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Zusammenfassung Abstract

Zusammenfassung

Diese Arbeit untersucht den Beitrag der Quantengravitation zu den Ein-Schlei-
fen-Divergenzen abelscher und nicht-abelscher Eichtheorien. Ein besonderes Au-
genmerk der Arbeit liegt hierbei auf dem Einfluss der Gravitation auf das Lau-
fen der Kopplungskonstante. Anders als vorangegangene Arbeiten wird statt
der Hintergrundfeld-Methode ein diagrammatischer Ansatz verwendet. Zur Be-
stimmung der Divergenzen werden sowohl die Cut-Off- als auch die dimensiona-
le Regularisierung angewandt, was eine zusätzliche Überprüfung der Ergebnisse
ermöglicht.

Die Rechnungen zeigen, dass die Kopplungskonstante der Eichtheorie keine

gravitativen Korrekturen erfährt und alle gravitativen Divergenzen durch einen
einzigen Konterterm kompensiert werden können, welcher auf der Massenschale
verschwindet und durch Feldredefinition des Vektorpotentials entfernt werden
kann.

Abstract

This thesis examines the quantum gravity contributions to the one-loop diver-
gences of Abelian and non-Abelian gauge theories. A special focus is on the
gravitational influence on the running of the coupling constant. In contrast to
preceding works we use a diagrammatical approach and not the background
field method. The divergences are calculated in both cut-off and dimensional
regularization, which allows for an additional verification of the results.

The calculations show that the coupling constant receives no gravitational
corrections and all gravitational divergences are compensable by one single
counter-term, which vanishes on-shell and can be removed by a field redefi-
nition of the gauge potential.
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Conventions and Symbols

We use lowercase greek letters to denote Lorentz indices and lowercase roman
letters for indices of the gauge group. The background metric will always be
the Minkowski metric with the siganture

ηµν = ηµν =







1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1







in the computations involving gravitons, two forth level tensor will be needed
frequently:

Iµν,αβ ≡1
2(ηµαηνβ + ηµβηνα)

Pµν,αβ ≡1
2(ηµαηνβ + ηµβηνα − ηµνηαβ)

We work in natural units, i. e.
c = ~ = 1

So derivative operator gets

∂µ = (∂0,∇)

∂µ = (∂0,−∇)

Derivation with respect to coordinates become in momentum space

pµ = i∂µ .

To indicate symmetrized and anti-symmetrized indices we will use parathese
and brackets respectively:

T (µν) =
1

2
(T µν + T νµ) symmetrized indices (1)

T [µν] =
1

2
(T µν − T νµ) anti-symmetrized indices (2)

The momenta in all Feynman graphs are counted as ingoing.
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I

Introduction

Modern physics describes nature by relativistic field theories. At high energy
scales which corresponds to small distances the laws of quantum mechanics
apply. The quantization of interacting field theories always induces divergences
due to the (self-)interaction of the fields. To cancel these divergences, which are
physically not present, counter-terms are introduced. In general new divergences
occur at each multi-loop order, thus new counter-terms are needed. For the
Lagrangian to have a finite number of different terms the counter-terms have to
be proportional to terms already present in the classical Lagrangian. A theory
bearing this feature is called (perturbatively) renormalizable. For a quantum
field theory to be regarded as fundamental its renormalizability is essential.
Non-renormalizable field theories are known and find also applications, e. g. the
four-fermi of weak decays or chiral perturbation theory, but they are all effective
low energy descriptions of renormalizable theories. Beyond a specific threshold
energy scale the effective theories have to be substitute by these fundamental
theories, in the mentioned cases these are the electron-weak theory by Glashow,
Salam and Weinberg or quantum chromo dynamics.

Three of the four fundamental forces were formulated as renormalizable
quantum field theories since the second half of the last century. But general
relativity, which is found to be the accurate description of gravity at all acess-
able scales, still resists its quantization. The occurrence of quantum effects is
expected near the Planck scale corresponding to energies ∼ 1019GeV or lengths
∼ 10−33cm.

The underlying fundamental theory for general relativity – quantum gravity
– has still not been found. Great advances in this direction were achieved in
supersymmetric string theory.

The non-renormalizability of pure quantized general relativity was pointed
out first by ’tHooft and Veltman [1]. The inclusion of matter fields, thoroughly
examined by Deser, van Nieuwenhuizen et. al. [3, 4, 5, 6], also does not improve
the situation.

Despite its non-renormalizability the results of a nonperturbative ansatz by
Reuter[7, 8, 9, 10] indicate that quantized general relativity is asymptotically
save.

Quantum general relativity as an effective field theory was advocated by
Donoghue [11, 12, 13]. The energies of physics accessable by present day’s ex-
periments are well below the Planck scale, thus the effective theory should be
applicable.

In the last year Robinson and Wilczek [14] initiated a discussion on effective
quantum gravity coupled to gauge theories. They utilized the formulation of
quantum gravity as an effective field theory to compute the running of the
Yang-Mills coupling g in the Einstein-Yang-Mills system. Their background

1



Chapter 1: Introduction

field calculation of the Calan-Symanzik β-function yields the result

βg(g,E) = − b0
16π2

g3 +
a0

16π2
gκ2E2 (1.1)

with a non-vanishing a0 = −3/2. This would render any theories – including
Abelian gauge theories – asymptotically free, when the energy E approaches
the Planck mass. Their a0 originates from quadratic divergences at one-loop
order. This result appears to be a wonderful example of a successfull applica-
tion of the effective quantum gravity, however Pietrykowski [16] and recently
Toms [17] doubted this result. Pietrykowski reconsidered the calculations of [14],
but in an alternative gauge of the graviton field. Toms utilized a sightly different
background-field method developed by DeWitt, which ensures the independence
of the results from gauge conditions. Deser, Tsao and van Nieuwenhuizen al-
ready studied the Einstein-Yang-Mills system in 1974 [6] using dimensional reg-
ularization. The only gravitational contribution to the pure Yang-Mills sector
they found was a dimension-six counter-term ∼ (DF )2.

In 1975, Berends and Gastmans [18] examined QED coupled to gravity.
They found no gravitational influence on the vertex function, too.

2



Outline

Outline

This thesis is organized as follows: First in chapter 2 we will introduce the La-
grangian of the Einstein-Yang-Mills theory and derive the linearized gravity.
We will describe how to derive the Feynman rules for the gluon–graviton in-
teraction. These rules will be needed to compute the one-loop pertubations in
chapter 4.

Before the divergent diagrams are calculated, we will introduce the new
dimesion-six terms entering the Einstein-Yang-Mills Lagrangian due to the
quantum corrections in chapter 3. The new terms will be necessary due to the
existence of a coupling with negative mass dimension.

In chapter 4 we will present the divergent as well as the finite parts of the
one-loop graphs at order g2 and κ2 for two external gluons and g3 and gκ2

for three external gluons. The diagrams consisting solely of Yang-Mills entities
are used to check the applied methods by comparing their results with the
known literature values [19]. The regularization of the diagrams, which will be
necessary because of the diverging integrals of the loop momenta, will be done
in two schemes: in cut-off and in dimensional regularization. The first one will
reveal all divergences including the quadratic ones, but its results can violate
the Slavnov-Taylor-Ward identity required by the gauge symmetry. So parts of
its outcome have to be considered as artefacts of its deficiency and have to be
dropped. The later scheme is more elegant and respects the gauge symmetry,
but it will not unveil the quadratic divergences, a major shortcoming, especially
because the found quadratic divergences are the main result of Robinson and
Wilczek [14]. In our results no quadratical divergences will remain, in accordance
with [6, 16, 17]. The logarithmical divergences in both regularization schemes
will be found to be identical.

In chapter 5 the counter-terms to cancel the obtained one-loop divergences
are determined. To cancel the found pure Yang-Mills divergences we will need
the known Yang-Mills counter-terms. The gravitational divergence will corre-
spond to dimension-six terms as introduces in chapter 3. Our result will agree
with the result of [6], now obtained in a diagrammatical approach.

Finally chapter 6 is devoted to the β-functions of the Yang-Mills coupling
and the new dimension-six couplings.
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II

Derivation of the Feynman Rules

Although the Einstein-Yang-Mills system is, as our calculations will support,
not renormalizable, quantum gravity is a workable and powerful effective field
theory[13] for energies well below the Planck scale ∼ 1019GeV. We will compute
the first perturbative corrections of two- and three-gluon amplitude. This is
done diagrammatically using Feynman graphs of the effective quantum gravity
coupled to the fields of the considered gauge theory. To write down the graphs
we first have to derive the Feynman rules for the linearized Einstein-Yang-Mills
theory. These will result from the classical Einstein-Yang-Mills Lagrangian. The
quantum corrections will lead to new terms of higher mass dimension, which
will be discussed in chapter 3.

We start with the Yang-Mills Lagrangian in an arbitrary metric gµν

LYM = −1
2

√−g gµρgνσ tr [FµνFρσ] (2.1)

with the field strength tensor

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ],

which will provide the coupling terms of gravitons and gauge bosons.
Analogous, we can consider the Einstein-Maxwell theory with the Maxwell

Lagrangian
LMaxwell = −1

4

√−g gµρgνσFµνFρσ

The field strength tensor in this case is simply Fµν = ∂µAν − ∂νAµ, thus the
photon field is free and no analogon to the three-gluon vertex exists. Yet, the
two-gluon results in order κ2 can be adopted without modification.

Furthermore the graviton propagator is derived from the Einstein-Hilbert
Lagrangian

LEH =
2

κ2

√−gR (2.2)

of the complete metric gµν with the Ricci scalar R.
The sum of both

LEYM = LYM + LEH

forms the Einstein-Yang-Mills Lagrangian which is the classical foundation of
our quantum calculations.

All additional terms of the Langragian due to the quantization of the gauge
field – gauge fixing and ghost field terms – will not be introduced before the lin-
earization of gravity, otherwise the gravitational coupling would become gauge
dependent. Separating the generators ta of the gauge group: Fµν = F a

µνt
a, one

can use the commutator relation and write

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

5



Chapter 2: Derivation of the Feynman Rules

using the structure constants fabc. The trace over the generators in fundamental
representation yields tr

[
tatb
]

= 1
2δ

ab for all SU(N) gauge groups. Hence the
trace in the Lagrangian can be written as

−1

2
tr [FµνFρσ] = −1

4
F a

µνF
a
ρσ

The metric tensor gµν is split in a fix part gµν and a dynamical part hµν :

gµν ≡ gµν + κhµν . (2.3)

For our computations we will restrict ourselves to an background which is the
flat Minkowski metric gµν = ηµν . The dynamic part hµν is our graviton field.
The coefficient κ is the gravitational coupling constant which is proportional
to the squareroot of the Newton constant κ =

√
32πG and is in natural units

basically the inverse Planck mass κ =
√

32π/MPl.

Now all metric dependent quantities can be expanded in κ. Here we will
only need the expansions up to quadratic order because at one-loop level and
without external graviton lines no higher order interactions will occur. For (2.1)
we need the expansions of the square root of the metric’s determinant and of
the inverse metric which are

√−g = 1 + κ
2h+ κ2

8

(

h2 − 2hαβhαβ

)

+ O
(
κ3
)

gµν = ηµν − κhµν + κ2hµαhα
ν + O

(
κ3
)

where h = hα
α and indices are raised and lowered by the background metric ηµν .

The zeroth order of (2.1) reproduces the Yang Mills Langrangian in flat
space and therefore the pure Yang Mills theory. This part can be quantized in
the usual way[20, 21], which will lead to the common Feynman rules, compiled in
Appendix C. The higher orders correspond to interaction terms between gauge
bosons and one or more gravitons. The expansion of (2.2) will yields at zeroth
order the graviton propagator and in higher orders its self interactions which
are not needed for our considerations.

2.1 Technique to acquire the Rules

The Feynman rules for the vertices are all derived by using the computer algebra
system Form[22] in version 3.2 by Jos Vermaseren. This system allows to ma-
nipulate complex tensorlike mathematical expressions. Therefore it can handle
the expressions with comparatively small effort but without loss of accuracy.
Form e. g. automatically evaluates sums over doubled indices and allows to
factor out and substitute vector-, tensor-like and scalar entities.

The input for the scripts are the contributing terms of the Lagrangian,
viz. the term with two or three gluon fields. It is written in momentum space
substituting the spatial derivations by the momentum of the corresponding field:

∂µ → −ipµ .

