
AdS/CFT correspondence itself, since, after fixing the matrix structure of the S matrix,
this factor is the object which interpolates between string and gauge theory. Hence, we
should have only one S matrix with one dressing phase, whose large g expansion should
reproduce the perturbative results from string theory, and the small g expansion should
give the same answer as perturbative gauge theory. We will address the question of how
to constrain the dressing factor later in section 6.3. A complete dressing factor based on
this constraint has been proposed in [23], [24].

5.2 su(2|2) chain

In this section we want to investigate a spin chain whose S matrix has su(2|2) symme-
try [22]3. Let us start with an su(2|3) symmetric chain, but if we choose in the 3|2 dimen-

2This holds, of course, for theories with infinitely many degrees of freedom, such as field theories.
Classically, in ordinary symplectic geometry, the theorem of Liouville-Arnold states that one needs n

independent integrals of motion on a 2n dimensional symplectic manifold for integrability to hold.
3Here, as in large parts of the literature, we sometimes speak of a g spin chain if the sites itself transform

covariant under g, and sometimes when the S matrix transforming excitations is invariant under g. This is
somewhat bad language, we hope we can make clear what is meant with the introduction to this section.
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sional representation a bosonic vacuum, the excitations transform under su(2|2). How-
ever, the 2|2 dimensional fundamental representation requires a central charge C = ±1

2
,

see [80], [81], [82] and [20]. But the eigenvalue of the central charge should give, in our
model, the energy of the spin chain, which is in general not a multiple of 1

2
. Luckily, this

algebra is very special: It allows for two other non-trivial central charges P,K. Adding
them to the algebra, only the combination C2 − PK is fixed to the value 1

4
in the funda-

mental representation [20], and C can have continuous values.
Let us briefly explain why this particular symmetry algebra is important. Of course, the
most important symmetry algebra in the AdS/CFT correspondence is the full supercon-
formal algebra psu(2, 2|4), and we are interested in a spin chain with this symmetry. The S
matrix is only invariant under a residual symmetry of psu(2, 2|4), which is psu(2|2)2

nR
3,

see [50]. Both copies of psu(2|2) share the same central charges. Hence the full S matrix
scattering those psu(2|2)2

nR excitations factorises into Spsu(2|2)2 = S0(Spsu(2|2)⊗Spsu(2|2)),
and we only need to determine the S matrix in one psu(2|2) sector, which needs to be
centrally extended, as argued above. This was done by Beisert in [22] using only the
invariance of the S matrix under symmetry algebra, where he fixed the S matrix up to the
scalar dressing factor S0, which remained unconstrained by the symmetry. A constrain-
ing equation coming from crossing symmetry was derived by Janik in [25], which we will
briefly discuss later. Solutions for the dressing factor were finally presented in [23], [24].

5.2.1 The centrally extended psu(2|2) algebra

Let us first give the definition of the Lie superalgebra under investigation. The simple su-
peralgebra psu(2|2) consists of the following parts: We have two bosonic su(2)’s, denoted
by {R,R+,R−}, {L,L+,L−} with the usual commutation relations

[

R,R±]

= ±2R± (5.25)
[

R+,R−]

= R (5.26)

[

L,L±]

= ±2L± (5.27)
[

L+,L−]

= L (5.28)

Furthermore, we have 8 fermionic elements, labled by Qα
a ,Sb

β, a, b, α, β = 1, 2, where
the Latin index corresponds to the representation of the R − su(2), whereas the Greek
index corresponds to the L − su(2). To make this more precise we set

R = 2R1
1 = −2R2

2 L = 2L1
1

R+ = R1
2 L+ = L1

2

R− = R2
1 L− = L2

1, (5.29)

and write the commutators simply as
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[Ra
b ,S

c
α]− = δc

bS
a
α − 1

2
δa
b S

c
α,

[Ra
b ,Q

α
c ]− = −δa

c Q
α
b +

1

2
δa
b Q

α
c ,

[

Lα
β ,Qγ

a

]

− = δγ
βQα

a − 1

2
δα
βQγ

a,

[

Lα
β ,Sa

γ

]

− = −δα
γ Sa

β +
1

2
δα
βSa

γ,
[

Qα
a ,Sb

β

]

+
= δb

aL
α
β + δα

βRb
a

[

Qα
a ,Qβ

b

]

+
= 0,

[

Sa
α,Sb

β

]

+
= 0 . (5.30)

The algebra allows for a universal central extension (see [83]) with three central charges
C,P,K, such that the following commutators get modified:

[

Qα
a ,Sb

β

]

+
= δb

aL
α
β + δα

βRb
a + δb

aδ
α
βC

[

Qα
a ,Qβ

b

]

+
= εαβεabP,

[

Sa
α,Sb

β

]

+
= εαβεabK (5.31)

Additionally, the algebra has three outer automorphisms [84] {j, j+, j−}, which form an
sl(2) algebra and act like 4

[j,P] = 2P [j,Q] = Q

[j,K] = −2K [j,S] = −S

[j−,Q1
1] = S2

2 [j+,S2
2] = Q1

1

[j−,Q1
2] = −S1

2 [j+,S1
2] = −Q1

2

[j−,Q2
1] = −S2

1 [j+,S2
1] = −Q2

1

[j−,Q2
2] = S1

1 [j+,S1
1] = Q2

2

[j−,P] = 2C [j+,K] = 2C

[j−,C] = K [j+,C] = P. (5.32)

The other commutators are zero.
Let us hold on for some moment and comment on the meaning of the central extension and
the automorphisms. For ordinary bosonic Lie algebras g, it is known (see e.g. [65]) that any

4Originally, we introduced j with the action given, and checked the consistence with the algebra. This
was done to get an operator which measures the number of inserted Z fields, see the discussion in section
6. The action of j+, j− can then be derived using the Jacobi identity, and that the automorphisms
together form an sl(2).
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central extension by n central elements is trivial, that is, the central extension is the direct
sum g⊕ (u(1))n. In fact, this result almost carries over to basic classical Lie superalgebra.
It holds for almost all of them, except for the series A(n − 1, n − 1) = psl(n|n), n ≥ 2,
which is of main interest here5. Let us see how those algebras look in their fundamental
representation. Generically for sl(n|m), we have (n + m) × (n + m) matrices of the form

M =

(

A B
C D

)

, (5.33)

with the bosonic parts A,D and the fermionic part C,D. The supertrace, defined by
strM = trA − trB, is per definition zero for sl(n|m). One can choose a basis such that
for the bosonic part one almost has A ∈ su(n), B ∈ su(m), but for n 6= m the element

(

mIdn×n 0
0 nIdm×m

)

(5.34)

should also be included in the bosonic part. For n = m this element becomes a multiple of
the identity, hence we get the problem that the identity matrix also satisfies str(Id) = 0,
and multiples of the identity will form an abelian ideal, so sl(n|n) cannot be simple. To
obtain a simple Lie superalgebra out of sl(n|n) we have to factor out this ideal, getting
psl(n|n) = sl(n|n)/span(Id). Generically, it is nothing unusual that one can add the
identity matrix to a matrix algebra, the same happens, e.g., for sl(n), where we get gl(n)
after adding the identity, or sl(n|m), n 6= m, where we get gl(n|m). But in those cases
we have, as argued above, a direct sum of the old, simple Lie algebra and the centre, i.e.
gl(n) = sl(n)⊕ span(Id). The novel feature of sl(n|n) is that its centre is tightly fixed to
the rest, we only have a semidirect product sl(n|n) = psl(n|n) n span(Id). Additionally,
those algebras allow for a continuous outer (or external) automorphism j, which is also
unprecedented for basic, classical Lie superalgebras, where one usually just has discrete
outer automorphisms. In terms of the above fundamental matrix representation it is
natural to have this additional automorphism j, it would simply have the block diagonal
form

j =

(

Idn×n 0
0 −Idn×n

)

. (5.35)

Hence adjoining j to sl(n|n) gives gl(n|n), which consists of all 2n× 2n matrices with the
appropriate grading.
This situation reminds a bit of loop algebras g ⊗ C [t, t−1] of semisimple Lie algebras
g. They also allow for one and only one nontrivial central extension, and one external
automorphism. This is exactly the same for psl(n|n), n ≥ 3. For n = 2, the algebra

