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Mathematisch–Naturwissenschaftliche Fakultät I

Institut für Physik
AG Quantenfeldtheorie und Stringtheorie

Diplomarbeit
zur Erlangung des akademischen Grades des

Diplom-Physikers (Dipl.-Phys.)

Lee-Wick Gauge Theory and

Effective Quantum Gravity

eingereicht von Theodor Schuster,
geboren am 26.10.1983 in Berlin

Gutachter: Prof. Dr. Jan Plefka

Prof. Dr. Dietmar Ebert

Berlin, den 30. Dezember 2008
(revised version of August 20, 2009)





Zusammenfassung Abstract

Zusammenfassung

Im ersten Abschnitt dieser Arbeit wird die Ein-Schleifen-Renormierung der Lee-
Wick-Eichtheorie, einer Verallgemeinerung der Yang-Mills -Theorie mit höheren
kovarianten Ableitungen, mit und ohne Verwendung der Hintergrundfeldmetho-
de untersucht. Es wird gezeigt, dass die Theorie asymptotisch frei ist. Anschlie-
ßend wird der Limes zur Yang-Mills -Theorie durchgeführt.

Im zweiten Abschnitt werden die Ein-Schleifen-Konterterme in der Einstein-
Yang-Mills-Theorie untersucht. Dabei wird gezeigt, dass die fermionischen und
skalaren Terme höherer Ableitungen im Gegensatz zum Eichsektor nicht mit den
Termen höherer Ableitungen des Lee-Wick-Standardmodells übereinstimmen.

Des Weiteren werden die Gravitationsbeiträge niedrigster Ordnung zu den
β-Funktionen der Yukawa- und ϕ4-Theorie bestimmt. Es wird gezeigt, wie die
Gravitation das Laufen der Kopplungskonstanten bei niedrigen Energien mo-
difiziert. Eine Extrapolation der Resultate zu hohen Energien zeigt, dass bei
massiven Teilchen die gravitativen Wechselwirkungen zu asymptotischer Frei-
heit der Yukawa- und ϕ4-Theorie führen können.

Abstract

In the first part of this thesis we investigate the one-loop renormalization of Lee-
Wick gauge theory, a higher covariant derivative generalization of Yang-Mills
theory, with and without applying the background field method. We show that
this theory is asymptotically free and we perform the limit to Yang-Mills theory.

In the second part the one-loop counterterms in Einstein Yang-Mills theory
are examined. We show that, in contrast to the gauge sector, the fermionic and
scalar higher-derivative counterterms do not coincide with the higher-derivative
terms in the Lee-Wick Standard Model.

Furthermore we determine the lowest order gravitational contributions to
the β functions of Yukawa and ϕ4 theory. We show how gravity modifies the
running of the couplings at low energies. Extrapolating our results to high
energies, we find that for massive particles the gravitational interactions can
lead to asymptotic freedom of Yukawa and ϕ4 theory.
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Notations and Conventions

We use the metric signature (+−−−), hence for Minkowski space we have

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Derivatives with respect to covariant (xµ) and contravariant (xµ) coordinates
are abbreviated as

∂µ ≡
∂

∂xµ
and ∂µ ≡ ∂

∂xµ
.

Summation over repeated indices is understood in all equations and for con-
tractions we use the notations

VµW
µ = VW = V ·W and VµV

µ = V 2 .

For total derivatives we use the abbreviation t.d. when their explicit form is
irrelevant.
To indicate symmetrization or anti-symmetrization of indices we use round or
square brackets respectively:

A(µ1... µn) =
1
n!

∑
σ∈Sn

Aµσ(1)... µσ(n)

A[µ1... µn] =
1
n!

∑
σ∈Sn

sign(σ)Aµσ(1)... µσ(n) .

We denote the gauge field by Aµ = AaµT
a, where the Hermitian generators of

the fundamental representation are normalized to

tr{T aT b} = 1
2δ
ab .

The structure constants fabc of the Lie algebra are defined by

[T a, T b] = ifabcT c

and the matrices of the adjoint representation are (T bad)
ac = ifabc.

We use natural units, where c = ~ = 1. In this system

[length] = [time] = [energy]−1 = [mass]−1 .