6



2.2 Vertices with two Vector Bosons

The appearing gluon fields are differently tagged as A1, A2, A3, so that the
expressions have to be symmetrized afterwards. This is necessary to distinguish
the momenta and to account for the group indices which are not treated in the
Form script but only separately by hand. So for example the two-gluon vertices
are derived from

√−g gµρgνσ(−ipµA1 ν + ipνA1 µ)(−iqρA2 σ + iqσA2 ρ)

Now we substitute the expansions in κhµν for
√−g etc. and extract the right

order in the fields. For the graviton fields no distinguishing labels are needed
because they carry only Lorentz indices, which are part of the Form objects,
and no derivatives of h appear in the interaction terms. Hence the vertex expres-
sions depend on the gravitons only by their Lorentz indices. Since the vertices
result from expansion of the action exponential eiS ≃ 1+ iS, the corresponding
terms of the Lagrangian are all multiplied by i to obtain the vertex expressions.

The expressions obtained this way are symmetrized in the two Lorentz in-
dices of each involved graviton field. Now all permutations of the equivalent
fields of the vertex are added, viz. symmetrized in the fields without weighting
factor. The chosen separate treatment of the group structure has no conse-
quences for the two-gluon terms because the group indices of the fields are
carried by an symmetric tensor, which can be and is chosen to be a Kronecker
delta δab. The three-gluon terms on the other hand are always multiplied by
the the antisymmetric structure constant fabc. To allow for this, we antisym-
metrize the group index free Form expression whereby the complete vertex will
be symmetric in the gluon fields.

To verify the procedure, the more simple rules for the vertices with two
vector boson were also calculated by hand. Additionly the program delivered
the three-gluon vertex without any coupling to gravity. The identity of this
result to the well known rule Appendix C also confirms our algorithm.

The graviton propagator was acquired completely by hand from the Ein-
stein-Hilbert Lagrangian (2.2).

The Form expressions for the vertex rules are subsequently passed to the
scripts which will calculate the one-loop diagrams, see 4.2.

2.2 Vertices with two Vector Bosons

The contributing part of the Lagrangian for the vertices with two gauge bosons
is

−
√
−g gµρgνσ∂µA

a
ν ∂[ρA

a
σ] .

The summand of it’s expansion at order κ

κ
(
hµρηνσ + ηµρhνσ − 1

2h η
µρηνσ

)
∂µA

a
ν ∂[ρA

a
σ]

7



Chapter 2: Derivation of the Feynman Rules

corresponds to the two bosons one graviton vertex. The method described above
leads to the Feynman rule

p

qµ a ν b

α β

= −iκδab
[
Pµν,αβp · q+ηµνp(αqβ) + 1

2η
αβpνqµ

−pνηµ(αqβ) − qµην(αpβ)
]
.

(2.4)

Here Pµν,αβ ≡ 1
2(ηµαηνβ+ηµβηνα−ηµνηαβ) is a four tensor which will frequently

appear in all calculations involving the graviton.
Analogously the κ2 term

− κ2
(
hµρhνσ + hµαhα

ρηνσ + ηµρhναhα
σ − 1

2h (hµρηνσ + ηµρhνσ)

+ 1
8(h2 − 2hαβhαβ)ηµρηνσ

)
∂µA

a
ν ∂[ρA

a
σ]

leads us to the two bosons two gravitons vertex:

p

q

µ a

ν b

αβ

γδ

=
i

2
κ2δab

[
(pνqµ − p·q ηµν)Pαβ,γδ

+p·q(Iµν,αγηβδ + Iµν,αδηβγ

+Iµν,βγηαδ + Iµν,βδηαγ

−Iµν,αβηγδ − Iµν,γδηαβ)

+2p(αqβ)Pµν,γδ + 2p(γqδ)Pµν,αβ

−pν(qαPµβ,γδ + qβPαµ,γδ

+qγPαβ,µδ + qδPαβ,γµ)
−qµ(pαP νβ,γδ + pβPαν,γδ

+pγPαβ,νδ + pδPαβ,γν)

+pαqγηµ[νηδ]β + pγqαηµ[νηβ]δ

+pαqδηµ[νηγ]β + pδqαηµ[νηβ]γ

+pβqγηµ[νηδ]α + pγqβηµ[νηα]δ

+pβqδηµ[νηγ]α + pδqβηµ[νηα]γ
]
.

(2.5)

Additional to Pµν,αβ here Iµν,αβ ≡ 1
2 (ηµαηνβ + ηµβηνα) is introduced.

2.3 Vertices with three Vector Bosons

The three gauge boson term

−1
2g

√−g gµρgνσfabc∂µA
a
ν A

b
ρA

c
σ

is at order κ

1
2gκ

(
hµρηνσ + ηµρhνσ − 1

2h η
µρηνσ

)
fabc∂µA

a
ν A

b
ρA

c
σ ,

8



2.4 The Graviton Propagator

so the vertex with one graviton is

p
kq

µ a

ν b ρ c

αβ

= −gκfabc
[

Pαβ,µν(p− q)ρ

+Pαβ,νρ(q − k)µ

+Pαβ,ρµ(k − p)ν

+ηµνηρ(α(p − q)β)

+ηνρηµ(α(q − k)β)

+ηρµην(α(k − p)β)
]

.

(2.6)

At order κ2 we have

− 1
2gκ

2
(
hµρhνσ + hµαhα

ρηνσ + ηµρhναhα
σ − 1

2h (hµρηνσ + ηµρhνσ)

+ 1
8(h2 − 2hαβhαβ)ηµρηνσ

)
fabc∂µA

a
ν A

b
ρA

c
σ

and the vertex rule becomes

p

k

q αβ

µ a

ν b

ρ c

γδ

=
1

2
gκ2fabc

[
(p − q)α(ηµνP ρβ,γδ + ηρβIµν,γδ)

+(p− q)β(ηµνPαρ,γδ + ηαρIµν,γδ)
+(p− q)γ(ηµνPαβ,ρδ + ηρδIµν,αβ)
+(p− q)δ(ηµνPαβ,γρ + ηγρIµν,αβ)
+(p− q)ρ(Iµν,αγηβδ + Iµν,αδηβγ

+Iµν,βγηαδ + Iµν,βδηαγ

−Iµν,αβηγδ − Iµν,γδηαβ

−ηµνPαβ,γδ)
+(q − k)α(ηνρPµβ,γδ + ηµβIνρ,γδ)
+(q − k)β(ηνρPαµ,γδ + ηαµIνρ,γδ)
+(q − k)γ(ηνρPαβ,µδ + ηµδIνρ,αβ)
+(q − k)δ(ηνρPαβ,γµ + ηγµIνρ,αβ)
+(q − k)µ(Iνρ,αγηβδ + Iνρ,αδηβγ

+Iνρ,βγηαδ + Iνρ,βδηαγ

−Iνρ,αβηγδ − Iνρ,γδηαβ

−ηνρPαβ,γδ)
+(k − p)α(ηρµP νβ,γδ + ηνβIνρ,γδ)
+(k − p)β(ηρµPαν,γδ + ηανIνρ,γδ)
+(k − p)γ(ηρµPαβ,νδ + ηνδIνρ,αβ)
+(k − p)δ(ηρµPαβ,γν + ηγνIνρ,αβ)
+(k − p)ν(Iρµ,αγηβδ + Iρµ,αδηβγ

+Iρµ,βγηαδ + Iρµ,βδηαγ

−Iρµ,αβηγδ − Iρµ,γδηαβ

−ηρµPαβ,γδ)
]
.

(2.7)

9



Chapter 2: Derivation of the Feynman Rules

2.4 The Graviton Propagator

Now the propagator of the graviton hµν has to be constructed. Its derivation
follows [13].

The graviton propagator arises from the Einstein-Hilbert Lagrangian (2.2).
For its quadratic expansion in κ we need the expansion of the Ricci scalar which
is

R = κ (�h− ∂µ∂νh
µν)

+ κ2
(

1
4∂µh∂

µh− ∂µh
µν∂νh+ ∂µh

µν∂ρhνρ − 3
4∂µhνρ∂

µhνρ

+ 1
2∂µhνρ∂

νhµρ + 2hµν∂µ∂
ρhρν − hµν

�hµν

)
+ O

(
κ3
)
.

Insertion in (2.2) and partial integration yields

LEH =
2

κ2

√−gR

=1
2∂µhνρ∂

µhνρ − 1
2∂µh∂

µh+ ∂µh
µν∂νh− ∂µh

µν∂ρhρν + O (κ) .

To gain a quantum theory of the linearized gravity we use the Faddeev-Popov
quantization scheme[20]. The chosen gauge for the propagator is the harmonic
(deDonder) gauge which takes the form

0 =Gµ

with Gµ =∂νhµν − 1

2
∂µh

in flat Minkowski background. So we need to add the gauge fixing term[1]

Lg.f. =GµG
µ

=(∂νhµν − 1
2∂µh)(∂ρh

µρ − 1
2∂

µh)

to the Lagrangian. We also have to introduce a gravitational ghost field, which
is a vector like field with fermionic statistics. bµ:

Lgh = b∗µ
(

κ
δGµ

δεν

)

bν .

Under general coordniate transformation xµ → xµ − εµ(x) the complete metric
transforms as a tensor:

g′
µν(x′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) .

Therefore the graviton field must transform according

hµν → hµν + ∂αhµνε
α + ( 1

κηαν + hαν)∂µε
α + ( 1

κηµα + hµα)∂νε
α

in order to keep the background metric fixed. The resulting behavior of the
gauge fixing expression Gµ yields the gravitational ghost Lagrangian

Lgh = b∗µ (ηµν� + κ (hµν� + ∂νGµ +Gν∂µ + (∂νhαµ − ∂µhαν + ∂αhµν)∂α)) bν .
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2.4 The Graviton Propagator

The interaction terms do not interfere with our consideration because we are not
interested in processes with outer gravitons, therefore graviton–ghost vertices
will first appear at two-loop order, but only the one-loop contributions to Yang-
Mills fields are examined.

Integration by parts and collection of the terms leads to the final very simple
form of the kinetic part of the gravitational action:

Sgrav =

∫

ddx1
2∂

αhµν

(
ηµρηνσ − 1

2η
µνηρσ

)
∂αhρσ + bµ∗�bµ + Lint

grav (2.8)

which agrees with Donoghue’s action[13] in the considered limit of flat back-
ground metric ηµν . Now we easily derive the graviton propagator

p
αβ γδ =

i
(

1
2(ηαγηβδ + ηαδηβγ) − 1

d−2η
αβηγδ

)

p2 + iε
(2.9)

which is also in agreement with [13]. We keep the spacetime dimension d in
the formula which allows to include it in dimensional regularization. The ε is
introduced to avoid the branch cut in expressions containing momenta and must
not be mistaken for the ǫ which will appear in the dimensional renormalization
scheme.

Together with the well known rules for the pure Yang Mills theory – collected
in Appendix C – we now have all rules we need to do the computation of the
one-loop perturbations up to order κ2.
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Chapter 2: Derivation of the Feynman Rules
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III

New Terms of the

Einstein-Yang-Mills Theory

The renormalization of the one-loop divergences in the Einstein-Yang-Mills
system will necessitate counter-terms of order κ2. Due to the mass dimension
of κ which is not zero but minus one in four dimensional space, the logarithmic
divergences cannot be canceled by a trF 2 term. Such a term already has the
mass dimension four, thus its coupling must be a dimensionless parameter.
Quadratic divergences of the form κ2Λ2 however would be canceled by such
terms as described by Robinson and Wilczek [14].

To cancel the logarithmic divergences we need new dimension-six terms with
couplings of the same mass dimension as κ2 or gκ2. These terms will enter the
Lagrangian additionally to LYM and LEH. The requirement of gauge invariance
leaves four possible terms:

O1 = tr [(DµFνρ)(D
µF νρ)]

O′
1 = tr [(DµFνρ)(D

νFµρ)]

O2 = tr [(DµF
µρ)(DνFνρ)]

O3 =i tr
[

F β
α F

γ
β F

α
γ

]

.

(3.1)

The second term O′
1 is proportional to O1. It can be transformed to

tr [(DµFνρ)(D
νFµρ)] =

1

2
tr [(DµFνρ)(D

µF νρ)] . (3.2)

using the Bianchi identity D[αFβγ] = 0. Thus we will not denote in separately.