5Here, and in fact in large parts of this thesis, we are interested only in algebraic details, so we will
work with complex algebras. Taking appropriate real forms gives the real algebras of interest, such as
psu(2|2).
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which we are studying in this section, the situation is even more weird, and, as far as we
know, without any precedence. If we would adjoin only C and j we would be in the same
situation as for psl(n|n), n ≥ 3, and we could work with the ordinary 2|2 dimensional
matrix representation with C and j represented as before. But it turns out that the
additional central elements P,K introduced in (5.31) are also nontrivial, and the centrally
extended algebra psl(2|2) n span(C,P,K) is now 17 dimensional. If we still want to have
a 2|2 dimensional representation, P and K should, by Schur’s Lemma, also be mapped to
a multiple of the identity, so the representation cannot be faithful anymore. Recalling the
nontrivial commutation relations of the automorphism j with P and K, equation (5.32),
we see that j can neither be represented by (5.35), nor can it be represented by any 4× 4
matrix, since it would then necessarily commute with the identity. Similarly, neither j+ or
j− can be represented by 4×4 matrices. This situation seems mathematically strange, and
one might wonder if one should worry too much about this, in particular, if it can effect
physics. For this we should note that P and K are not part of the full superconformal
symmetry algebra psu(2, 2|4), and neither are j+, j−. However, to construct an S matrix
of this model, it seems we are forced to do this central extension [22]. For this construction
we still do not need any of the automorphisms, so it might not be that serious to leave
them out completely. However, there are mathematical as well as physical reasons why
we might need at least the Cartan part j of the automorphisms. We will deal with the
explicit representation in the next section, and show a way how one can finally represent
the automorphisms in a novel representation. In section 5.2.6 we will argue that the S
matrix of the system is invariant under j. For more discussions on automorphisms of Lie
superalgebras we refer the reader to [84].
We want to close this section with some observations about the curious relation of the
algebra psl(2|2) to the exceptional Lie superalgebra D(2, 1; α). D(2, 1; α) is the only
family of basic, classical Lie superalgebras with a continuous parameter α. They are
all 17 dimensional, and for different α′s they are non-isomorphic, except for α±,−(1 +

α)±,
( −α

1+α

)±
. For α = 1 one recovers the standard Lie superalgebra D(2, 1). Interestingly,

for α → 0, several thing can happen. Let us first describe the full algebra D(2, 1; α): The
bosonic part consists of three sl(2)’s which we denote by Ra

b , Lα
β and Ma

b similarly as in
(5.29). The eight dimensional fermionic part forms a representation of the three sl(2)′s,
hence we write them as Qaαa with the three different indices indicating which sl(2) acts
on them, i.e.

[Ra
b ,Q

cαa] = δc
bQ

aαa − 1

2
δa
b Q

cαa

[

Lα
β ,Qaγa

]

= δγ
βQaαa − 1

2
δα
βQaγa

[Ma
b,Q

aαc] = δc
bQ

aαa − 1

2
δa
bQ

aαc. (5.36)

The commutator of two fermions gives

[

Qaαa,Qbβb
]

= σ1ε
acεαβεabRb

c + σ2ε
abεαγεabLβ

γ + σ3ε
abεαβεacMb

c. (5.37)
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Those three extra constants σ1, σ2, σ3 we introduced here effectively reduce to the one
parameter α, after imposing the constraint σ1 + σ2 + σ3 = 0 and rescaling some of the
generators, in particular one gets α as a ratio of the σ′s. Let us choose σ1 = −1−α, σ2 =
1, σ3 = α. We want to investigate now what happens in the limit α → 0, or, equivalently
α → −1,∞ [84]. In the first step we simply set α = 0 and see that, using the conventions
above, the third sl(2) denoted by Ma

b does not appear on the right hand side of any
commutator [A,B] provided that at least one of the elements A,B is not in this sl(2).
The other elements which are not in this sl(2) form a psl(2|2) algebra. Hence, psl(2|2)
is an ideal in D(2, 1; α), for α = 0. The generators Ma

b act as outer automorphisms on
psl(2|2), and give exactly the same as the generators j, j+, j− we discussed before.

Let us now follow [22], [83] and show how one can also obtain the centrally extended
psl(2|2) n C

3 from the exceptional D(2, 1; α) algebra. Interestingly, we will get it for the
same value α → 0, but only after rescaling the third sl(2) as

C = −αM1
1

P = αM1
2

K = −αM2
1. (5.38)

We take the limit α → 0 and obtain the centrally extended psl(2|2) n C
3 as a contracted

D(2, 1; α) for α = 0. To get the same convention as before we set

εacQα
c = Qaα1

εαγSa
γ = Qaα2. (5.39)

It is very interesting that we can obtain both the centrally extended psl(2|2) n C
3 and

the algebra with automorphisms, sl(2) n psl(2|2), from D(2, 1; α). Of course, we cannot
get both automorphisms and central elements from D(2, 1; α) at the same time. In case
we study a model with psl(2|2)nC

3, as in this section, it will probably not be possible to
make use of this exceptional algebra as long as we also need one or more automorphisms.
However, we should stress that the full model S matrix we are interested in is invariant
under u(1) n psl(2|2)2

n u(1), so one could speculate whether two copies of D(2, 1; α)
could provide the required symmetry.

5.2.2 Fundamental representation

We will now give the 2|2 dimensional fundamental representation of the centrally extended
psu(2|2) algebra [22], [20]. Denote by V the 2|2 dimensional vector space where the first
two entries in a column vector are even, the other two are odd. The representation is
labled by the 3 eigenvalues of the central charges C,P,K, which we write in the form
P = ab,K = cd,C = 1

2
(ad + bc). Then those four parameters a,b,c,d have to satisfy the

constraint ad-bc=1, by consistency with the Lie superalgebra axioms. In terms of the
eigenvalues of the central charges this would read
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C2 − PK =
1

4
. (5.40)

This equation is the shortening condition for the fundamental representation, see [20] for
more group theoretical details. The parameters a, b, c, d allows for a handy representation
of the fermionic generators, which read 6:

Q1
1 =









0 0
0 0

0 0
0 b

a 0
0 0

0 0
0 0









S1
1 =









0 0
0 0

d 0
0 0

0 0
0 c

0 0
0 0









(5.41)

Q1
2 =









0 0
0 0

0 −b
0 0

0 a
0 0

0 0
0 0









S1
2 =









0 0
0 0

0 d
0 0

0 −c
0 0

0 0
0 0









(5.42)

Q2
1 =









0 0
0 0

0 0
−b 0

0 0
a 0

0 0
0 0









S2
1 =









0 0
0 0

0 0
d 0

0 0
−c 0

0 0
0 0









(5.43)

Q2
2 =









0 0
0 0

b 0
0 0

0 0
0 a

0 0
0 0









S2
2 =









0 0
0 0

0 0
0 d

c 0
0 0

0 0
0 0









. (5.44)

(5.45)

For the even generators we get

R1
1 =









1
2

0
0 −1

2

0 0
0 0

0 0
0 0

0 0
0 0









L1
1 =









0 0
0 0

0 0
0 0

0 0
0 0

1
2

0
0 −1

2









(5.46)

R1
2 =









0 1
0 0

0 0
0 0

0 0
0 0

0 0
0 0









L1
2 =









0 0
0 0

0 0
0 0

0 0
0 0

0 1
0 0









(5.47)

R2
1 =









0 0
1 0

0 0
0 0

0 0
0 0

0 0
0 0









L2
1 =









0 0
0 0

0 0
0 0

0 0
0 0

0 0
1 0









. (5.48)

(5.49)

6As usual, we will use the same symbol for the abstract generator and its matrix representation.
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As argued in the previous section, the automorphisms cannot act on this four dimen-
sional representation, since they commute nontrivially with the central charges, which are
by Schur’s lemma given by multiples of the identity, hence they commute with any 4 × 4
matrix. However, we can get a representation of the automorphisms by extending the rep-
resentation in the following way: Instead of dealing solely with the four dimensional vector
space V and constant numbers a, b, c, d, we deal with the space Ṽ := V ⊗ C [a, b, c, d]7.
Now a, b, c, d are regarded as formal parameters. Then the automorphisms act on this
space as the following derivations:

j = a
∂

∂a
+ b

∂

∂b
− c

∂

∂c
− d

∂

∂d
(5.50)

j+ = a
∂

∂c
+ b

∂

∂d
(5.51)

j− = c
∂

∂a
+ d

∂

∂b
(5.52)

Since they are first order differential operators, the commutation relations (5.32) are eas-
ily verified.