We will omit the hat on the Fourier transform f̂(k) of a function f(x) when
there is no potential for confusion. f(x) and f̂(k) are related by

f(x) =
∫

d4k

(2π)4
e−ikxf̂(k)

∫
d4x eikx = (2π)4δ(k) .

In all Feynman rules the momenta of gauge bosons and real scalars are counted
as ingoing.
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Chapter 1

Introduction

The most important tool in understanding and describing the microscopic world
is quantum field theory1. It is capable of combining three of the major themes
of modern physics: quantum mechanics, the field concept and the principle of
relativity. Originally introduced to describe quantum electrodynamics, quantum
field theory has become the basis of modern elementary particle physics.

It provides the framework for the formulation of the standard model, which
describes the electroweak and strong interactions of elementary particles. De-
spite its great success, the standard model can only be regarded as an effective
low-energy theory because it does not include gravity. We expect the effects of
quantum gravity to become large at the Planck scale, corresponding to energies
of ∼ 1019GeV or distances of ∼ 10−33cm.

Another issue of the standard model is the hierarchy puzzle. The mass of the
Higgs boson acquires quadratically divergent radiative corrections. In order to
keep the Higgs mass small compared to the Planck scale a delicate cancellation
has to happen, which requires an extreme fine-tuning. This motivated among
others a supersymmetric extension of the standard model.

In 2007, Grinstein, O’Connel, and Wise [4] suggested an alternative solution
to the hierarchy puzzle. Their proposition is based on the ideas of Lee and Wick
[5, 6] who studied the consequences of the assumption that the modification of
the photon propagator

(
−iηµν
p2

)
reg

=

photon︷ ︸︸ ︷
−iηµν
p2

+

Lee-Wick photon︷ ︸︸ ︷
iηµν

p2 −M2
=

iηµνM
2

p2(p2 −M2)
, (1.1)

in the Pauli-Villars regularization [7] of quantum electrodynamics, corresponds
to a physical degree of freedom with the mass M . The modified propagator
(1.1) has the improved UV behaviour p−4, which can be achieved by adding the
higher-derivative term − 1

4M2Fµν∂
2Fµν to the Lagrangian.

Grinstein, O’Connel, and Wise extended the standard model to include a
massive Lee-Wick partner for each particle. The corresponding higher-derivative
terms are

1
M2
A

tr{(DµFµν)2} for gauge fields,

1
M2
φ

(D2φ)†(D2φ) for scalars (the Higgs), and

1
M2
ψ

ψi /D
3
ψ for fermions.

(1.2)

This extension, known as the Lee-Wick standard model, is free of the problem-
atic quadratic divergences and is therefore one possible solution to the hierarchy

1The textbooks on quantum field theory used here are [1], [2], [3].
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Chapter 1: Introduction

puzzle. Several recent papers investigated the properties of the Lee-Wick stan-
dard model [8, 9, 10, 11]. What we will examine here, is how the gauge field
higher-derivative term (1.2) effects the renormalization and thus the running of
the gauge coupling.

As we already indicated, of the four fundamental forces gravity is excluded
from the standard model because up to now the quantum theory of gravity is
still unknown.

It has been shown by ’t Hooft and Veltman [12] that quantized general
relativity coupled to scalars is a non-renormalizable theory. Also its coupling
to fermions as well as Abelian or non-Abelian gauge fields results in non-
renormalizable field theories, as has been established by Deser, van Nieuwen-
huizen et al. [13, 14, 15].

In the class of renormalizable quantum field theories, low energy physics is
perfectly shielded from the arbitrary high energies of the quantum fluctuations
because these high-energy effects only occur in the renormalization of a small
number of parameters. However, also non-renormalizable theories can be renor-
malized at each loop order and reliable predictions can be made, if they are
treated in the general enough framework of effective field theories [16, 17].

In this context it has been shown by Ebert, Plefka, and Rodigast that Ein-
stein Yang-Mills theory can be renormalized at one-loop order by adding the
dimension six counterterm d2Tr{(DµF

µν)2} to the original Lagrangian [18, 19].
This is exactly the Lee-Wick term for gauge fields (1.2) and it arises the in-
teresting question wether the Lee-Wick terms of scalars and fermions are also
related to gravitational counterterms.