Also the three remaining terms are not independent in the action integral.
One term can be eliminated and expressed by the others plus total derivatives.
The latter are purely topological, thus uninteresting in the examined flat space
time. We can for example express O2 by O1 and O3:

O2 = tr
[
DαF

αγDβF
β

γ

]

= tr
[
∂αF

αγ∂βF
β

γ

−ig[Aα, F
αγ ]∂βF

β
γ − ig∂αF

αγ [Aβ , F
β

γ ]

−g2[Aα, F
αγ ][Aβ, F

β
γ ]
]

= tr
[
∂βF

αγ∂αF
β

γ

+ig∂β [Aα, F
αγ ]∂βF

β
γ + igFαγ∂α[Aβ, F

β
γ ]

−g2[Aα, F
αγ ][Aβ, F

β
γ ]
]
+ total derivatives

13



Chapter 3: New Terms of the Einstein-Yang-Mills Theory

= tr
[
∂βFαγ∂αFβγ

−ig[Aβ , Fαγ ]∂αFβγ − ig∂βFαγ [Aα, Fβγ ]

+ig(∂βAα − ∂αA
β)[Fαγ , Fβγ ]

−g2([Aβ , Fαγ ][Aα, Fβγ ] + [Aβ , Aα][Fαγ , Fβγ ])
]
+ t. d.

= tr
[
(∂βFαγ − ig[Aβ , Fαγ ])(∂αFβγ − ig[Aα, Fβγ ])

+ig(∂βAα − ∂αA
β − ig[Aβ , Aα])[Fαγ , Fβγ ]

]
+ t. d.

= tr
[
DβFαγDαFβγ

]
+ ig tr

[
F β

α[Fαγ , Fβγ ]
]
+ t. d.

The first summand is O′
1 = 1

2O1. Hence in the action integral, where total
derivatives can be neglected, the identification

O2 =
1

2
O1 − 2gO3 (3.3)

is possible. We refrain from choosing the terms used in the Langrangian until we
have determined the counter-term values in chapter 5. Then it will be possible
to pick the most simple combination of terms, i. e. the combination with the
most simple structure in the counter-terms.

In the choice of dimension-six terms one should also take into account the
special nature of the second term. O2 is proportional to the Yang-Mills equation
of motion – DµFµν = 0, hence vanishes on-shell. Also, the non-linear field
redefinition

Aµ → A′
µ = Aµ +

d2

2
DνFµν (3.4)

removes O2:

−1
2 tr

[
(F ′

µν)2
]

= − 1
2 tr

[

(2∂[µA
′

ν] − ig[A′
µ, A

′
ν ])

2
]

= − 1
2 tr

[
(2∂[µAν] − ig[Aµ, Aν ] + d2

2 (2∂[µD
αFν]α

− ig([Aµ,D
αFνα] − [Aν ,D

αFµα])) + O(d2
2))

2
]

= − 1
2 tr

[
(2∂[µAν] − ig[Aµ, Aν ])

2

+ 2d2D[µD
αFν]α(2∂[µAν] − ig[Aµ, Aν ]) + O(d2

2)
]

= − 1
2 tr

[
(Fµν)2 + 2d2DµD

αFναF
µν
]
+ O(d2

2)

= − 1
2 tr

[
(Fµν)2

]
− d2 tr [Fµν∂µ(DαFνα) − Fµνig[Aµ,D

αFνα]]

+ O(d2
2)

= − 1
2 tr

[
(Fµν)2

]
− d2 tr

[
− ∂µ(Fµν)DαFνα

− ig(FµνAµD
αFνα − FµνDαFναAµ)

]
+ O(d2

2) + t. d.

= − 1
2 tr

[
(Fµν)2

]
+ d2 tr [(∂µF

µν − ig[Aµ, F
µν ])DαFνα]

+ O(d2
2) + t. d.

= − 1
2 tr

[
(Fµν)2

]
− d2O2 + O(d2

2) + t. d.

In the Abelian theory no traces are present and symmetry prohibits a O3

term. For the sake of uniformity of the results the dimension-six terms are

14



defined as

OMaxwell
1 =

1

2
(∂µFνρ)(∂

µF νρ)

OMaxwell
2 =

1

2
(∂µF

µρ)(∂νFνρ)

OMaxwell
3 =0

(3.5)

in the Maxwell case. Consequently the identity (3.3) reduces to

OMaxwell
2 =

1

2
OMaxwell

1 + t. d. (3.6)

These terms form the Yang-Mills part of the dimension-six Lagrangian1,
which can be written as:

Ldim6 = d1O1 + d2O2 + d3O2 (3.7)

The mass dimensions of the new introduced couplings d1, d2 and d3 are deter-
mined from the requirement [di] + [Oi] = d. Using [Dµ] = 1 and [Fµν ] = d

2 one
obtains the dimensions of the Oi’s and thus of the couplings:

[d1] = [d2] = − 2

[d3] = − d

2
d=4−−→ −2 .

(3.8)

The traces over the gauge group indices in case of O1 and analogously O2

are performed in the same way as in the Yang-Mills Lagrangian’s −1
2 tr[F 2]

case:

O1 = tr [(DµFνρ)(D
µF νρ)]

=(DµFνρ)
a(DµF νρ)b tr

[

tatb
]

︸ ︷︷ ︸

= 1

2
δab

=1
2(DµFνρ)

a(DµF νρ)a

The trace in O3 over three field strength tensors yields

O3 =i tr
[

Fα
βFβ

γFγ
α
]

=iF a β
α F b γ

β F c α
γ tr

[

tatbtc
]

=iF a β
α F b γ

β F c α
γ

1
2 tr

[

{ta, tb}tc + [ta, tb]tc
]

=iF a β
α F b γ

β F c α
γ

1
4

(

dabc + ifabc
)

.

Here is fabc the structure constant of the gauge group and dabc = {ta, tb}c

originates from the anti-commutator of the generators, so it is symmetric in its

1The gravitational part consistits of quadratic terms in the curvature R2 and RµνRµν . Also
mixed dimension-six terms like RµνT µν would appear in an complete consideration as e.ġ. in
[6, 4]
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Chapter 3: New Terms of the Einstein-Yang-Mills Theory

indices. F a β
α F b γ

β F c α
γ is antisymmetric in abc, thus only the contribution of fabc

remains in O3:
O3 = −1

4f
abcF a β

α F b γ
β F c α

γ

Now we derive the Feynman rules for O1, O2 and O3 in the same manner
as we did for the graviton–gluon interactions in chapter 2. The (DF )2 terms
lead to the two boson vertices:

q
µ a ν bO1 = 2d1iδ

abq2(q2ηµν − qµqν) (3.9)

q
µ a ν bO2 = d2iδ

abq2(q2ηµν − qµqν) (3.10)

And all dimension-six terms correspond to three boson vertices:

p

q

k

µ a

ν b

ρ c

O1 = d1gf
abc
[
ηµν(pρ(4p · q + 2p · k) − qρ(4q · p+ 2q · k))

+ηνρ(qµ(4q · k + 2q · p) − kν(4k · q + 2k · p))
+ηρµ(kν(4k · p+ 2k · q) − pν(4p · k + 2p · q))
−2
(
kµkν(pρ − qρ) + pνpρ(qµ − kµ)

+qρqµ(kν − pν)
)]

(3.11)

p

q

k

µ a

ν b

ρ c

O2 = d2gf
abc
[
ηµν(pρ(2p · q + p · k + 3q · k)
−qρ(2q · p+ q · k + 3p · k))

+ηνρ(qµ(2q · k + q · p+ 3k · p)
−kµ(2k · q + k · p+ 3q · p))

+ηρµ(kν(2k · p+ k · q + 3p · q)
−pν(2p · k + p · q + 3k · q))

−
(
kµkν(pρ − qρ) + pνpρ(qµ − kµ)
+qρqµ(kν − pν)

)

−3(pρqµkν − pνqρkµ)
]

(3.12)

p

q

k

µ a

ν b

ρ c

O3 = 3
2d3f

abc
[
−ηµν(pρq · k − qρk · p)
−ηνρ(qµk · p− kνp · q)
−ηρµ(kνp · q − pνq · k)
+(pρqµkν − pνqρkµ)

]

(3.13)

When we match the logarithmic one-loop divergences with the new coun-
terterms, we will see only linear combinations of the contributions of all terms.
Thus the results for the sum of all terms are presented in a form which can be
compared with the results we will obtain in chapter 4.

O1 + O2 = i(2d1 + d2)δ
abq2(q2ηµν − qµqν) (3.14)
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O1

+
O2

+
O3

=

fabc
[
ηµν(pρ((4gd1 + 2gd2)p · q + (2gd1 + gd2)p · k + (3gd2 − 3

2d3)q · k)
− qρ((4gd1 + 2gd2)q · p+ (2gd1 + gd2)q · k + (3gd2 − 3

2d3)p · k) + . . .

− g(2d1 + d2) (kµkν(pρ − qρ) + pνpρ(qµ − kµ) + qρqµ(kν − pν))

− (3gd2 − 3
2d3)(p

ρqµkν − pνqρkµ)
]

(3.15)

All combinations of the couplings d1, d2 and d3 are in such a way that a
transformation between the terms as in (3.3) would not effect the amplitudes
of the combined Feynman graphs. This is the correct behavior required for a
physical quantity.
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IV

Divergences of the one-loop

Diagrams

The aim of this chapter is to diagrammatically calculate the one-loop con-
tributions to the gluon self-energy and the vertex correction. Additional to the
contributions of the pure Yang Mills theory, Figure 4.1, in the Einstein-Yang-
Mills systems gravitational one-loop diagrams, Figure 4.2, are found.

The lack of multi-photon vertices and electromagnetic ghosts in the Einstein-
Maxwell system reduces the number of diagrams dramatically. Only the two
gravitational contributions to the photon self-energy – Figure 4.2a) and b) –
remain. The values of the pure Yang-Mills diagrams will provide a test for the
applied methods by comparing them to the known results from the literature,
e. g. [19].

The divegent graphs are calculated in two regularization schemes: First we
use a cutoff regulator to see the expected quadratic divergences; but as the
calculations will show, all quadratic terms in the cut-off momentum cancel. So
we repeated the computation with the more elegant dimensional regularization.

4.1 Feynman Integrals

The one-loop diagrams needed to be evaluated for the renormalization of the
theory contain one, two or three propagators.

The momentum integrals with one propagator only need to be Wick rotated
and are then computed in the chosen regularization scheme. The other ones
first have to be transformed using Feynman parameters. By the right choice
of denotation of the propagators only two different combinations of momenta
remain:

1

(k2 + iε)((k + q)2 + iε)
=

∫∫ 1

0
dxdy

δ(x+ y − 1)

(k2 + 2k · xq + xq2 + iε)2
(4.1)

1

(k2 + iε)((k + q)2 + iε)((k − p)2 + iε)
=

2

∫∫∫ 1

0
dxdydy

δ(x+ y + z − 1)

(k2 − 2k · (yp− xq) + xq2 + yp2 + iε)3
. (4.2)

The integrals over the parameters x, y and z will be evaluated after the momen-
tum integration is done. The momentum integrals lead to a small number of
functions of the parameters. The polynomials were of course easily integrated for
the remaining – rational functions and logarithms of polynomials – we used the
computer algebra system Mathematica. The two dimensional integrals (4.1)
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a)
1

2
b)

1

2
c) ∼ g2

d) e) f)
1

2

+ +

1

2
∼ g3

+

1

2

Figure 4.1: One-loop corrections of the pure Yang-Mills theory

a) b)
1

2
∼ κ2

c) d) e)
1

2

+ +

∼ gκ2

+ +

Figure 4.2: Graviton loop corrections
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4.1 Feynman Integrals

were easily processed. The three dimensional ones (4.2) turned out to be more
complicated and were at first not evaluated neither analytically nor numerically.
We solved the problem by transforming the parameter integrals as described in
Appendix B to a form Mathematica could handle. In the new form we were
even able to obtain an analytical result.

Of course most of the integrals are ultra-violet divergent and have to be
regulated. This is done by two schemes, each with its advantages and drawbacks.
The application of two different regularization methods allows to compare their
results and to cross check the calculations.

4.1.1 Cut-off Regularization

The cut-off scheme is the most simple way to regulate divergent integrals in
momentum space. The intergals are solved after the time component of the
integration variable kµ is Wick-rotated:

k0 =ikE 0

→ k2 = − k2
E

Now we integrate in Euclidean momentum space. The finite valued intergals
can be performed directly. The divergent intergals are only taken over finite
size sphere with the radius Λ, the so called cut-off momentum.

After introducing the Feynman parameters, the denominators of all mo-
mentum integrals take the form (k2 − 2k · p + l)n. pµ and l are momentum
like and momentum square like expressions respectively depending on the outer
momenta and the Feynman parameters. This allows us to apply (4.3)–(4.10).