For convenience with results to be discussed later we want to perform the following change
of variables, from a, b, c, d to x+, x−, α, γ, g:

a =
√

gγ, b =
√

g
α

γ
(1 − x+

x− ) (5.53)

c =
√

g
iγ

αx+
, d =

√
g

1

iγ
(x+ − x−) (5.54)

The number g is related to the ’t Hooft coupling, g ∝
√

λ.
In those new variables the constraint ad − bc = 1 translates to

x+ +
1

x+
− x− − 1

x− =
i

g
, (5.55)

whereas the central charges look like

C = ig(x− − x+) − 1

2

P = gα

(

1 − x+

x−

)

K =
g

α

(

1 − x−

x+

)

. (5.56)

7
C [a, b, c, d] denotes polynomials in a,b,c,d over the complex numbers. However, in principle there

should be no problem to allow for power series or even for Laurent series. For unitary representations,
which we are ultimately interested in, we should also restrict to real numbers.
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We can write the automorphisms as

j = γ∂γ + 2α∂α (5.57)

j+ = iα
(x+)2((x−)2 − 1)

x−(x− + x+)
∂x+ +

iα

x+ + x−x−((x+)2 − 1)∂x− +
iα2

x+ + x−
x+

x− (1 + x+x−)∂α

(5.58)

j− = − i

α

x+((x−)2 − 1)

x− + x+
∂x+ +

i

α

(x−)2(1/x+ − x+)

x− + x+
∂x− +

iγ

αx+
∂γ + i

x−

x+

1 + x−x+

x− + x+
∂α,

(5.59)

keeping g fixed. The action on tensor products is not clear for the moment. The problem
is that α, g should be global parameters, whereas x±, γ take different values on different
tensor products [20]. Hence, it makes a difference for the automorphisms if one works
with the variables ai, bi, ci, di or x±

i , γi, α, g.

5.2.3 Bilinear Form and Casimir

In this subsection we want to calculate a non degenerate, supersymmetric bilinear form
for our Lie superalgebra, and use it to calculate the second order Casimir in the canonical
fashion. On psu(2|2) n R

3 we take the bilinear form given by (A,B) = str(A,B), where
A,B live in the fundamental representation given above, and str denotes the supertrace
defined in the last section. On psu(2|2) this form is non degenerate, but including the
central charges gives a degenerate form on psu(2|2) n R

3, because the supertrace of a
central element with any other element gives zero. By taking the full algebra sl(2) n

psu(2|2) n R
3 we again get a non degenerate bilinear form8, where the coefficients on the

sl(2) n R
3 part are calculated by the invariance requirement ([A,B], C) = (A, [B,C]).

We get for the nonzero elements of psu(2|2)

(R,R) = 2 (L,L) = −2 (5.60)

(R+,R−) = 1 (L+,L−) = −1 (5.61)

(Q1
1,S

1
1) = −1 (Q1

2,S
2
1) = −1 (5.62)

(Q2
1,S

1
2) = −1 (Q2

2,S
2
2) = −1. (5.63)

For sl(2) we have the usual relations9

(j, j) = 2, (j+, j−) = 1. (5.64)

8This situation again reminds of loop algebras, whose central extensions have a degenerate bilinear
form, and one need to extend the algebra by an automorphism, getting an affine algebra with non-
degenerate form.

9More general, the scalar product of the sl(2) automorphism is not completely fixed, one only has the
relation (j, j) = 2(j+, j−). This is the reason that the central charge part of the Casimir decouples from
the rest.
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Furthermore, we get

(j,C) = (j+,K) = −(j−,P) = (Q2
2,S

2
2) ≡ −1. (5.65)

This allows us to write down the quadratic Casimir J2 = J2
1 + J2

2 + J2
3 , where J2

1 is the
psu(2|2) part, J2

2 is the mixed part containing the automorphisms and central charges,
and J2

3 is the contribution from only the central charges. Since J2
3 commutes separately

with everything, it can be regarded as an independent Casimir. The usual form is

J2 =
∑

κabT
aT b, (5.66)

with κab being the inverse of the Bilinearform κab = (T a, T b).
We get

J2
1 =

1

2
R2 + [R+,R−]+ − (

1

2
L2 + [L+,L−]+) + [Qα

a ,Sa
α]−

→ 1

2
diag(−1,−1, 1, 1). (5.67)

The last line denotes the value of the Casimir in the fundamental representation Ṽ .
Interestingly, unlike one would expect for a Casimir, it is not proportional to the identity
on this representation. It needs the other differential operator part to commute with all
generator:

J2
2 = (−[j,C]+ − [j+,K]+ + [j−,P]+)

= −2jC − 2j+K + 2j−P

= −2Cj − 2Kj+ + 2Pj−

→ (−a
∂

∂a
+ b

∂

∂b
− c

∂

∂c
+ d

∂

∂d
) (5.68)

The third part is only composed of central charges , we get

J2
3 = 2(−C2 + PK). (5.69)

On the fundamental representation it takes the value −1
4

by the shortening condition.
Obviously, [J2

3 , psu(2|2) n C
3] = 0. So we only need to check the commutation relations

with the automorphisms,

[

j,−C2 + PK
]

= (Pj + 2P)K − P(jK + 2K) = 0
[

j+,−C2 + PK
]

= C(j+C − P) − (Cj+ + P)C + 2CP = 0 (5.70)
[

j−,−C2 + PK
]

= C(j−C − K) − (Cj− + K)C + 2CK = 0. (5.71)

We shall drop J2
3 in what follows, since it commutes with everything separately, as shown

above. Let us do some checks on the more interesting part of the Casimir, and start by
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checking the commutation relations with the central charges, which obviously commute
with J2

1 , so we need to show that they commute also with J2
2 . We will work on the basis

of the representation. We get

[

J2
2 ,P

]

=
1

2
(ab − ab) = 0

[

J2
2 ,K

]

=
1

2
(cd − cd) = 0

[

J2
2 ,C

]

=
1

4
(ad − bc + bc − ad) = 0. (5.72)

The most interesting part are the fermionic generators, since here [J2
1,2,Q] 6= 0, [J2

1,2,S] 6=
0. Lets take, as an example, Q1

2:

[

J2
1 ,Q1

2

]

=









1

2









−1 0
0 −1

0 0
0 0

0 0
0 0

1 0
0 1









,









0 0
0 0

0 −b
0 0

0 a
0 0

0 0
0 0

















=









0 0
0 0

0 b
0 0

0 a
0 0

0 0
0 0









. (5.73)

On the other hand,

[

J2
2 ,Q1

2

]

=









0 0
0 0

0 −b
0 0

0 −a
0 0

0 0
0 0









. (5.74)

Hence, the contributions from J2
1 and J2

2 exactly compensate. Similarly, one can show
that this works for all other generators.
A strange thing is that this Casimir cannot be truncated consistently to the matrix part.
Working only with psu(2|2) n R

3 the formally truncated Casimir will not commute, so
we need the extension by the automorphisms, and work with the representation space Ṽ .
One can now use the full Casimir J2 = J2

1 + J2
2 to determine irreducible representations,

by solving the combined matrix and differential equation.

5.2.4 Asymptotic states

Lets take a step back to the 3|2 dimensional representation of su(2|3) consisting of the
fields {Z, φ1, φ2, ψ1, ψ2}, where the first three are bosonic and the latter two are fermionic.
We consider infinitely long spin chains, and choose as the ground state the chain with all
elements being Z:
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|0〉 = |. . .ZZZ . . .〉 (5.75)

An elementary excitation, a magnon with definite momentum p is given by

|X 〉 =
∑

n

eipn|...ZXZ...〉, (5.76)

where the X is inserted at the n-th site. This is similar to the situation for the su(2) case
section 5.1, just that the excitations transform now under the residual symmetry algebra
su(2|2), i.e. X is an element of the vector space V given in section 5.2.2, spanned by
{φ1, φ2, ψ1, ψ2}. We also encounter a unique feature of this spin chain with this symmetry
algebra [22]: The momentum p of an excitation is linked with the labels a, b, c, d of the
representation, in the following fashion:

e−ip = 1 + abgα ≡ 1 + gαP

eip = 1 + cd
g

α
≡ 1 +

g

α
K. (5.77)

Here g is the coupling constant, and α some extra parameter we already encountered in
5.53, where we would get the connection eip = x+

x− . Plugging this into the shortening
condition (5.40), we get for the energy C the dispersion relation

C2 =
1

4
− 4g2 sin2 p

2
. (5.78)

We see from (5.76) that when we insert or remove another ground state field Z to the left
of an excitation, we can exchange it with the excitation and pick up a phase:

|Z±X〉 = e∓ip|XZ±〉 (5.79)

Formally, we could introduce operators B̃, B̃−1, which create or destroy vacuum sites:

B̃±|X 〉 = |Z±X〉 = e∓ip|XZ±〉 (5.80)