In 2006 Robinson and Wilczek [20] initiated an intriguing discussion on
the influence of gravity on the running of gauge couplings, calculated in the
framework of effective field theories. However, Pietrykowsky proved [21] that the
background field method they used yields gauge dependent results. Using the
gauge invariant and gauge condition independent Vilkovisky-DeWitt effective
action, Toms [22] showed that there is no gravitational contribution to the
running of gauge couplings. This result has been confirmed by diagrammatic
calculations of Ebert, Plefka, and Rodigast in [18, 19, 23].

Nevertheless, there might be gravitational corrections to the running of the
coupling in other theories. Since they are part of the standard model, natural
candidates are the Yukawa and ϕ4 interactions. As we will see, their investiga-
tion yields astonishing results.
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Outline

Outline

This thesis is organized as follows: In Chapter 2 we present a diagrammatic
calculation of the β function of Lee-Wick gauge theory. First we introduce Lee
-Wick gauge theory by investigating some of its classical properties. We review
the path integral quantization of gauge theories to verify the use of a special
gauge fixing term and prove the gauge invariance of the wave function renor-
malization by power counting. For later use we investigate the shift invariance
of cut-off integrals and state some general formulas used in dimensional regu-
larization. We compute the divergent parts of the diagrams for the proper two-
and three-point function and use them to determine the one-loop β function.
We conclude this chapter by performing the limit to Yang-Mills theory, thus
obtaining the well known Yang-Mills β function.

In Chapter 3 we apply the background field method to determine the β
function of Lee-Wick gauge theory. We give a short review of the method and
first apply it to Yang-Mills Theory. Then we use two different gauge fixing terms
to reproduce the result of Chapter 2.

Chapter 4 is devoted to the one-loop counterterms in Einstein Yang-Mills
theory and their relation to the Lee-Wick standard model. We begin with the
quantization of general relativity and its treatment as an effective field the-
ory. Before showing explicitly that the dimension six counterterm in the gauge
sector is given by the higher-derivative term of Lee-Wick gauge theory, we estab-
lish relations between the gravitational contributions to the various Z factors.
We review the coupling of spinors to gravity using the vielbein formalism and
determine the fermionic higher-derivative counterterm by computing the ap-
propriate Feynman diagrams. We complete the chapter by showing that there
is no higher-derivative counterterm involving scalars.

In Chapter 5 we investigate the gravitational contributions to the Yukawa
and the ϕ4 coupling. Beginning with Yukawa theory we determine the wave-
function and vertex renormalization by computing all the contributing proper
diagrams. We derive an expression for the one-loop β function and integrate it.
We compare the thus obtained running coupling to the result in the absence of
gravity and carry through the same analysis for ϕ4 theory.

We summarize our results in Chapter 6 and give an outlook.
The Feynman rules of Yang-Mills theory can be found in Appendix A and

in Appendix B we give a list of cut-off integrals including their derivation.
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Part I
Lee-Wick
Gauge Theory

We are going to investigate Yang-Mills theory with the higher covariant
derivative term d2(DµF

µν)2. This generalization of ordinary Yang-Mills
theory is called Lee-Wick gauge theory. Of special interest is the one-
loop renormalization of this super-renormalizable theory and in partic-
ular the modification of the β function of the coupling g.





Chapter 2

Diagrammatic Approach

Lee-Wick gauge theory is a special higher-derivative gauge theory. The most
general gauge invariant dimension six term is given by d1 tr{FµνF νρF

ρ
µ} +

d2 tr{(DµF
µν)2} but only Lee-Wick gauge theory has an equivalent formulation

in which all operators are of dimension four or less and fulfills the constraints
of perturbative unitarity [24].

In this chapter we will, beside a modification of the gauge fixing term, use
the conventional Feynman diagram technique to renormalize the theory at one-
loop order.