∫
d4k

(2π)4
1

k2
=

−i
16π2

Λ2 (4.3)

∫
d4k

(2π)4
1

(k2 − 2k · p+ l)2
=

i

16π2

{

log
Λ2

p2 − l
− 1

}

(4.4)

∫
d4k

(2π)4
kµ

(k2 − 2k · p+ l)2
=

i

16π2
pµ

{

log
Λ2

p2 − l
− 3

2

}

(4.5)

∫
d4k

(2π)4
kµkν

(k2 − 2k · p+ l)2
=

i

16π2

1

2
ηµν

{

(p2 − l) log
Λ2

p2 − l
+

3l − 5p2

6
− Λ2

2

}

+
i

16π2
pµpν

{

log
Λ2

p2 − l
− 11

6

}

(4.6)

∫
d4k

(2π)4
1

(k2 − 2k · p+ l)3
=

−i
16π2

1

2

1

p2 − l
(4.7)

∫
d4k

(2π)4
kµ

(k2 − 2k · p+ l)3
=

−i
16π2

1

2

kµ

p2 − l
(4.8)

∫
d4k

(2π)4
kµkν

(k2 − 2k · p+ l)3
=

i

16π2

1

4
ηµν

{

log
Λ2

p2 − l
− 3

2

}

− i

16π2

1

2

pµpν

p2 − l
(4.9)
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Chapter 4: Divergences of the one-loop Diagrams

∫
d4k

(2π)4
kµkνkρ

(k2 − 2k · p+ l)3
=

i

16π2

1

4
(ηµνpρ + ηνρpµ + ηρµpν)

{

log
Λ2

p2 − l
− 11

6

}

+
i

16π2

1

2

pµpνpρ

p2 − l
(4.10)

Quadratic appearances of the integration variable are simply written as k2 =
ηµνkµkν . The formulae are taken from [23] except the last one, which was de-
duced by derivation from (4.6) and the first one, which is trivial.

In these formulas all momenta, including the integrals at the left hand site,
are not Wick-rotated. The Euclidean vectors exist in an intermediate step and
do not effect to outer momenta. The Wick rotation becomes only visible in the
imaginary factor.

The disadvantage of the cut-off regularization is that the hard cut-off in
momentum space violates the symmetries – especially gauge symmetry and
Lorentz symmetry. Terms of the regulated expressions which are inconsistent
with the symmetries, viz. violating the Slavnov-Taylor-Ward identities, have to
be dropped because they are unphysical.

4.1.2 Dimensional Regularization

The considered integrals diverge in 4 dimesions, but yield finite values in d 6= 4
dimensions. This is exploited in the dimensional regularization first introduced
by ’t Hooft and Veltman [24]. In this scheme the momentum k, which is inte-
grated over, is Wick-rotated like in the cut-off regularization. Then the integral
is carried out in d = 4 − ǫ dimensions; and finally the obtained expression is
expanded in ǫ and all terms of linear and higher order in ǫ are dropped. The
divergences now become manifest as poles in ǫ. To the one-loop diagrams we
find only poles of first order, so all divergences are terms proportional to 1

ǫ .

Because the integrals are taken over the whole now d-dimensional momen-
tum space and not only a finite sphere, the integration variable k can be
shifted, so that the denominator depends only on its square k′2 and is writ-
ten as (k′2 − ∆)n. The precise shift is

k′µ = kµ + xqµ ⇒ ∆ = −x(1 − x)q2 (4.11)

for the two propagator integral (4.1) and

k′µ = kµ +(xqµ − ypµ) ⇒ ∆ = −x(1−x)q2 − y(1− y)p2 +2xyp·q (4.12)

for the three propagator integral (4.2).

Due to the symmetry all terms of the numerator linear and cubic in the new
k′1 can be dropped after this substitution. For the same reason the quadratic
terms can be simplified by

kµkν = 1
dk

2ηµν . (4.13)

Higher terms in k will not appear in our diagrams.

1In the futher text k′ will again be denoted as k because no confusion will be possible.
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4.2 Technique

The momentum integrals are now evaluated in d dimensions. The used for-
mulae can also be found in [21]:

∫
ddk

(2π)d
1

(k2 − ∆)2
=

i

(4π)d/2

Γ(2 − d
2)

∆2−d/2
(4.14)

∫
ddk

(2π)d
k2

(k2 − ∆)2
=

−i
(4π)d/2

d

2

Γ(1 − d
2)

∆1−d/2
(4.15)

∫
ddk

(2π)d
1

(k2 − ∆)3
=

−i
(4π)d/2

1

2

Γ(3 − d
2 )

∆3−d/2
(4.16)

∫
ddk

(2π)d
k2

(k2 − ∆)3
=

i

(4π)d/2

d

4

Γ(2 − d
2)

∆2−d/2
(4.17)

These expressions are all finite for d = 4 − ǫ as long as ǫ 6= 0. The limit ǫ → 0
will be taken in the final step and deliver the divergent part ∼ 1

ǫ and the finite
contributing O(1) in d = 4 dimensions.

The disadvantage of this method is that in the dimensional regularization
quadratic divergences disappear:

∫
ddk

(2π)d
1

k2
= 0 (4.18)

This is especially problematic because the superficial degree of divergence for
many of our considered diagrams is two. We solve this problem by the compari-
son of the results of the two regularization methods: The quadratic divergences2

in the cut-off regularization cancel each other, so that only logarithmic diver-
gent terms remain. These logarithmical divergences in both schemes will turn
out to be identical, if the divergent factors log Λ2 and 2

ǫ are identifed3.
Finally all expressions containing the dimension d are expanded in small ǫ.

The Γ-functions are expanded using:

Γ(1 − d
2) = Γ(−1 + ǫ

2 ) = −2

ǫ
+ γ − 1 + O(ǫ)

Γ(2 − d
2 ) = Γ( ǫ

2 ) =
2

ǫ
− γ + O(ǫ)

Γ(3 − d
2) = Γ(1 + ǫ

2 ) = 1 + O(ǫ)

(4.19)

and will provide the divergence 2
ǫ . Here γ is the Euler-Mascheroni constant,

γ ≈ 0.57772. Additionally only a few functions of the dimension and thus ǫ will
appear:

Xn− d
2 = Xn−2+ ǫ

2 = Xn−2(1 + 1
2ǫ logX) + O(ǫ2)

dn = (4 − ǫ)n = 4n(1 − n
4 ǫ) + O(ǫ2)

1

d− 2
=

1

2 − ǫ
=

1

2
+
ǫ

4
+ O(ǫ2) .

(4.20)

In the final result only the terms O(1
ǫ ) and O(1) are kept.

2Here only the terms respecting the Slavnov-Taylor-Ward-identity are meant. The unphys-
ical divergences are dropped anyway.

3This identification is reasonable because both have the same mangnitude as the accom-
paning momentum logarithm − log q2.
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Chapter 4: Divergences of the one-loop Diagrams

4.2 Technique

The actual computation of the one-loop graphs was mainly done using the com-
puter algebra system Form. We wrote separate scripts for each calculated graph
– only graphs with the same structure like the triangle graphs with gluon and
ghost propagators 4.1d) and e) are computed in one file. First the scripts read
the vertex formulas for the graviton–gluon vertices from the script described
in section 2.1. Each diagram is represented by a Form expression, which con-
sists of the integrals numerator including the symmetry factors derived by the
method described in Appendix A and the imaginary factors i or −i respectively
of the propagators. The constants like g, κ and gauge group expressions like fabc

were not included in the script because they were not effected by the manipu-
lation done by Form. The later ones were evaluated by hand using the quite
simple rules

δabδbd = δac facdf bcd = C2δ
ab f lamfmbnfncl = −1

2C2f
abc . (4.21)

In the common case of a SU(N) gauge group The constant C2 = N .
The integral itself including the factor (2π)−d and the denominator was also

not explicitly written because all expressions in one file have the same denomina-
tor and accordingly the integration procedure is the same. E. g. the gravitational
one-loop contribution to the gluon self-energy Figure 4.2a) is written as:

local PC1=V1gr2gl(q,m,[-K],s,a,b,i1)*P1(a,b,c,d)*V1gr2gl(K,s,[-q],n,c,d,i2);

The vertex function V1gr2gl depends on the gluon momenta q, K (vectors),
the gluon Lorentz indices m, n and s and the graviton indices a–d. The additional
arguments i1 and i2 are needed as indices for internal sums in the vertex
functions. Additional to the vertex functions the index structure of the graviton
propagator Iαβ,γ,δ + 1

2−dη
αβηγδ is represented by a Form function succeedingly

matched by

id P1(a?,b?,c?,d?)=1/2*(d_(a,c)*d_(b,d)+d_(a,d)*d_(b,c))+d_(a,b)*d_(c,d)/[2-D];

The symbol [2-D] is immediately matched with −2 in cut-off regulariza-
tion. In dimensional regularization the expansion for D = 4 − ǫ is done at the
appropriate time.

For cut-off regularization the dimension is set to four. Now the loop intergal
is evaluated. This is done substituting all occurrences of the loop momentum
by the solution of the regulated integral (4.3)–(4.10).

For dimensional regularization first the momentum shift (4.11) or (4.12)
respectively is implemented. The odd powers of the new integration variable
are dropped and the simplification (4.13) for the quadratic terms is utilized.
Now the dimension is set to d = 4 − ǫ and expressions in d including the
momentum integrals are expended in small ǫ up to O(1). For the integrals we
used (4.14)–(4.17) and the expansions for the Γ function (4.19).

The remaining process is the same for both regularization schemes. The last
step introduced the Feynman parameters in our expressions. The integral in
the two propagator case (4.1) is evaluated by substituting each occurrence of a
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4.3 Gluon Self-Energy

power of x or function of x by the value of the corresponding intergal, which
were obtained before using Mathematica.

The three propagator case (4.2) is more complicate. First the integrals over
∆−1 and log ∆ are not solvable for general external momenta. To gain a expres-
sion for the complete diagram, we set the momenta to p2 = q2 = k2 = −E2.
The divergent part, which is the only important for the counterterms, is ad-
ditionally computed for not fixed momenta because it is always polynomial in
the Feynman parameters. The final evaluation of the integrals is done using the
substition presented in Appendix B.

Finally the not totally symmetric three-gluon diagrams, like Figure 4.2c),
are summed up by adding all cyclic permutations, viz. (p, µ; q, ν; k, ρ)
+(q, ν; k, ρ; p, µ) + (k, ρ; p, µ; q, ν).

4.3 Gluon Self-Energy

The finite part of the diagrams include terms depending logarithmically on the
squared momentum. These have a branch cut for negative arguments, which is
avoided by the −iε term introduced in the propagators. If one wants to evaluate
the logarithms – which is no necessary to obtain the results of this work – one
has to take the limit ε→ +0 to obtain the correct value:

log(q2 − iε)
ε→+0−−−−→
q2<0

log(−q2) − iπ

log(−q2 + iε)
ε→+0−−−−→
q2>0

log q2 + iπ .

To keep the formulas more readable we drop the iε in the results. It can easily
restored using that it always appears in the combination q2− iε. Hence one can
substitute

q2 → q2 − iε

if necessary to evaluate a logarithm.

In the momentum integrals the branch-cut is avoided by the integration in
the Euclidean space after Wick-rotation.

4.3.1 Pure Yang-Mills Theory

First we deal with graphs which consist only of entities of pure Yang Mills
theory, Figure 4.1 a)–c). These calculations can be compared with the long
time known results of order g2 as taken from the literature[25, 19, 26, 21].