We will make use of those, or similar, operators in chapter 6.
For states with single excitations, those inserted Z markers result in an absolute phase.
We should not forget that we have, as for the su(2) chain, an overall momentum constraint
∑

pn = 0, so for one magnon this phase factor even equals one. However, this phase will
become important for multi magnon states since then it will be a relative phase. Lets
first consider a two magnon state

|XY〉 =
∑

n1¿n2

eip1n1+ip2n2|...ZXZ...ZYZ...〉, (5.81)

or more generally, an m magnon state

|X1 . . .Xm〉 =
∑

n1¿···¿nm

eip1n1+···+ipmnm|...ZX 1Z . . .ZXmZ . . .〉. (5.82)
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Xk is inserted at the mk-th site. We consider asymptotic states with nk ¿ nk+1 such
that the distance between two excitations is much larger than the range of interaction,
which grows with the order in the coupling g. Then in principle we could think of the
symmetry algebra su(2|2) acting on each excitation individually. In the language of
universal enveloping algebras, as studied in chapter 4.2.4, this is the same as acting with
the trivial coproduct of the universal enveloping algebra on the excitations, i.e. su(2|2)
acts like

∆0J = 1 ⊗ J + J ⊗ 1 ∀J ∈ su(2|2) (5.83)

on two excitations. However, for this spin chain we encounter a new phenomenon: From
the su(2|3) symmetric point of view, the two fermion state ψ[1ψ2] and the three boson
state φ[1φ2φ3] have the same quantum numbers [34]. Here, the bracket [, ] means total an-
tisymmetrisation, and φ3 ≡ Z. In particular, both states have classical energy dimension
three since scalars have dimension one and spinors have dimension 3

2
in four dimensional

space time10, and their su(2) and su(3) charges are zero. Having the same quantum num-
bers makes them effectively indistinguishable, hence those two states are expected to mix.
But those two states have different length. This implies that the length is not conserved
in this picture, which is not the standard case for spin chains studied by condensed matter
physicists.
As a consequence, at least some of the generators of the residual symmetry algebra su(2|2)
have a length changing effect. This could not be seen from the matrix representation of
section 5.2.2, since, as argued above, for single magnons the length changing has no ob-
servable effect. We will make the length changing visible with the following presentation
as given in [22]:

Ra
b|φc〉 = δc

b|φa〉 − 1

2
δa
b |φc〉,

Lα
β|ψγ〉 = δγ

β |ψα〉 − 1

2
δα
β |ψγ〉,

Qα
a|φb〉 = a δb

a|ψα〉,
Qα

a|ψβ〉 = b εαβεab|φbZ+〉,
Sa

α|φb〉 = c εabεαβ|ψβZ−〉,
Sa

α|ψβ〉 = d δβ
α|φa〉 (5.84)

P|X 〉 = ab|XZ〉
K|X 〉 = cd|XZ−1〉 ∀X ∈ span{φ1, φ2, ψ1, ψ2}. (5.85)

Indeed, those extra Z markers have no effect when restricting to one magnon, and the
equations above tell us the same as those in section 5.2.2, setting

10In general, scalars have energy dimension d
2 − 1 and spinors have dimension d−1

2 in d space-time
dimensions. For d = 4 we already discussed this in chapter 3.2.



5.2. SU(2|2) CHAIN 57

φ1 =









1
0
0
0









, φ2 =









0
1
0
0









ψ1 =









0
0
1
0









, ψ2 =









0
0
0
1









. (5.86)

However, this presentation will make it easier to see the effect of the length changing for
multi magnon states, which we will discuss in the next section. Before doing so, let us
change the basis of the representation space a bit. Let us forget that Z stands for an
individual vacuum field, and formally rescale the bosonic states φ → φ

√
Z. Then the odd

generators act like

Qα
a|φb〉 = aδb

a|ψα
√
Z〉,

Qα
a|ψβ〉 = bεαβεab|φb

√
Z〉,

Sa
α|φb〉 = cεabεαβ|ψβZ− 1

2 〉,
Sa

α|ψβ〉 = dδβ
α|φaZ− 1

2 〉
P|X 〉 = ab|XZ〉
K|X 〉 = cd|XZ−1〉, (5.87)

whereas the action of the even generators remains unchanged.
We do this strange rescaling, because this new basis will be suitable to introduce a Hopf
algebra interpretation of the length changing in chapter 6. One can avoid this rescaling
with a square root, as its done in [32], and still get a Hopf algebra. However, on the string
side a structure where only the fermionic generators change the length has arisen [85],
which we will briefly discuss in section 5.3.1. To get the same for the spin chain we need
this strange rescaling. Mathematically this rescaling with square roots works fine, since it
just results in the appearance of another phase, but the physical meaning remains obscure.

5.2.5 Multi magnon states

Above, we argued that for single magnons an extra Z or Z 1
2 inserted or removed does not

matter. We are dealing with infinitely long chains, and we were, as seen above, allowed to
shift such marker across an excitation picking up only a phase. Lets use the convention of
(5.87), and act in the usual way with the trivial coproduct ∆0 of the universal enveloping
algebra on multiply excited states. For the fermionic generators as well as P,K, we then
encounter some new phenomenon: Some Z 1

2 markers will appear between two excitations.
Shifting the markers to the right we pick up a relative phase. Let us illustrate this with
a particular action of some generator on a two magnon state:
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∆0Q
1
1|φ1φ1〉 ≡ (1 ⊗ Q1

1 + Q1
1 ⊗ 1)|φ1φ1〉

= a1|ψ1
√
Zφ1〉 + a2|φ1ψ1

√
Z〉

= a1e
−i

p2
2 |ψ1φ1

√
Z〉 + a2|φ1ψ1

√
Z〉

≡ a1e
−i

p2
2 |ψ1φ1〉 + a2|φ1ψ1〉 (5.88)

Here, ai means the value of a in the i − th tensor product, i.e. the i-th excitation. As
argued above, we drop the markers once we shifted them to the right. As we will see in
the next section, one can get the same physical effects by trading those length changing
effects of the generators themselves for a deformed coproduct.
Let us briefly comment on the meaning of the strange central extension with the elements
P,K. We were coming from an su(2|3) symmetric spin chain, which does not include
P,K. In the whole picture, we have a psu(2, 2|4) symmetry, and we argued before that
there are no P,K either. On this spin chain picture, we can think of those generators as
generating some kind of gauge transformation [22]. They also arise on the string side, on
which we will briefly comment in sections 5.3.1,5.3.2.
Furthermore, we said that due to the cyclicity of the trace all physical excitations on
the spin chain together should have vanishing momentum, i.e. ei(p1+...pn) = 1. Due to
the linking (5.77) of the representation labels with the momentum p, this is equivalent of
having vanishing total P,K on any tensor product:

∆(n−1)P|X1 . . .Xn〉 =
∑

akbk|X1 . . .XkZ . . .Xn〉

=
∑

akbke
−i(pk+1+...pn)

= α
∑

(e−ipk − 1)e−i(pk+1+...pn)

= α
∑

(e−i(pk+...pn) − e−i(pk+1+...pn))

= α(e−i(p1+...pn) − 1) (5.89)

∆(n−1)K|X1 . . .Xn〉 =
∑

ckdk|X1 . . .XkZ−1 . . .Xn〉

=
∑

ckdke
i(pk+1+...pn)

= β
∑

(eipk − 1)ei(pk+1+...pn)

= β
∑

(ei(pk+...pn) − ei(pk+1+...pn))

= β(ei(p1+...pn) − 1) (5.90)

In particular, on single magnon states the central charges vanish, so we still have su(2|2)
as the symmetry algebra for physical states satisfying the momentum constraint. We
conclude that enhancing the symmetry algebra from su(2|2) to psu(2|2)n R

3 is only seen
on the tensor product.
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5.2.6 The su(2|2) S matrix

We now want to discuss the two particle scattering matrix of the su(2|3) symmetric spin
chain we discussed above, which is invariant under the residual su(2|2) symmetry. The S
matrix is a map

S : V1 ⊗ V2 → V ′
2 ⊗ V ′

1 , (5.91)

where both Vi, V
′
2 are supposed to be fundamental representations11, but the label i de-

notes different sets of labels ai, bi, ci, di or central charges Ci,Pi,Ki, respectively. We have
argued that we have an integrable model, so the S matrix should only permute the mo-
mentum p. Since C is uniquely fixed by p, C should also only be interchanged by the
scattering matrix. However, P and K can change [20], but are restricted by momentum
conservation

P1 + P2 = P′
1 + P′

2 (5.92)

K1 + K2 = K′
1 + K′

2, (5.93)

whereas the shortening condition (5.40) yields

PiKi = P′
iK

′
i. (5.94)

Besides the trivial solution Pi = P′
i, Ki = K′

i, we have the nontrivial one

P′
i = Ki

P1 + P2

K1 + K2

(5.95)

K′
i = Pi

K1 + K2

P1 + P2

. (5.96)

The trivial solution leads obviously to a trivial S matrix, i.e. simply a permutation
operator. The nontrivial one is found up to an overall factor by solving the invariance
equation

∆21JS12 = S12∆
12J ∀J ∈ psu(2|2) n R

3. (5.97)

∆ij simply means that the first tensor product factor lives in representation i, and the
second in representation j, because S was intertwining the representations. The result
of [22], which we present here, was derived using ∆ = ∆op keeping track of the inserted
marker Z±, or the resulting phase factors, and with the length-changing convention (5.84).