2.1 Classical Equations of Motion

Before tackling the quantum theory, it is worth to have a short look at the
classical theory. The action of Lee-Wick gauge theory is given by

S =
∫

d4xL =
∫

d4x tr{−1
2(Fµν)2 + d2(DµF

µν)2} . (2.1)

The equations of motion are
δS

δAµ
= 0 (2.2)

and can be easily derived by starting from

δFµν = DµδAν −DνδAµ

δDµF
µν = D2δAν −DµD

νδAµ − ig[δAµ, Fµν ]

= D2δAν −DνDµδA
µ + 2ig[Fµν , δAµ]

(2.3)

which immediately yields

tr{δF 2
µν} = 2 tr{FµνδFµν} = 4 tr{FµνDµδAν} = −4 tr{(DµF

µν)δAν}+ t.d.
(2.4)

as well as

tr{δ(DµF
µν)2}
= 2 tr{DµF

µν(D2δAν −DνDρδA
ρ + 2ig[Fρν , δAρ])}

= 2 tr{(D2DµF
µν −DνDρDµF

µρ + 2ig[DµF
µρ, F νρ])δAν}+ t.d.

= 2 tr{(D2DµF
µν − ig

2 D
ν [Fµρ, Fµρ] + 2ig[DµF

µρ, F νρ])δAν}+ t.d.

= 2 tr{(D2DµF
µν + 2ig[DµF

µρ, F νρ])δAν}+ t.d.
(2.5)

Hence the classical equations of motion are therefore given by

δS

δAν
= (1 + d2D

2)DµF
µν − 2igd2[F νρ, DµF

µρ] = 0 (2.6)

7



Chapter 2: Diagrammatic Approach

This is a fourth order partial differential equation which reveals the fact that
the gauge field in Lee-Wick gauge theory contains two degrees of freedom. In-
terestingly every solution to the ordinary Yang-Mills (YM) equations of motion
is also a solution to this equation which also follows directly from (2.1) because
the Lee-Wick term is the square of the YM equations of motion.

2.2 Degrees of Freedom

To make the two degrees of freedom of Lee-Wick gauge theory manifest we show
how to obtain an equivalent formulation of the theory containing only dimension
four operators. As has also been done in [4], we remove the higher-derivative
term by introducing the auxiliary field Ã:

L = tr{−1
2F

2
µν − 1

d2
Ã2 + 2FµνDµÃν} . (2.7)

At this intermediate step Ã is a non-dynamical field in the adjoint representa-
tion. Integrating it out or inserting its algebraic equations of motion which are
nothing but a constraint

δS

δÃν
= − 1

d2
Ãν −DµF

µν = 0 (2.8)

gives the original Lagrangian. Now one translates the gauge field A by Ã i.e.
A→ A+ Ã to make Ã a dynamical field and arrives at the new Lagrangian

L(A, Ã) = tr{ − 1
2(Fµν +DµÃν −DνÃµ − ig[Ãµ, Ãν ])2 − 1

d2
Ã2

+ 2(Fµν +DµÃν −DνÃµ − ig[Ãµ, Ãν ])(DµÃν − ig[Ãµ, Ãν ])}

= tr{ − 1
2F

2
µν + 1

2(DµÃν −DνÃµ)2

− 4ig[Ãµ, Ãν ]DµÃν − 3
2g

2[Ãµ, Ãν ]2 − ig[Ãµ, Ãν ]Fµν − 1
d2
Ã2} .

(2.9)

The mixing terms tr{FµνDµÃν} exactly cancel. Obviously now A is a massless
gauge field and Ã is a field in the adjoint representation of mass 1/

√
d2. The

classical equations of motion for the fields are

0 =
δS

δAν
= DµF

µν + ig[Ãµ, DµÃν−DνÃµ] + 2g2[Ãµ, [Ãµ, Ãν ]] + igDµ[Ãµ, Ãν ]

(2.10)
and

0 =
δS

δÃν
= −Dµ(DµÃν−DνÃµ) + 2ig[Ãµ, DµÃν −DνÃµ]+ (2.11)

+ 3g2[Ãµ, [Ãµ, Ãν ]] + ig[Ãµ, Fµν ]− 1
d2
Ã

The equations of motion are quite complicated, but at least they are of second
order as we are used to. The more important observation is that the kinetic term
of the massive field Ã has the wrong sign. On the classical level this indicates a

8



2.3 Quantization

instability of the theory. In the quantum theory wrong sign kinetic terms lead
to negative norm states in the Hilbert space which results in problems with the
unitarity of the theory. This and also the potential violations of causality have
been extensively investigated in [5], [6], [25] and recently in [26] and will be no
topic of this thesis.