Figure 4.1 a)

1

2
=

1

2

∫
ddk

(2π)d
V acd µρσ

3gl (q, k,−(k + q))
−i

k2 + iε

× V bcd
3gl

ν

ρσ
(−q,−k, k + q)

−i
(k + q)2 + iε

(4.22)
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becomes in cut-off regularization:

1

2
=

i

16π2
g2C2δ

ab

(

q2ηµν 19

12

[
log Λ2 − log q2 + 71

114

]

−qµqν 11

6

[
log Λ2 − log(−q2) + 61

66

]
− ηµν 9

4
Λ2

)

(4.23)

and in dimensional regularization:

1

2
=

i

16π2
g2C2δ

ab

(

q2ηµν 19

12

[
2

ǫ
− log(−q2) − γ + log 4π + 116

57

]

−qµqν 11

6

[
2

ǫ
− log(−q2) − γ + log 4π + 67

33

])

(4.24)

Figure 4.1 b)

1

2
=

1

2

∫
ddk

(2π)d
V abcc µνρ

4gl ρ

−i
k2 + iε

(4.25)

yields in cut-off regularization:

1

2
=

i

16π2
3g2C2η

µνδabΛ2 (4.26)

in dimensional regularization the all tadpole graphs are zero:

1

2
= −g2C2

d− 1

2
ηµνδab

∫
ddk

(2π)d
1

k2

= 0

(4.27)

Figure 4.1 c)

= −
∫

ddk

(2π)d
V cad µ

gl–gh (k + q)
i

(k + q)2 + iε
V dbc ν

gl–gh(k)
i

k2 + iε
(4.28)

becomes in cut-off regularization:

=
i

16π2
g2C2δ

ab

(

q2ηµν 1

12

[
log Λ2 − log q2 + 11

6

]

+qµqν 1

6

[
log Λ2 − log(−q2) + 5

6

]
+ ηµν 1

4
Λ2

)

(4.29)
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and in dimensional regularization:

=
i

16π2
g2C2δ

ab

(

q2ηµν 1

12

[
2

ǫ
− log(−q2) − γ + log 4π + 8

3

]

+qµqν 1

6

[
2

ǫ
− log(−q2) − γ + log 4π + 5

3

]) (4.30)

Hence the complete gluon self energy in order g2 in the cut-off regularization:

g2 =
i

16π2
g2C2δ

ab
[

(q2ηµν − qµqν)
5

3

(
log Λ2 − log(−q2)

)

+ 41
36q

2ηµν − 14
9 q

µqν + ηµνΛ2
] (4.31)

the finite and the quadratically divergent terms are not conform with the
Slavnov-Taylor-Ward identity and thus unphysical. So they must be ignored
as described in subsection 4.1.1. The result in dimensional regularization

g2 =
i

16π2
g2C2δ

ab(q2ηµν − qµqν)
5

3

[2

ǫ
− log(−q2)

− γ + log 4π + 31
15

] (4.32)

on the other hand is symmetry conform. Both results match with the literature
values.

4.3.2 Gravitational Contributions

Figure 4.2 a)

=

∫
ddk

(2π)d
V ac µσ,αβ

2gl–1gr (q,−k) −i
k2 + iε

V cb ν,γδ
2gl–1gr σ(k,−q)

i(Iαβ,γδ − 1
d−2ηαβηγδ)

(k + q)2 + iε

(4.33)

becomes in cut-off regularization:

=
i

16π2
κ2(q2ηµν − qµqν)δab

[
3

2
Λ2 − q2

1

6

(
log Λ2 − log(−q2) − 25

6

)
]

(4.34)
and in dimensional regularization:

= − i

16π2
κ2(q2ηµν − qµqν)δab 1

6
q2
[
2

ǫ
− log(−q2) − γ + log 4π + 1

6

]

(4.35)

Figure 4.2 b)

1

2
=

∫
ddk

(2π)d
V ab µν,αβ γδ

2gl–2gr (q,−q)

i(Iαβ,γδ − 1
d−2ηαβηγδ)

k2 + iε

(4.36)
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is in cut-off regularization

1

2
=

−i
16π2

3

2
κ2(q2ηµν − qµqν)δabΛ2 (4.37)

in dimensional regularization it yields zero as all tadpole graphs:

1

2
=

3

2
κ2(q2ηµν − qµqν)δab

∫
ddk

(2π)d
1
k2

= 0

(4.38)

The sum in cut-off regularization:

+
1

2
= − i

16π2

1

6
(q2ηµν−qµqν)δabκ2q2

[
log Λ2 − log(−q2) − 25

6

]

(4.39)
is in leading order equivalent to 4.2a) in the dimensional calculation, which is
the only contribution in this scheme.

4.4 Vertex Corrections

The finite parts of the triangle shaped diagrams Figure 4.1 d), e) and 4.2 c) were
evaluated at the regularization point p2 = q2 = k2 = −E2 because otherwise
we would not been able to compute all integrals over the Feynman parameters.
As mentioned above, the divergent terms depend only polynomially on the
parameters. Hence these are additionally calculated for general momenta in
order to obtain the right tensor structure for the dimension-six counter-terms.

Except for some of the logarithmic divergent contributions of gravitational
loop diagrams, only three, in the momenta and indices antisymmetric structures
occur. To enhance readability only the first terms will be written:

ηµν(p − q)ρ + ηνρ(q − k)µ + ηρµ(k − p)ν = ηµν(p− q)ρ + . . .

kµkν(p− q)ρ + pνpρ(q − k)µ + qρqµ(k − p)ν = kµkν(p− q)ρ + . . .

pρqµkν − pνqρkµ = pρqµkν − pνqρkµ

4.4.1 Pure Yang Mills Theory

Figure 4.1 d)

=

∫
ddk

(2π)d
V lam µα

3gl γ (k − p, p,−k) −i
k2 + iε

× V mbn νβ
3gl α (k, q,−k − q)

−i
(k + q)2 + iε

× V ncl ργ
3gl β (k + q,−p− q,−k + p)

−i
(k − p)2 + iε

(4.40)
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becomes in cut-off regularization:

=
1

16π2
g3C2f

abc
{13

8
(ηµν(p− q)ρ + . . . )

[

log Λ2

− logE2 + 85
78)
]

−(kµkν(p− q)ρ + . . . )
[
1
6 − 1

9(ψ1(
1
3 ) − ψ1(

2
3))
]
E−2

+(pρqµkν − pνqρkµ)
[

5
12 + 2

9(ψ1(
1
3 ) − ψ1(

2
3 ))
]
E−2

}

(4.41)

and in dimensional regularization:

=
1

16π2
g3C2f

abc
{13

8
(ηµν(p − q)ρ + . . . )

[2

ǫ
− logE2

−γ + log 4π + 37
13 − 4

9(ψ1(
1
3 ) − ψ1(

2
3))
]

−(kµkν(p− q)ρ + . . . )
[

23
54 + 13

81(ψ1(
1
3 ) − ψ1(

2
3))
]
E−2

+(pρqµkν − pνqρkµ)
[

115
108 − 62

81(ψ1(
1
3 ) − ψ1(

2
3 ))
]
E−2

}

(4.42)

Figure 4.1 e)

+ = −
∫

ddk

(2π)d
V lam µ

gl–gh (k)
i

k2 + iε
V mbn ν

gl–gh (k + q)

× i

(k + q)2 + iε
V ncl ργ

gl–gh (k − p)
i

(k − p)2 + iε

+ V mal µ
gl–gh (−k + p)

i

k2 + iε
V nbm ν

gl–gh (−k)

× i

(k + q)2 + iε
V lcn ργ

gl–gh (−k − q)
i

(k − p)2 + iε

becomes in cut-off regularization:

+ =
1

16π2
g3C2f

abc
{

− 1

24
(ηµν(p− q)ρ + . . . )

[

log Λ2

− logE2 + 3
2 − 2

9(ψ1(
1
3 ) − ψ1(

2
3))
]

−(kµkν(p − q)ρ + . . . )
[

1
54 − 1

81 (ψ1(
1
3) − ψ1(

2
3 ))
]
E−2

+(pρqµkν − pνqρkµ)
[

5
108 + 2

81(ψ1(
1
3 ) − ψ1(

2
3))
]
E−2

}

(4.43)

and in dimensional regularization:

+ =
1

16π2
g3C2f

abc
{

− 1

24
(ηµν(p− q)ρ + . . . )

[2

ǫ
− logE2

−γ + log4π + 3 − 2
9(ψ1(

1
3 ) − ψ1(

2
3))
]
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−(kµkν(p − q)ρ + . . . )
[

1
54 − 1

81 (ψ1(
1
3) − ψ1(

2
3 ))
]
E−2

+(pρqµkν − pνqρkµ)
[

5
108 + 2

81(ψ1(
1
3 ) − ψ1(

2
3))
]
E−2

}

(4.44)

Figure 4.1 f)

1

2
=

1

2

∫
ddk

(2π)d
V bmn νρσ

3gl (q, k,−k − q)
−i

k2 + iε

× V mnac µρ
4gl ρσ (−k, k + q, p,−p− q)

−i
(k + q)2 + iε

(4.45)

becomes in cut-off regularization:

1

2
+ · · · = − 1

16π2
g3 9

4
C2f

abc
(
ηµν
(
pρ
[
log Λ2 − log(−p2) + 1

]
(4.46)

−qρ
[
log Λ2 − log(−q2) + 1

] )
+ . . .

)

and in dimensional regularization:

1

2
+ · · · = − 1

16π2
g3 9

4
C2f

abc
(
ηµν
(
pρ

[
2

ǫ
− log(−p2) − γ + log 4π + 2

]

− qρ

[
2

ǫ
− log(−q2) − γ + log 4π + 2

]
)

+ . . .
)

(4.47)

Hence the sum of the Yang-Mills contributions in cut-off regularization is

g3 =
1

16π2
g3C2f

abc
{

− 2

3
(ηµν(p− q)ρ + . . . )

[

log Λ2 − logE2

+ 13
54 − 1

243 (ψ1(
1
3 ) − ψ1(

2
3 ))
]

−(kµkν(p − q)ρ + . . . )
[

10
27 + 7

81 (ψ1(
1
3) − ψ1(

2
3))
]
E−2

+(pρqµkν − pνqρkµ)
[

25
27 − 41

81 (ψ1(
1
3) − ψ1(

2
3))
]
E−2

}

(4.48)

And the sum in dimensional regularization:

g3 =
1

16π2
g3C2f

abc
{

− 2

3
(ηµν(p − q)ρ + . . . )

[2

ǫ
− logE2

−γ + log 4π + 1
2 − 115

144 (ψ1(
1
3 ) − ψ1(

2
3 ))
]

−(kµkν(p − q)ρ + . . . )
[

10
27 + 7

81 (ψ1(
1
3 ) − ψ1(

2
3))
]
E−2

+(pρqµkν − pνqρkµ)
[

25
27 − 41

81 (ψ1(
1
3 ) − ψ1(

2
3))
]
E−2

}

(4.49)

Again the Yang-Mills result reproduces the literature value in amplitude and
sign. Thus the applied methods can be regarded as correctly working, also in
the gravitational sector.
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4.4.2 Gravitational Contributions

Figure 4.2 c)

=

∫
ddk

(2π)d
V ade µστ

3gl (p,−k, k − p)
−i

k2 + iε

× V db ν,αβ
2gl–1gr σ(k, q)

i(Iαβ,γδ − 1
d−2ηαβηγδ)

(k + q)2 + iε

× V ec ρ,γδ
2gl–1gr τ (−k + p,−p− q)

−i
(k − p)2 + iε

The divergent part is in both regularization schemes:

+ · · · =
1

16π2
gκ2fabc

{

ηµν

[

pρ(
5

6
p · q +

1

4
q · k)

− qρ(
5

6
q · p+

1

4
p · k)

]

+ηνρ

[

qµ(
5

6
q · k +

1

4
k · p) − kµ(

5

6
k · q +

1

4
q · p)

]

+ηρµ

[

kν(
5

6
k · p+

1

4
p · q) − pν(

5

6
p · k +

1

4
k · q)

]

−5

6
[kµkν(p− q)ρ + . . . ]

−1

4
[pρqµkν − pνqρkµ]

}

∆

(4.50)

Here the abbreviation

∆ =







log Λ2 in cut-off regularization
2

ǫ
in dimesional regularization

(4.51)

is used. The finite part of the diagram is determinable only at the point p2 =
q2 = k2 = −E2. The complete values of the diagram is then in cut-off regular-
ization:

+ · · · =
1

16π2
gκ2fabc

{
13
24E

2(ηµν(p− q)ρ + . . . )
[
log Λ2

− logE2 + 83
78 − 5

39 (ψ1(
1
3) − ψ1(

2
3))
]

−5
6(kµkν(p− q)ρ + . . . )

[
log Λ2 (4.52)

− logE2 + 11
30 + 2

45 (ψ1(
1
3) − ψ1(

2
3))
]

−1
4(pρqµkν − pνqρkµ)

[
log Λ2

− logE2 + 61
72 − 19

27(ψ1(
1
3 ) − ψ1(

2
3 ))
]}
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and in dimensional regularization:

+ · · · =
1

16π2
gκ2fabc

{
13
24E

2(ηµν(p− q)ρ + . . . )
[

2
ǫ − logE2

−γ + log 4π − 38
39 − 37

117 (ψ1(
1
3 ) − ψ1(

2
3))
]

−5
6(kµkν(p− q)ρ + . . . )

[
2
ǫ − logE2 − γ + log 4π (4.53)