11Here, we can work with the ordinary four dimensional representation. We can switch to the repre-
sentations Ṽ without problems.
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S12|φaφb〉 = A12|φ{aφb}〉 + B12|φ[aφb]〉 +
1

2
C12ε

abεαβ|ψαψβZ−1〉

S12|ψαψβ〉 = D12|ψ{αψβ}〉 + E12|ψ[αψβ]〉 +
1

2
F12εabε

αβ|φaφbZ+1〉

S12|ψαφb〉 = K12|ψαφb〉 + L12|φbψα〉
S12|φaψβ〉 = G12|ψβφa〉 + H12|φaψβ〉 (5.98)

A12 = S0
12

x+
2 − x−

1

x−
2 − x+

1

,

B12 = S0
12

(

−1 +
x+

1 x+
2 − 2x−

1 x+
2 + x−

1 x−
2

2x+
1 x−

1 x+
2 x−

2 (1 − 1/x−
1 x−

2 )

x+
1 − x+

2

x−
2 − x+

1

)

,

C12 = S0
12

2γ1γ2

αx−
1 x−

2

1

1 − 1/x−
1 x−

2

x+
2 − x+

1

x−
2 − x+

1

D12 = −S0
12, E12 = S0

12

(

x+
2 − x−

1

x−
2 − x+

1

− x+
1 x+

2 − 2x+
1 x−

2 + x−
1 x−

2

2x+
1 x−

1 x+
2 x−

2 (1 − 2/x−
1 x−

2 )

x+
1 − x+

2

x−
2 − x+

2

)

,

F12 = −S0
12

2α(x+
1 − x−

1 )(x+
2 − x−

2 )

γ1γ2x
+
1 x+

2

1

1 − 1/x−
1 x−

2

x+
2 − x+

1

x−
2 − x+

1

,

G12 = S0
12

x+
2 − x+

1

x−
2 − x+

1

, H12 = S0
12

γ1

γ2

x+
2 − x−

2

x−
2 − x+

1

,

K12 = S0
12

γ2

γ1

x+
1 − x−

1

x−
2 − x+

1

, L12 = S0
12

x−
2 − x−

1

x−
2 − x+

1

. (5.99)

Here we made use of the variables (5.53), which defer slightly from the ones used in [22].
When we change the length-changing convention, as in (5.87), we pick up extra factors
of the form eip/2 in some elements of the S matrix. The overall factor S0

12 could not be
determined by the action of the symmetry generators, it just drops out of the equation
[∆J, S12] = 0. One needs an additional constraint, the crossing equation, which for our
algebra was first derived by Janik [25]. We will investigate this later.
An important property of this S matrix is that it satisfies the Yang Baxter equation
S12S13S23 = S23S13S12. This was calculated perturbatively, see [22], and could later also
be proved using group theoretic methods [20]. It also allows for a classical limit, i.e. an
expansion in 1√

λ
. This was studied in [86], and the part in first order in 1√

λ
was shown to

satisfy the classical Yang Baxter equation, hence it is the classical r matrix. Investigating
the classical r matrix can be useful to see the structure of the full quantum R matrix more
easily.

Let us close with some comments about the invariance of the S matrix under the auto-
morphism j, which looked in these variables like

j = γ∂γ + 2α∂α (5.100)
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on one representation. As we will discuss in chapter 6 in more detail, j will not have any
length changing effect, so its action on a two magnon state is simply given by

∆j = γ1∂γ1 + 2α1∂α1 + γ2∂γ2 + 2α2∂α2 . (5.101)

The problem is that α is usually regarded as a global parameter, i.e. α1 = α2. Allowing
α1, α2, formally to be independent, then we expect that in the S matrix the currently
appearing α should be either α1 or α2

12. In this case it is easily seen that the S matrix is
invariant under ∆j, since only combinations γ

γ
and α

γγ
appear in the S matrix coefficients,

and j does not act on the matrix structure.

5.3 Comparison to the string side

5.3.1 Off-shell symmetry algebra in light cone gauge

We argued above that the symmetry algebra psu(2|2)× psu(2|2) n R
3 plays a special role

for the spin chain picture, namely, it is the residual algebra which acts on the excitations
and leaves the vacuum invariant. In particular, we encountered the need for a nontrivial
central extension of psu(2|2), where only one generator C has a natural interpretation
as a Hamiltonian, or energy eigenvalue, whereas the other central elements P,K can
be thought of as gauge transformations [22]. One might wonder if this algebra, and in
particular its central extension, also arises on the dual string side. This is indeed the
case, and was investigated in [85], so we briefly want to sketch this approach. We start
with the standard sigma model string action [43] with the generalised uniform light cone
gauge [79], [87] and kappa-symmetry fixed, in the phase space form obtained in [78], and
have

S =
λ

2π

∫ ∞

−∞

∫ r

−r

dσdτ(pI ẋI + str(χ†χ̇) −H), (5.102)

where xI , pI are the transverse coordinates and its conjugate momenta, χ are the 16
remaining fermions, and H is the light cone Hamiltonian density, which is the same as
−p−. One can go on and expand the Hamiltonian in the inverse string tension, or number
of fields, after rescaling the fields with the fourth root of the inverse tension. The world
sheet variable σ should also be rescaled such that

r =
πP+√

λ
, (5.103)

gives the string length. P+ is the light cone momentum. This formula one gets from

choosing the light cone gauge such that p+ = 1, i.e. P+ =
√

λ
2π

∫ r

−r
= λ

π
r. Then one can

quantise the string and calculate the energy order by order in perturbation theory. The
residual unphysical degree of freedom which is left in the gauge fixed form is the level
matching condition, which enforces the vanishing of the total world-sheet momentum

12We should confirm this with a detailed calculation, but have not done this so far.
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pws =

∫

dσx′
−, x′

− = − 2π√
λ

(pIx
′
I −

i

2
str(Σ+χχ′)). (5.104)

Here Σ± = diag(±1,±1,∓1,∓1, 1, 1,−1,−1) are Cartan generators of the full psu(2, 2|4),
and Σ+ corresponds to the Hamiltonian, whereas Σ− corresponds to P+. The full algebra
which leaves the Hamiltonian invariant is given by

Σ− × psu(2|2) × psu(2|2) × Σ+, (5.105)

whereas Σ− decouples in the limit P+ → ∞ which we will consider here. Note that a
difference to the plane wave limit is that the AdS5 × S5 radius can still be finite in the
P+ → ∞ limit. This is why we get no contraction of the algebra, as in the plane wave
limit [7], [8]. Σ− is still a symmetry of the system. It corresponds to the generator j which
we introduced as an external automorphism in the spin chain picture. In the quantum

theory it is conjugate to the zero mode x̂
(0)
− of the light cone variable, i.e.

[

P̂+, x̂
(0)
−

]

= −i.

This results in the interpretation of eiαx̂− as a length changing operator, since the action
on a state with definite P+ gives

P̂+eiαx̂− |P+〉 = (α + P+)eiαx̂− |P+〉, (5.106)

hence we still have an eigenstate of P̂+ with changed eigenvalue. As argued before, P+

is basically the string length, so we have found an appropriate analogon of the length
changing operators B± on the spin chain. Indeed, some of the symmetry generators
indeed contain this length changing operator. In [85] it was found that these are precisely
the fermionic generators and the two extra central charges P,K. These generators have
the form

Qα
b ∝

∫

dσe−
1
2
x−f(transverse fields) (5.107)

Sb
α ∝

∫

dσe+ 1
2
x−g(transverse fields), (5.108)

where we want to draw the attention to the appearance of the length changing operator,
and not the dependence on the field content, which we just wrote as some functions f, g
of the fields. As expected, the central charge P = [Q,Q]+ then contains the factor e−x− .
We should mention that this form of the length changing generators is only valid in the
P+ → ∞ limit, so one might ask the question how serious one should take this length
changing from a physical point of view, when it is only valid for infinite lengths. On the
other hand, it will be an interesting question to study what will happen to the central
charges for finite string length. Let us finally comment that the scattering matrix for this
sigma model has been derived perturbatively in [88], where the authors made explicit use
of a Hopf algebra, which we will introduce in chapter 6.
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5.3.2 Giant magnons

In the above section we have identified the symmetry algebra of interest on the string
side, whereas in this section, we want to study which appropriate string states can be
identified with the spin chains or gauge theory operators studied in chapter 5.
On the gauge side we were dealing with operators which can be considered as magnons,
i.e. excitations of a spin chain. On the string side these magnons correspond to so called
giant magnons, which have been introduced by Hofman and Maldacena in [89]. One
gets them as follows: We start with the ’t Hooft limit, and a free string with angular
momentum J on S5. Then we take

J → ∞,

λ, p, (E − J) = fixed. (5.109)

p is the magnon momentum, which also occurred in the BMN operators (3.48) as p = n
J
.

The advantage over the BMN limit is that one can work with finite λ, p. This leads to a
decoupling of quantum and finite volume corrections, i.e. corrections in λ and J , which we
both sent to infinity in the BMN limit. Let us sketch the geometric picture, suppressing
quantum corrections, i.e. taking λ large. Let φ be the angle on S5 corresponding to the
angular momentum J , and let θ the axial coordinate, and the string ground state shall
be sitting at θ = π

2
and a fixed point of AdS5. Hence the motion of the string takes place

on R × S2. The energy of this string configuration is found to be

E − J =

√
λ

π
sin

∆φ

2
, (5.110)

where ∆φ is the difference of angle between the two endpoints of the string at a fixed
time. When one remembers that this result was derived for large λ, and that the energy
of corresponding gauge theory operators was given by

E − J =

√

1 +
λ

π2
sin2 p

2
, (5.111)

the energies agree upon identifying

p = ∆φ. (5.112)

For more detailed discussions the reader is referred to [89], here we want to continue to
briefly discuss the role of the extra central charges P,K, which we encountered in the spin
chain picture. One can choose coordinates 13 on AdS5 × S5 such that two S3’s and the
time are fibred over a space with coordinates x1, x2, y, and for y = 0 one of the spheres
shrinks smoothly to a point. The remaining space spanned by x1, x2 is flat, and a giant
magnon looks like a straight stretched string in this plane.

13We will be very sketchy, because we won’t use those coordinates further. However, they give some
nice picture for the giant magnons. Details on these coordinates can be found in [90].
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Figure 5.2: giant magnons
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Figure 5.3:

Let k1, k2 be the projections of this string on the directions x1, x2, then the angle p is
given by the phase arg(k1 + ik2). It turns out that that those two projections correspond
to the two central elements 14 of the extended supersymmetry algebra su(2|2) n R

2. In
fact, we get

k1
l + ik2

l ∝ i
√

λei
∑

j<l pj(eipl − 1), (5.113)

so k1
l + ik2

l depends on the sum of all momenta to the left of the considered excitation.
This is the same phenomenon we encountered on the gauge theory side (5.89), the central
charges on multi magnon states depend nonlocally on other excitations15. The condition
of having total vanishing momentum here arises because we should have a closed string
as in figure 5.3.2.
From this figure it is also clear why the value of a particular ki depends on the values of
kj, j < i, we simply have k1

l + ikl ∝ ei(pi+pi−1+...p1) − ei(pi−1+...p1) We can think of k1, k2

as momenta in 2 + 1 dimensions, with the energy corresponding to the central charge
of su(2|2). We can extend these three-momentum generators by appropriate Lorentz
generators, which correspond to the generators j, j+, j− we identified for the psu(2|2)nR

3

spin chain. Again, it is clear that the rotation of k1, k2, which is generated by j, is a

14We use the convention of [89] using k1, k2 instead of P,K to make clear that they are part of a
momentum three vector, together with the energy k0. Using a unitary representation in the convention
we had before, i.e. with central charges P,K, we have K = P† ∝ k1 + ik2 and C = k0.

15On the gauge side, we used the ”right-shifting” convention as in [22], but this plays no decisive role.
We will investigate the algebraic origin of this nonlocality further in chapter 6.
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symmetry of this system, since it merely rotates figure 5.3.2. However, in [89] it was
argued that the boosts j+, j− are no symmetry of this system, since we can see from
(5.113) that the absolute value is bounded.
From the point of view of the full superalgebra psu(2|2)nR

3, we have the strange situation
that it is not an ordinary super Poincare algebra, since both the three momenta and the
su(2)’s appear on the right hand side of the supercharges. Anyway, we can effectively
consider scattering in 2+1 dimensions, since the states we are scattering are labled by the
central charge three vector. Since we assume that we have an integrable system [14], the
scattering not only factorises, but also the momenta are only exchanged, as seen before.
The momenta in question are the worldsheet momenta p, from the 2+1 dimensional point
of view it means that k0 ≡ C is unchanged, since it only depends on the momentum p of
the excitation we are scattering. Similarily, the magnitude of k1+ik2 is also fixed, but not
its phase, i.e. the orientation. The matrix structure of the scattering matrix is completely
fixed by the symmetry, so we get the same answer as for the spin chain with the same
symmetry algebra. The only difference is the phase factor, which interpolates between
strong and weak coupling, i.e. between perturbative string and perturbative gauge theory.
We want to end this chapter mentioning that giant magnons have become of major interest
within the community, see e.g. [91], [92], [93], [94], [95], [96], [97], [98].
In [99] some limit has been introduced which interpolates between the giant magnon
regime and the plane wave regime.
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Chapter 6

Algebraic aspects of AdS/CFT

In this chapter, we want to apply at least some of the mathematics developed in chapter
4 to the su(2|2) symmetric spin chain. In the first section we will use a length changing
operator introduced in [32], [33] to deform the coproduct for those symmetry generators
which change the length. We also want to present a novel universal R matrix, which
intertwines the nontrivial coproduct. Furthermore, we will briefly discuss the crossing
equation found in [25], and close with a short sector on the Zamolodchikov-Faddeev
algebra.

6.1 The Hopf algebra of the su(2|2) spin chain

Some of the generators of the algebra we described in the sections 5.2.5, 5.3.1 had an
unusual feature: They changed the length of the spin chain, or world sheet, respectively.
On multi magnon states this resulted in the appearance of a phase. The action of the
algebra on multi particle states was still given by the trivial coproduct. In this chapter
we want to give an alternative action of the symmetry generators on multi particle states
via a non trivial coproduct [32], [33]. We will use the operators B± defined by

B±|X〉 = |Z± 1
2X〉 = e

±ip

2 |X 〉, (6.1)

and work in the setting were the fermionic generators as well as P,K change the length.
To be more precise, we do not want the generators themselves to change the length, but
the new operator B±. This means our generators act now simply as

Qα
a|φb〉 = aδb

a|ψα〉,
Qα

a|ψβ〉 = bεαβεab|φb〉,
Sa

α|φb〉 = cεabεαβ|ψβ〉,
Sa

α|ψβ〉 = dδβ
α|φa〉

P|X 〉 = ab|X 〉
K|X 〉 = cd|X 〉 (6.2)

67
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on one magnon states, but on two magnon states we define the action to be

∆Q = Q ⊗ B + 1 ⊗ Q

∆S = S ⊗ B−1 + 1 ⊗ S

∆P = P ⊗ B2 + 1 ⊗ P

∆K = K ⊗ B−2 + 1 ⊗ K

∆J = J ⊗ 1 + 1 ⊗ J ∀J ∈ su(2) ⊕ su(2) n span{C} (6.3)

Thinking of these equations as living in the 2|2 representation, with B|Xi〉 = e−
1
2
pi|Xi〉,

one easily sees that one gets the same result as in (5.88). However, one can think of these
equations as abstract equations in an algebra which is almost the universal enveloping
algebra of psu(2|2) n R

3, but with the two additional central bosonic generators1 B± and
powers of them. Additionally, the coproduct is deformed as above. In the B → 1 limit,
one can think of recovering the usual universal enveloping algebra.
In what follows we want to show that the structure we have introduced with equation (6.3)
indeed leads to a consistent Hopf algebra. The antipode is shown to follow uniquely. The
first thing one needs to check is the compatibility of the coproduct with the commutation
relations, i.e. ∆[J1, J2] = [∆J1, ∆J2]. But this immediately follows from the following
observations:

[Q,S] ⊂ su(2) ⊕ su(2) n span{C} (6.4)

and 2

[∆Q, ∆S] = [Q,S] ⊗ BB−1 + Q ⊗ [B,S] + S ⊗ [B,Q] + 1 ⊗ [Q,S]

= [Q,S] ⊗ 1 + 1 ⊗ [Q,S]

⊂ (su(2) ⊕ su(2) n span{C}) ⊗ 1 +

+ 1 ⊗ (su(2) ⊕ su(2) n span{C}). (6.5)

Further,

[Q,Q] ⊂ span{P}, (6.6)

so

[∆Q, ∆Q] = [Q,Q] ⊗ B2 + 1 ⊗ [Q,Q] (6.7)

⊂ span{P} ⊗ B2 + 1 ⊗ span{P}. (6.8)

1Even if B−1 is the inverse of B, they are linearly independent in this language. Unlike in some
footnote in [32], we also do not want to demand B = 1 + P

α , B−1 = 1 + K
β abstractly, but only for

the eigenvalues on the representation we are interested in. One can still have a universal R matrix with
the help of the automorphisms, as we will see later. The argument in [32], that one needs a symmetric
coproduct on the centre, is still correct. But upon adjoining j C,P,K are not central anymore.