+3 − 11
45(ψ1(

1
3 ) − ψ1(

2
3))
]

−1
4(pρqµkν − pνqρkµ)

[
2
ǫ − logE2 − γ + log 4π

−128
9 + 7

27(ψ1(
1
3 ) − ψ1(

2
3 ))
]}

Figure 4.2 d)

=

∫
ddk

(2π)d
V bd νσ,αβ

2gl–1gr (q, k)
−i

k2 + iε

× V adc µσρ,γδ
3gl–1gr σ (p,−k,−p− q)

i(Iαβ,γδ − 1
d−2ηαβηγδ)

(k + q)2 + iε

The divergent part is in cut-off regularization:

+ · · · =
1

16π2
gκ2fabc

{

− 3

2
[ηµν(p− q)ρ + . . . ] Λ2

+

[

−ηµν
[

pρ(
7

6
p · q +

1

6
p · k +

3

4
q · k)

− qρ(
7

6
q · p+

1

6
q · k +

3

4
p · k)

]

−ηνρ
[

qµ(
7

6
q · k +

1

6
q · p+

3

4
k · p)

− kµ(
7

6
k · q +

1

6
k · p+

3

4
q · p)

]

−ηρµ
[

kν(
7

6
k · p+

1

6
k · q +

3

4
p · q)

− pν(
7

6
p · k +

1

6
p · q +

3

4
k · q)

]

+ [kµkν(p− q)ρ + . . . ]

+
3

4
[pρqµkν + pνqρkµ]

]

log Λ2

}

(4.54)
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and in dimensional regularization:

+ · · · =
1

16π2
gκ2fabc

{

− ηµν
[

pρ(
7

6
p · q +

1

6
p · k +

3

4
q · k)

− qρ(
7

6
q · p+

1

6
q · k +

3

4
p · k)

]

−ηνρ
[

qµ(
7

6
q · k +

1

6
q · p+

3

4
k · p)

− kµ(
7

6
k · q +

1

6
k · p+

3

4
q · p)

]

−ηρµ
[

kν(
7

6
k · p+

1

6
k · q +

3

4
p · q)

− pν(
7

6
p · k +

1

6
p · q +

3

4
k · q)

]

+[kµkν(p− q)ρ + . . . ]

+
3

4
[pρqµkν + pνqρkµ]

}

2

ǫ

(4.55)

The complete diagram is in cut-off regularization:

+ · · · =
1

16π2
gκ2fabc

{

− 3
2 (ηµν(p− q)ρ + . . . )Λ2

+ (ηµν
(
pρ
[
− (7

6p · q + 1
6p · k + 3

4q · k) log Λ2

− (1
4p · k − 11

12q · k) log(−p2)

− 1
4k

2 log(−q2) + 1
2q · k log(−k2)

+ 7
36p · q + 25

36p · k − 3
8q · k

]

− qρ(. . . )) + . . . )

+
(
kµkν

(
pρ
[
log Λ2 − 1

4 log(−p2) − 3
4 log(−k2) + 1

2

]

− qρ[. . . ]
)

+ . . .
)

+ (pρqµkν − pνqρkµ)
[

3
4 log Λ2 + 3

8

− 1
4

(
log(−p2) + log(−q2) + log(−k2)

) ]}

(4.56)

and in dimensional regularization:

+ · · · =
1

16π2
gκ2fabc

{

(ηµν
(
pρ
[
− (7

6p · q + 1
6p · k

+ 3
4q · k)[2ǫ − γ + log 4π]

− (1
4p · k − 11

12q · k) log(−p2)

− 1
4k

2 log(−q2) + 1
2q · k log(−k2)

− 23
18p · q − 1

36p · k + 3
4q · k

]

− qρ(. . . )) + . . . ) (4.57)
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+
(
kµkν

(
pρ
[
2
ǫ − 1

4 log(−p2) − 3
4 log(−k2)

− γ + log 4π + 5
4

]
− qρ[. . . ]

)
+ . . .

)

+ (pρqµkν − pνqρkµ)
[

3
4

(
2
ǫ − γ + log 4π − 1

)

− 1
4

(
log(−p2) + log(−q2) + log(−k2)

) ]}

Figure 4.2 e)

1

2
=

∫
ddk

(2π)d
V abc µνρ,αβ γδ

3gl–2gr (p, q,−p − q)
i(Iαβ,γδ − 1

d−2ηαβηγδ)

k2 + iε
(4.58)

is again a tadpole diagram which only contributed in the cut-off scheme

1

2
=

1

16π2
g3 3

2
C2f

abc(ηµν(p − q)ρ + . . . )Λ2 (4.59)

Like in the propagator case the quadratic divergences cancel in the sum
of all diagrams. So the remaining logarithmic divergences of all gravitational
one-loop corrections to the three-gluon vertex are

gκ2 =
1

16π2
gκ2fabc

{

−ηµν
[

pρ(
1

3
p · q +

1

6
p · k +

1

2
q · k)

− qρ(
1

3
q · p+

1

6
q · k +

1

2
p · k)

]

−ηνρ
[

qµ(
1

3
q · k +

1

6
q · p+

1

2
k · p)

− kµ(
1

3
k · q +

1

6
k · p+

1

2
q · p)

]

−ηρµ
[

kν(
1

3
k · p+

1

6
k · q +

1

2
p · q)

− pν(
1

3
p · k +

1

6
p · q +

1

2
k · q)

]

+
1

6
[kµkν(p− q)ρ + . . . ]

+
1

2
[pρqµkν + pνqρkµ]

}

∆

(4.60)

in both regularization schemes with ∆ as defined in (4.51).
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V

Renormalization

After determining the divergences of the one-loop diagrams, we are able to
cancel these by adding infinite counter-terms to the Lagrangian, i. e. renormal-
izing the theory. We will do this in the minimal subtraction scheme, viz only
subtract the leading divergent order.

5.1 The Counter-Term Lagrangian

The effective theory for the considered energy scale is described by the La-
grangian

L = Lren. + Lct

plus further corrections of higher order in κ and g, which would result from
multi-loop calculations. Here Lren. is the renormalized Lagrangian consisting of
the Einstein-Hilbert and the dimension-six Lagrangian presented in chapter 3:

Lren. = LEYM + Ldim6 .

Lct collects all counter-terms canceling the determined one-loop divergences
from chapter 4. The full Lagrangian can also be expressed by extended La-
grangian LEYM + Ldim6 in terms of the bare fields and couplings. For our con-
sideration only the Yang-Mills sector

L = −1
4F

0
µνF

0 µν + d0
1 tr
[
(D0

µF
0
νρ)(D

0 µF 0 νρ)
]

+ d0
2 tr
[
(D0

µF
0 µρ)(D0 νF 0

νρ)
]
+ id0

3 tr
[

F 0 β
α F 0 γ

β F 0 α
γ

]

(5.1)

is needed, which is at the examined order:

L = − ∂µA0 a ν∂[µA
0 a
ν] − g0fabc(∂µA

0 a
ν )A0 b µA0 c ν

+ 2d0
1∂

µ∂νA0 a ρ∂µ∂[νA
0 a
ρ]

+ 2d0
1g

0fabc∂µ∂νA0 a ρ(∂µ(A0 b
ν A0 c

ρ ) + 2A0 b
µ ∂[νA

0 c
ρ] )

+ 2d0
2∂

µ∂[µA
0 a
ρ] ∂ν∂

[νA0 a ρ]

+ 2d0
2g

0fabc∂µ∂
[µA0 a ρ](∂νA0 b

ν A0 c
ρ ) + 2A0 b ν∂[νA

0 c
ρ] )

− 2d0
3f

abc∂[µA0 a ν]∂[νA
0 b
ρ] ∂[σA

0 c
µ] η

ρσ + O(A4)

(5.2)

The renormalized Lagrangian Lren. is identical to (5.2) with the bare entities
substituted by the renormalized quantities. Also the counter-terms must have
the structure provided by (5.2). Therefore the counter-term Lagrangian up to
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order A3 has to be

Lct = − δ2∂
µAa ν∂[µA

a
ν] − gδg

1f
abc(∂µA

a
ν)A

b µAc ν

+ 2δd12
1 ∂µ∂νAa ρ∂µ∂[νA

a
ρ]

+ 2gδd13
1 fabc∂µ∂νAa ρ(∂µ(Ab

νA
c
ρ) + 2Ab

µ∂[νA
c
ρ])

+ 2δd22
1 ∂µ∂[µA

a
ρ]∂ν∂

[νAa ρ]

+ 2gδd23
1 fabc∂µ∂

[µAa ρ](∂ν(Ab
νA

c
ρ) + 2Ab ν∂[νA

c
ρ])

− 2δd3

1 fabc∂[µAa ν]∂[νA
b
ρ]∂[σA

c
µ]η

ρσ + O(A4) .

(5.3)

The introduced symbols δi will carry the divergent expressions canceling the
one-loop divergences. Where no confusion with the complete terms is possible
these will be denoted as counter-terms as well. δg

1 and δ2 are dimensionless

by construction and the δdiX
1 have obviously the same mass dimension as the

corresponding di.

The terms of both formulations, bare fields and coupling respectively renor-
malized quantities plus counter-terms, can be compared utilizing the renormal-
ization of the field strength

Aa
µ = Z

−1/2
2 Aa 0

µ (5.4)

connecting renormalized and bare fields. Thus the counter-terms and the bare
and renormalized couplings are related by

1 + δ2 = Z2 g(1 + δg
1) = g0Z

3

2

2

d1 + δd12
1 = d0

1Z2 g(d1 + δd13) = d0
1g0Z

3

2

2

d2 + δd22
1 = d0

2Z2 g(d2 + δd23) = d0
2g0Z

3

2

2

d3 + δd3 = d0
3Z

3

2

2 .

(5.5)

These relations will be necessary to derive the β functions and will also reduce
the remaining degrees of freedom in the results.

5.2 The Renormalization Scale

Because we want to use only divergences themselves to construct the counter-
terms, we have to introduce an energy scale µ in order restore the right mass
dimension. The scale µ is the renormalization scale at which the one-loop dia-
grams are evaluated.

In the cut-off renormalization the leading term of the logarithmic diver-
gences is log Λ2 with the cut-off momentum Λ. Such a term by itself has no
defined mass dimension. In order to obtain a dimensionless expression, one has
to substitute

log Λ2 → log
Λ2

µ2
= log Λ2 − log µ2
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in the counter-terms. Because the cut-off renormalization is applied in four
dimensions the Yang-Mills coupling g is dimensionless. The only remaining di-
mensionful quantity in the counter-terms is κ2,

[κ2] = −2 .

Because of the absence of quadratic divergences κ2 only occurs in the dimension-
six counter-terms δdi

1 . These terms also have in four dimensions the mass dime-
sion minus two, see (3.8). Therefore the right divergence for the logarithmical
counter-terms is again

log Λ2 → log
Λ2

µ2
= log Λ2 − log µ2 .

In combination with the one-loop corrections the term logµ2 will cancel the
logE2 term at the renormalization point. For energies near the renormalization

point these terms can be combined to log µ2

E2 , which is dimensionless as required.
Aside of their final canceling, all quadratic divergences we saw were of the form
κ2Λ2, so they were per se dimensionless and no µ has to be inserted.

In dimensional renormalization the divergences are of the form 2
ǫ , hence

dimensionless. But now the prefactors will get a non-vanishing mass dimension
because of the mass dimension of the couplings in d = 4 − ǫ dimensions. Their
mass dimension can be derived by comparing the kinetic and interaction terms
of the Lagrangian.1 The action itself must be dimensionless [S] = 0, thus the
Lagrangian in d dimensions has the mass dimension [L] = d. The kinetic terms
for both appearing bosonic fields are ∼ (∂A)2 respectively ∼ (∂h)2, so the fields
must have the mass dimension

[A] = [h] =
d

2
− 1 . (5.6)

From the three-gluon interaction g(∂A)A2 and the gluon–graviton interaction
κh(∂A)2 one reads:

[g] + 3[A] + 1 =d

[κ] + [h] + 2[A] + 2 =d

which is solved by

[g] = 2 − d

2
=
ǫ

2
(5.7)

[κ] = 1 − d

2
= −1 +

ǫ

2
. (5.8)

The Yang-Mills divergences at one-loop order are proportional to g2 for the
self-energy and g3 for the vertex correction respectively. So the counter-terms

1The dimension of κ can be alternatively determined from the Einstein-Hilbert term 2

κ2 R

using R ∼ ∂∂g → [R] = 2.
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δ2 and δg
1 must both be proportional to g2, hence to keep them dimensionless a

factor µ−ǫ is required. Therefore the divergent factor 2
ǫ has to be extended to

µ−ǫ 2

ǫ
.