2We remind the reader that [, ] denotes the general supercommutator, and in the tensor product
(a ⊗ b)(c ⊗ d) = (−1)|b||c|ac ⊗ bd
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A similar relation holds, as expected, for S.
Since here B± are considered to be part of the Hopf algebra, we need the action of the
coproduct on it. We can uniquely determine it via coassociativity, e.g. from

(∆ ⊗ 1)∆Q = (∆ ⊗ 1)(Q ⊗ B + 1 ⊗ Q)

= Q ⊗ B ⊗ B + 1 ⊗ Q ⊗ B + 1 ⊗ 1 ⊗ Q

≡ (1 ⊗ ∆)(Q ⊗ B + 1 ⊗ Q)

= Q ⊗ ∆B + 1 ⊗ Q ⊗ B + 1 ⊗ 1 ⊗ Q (6.9)

we can read off

∆B = B ⊗ B. (6.10)

The other constraining equations give exactly the same for B, and for B−1 they give

∆B−1 = B−1 ⊗ B−1. (6.11)

Hence, B± are grouplike central elements.

The counit is unchanged, compared to the universal enveloping algebra, i.e.

ε(J) = 0 ∀J ∈ psu(2|2) n R
3

ε(B±) = 1. (6.12)

We can also derive the unique antipode from the equation

µ(S ⊗ 1)∆(J) = µ(1 ⊗ S)∆(J) = η ◦ ε(J). (6.13)

Of course, (6.13) gives us for the non-deformed generators the same answer as the universal
enveloping algebra, i.e.

S(J) = −J ∀J ∈ su(2) ⊕ su(2) n span{C}. (6.14)

For the deformed generators we get

S(Q) = −B−1Q (6.15)

S(S) = −BS (6.16)

S(P) = −B−2P (6.17)

S(K) = −B2K. (6.18)

The action of the antipode on B± is the standard one for grouplike elements:

S(B±) = B∓ (6.19)
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When we enlarge the algebra by the outer automorphisms j, j+, j−, we can still have a
consistent Hopf algebra with the following coproduct:

∆j = j ⊗ 1 + 1 ⊗ j

∆j+ = j+ ⊗ B2 + 1 ⊗ j+

∆j− = j− ⊗ B−2 + 1 ⊗ j− (6.20)

and the following antipode

S(j) = −j

S(j+) = −j+B−2

S(j−) = −j−B2. (6.21)

Before going on with introducing the universal R matrix, we briefly want to compare the
Hopf algebra introduced here with the one in [32]. There, an su(1|2) symmetric language
was used in the sense that generators belonging to an su(1|2) subalgebra of psu(2|2)nR

3

have no length changing effect, but all other generator. One can obtain a basis where the
generators behave this way from the starting point (5.84) and rescaling only one of the
bosons by Z. Hence both Hopf algebras can be related on the representation via rescaling
of some fields.

6.1.1 The universal R matrix

In this section we will discuss a universal R matrix for the coproduct above. Since this
R matrix cannot give the S matrix of [22] on the four dimensional representation, these
results have so far been unpublished 3. We hope that, albeit it cannot give the full answer,
it might play some part in a bigger picture, which is why we want to present it here.
If we simply work with the algebra psu(2|2)n R

3, we were so far unable to write down an
R matrix which intertwines the coproduct introduced in the previous section. It might
be that the structure found so far has to be embedded in a larger algebraic structure,
like a Yangian, and possibly additional deformations. When one looks at the quantum
double as introduced for su(2) in chapter 4.3.2, one can see that one can obtain the same
deformed coproduct from the double when one takes the limit q → 1, instead of taking
B → 1 as it is usually done in the literature. For psu(2|2) or its central extension there is
one obstruction for constructing the double: The Cartan matrix is degenerate. Again, this
seems unusual for basic classical Lie superalgebras. Indeed, the series A(n|n) is the only
series were this happens. The q deformation can nevertheless be done, upon adjoining j.
The problems for constructing an intertwiner for psu(2|2)nR

3 as for su(2) is simply that
there is no element in the Cartan subalgebra which ”measures” how many B’s appear in
the coproduct. This is of course related to the fact that the Cartan matrix of psu(2|2) is

3I want to thank Jan Plefka, Peter Schupp and Alessandro Torrielli for the collaboration in which the
results of this section have been derived
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degenerate. We can cure this by enlarging the Cartan subalgebra with the generator j of
the sl(2) automorphism algebra. We can also add the generators j+, j−, the R matrix we
are going to write down will also intertwine their coproduct.
As in chapter 4.3.2 we need to write B = ew, with a new abstract generator w satisfying
∆w = w⊗ 1+1⊗w. w will also be central, so one could simply think of w as being more
fundamental than B4. Having this, the universal R matrix is given by

R = ew⊗j−j⊗w. (6.22)

One can easily check the intertwining condition with the Baker-Campell-Hausdorff for-
mula. Let [j, J ] = λJ be any generator with a definite charge λ under j. The crucial
point is that this means precisely that ∆J = J ⊗ Bλ + 1 ⊗ J . In detail, we get

R∆(J)R−1 = ew⊗j−j⊗w(J ⊗ Bλ + 1 ⊗ J)e−w⊗j+j⊗w

=
∑ 1

n!
([w ⊗ j − j ⊗ w, . . . [w ⊗ j − j ⊗ w, J ⊗ Bλ + 1 ⊗ J ], . . . ])

=
∑ 1

n!
(wn ⊗ λnJ + (−1)nλnJ ⊗ Bλwn)

= Bλ ⊗ J + J ⊗ 1 ≡ ∆op(J). (6.23)

Furthermore, simple calculation gives

(∆ ⊗ id)R = ew⊗1⊗j+1⊗w⊗j−1⊗j⊗w−j⊗1⊗w

= R13R23 (6.24)

and

(id ⊗ ∆)R = ew⊗1⊗j+w⊗j⊗1−j⊗w⊗1−j⊗1⊗w

= R13R12. (6.25)

Hence, our Hopf algebra is quasitriangular. Due to the appearance of j, we cannot work
on the standard four dimensional representation space V , but need Ṽ := V ⊗C(a, b, c, d).
Anyway, since w = −ipi

2
on the representation, the matrix structure is diagonal, so it

cannot reproduce Beiserts S matrix [22]. This leads to the conclusion that the discovered
Hopf algebra structure is either coincidental, just part of a bigger Hopf algebra, or the
way to intertwine the coproduct with the help of j is just another solution, whereas
there might be one without referring to the automorphisms. The solution on the four
dimensional representation of Beisert [22] also does not depend on any automorphisms.

4This situation reminds of the construction of the universal R matrix for q deformed universal en-
veloping algebras. The Hopf algebra works fine with generators k±, but for the R matrix one needs to
work with Cartan generators h and k = qh. This mathematical subtlety arises because when one takes
h as fundamental, qh is an infinite linear combination. Hence, effectively we work in some completion of
the Hopf algebra, and will not worry about such mathematical subtleties.
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However, there are reasons to believe that at least the j, or all automorphisms, are in
fact needed. Indeed, the standard Hopf algebras such as q-deformed enveloping algebras
or Yangian, which we plan to investigate in the future, need a non-degenerate Cartan
matrix, which one can get by adjoining j.

6.2 The Zamolodchikov-Faddeev algebra

The Zamolodchikov-Faddeev algebra is a natural framework for many of the things we
encountered so far. For our system, it has recently been derived by Arutyunov, Frolov and
Zamaklar [100].The Zamolodchikov-Faddeev algebra is generated by operators A†

i (p), A(p)i,
which create or annihilate asymptotic states of fields Xi, i.e.

|Xi1 , . . . ,Xin〉(in) = A†
i1
(p1) . . . A†

in
(pn)|0〉, p1 > · · · > pn (6.26)

|Xi1 , . . . ,Xin〉(out) = A†
in

(pn) . . . A†
i1
(p1)|0〉, p1 > · · · > pn. (6.27)

The momenta are ordered in the way above because otherwise no scattering would occur
for our 1 + 1 dimensional system. It is the S matrix which links in and out states, so
we expect the S matrix to appear in the algebraic relation of the creation operators as
follows:

|Xi1Xi2〉(in) ≡ A†
i1
(p1)A

†
i2
(p2)|0〉 = Sk1k2

i1i2
(p1, p2)|Xk1Xk2〉(out)

= Sk2k1
i1i2

(p1, p2)A
†
k1

(k1)A
†
i2
(p2)|0〉 (6.28)

Hence, from the abstract point of view we have the algebraic relation

A†
i1
(p1)A

†
i2
(p2) = A†

k1
(k1)A

†
i2
(p2)S

k2k1
i1i2

(p1, p2), (6.29)

or, without matrix indices,

A†
i1
A†

i2
= A†

i2
A†

i1
S. (6.30)

The corresponding relation for the annihilation operators is

Ai1Ai2 = SAi2Ai1 , (6.31)

and the mixed relation are

Ai1A
†
i2

= A†
i2
S21Ai1 + δp1−p2 . (6.32)

Consistency of the algebra is now equivalent to having the Yang Baxter equation and
unitarity, additionally for our system we should demand crossing symmetry. Unitarity
simply states that

S12(p1, p2)S21(p2, p1) = 1, (6.33)
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=

Figure 6.1: Unitarity

where S12 = S0S12 is the S matrix including the scalar prefactor, which played no role
before, but is constraint by unitarity.