The gravitational divergences are proportional to κ2 and gκ2 respectively. The
counter-terms have the same dimension as the same as the corresonding cou-
plings di which were derived in chapter 3 and are

[δd1

1 ] = [δd2

1 ] = − 2

[δd3

1 ] = − d

2
= −2 +

ǫ

2
.

Hence to achive the correct dimensions of the counter-terms, an additional factor
of mass dimension

[κ2] − [δ
d1,2

1 ] =ǫ

[gκ2] − [δd3

1 ] =ǫ

is needed. Thus again, the divergent factor has to be

µ−ǫ 2

ǫ

to achieve a dimensionless counter-term. For small ǫ it can be expanded to

µǫ 2

ǫ
=

2

ǫ
(1 − ǫ log µ+ O(ǫ2)) =

2

ǫ
− log µ2 + O(ǫ) .

The divergent 2
ǫ of the one-loop diagrams and the counter-term will cancel.

As in the cut-off case the term log µ2 will cancel the energy logarithm at the
renormalization point.

As expected, the divergences derived by means of cut-off and dimensional
regularization are of the same magnitude if we substitute log Λ2 ⇔ 2

ǫ . Thus the
same will hold for the counter-terms. In order to be able to handle the counter-
terms in both renormalization schemes at once, we redefine the abbreviation
introduced in chapter 4 to the new dimensionless quantity

∆ =







log
Λ2

µ2
in cut-off regularization

µ−ǫ 2

ǫ
in dimesional regularization

(5.9)

including the mass scale µ as described above.

5.3 Determination of the Counter-Terms

The counter-terms must lead to Feynman rules which can reproduce the diver-
gent part of the one-loop diagrams in chapter 4 at tree level. Therefore the next
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step is the determination of the rules. Here we can use the results of chapter 3
and Appendix C.

The divergences of the pure gauge diagrams have exactly the tensor struc-
ture of interactions of the unrenormalized theory. Thus only the counter-terms
∼ trF 2, namely δ2 and δg

1 are needed to cancel the divergences. The needlessness
of additional counter-terms with a new tensor structure reflects the renormal-
izability of this sector of the theory. The Feynman rules of the counter-terms
are

q

µ a ν b
g

= −iδab(q2ηµν − qµqν)δ2 (5.10)

p

q

k

µ a

ν b ρ c

g
= gfabc [ηµν(p − q)ρ + ηνρ(q − k)µ + ηρµ(k − p)ν ] δg

1 . (5.11)

If we saw quadratic divergences in the gravitational sector, i. e. ∼ κ2Λ2, these
would also have the above tensor structure. Thus they would contribute to the
counter-terms δ2 and δg

1 and hence to the renormalization of g as Robinson and
Wilczek found[14]. The absence of these divergences reproduces the results of
[16, 17] in diagrammatical approach.

The logarithmic divergences of the gravitational sector all have additional
momentum factors, which correspond to higher derivatives in position space,
thus in the Lagrangian. The only gauge invariant terms with the right number
of derviatives are the dimension-six terms presented in chapter 3. The Feynman
rules accord with the rules for the dimension-six terms, but now multiplied by
the counter-terms δdi

1 . They are for two gluons

q

µ a ν b
d1

= 2iδabq2(q2ηµν − qµqν)δd12
1 (5.12)

q

µ a ν b
d2

= iδabq2(q2ηµν − qµqν)δd22
1 (5.13)

and for three gluons

p

q

k

µ a

ν b ρ c

d1
= gfabc

[
ηµν(pρ(4p · q + 2p · k) − qρ(4q · p+ 2q · k))

+ηνρ(qµ(4q · k + 2q · p) − kν(4k · q + 2k · p))
+ηρµ(kν(4k · p+ 2k · q) − pν(4p · k + 2p · q))
−2
(
kµkν(p − q)ρ + pνpρ(q − k)µ

+qρqµ(k − p)ν
)]
δd13
1

(5.14)
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p

q

k

µ a

ν b ρ c

d2
= gfabc

[
ηµν(pρ(2p · q + p · k + 3q · k)

−qρ(2q · p+ q · k + 3p · k))
+ηνρ(qµ(2q · k + q · p+ 3k · p)

−kµ(2k · q + k · p+ 3q · p))
+ηρµ(kν(2k · p+ k · q + 3p · q)

−pν(2p · k + p · q + 3k · q))
−
(
kµkν(p− q)ρ + pνpρ(q − k)µ

+qρqµ(k − p)ν
)

−3(pρqµkν − pνqρkµ)
]
δd2

1

(5.15)

p

q

k

µ a

ν b ρ c

d3
= 3

2f
abc
[
−ηµν(pρq · k − qρk · p)
−ηνρ(qµk · p− kνp · q)
−ηρµ(kνp · q − pνq · k)
+(pρqµkν − pνqρkµ)

]
δd3

1 .

(5.16)

After determining the tensor structure of the counter-terms, we can now calcu-
late their actual values.

The Yang-Mills counter-terms δ2 and δg
1 have to cancel (4.31) and (4.48) in

the cut-off regularization scheme and (4.32) and (4.49) in dimensional regular-
ization:

δ2 =
1

16π2
g2C2

5

3
∆

δg
1 =

1

16π2
g2C2

2

3
∆ .

(5.17)

Here ∆ defined in (5.9) is used to abbreviate the parameterization of the di-
vergences in both regularization schemes. This is the well know result, see e. g.
[19]. Its reproduction confirms our methods and algorithm.

The two-gluon and three-gluon counter-terms belonging to O1 and analo-
gously the counter-terms belonging to O2 are not independent. From (5.5) one
sees that

g0

g
Z

3

2

2 = 1 + δg
1

d0
1 = (d1 + δd12

1 )Z−1
2 = (d1 + δd12

1 )(1 + δ2)
−1

⇒ d1 + δd13
1 = d0

1
g0

g
Z

3

2

2

= (1 + δg
1)(d1 + δd12

1 )(1 + δ2)
−1 .

As we will describe in chapter 6 only linear order in the counter-terms can be
used. Thus we obtain

δd13
1 = δd12

1 + d1(δ
g
1 − δ2) . (5.18)
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δd12
1 and δd13

1 are purely gravitational2, thus O(κ2), and the counter-terms δg
1

and δ2 have only Yang-Mills contributions (5.17), O(g2). Therefore the two-
gluon and three-gluon counter-terms must be identical in leading order and
both will the denoted as δd1

1 and δd2

1 respectively:

δd12
1 = δd13

1 ≡δd1

1

and analogously: δd22
1 = δd23

1 ≡δd2

1 .
(5.19)

Three counter-terms remain when this identity is taken into account. The
cancellation of the divergences corresponds to six equations, of which only two
are linearly independent. The cancellation of the divergence of the two-gluon
amplitude (4.39) or (4.35) requires

2δd1

1 + δd2

1 =
1

16π2

1

6
κ2∆ (5.20)

and the cancellation of the three-gluon divergence

4gδd1

1 + 2δd2

1 =
1

16π2

1

3
gκ2∆

2gδd1

1 + δd2

1 =
1

16π2

1

6
gκ2∆

3δd2

1 − 3
2δ

d3

1 =
1

16π2

1

2
gκ2∆

−2gδd1

1 − δd2

1 = − 1

16π2

1

6
gκ2∆

−3δd2

1 + 3
2δ

d3

1 = − 1

16π2

1

2
gκ2∆ .

(5.21)

Thus the divergences are canceled by these dimension-six counter-terms:

δd1

1 =α
1

16π2

1

12
κ2∆

δd2

1 =(1 − α)
1

16π2

1

6
κ2∆

δd3

1 = − α
1

16π2

1

3
gκ2∆

(5.22)

for any α with 0 ≤ α ≤ 1. This indefiniteness of the solutions is in accordance
with the dependence of the dimension-six term on each other (3.3) and is not to
be ascribed to any insufficiency of the approach. Utilizing this freedom of choice
we decide for the most practical solution α = 0 leaving only one dimension-six
counter-term, namely δd2

1 :

δd1

1 = δd3

1 =0

δd2

1 =
1

16π2

1

6
κ2∆ .

(5.23)

2Yang-Mills contributions to these terms would originate from the divergences of one-loop
diagrams involving O1. These graphs were not calculated because they depend on d1 and
hence are not corrections to the classic Einstein-Yang-Mills system.
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This solution reproduces the result of Deser et al.[6, 4] if one bears in mind the
differing definitions of κ2 and ǫ. Again, we should note the special nature of O2.
As already mentioned in chapter 3, it vanishes on-shell and can be removed by
a field redefinition. Thus no gravitational corrections in the Yang-Mills sector
at the computed leading order O(κ2) remain.
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VI

Computing the β-Functions

After obtaining the counter-terms we are now able to compute the Callan-
Symanzik β-function for g, d1, d2 and d3. The latter three depend linearly on
each other. Therefore we will first calculate the three β-functions for a general
combination of possible counter-terms (5.22). Then we will also present the β-
function for the solution (5.23), which is distinguished by the special nature of
O2 and its simplicity.

Our results do not allow to compute the β-function for the gravitational
coupling κ because it would depend on the counter-terms of the graviton–gluon
couplings and the graviton kinetic term. Thus the one-loop divergences of the
diagrams with outer graviton would be needed, e. g. graviton selfinteraction,
graviton–gluon interaction etc. We did not examine these because the focus of
this work is on the influence of gravity to the Yang-Mills renormalization.1

The β-function for a coupling λ is defined as

βλ = µ
∂λ

∂µ
. (6.1)

To utilize this definition we have to express the couplings as functions of the
energy scale, i. e. in our case of the counter-terms. Since all calculations are done
on one-loop level, only expressions linear in the counter-terms must be kept.
Higher terms correspond to one-particle-reducible multi-loop diagrams which
consist only of the calculated graphs. The complete higher order divergences
include the contributions of one-particle-irreducible multi-loop graphs, whose
values are not obtained by our calculation.

To compute the Yang-Mills β-function βg we need the relation

(1 + δg
1) =

g0
g

(1 + δ2)
3

2

from (5.5). Neglecting all terms of order O(δ2) and higher, we get the formula

g(µ) = g0
(1 + δ2)

3

2

1 + δg
1

= g0

(

1 +
3

2
δ2 − δg

1 + O(g4, κ4, g2κ2)

)

for the energy dependence of g. Such a formulation is of course not of practical
use for reading off g(µ) directly because it still contains all divergences in g0
and the δ’s, which must cancel for a physical µ.

The bare coupling constant g0 is of course independent of the energy scale
µ,

µ
∂g0
∂µ

= 0

1The results of Deser et al. [6] for these terms are all ∼ R, thus vanishing in our flat
background metric ηµν .
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so the β-function up to order O(g2, κ2) is

β = g0µ
∂

∂µ

(
3

2
δ2 − δg

1

)

.

Finally we use the fact that the difference between bare and running coupling

g0 = g − δg

will again be of order g2 or κ2. So we obtain as the formula for g’s β-function

βg = gµ
∂

∂µ

(
3

2
δ2 − δg

1

)

. (6.2)

When we now insert the counterterms (5.17), we get

βg =gµ
∂

∂µ

{[
3

2

1

16π2

5

3
g2C2 −

1

16π2

2

3
g2C2

]

∆

}

=
1

16π2

11

6
g3C2µ

∂

∂µ
∆ .

And finally, using (5.9)

µ
∂

∂µ
∆ = µ

∂

∂µ







log
Λ2

µ2

µ−ǫ 2

ǫ







= −2 +

{
0

O(ǫ)

}

= −2 , (6.3)

we obtain the β-function

βg = − 1

16π2

11

3
C2g

3 . (6.4)

The constant C2 originates from multiple structure constants in the loop and
C2 = N for the gauge group SU(N). This is the famous classical result for
the Yang-Mills β-function at one-loop level. Clearly without any gravitational
contribution as Robinson and Wilczek found in [14], but in total accordance
with Pietrykowski [16] and Toms [17].

At this point we want to add an interesting note: If we had found a gravita-
tional modification of the Yang Mills counter-terms it should be – as mentioned
before – quadratically divergent for dimensional reasons, i. e. δ′2 = bκ2Λ2. Ob-
viously such a term is independent of the renormalization scale µ, thus its
contribution to the β-function vanishes

∆βg = µ
∂

∂µ
bκ2Λ2 = 0 .

The energy dependence in [15] enters the result as a lower integration limit which
is identified with the energy of the background field. In our calculations no such
scale is available, due to the abcence of background field in our approach.
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Analogously as for βg (5.5) is used to derive the formulae for βd1,...,d3
:

βd1
=d1µ

∂

∂µ
δ2 − µ

∂

∂µ
δd12
1 (6.5)

βd2
=d2µ

∂

∂µ
δ2 − µ

∂

∂µ
δd22
1 (6.6)

βd3
=d3µ

∂

∂µ

3

2
δ2 − µ

∂

∂µ
δd33
1 . (6.7)

As mentioned in the discussion of (5.18) the wavefunction counter-term vanishes
at order κ2, δ2|O(κ2) = 0. Therefore δ2 does not contribute to the β-functions

at order κ2. For a generic combination of counter-terms (5.22) the β-functions
take the form:

βd1
=(1 − α)α

1

16π2

1

6
κ2 (6.8)

βd2
=α

1

16π2

1

3
κ2 (6.9)

βd3
= − (1 − α)

1

16π2

2

3
κ2 . (6.10)

As already argued in chapter 5 the counter-term solution (5.23) with α = 0 is
distinguished. The corresponding β functions are

βd1
= βd3

=0 (6.11)

βd2
=

1

16π2

1

3
κ2 (6.12)

of which only βd2
is non-vanishing.
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VII

Summary and Conclusions

We diagrammatically calculated the one-loop corrections of a Yang-Mills sys-
tem coupled to gravitation. In contrast to the background field approach, the
background space time metric was fixed to the flat Minkowski metric in our cal-
culation. Therefore no gravitational corrections ∼ R, ∼ Rµν become visible in
our approach. A vacuum background on the other hand avoids necessity of solv-
ing the equations of motion – especially the Einstein equation – for background
fields.

All Feynman rules were derived and the one-loop diagrams were calculated
using the computer algebra system Form. Only its application allows us to
handle the partly very complex expressions.

We applied two different regularization methods: cut-off and dimensional
regularization. Therefore we were able to see potential quadratic divergences,
which turn out to be absent in the results, but we also took advantage of the
fact that dimensional regularization respects the gauge symmetry. Finally the
comparison of the results in both regularization schemes allows for an important
cross-check of our calculations.

We found as the only gravitational contribution to the Yang-Mills sector

δL =
1

16π2

κ2

6

2µd−4

4 − d
tr [(DµF

µρ)(DνFνρ)] . (7.1)

In the case of an Abelian gauge theory, instead of the trace the counter-term is
modified by an additional factor 1

2 . Thereby our result is in complete accordance
with the result of Deser, Tsao and van Nieuwenhuizen [4, 6]. We especially found
no gravitational contribution to the β-function.

The interpretation of the dimension-six counter-term O2 is still not clarified.
The possibility to remove it through field redefinition poses the question of its
physical meaning. But we are hopeful that the ongoing discussion will yield an
answer.

Contemporary physical models propose extra spatial dimensions[27, 28]. In
these models gravity is not confined to the four dimensional space time, which
would explain the low coupling strength of gravity. Therefore the gravitational
scale would be lower. Gogoladze and Leung pointed out that in such scenarios
the effect on the running coupling should be measurable at the Large Hadron
Collider (LHC)[29]. Thus the LHC will probably allow us to validate the exis-
tence of this quantum gravity effect.

Interesting extensions to this work would be the inclusion of quark fields.
The Higgs field, especially for its non-vanishing vacuum expectation value,
should also be an important entity of the standard model of particles to in-
clude in the calculations. The latter extension is probably connected to the
open question of the discrepancy of the cosmological value and the field theo-
retical prediction of the cosmological constant Λ of 10120.
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Chapter 7: Summary and Conclusions

The combination of supersymmetric gauge theories and effective quantum
gravity was no yet examined and should be a fruitful extension, too.

A very interesting topic would be the Einstein-Yang-Mills system with the
gravitons propagating in extra dimensions because of the lower gravitational
scale in such scenarios.
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Appendix A

Symmetry Factors of Feynman

Diagrams

To compute the contribution of a Feynman graph, one needs to calculate its
weight factor w. This factor originate from its symmetry and is an integral ele-
ment of the contribution of the considered process. We used a modified version
of the formula by Wieczorek et al.[25, 26]:

w =
NONI

∏

i

~αi!
∏

j

βj !
(A.1)

Here the used symbols mean

NO Number of possibilities to connect outer lines with lines of the vertices
N I Number of possibilities to connect inner lines
~αi Number of equivalent lines of vertex i
βj Number of vertices of the type j

The ~αis are index multiplets of the length corresponding to the number of
different lines connected to the vertex. The faculty of these multiplets is defined
as

~α =
(
α1, α2, . . . , αn

)
=⇒ ~α! = α1! · α2! · · ·αn! .

The easiest way to calculate w is to write down first the vertices and the outer
lines without connecting them. It is also practical to enumerate the vertices and
their equivalent lines, in order to bear in mind when two of these are permuted.
The entities of (A.1) are obtained in the following way:

NO Take one arbitrary outer line and count the vetrex lines (of all vertices)
this line can be connected with. Then count the possible connections of
the next line with the remaining vertex lines. Repeat this procedure until
all outer lines are connected. Consider always to keep the shape of the
diagram, this forbids some combinations the vertex and outer lines (see
examples).

NI Now count all possibilities for inner lines which are consistent with the
diagram shape.

~αi Count the lines of each vertex which are of the same kind. If the lines are
directed (e. g. fermions or charged particles), in- and outgoing lines are
diffent, of course.

βj Count all vertices of the same type.

To illustrate the usage of this formula we will present some examples.
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Appendix A: Symmetry Factors of Feynman Diagrams

Two Examples from the pure Yang-Mills Theory

a b
1 2

• Two identical vertices → β = 2, both with three equivalent lines
→ α1 = α2 = 3

• Possibilities for the outer line coming from a: 6 (3 lines on each vertex 1
and 2)
Possibilities for the outer line coming from b: 3 (after connecting line a
to one vertex, i. e. 1, line b must be connected to the other vertex)
→ NO = 6 · 3 = 18

• Possibilities for the 1st inner line: 2
Possibilities for the 2nd inner line: 1
→ NI = 2

• → w =
182

2! 3! 3!
=

1

2

a

b c

1

2 3

• Three identical vertices → β = 3, both with three equivalent lines
→ α1 = α2 = α3 = 3

• Possibilities for the outer line coming from a: 9 (3 lines on each vertex)
Possibilities for the outer line coming from b: 6 (3 lines on each remaining
vertex, i e. 2 and 3)
Possibilities for the outer line coming from c: 3
→ NO = 162

• Possibilities for the 1st inner line: 4 (connect the 1st line of 1 with vertex
2 or 3, e.g. 2+2 possibilities)
Possibilities for the 2nd inner line: 2 (the 2nd line of 1 must be connected
with an different vertex then the 1st one)
Possibilities for the 3rd inner line: 1
→ NI = 8

• → w =
162 8

(3!)4
= 1
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Two Examples from the Einstein-Yang-Mills Theory
a

b c

1

2 3

• Two identical vertices → β1 = 1, β2 = 1, vertex 1 has 3 equivalent lines,
2 and 3 have two
→ α1 = 3, ~α2 = ~α3 = (2, 1)

• Possibilities for the outer line coming from a: 3 (line a must be connected
to 1, otherwise we would get a different graph)
Possibilities for the outer line coming from b: 4 (3 lines on each vertex 2
and 3)
Possibilities for the outer line coming from c: 2
→ NO = 24

• Possibilities for the inner graviton line: 1
Possibilities for the 1st inner gluon line: 2
Possibilities for the 2nd inner gluon line: 1
→ NI = 2

• → w =
242

2! 3! 2! 2!
= 1

a

b c

• One vertex → β = 1 with three and two equivalent lines
→ ~α = (3, 2)

• Possibilities for the outer lines: 3!
→ NO = 6

• Possibilities for the inner line: 1
→ NI = 1

• → w =
6

3! 2!
=

1

2

51



Appendix A: Symmetry Factors of Feynman Diagrams
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Appendix B

Feynman Parameters for three

Propagator Graphs

After regularizing and calculating the divergent momentum intergrals we have
to deal with three types of integrals of the previously introduced Feynman
parameters:

∫∫∫ 1

0
δ(x+ y + z − 1)xmyndxdydz (B.1)

∫∫∫ 1

0
δ(x+ y + z − 1)

xmyn

x(1 − x) + y(1 − y) − xy
dxdydz (B.2)

and

∫∫∫ 1

0
δ(x + y + z − 1)xmyn log (x(1 − x) + y(1 − y) − xy) dxdydz (B.3)

with m,n ∈ N.
To calculate these, so we substiute the parameter by three new variables r,

a and b

x = rab (B.4)

y = r(1 − b) (B.5)

z = r(1 − a)b (B.6)

Now the differentials become

dxdydz = r2bdrdadb

and the δ-function simplifies to

δ(x + y + z − 1) = δ(r − 1)

and just fixes r = 1. For this value of r the remaining parameters a and b
both run independently from 0 to 1 to cover the intergationarea. Thus all triple
integrale become such simpler double integrals:

∫∫∫ 1

0
δ(x+ y + z − 1)f(x, y, z)dxdydz =

∫∫ 1

0
bf̃(a, b)dadb

This means for the appearing intergrals (B.1)–(B.3):

∫∫∫ 1

0
δ(x+ y + z − 1)xmyndxdydz =

∫∫ 1

0
am̃bñdadb (B.7)

∫∫∫ 1

0
δ(x+ y + z − 1)

xmyn

x(1 − x) + y(1 − y) − xy
dxdydz

=

∫∫ 1

0

am̃bñ

1 − (a2 − a+ 1)b
dadb

(B.8)

53



Appendix B: Feynman Parameters for three Propagator Graphs

∫∫∫ 1

0
δ(x + y + z − 1)xmyn log (x(1 − x) + y(1 − y) − xy) dxdydz

=

∫∫ 1

0
am̃bñ log b(1 − (a2 − a+ 1)b)dadb

(B.9)

For the needed values of m̃ and ñ the results of the integration are listed in the
following tables. The used constant C is – expressed in terms of the trigamma
function ψ1 or Clausen’s integral Cl2 [30]:

C =
1

3
(ψ1(

1
3 ) − ψ1(

2
3 ))

= 2
√

3Cl2(
2
3π)

= 3

∞∑

k=1

(
1

(3k − 2)2
− 1

(3k − 1)2

)

≈ 2.34391

m n
∫ 1
0

∫ 1
0 a

mbndadb

0 1
1

2

0 2
1

3

1 2
1

6

Table B.1: The values of intergrals (B.7)
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m n
∫ 1
0

∫ 1
0

ambn

1−(a2−a+1)b
dadb

0 0 C

0 1
2

3
C

0 2
2

3
C − 1

3

0 3
20

27
C − 19

27

1 1
1

3
C

1 2
1

3
C − 1

6

1 3
10

27
C − 19

54

2 1
2

3
C − 1

2 2
1

3
C − 1

3

2 3
8

27
C − 17

54

3 3
7

27
C − 8

27

Table B.2: The values of intergrals (B.8)

m n
∫ 1
0

∫ 1
0 a

mbn log b(1−(a2−a+1)b)dadb

0 0 C − 4

0 1
1

3
C − 3

2

0 2
2

9
C − 1

1 2
1

9
C − 1

2

Table B.3: The values of intergrals (B.9)
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Appendix C

Feynman Rules of the pure Yang

Mills Theory

The Feynman rules of the pure Yang Mills theory in Feynman gauge (ξ=1) and
without fermions, taken from [21].

All momenta denoted in the graph are counted inwardly. Including the mo-
mentum of the outgoing ghost, which is writen as −p′ in the graph, thus p′ is
the outgoing momentum of the ghost.

q
µ a ν b =

−iηµνδ
ab

q2 + iε

p

q

k

µ a

ν b

ρ c

= gfabc [ηµν(p− q)ρ + ηνρ(q − k)µ + ηρµ(k − p)ν ]

µ aν b

ρ c σ d

= −ig2[ fabef cde(ηµρηνσ − ηµσηνρ)

+facef bde(ηµνηρσ − ηµσηνρ)

+fadef cbe(ηµρηνσ − ηµνηρσ)]

q
a b =

iδab

q2 + iε
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Appendix C: Feynman Rules of the pure Yang Mills Theory

p

−p′

µ b

a c

= gfabcp′µ
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