Crossing we want to investigate in the next chapter. The specific form of the S matrix is
again constraint by the symmetry algebra, so in this framework one gets the same answer
we previously encountered in section 5.2.6. What one needs to specify first is how the
symmetry generators commute with A†

i . One puts

JaA†
i (p) = Jak

l(p)A†
k(p)Θal

bi + A†
m(p)Θ̃am

bi (p, p)J b (6.34)

to get the right form of the structure constants of the generators Ja on multi particle
states, which is here again given by the trivial coproduct. The role of the length changing
operators B± or the markers Z is taken by the braidings Θ, Θ̃, which depend on the
world sheet or magnon momentum operator p which satisfies

pA†
i (p) = A†

i (p)(p + p). (6.35)

This is reminiscent of the length changing encountered at the spin chain and the world
sheet.
A particularly nice thing about the Zamolodchikov-Faddeev is that one can easily identify
an infinite set of commuting charges, which we need for integrability. In fact, it turns out
that operators of the form

Iω =

∫

dpω(p)A†
i(p)Ai(p) (6.36)

for any function ω(p) form an abelian subalgebra of the full Zamolodchikov-Faddeev . In
particular, one gets

p =

∫

dppA†
i (p)Ai(p) (6.37)

C =

∫

dpC(p)A†
i (p)Ai(p). (6.38)
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6.3 The crossing equation

In this section we want to discuss how one can constrain the prefactor S0
12 of the S matrix

S12 = S0S12, where S12 was given in equation (5.98). As we argued above, this constraint
cannot come from the invariance under the symmetry generators. Demanding additional
crossing symmetry a constraining equation on the prefactor can be derived, and this was
done by Janik [25] for the psu(2|2) n R

3 spin chain, or string theory worldsheet S matrix.
In standard affine 1 + 1 dimensional integrable quantum field theory, one has additional
requirements which fix, or at least constrain the prefactor. The first is unitarity, which
we introduced in the last chapter. The second is the crossing symmetry, which allows one
to express the S matrix for the scattering of two particles through the S matrix describing
the scattering where one of the particles is substituted by its antiparticle.
Let us work with the R matrix R = PS, where P is the graded permutation operator,
i.e. we have R : V1 ⊗ V2 → V1 ⊗ V2. We then have to solve 5

(S ⊗ 1)R = R
−1

(1 ⊗ S−1)R = R
−1, (6.39)

with the total R matrix R = S0R. These are the same relations we encountered in
chapter 4, there they followed from requiring quasitriangularity. Particle and antiparticle
representation are related by a linear bosonic transformation C , whose coefficients one
can get via the antipode. The antiparticle representation is parametrised by new labels
ā, b̄, c̄, d̄, which one can relate to the original parameters a, b, c, d from the equation

π(S(J)) = C
−1π̄(J)st

C , (6.40)

where st denotes the supertranspose. For the manifestly su(1|2) symmetric case this was
done in [32]. The first crossing equation becomes

(C −1 ⊗ id)R(−p1, p2)
st1(C ⊗ 1)R(p1, p2) = 1, (6.41)

which constrains the scalar prefactor to

S0(−p1, p2)S0(p1, p2) = f(p1, p2). (6.42)

In terms of the variables x+, x− one gets the solution

f(p1, p2) =
( 1

x+
1

− x−
2 )(x+

1 − x+
2 )

( 1
x−

1

− x−
2 )(x−

1 − x+
2 )

. (6.43)

However, it is not easy to extract the prefactor from this constraint. The parameters
x± do not live in the ordinary complex plane, but on a generalised rapidity plane [25].
Crossing symmetric solutions for S0 were only found recently in [23], [24].

5Here one should not confuse the antipode with the S matrix.



Chapter 7

Conclusions and outlook

In this thesis, we gave some comparatively simple applications of Hopf algebras to inte-
grable systems arising in the AdS/CFT correspondence. We started by introducing the
necessary details both from the AdS/CFT correspondence and Hopf algebras, went on
studying the su(2|2) spin chain and finally applied Hopf algebras to this spin chain. In
particular, we used a length changing operator to deform the coproduct of the universal
enveloping algebra. We should emphasise that to derive the S matrix the Hopf algebra
was not needed, provided that one includes instead some Z markers, which stand for an
inserted vacuum field [22]. However, one can also employ this Hopf algebra showing that
the S matrix is indeed intertwining the nontrivial coproduct. This was done, at least
for the perturbatively derived S matrix of the string sigma model, in [88]. One might
wonder if the Hopf algebraic interpretation of length changing is merely an equivalent
mathematical possibility, or if it has some deep meaning. We cannot give a final answer
here. In this context, we should mention that spin chains with fluctuating length have
not been extensively studied in the literature. Hence, it might well be that it is precisely
this central, grouplike operator B, which should be studied when dealing with length
changing spin chains. From the mathematical point of view, we have argued that B can
be seen as an element arising in the quantum double construction. In particular, we
showed that B can arise in the quantum double of q-deformed enveloping algebras. This
does not necessarily mean that the q-deformed enveloping algebra is the wanted Hopf
algebra, which we hope would give us the S matrix from 5.2.6 including the prefactor.
We hope that B can also be obtained for other double constructions, e.g. Yangian doubles.

One difficulty in identifying the correct Hopf algebra for the su(2|2) symmetric spin chain
is that it seems its S matrix does not fall into one of the standard mathematical clas-
sification schemes, see [86] for some recent discussions. In particular, the S matrix is
not seen to be a rational, trigonometric or elliptic solution of the Yang Baxter equation,
hence one might wonder if it can be at all related to the standard Hopf algebras, i.e.
Yangians, q-deformed affine algebras or elliptic quantum groups. We know that there
are some Yangian charges in the system [15], [16], and should note that the su(2|2) sym-
metric S matrix is special in the sense that its central charge eigenvalues are linked to
the momenta of the scattered magnons, and it depends on the momenta of both scat-
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tered magnons separately. This is not the standard case, at least for a fully relativistic
theory, where the S matrix can by Lorentz invariance only depend on the difference of
the rapidities. For string theory, Lorentz invariance is broken since one usually works in
the light cone gauge. Can we possibly still work with one of the standard Hopf algebras,
and get the nontrivial momentum dependence automatically via the representation labels?

One question one should definitely answer, whichever construction will work at the end, is
which role is played by the automorphisms. It seems that the q-deformation of psu(2|2)n

R
3, the Yangian and also the R matrix which we presented in chapter 6 needs at least

the automorphism j. As we have seen in chapter 5, to represent j we have to work
with an infinite dimensional representation. In case j is indispensable, we should study
this infinite dimensional representation further. Another option might be that one can
remove j from the universal R matrix, instead picking up some twist, which would prob-
ably also modify the Yang Baxter equation. A similar thing is done for quantum affine
algebras, where one often wants to remove the derivation from the universal R matrix.
The derivation of an affine Lie algebra indeed plays a similar role as j does for su(2|2),
with two main differences: The algebra sl(2) n psu(2|2) n R

3 with all automorphisms
and central elements is still finite dimensional, whereas the loop algebra of a Lie algebra
including the automorphism and the central charge is infinite dimensional. Furthermore,
the centre of psu(2|2) n R

3 is three dimensional and not only one dimensional, as for
the affine algebra. In fact, affine algebras can in a certain sense be used to introduce a
spectral parameter into ordinary Lie algebra symmetry. Here, we already have spectral
parameters for the finite dimensional psu(2|2) n R

3. Do we need an affinisation anyway?
We want to continue to investigate those questions of the algebraic origin of integrable
structures in the AdS/CFT correspondence further in the future. Even if it might be
difficult to apply standard classification theorems, we think it will be worth the effort. At
the end one might get out only the known S matrix with the prefactor, which was written
down in [23], [24], but is in no way proved to be the only correct one, hence deriving the
prefactor rigorously would still be an important thing.
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