Note that there is one subtlety in this derivation. In general one could have
added the complete square − 1

d2
(Ãµ ± d2D

νFνµ)2 to the Lee-Wick Lagrangian
in order to remove the higher-derivative term. Shifting the gauge field A →
A ± Ã afterwards we end up with the Lagrangian L(A,±Ã) of equation (2.9).
In this sense the two particle formulation is not unique because Ã→ −Ã is no
symmetry of (2.9).

2.3 Quantization

To verify a special choice of gauge fixing term we will now go through the steps
of the path integral quantization of gauge theories. Starting point is a action
L(A) which is invariant under gauge transformations

A→ Au = UAU−1 − i
gdUU

−1 with U = eiu . (2.12)

Consider the functional integral∫
DA exp

[
i

∫
d4xL(A)

]
. (2.13)

To avoid the overcount of gauge equivalent configurations one has to apply
a gauge fixing condition G(A) = w. Following Faddeev and Popov [27] this
constraint can be introduced by inserting the identity

1 = ∆(A)
∫
DUδ(G(Au)− w) . (2.14)

Here DU is the invariant measure of the gauge group. For arbitrary U0 it fulfills:

D(UU0) = D(U0U) = DU . (2.15)

Obviously the functional ∆(A) is gauge invariant.∫
DA

∫
DU∆(A)δ(G(Au)− w) exp

[
i

∫
d4xL(A)

]
(2.16)

Making the change of variables A → A−u the Jacobian of which is one and
exploiting gauge invariance we arrive at(∫

DU
)∫

DA∆(A)δ(G(A)− w) exp
[
i

∫
d4xL(A)

]
. (2.17)

Now the group volume has factored out and is just a normalization factor which
cancels in the computations of correlation functions. On the surface G(A) = w
the solution to G(Au) = w is U = 1 and the functional ∆(A) is given by

∆(A)|G(A)=w = det (M) with M =
δG(Au)
δu

∣∣∣∣
u=0

(2.18)

9



Chapter 2: Diagrammatic Approach

To get rid of the arbitrary field w we can integrate over it with an in principle
arbitrary weight. One choice could be

exp
[
−i
∫

d4x tr{ 1
αwf(∂2)w}

]
. (2.19)

Performing the integration over w we arrive at∫
DAdet (M) exp

[
i

∫
d4x(L(A)− tr{ 1

αG(A)f(∂2)G(A)})
]
. (2.20)

Introducing ghost fields c, c̄ this can be written as∫
DADcDc̄ exp

[
i

∫
d4x

(
L(A)− tr{ 1

αG(A)f(∂2)G(A) + 2c̄M c}
)]

. (2.21)

A convenient choice of gauge fixing condition is

G(A) = ∂ ·A ⇒ M = 1
g∂ ·D . (2.22)

Absorbing the factor g−1 into the normalization of the ghost fields we end up
with the gauge fixed Lagrangian

Lgf = tr{−1
2(Fµν)2 + d2(DµF

µν)2 − 1
α∂ ·Af(∂2) ∂ ·A+ 2c̄(−∂ ·D)c} . (2.23)

The quadratic part of the action is given by∫
d4xL|A2 =

1
2

∫
d4xAaµ

[
(1 + d2∂

2)(∂2ηµν − ∂µ∂ν) + 1
αf(∂2)∂µ∂ν

]
δ︸ ︷︷ ︸

=i∆µν
ab

abAbν ,

(2.24)

or equivalently in momentum space

=
1
2

∫
d4k

(2π)4
Aaµ(k)

[
(1− d2k

2)(kµkν − k2ηµν) (2.25)

− 1
αf(−k2)kµkν

]
δabAbν(−k) .

The propagator is the inverse of the fluctuation operator ∆µν
ab and thus defined

by the equation[
(1 + d2∂

2)(∂2ηµν − ∂µ∂ν) + 1
αf(∂2)∂µ∂ν

]
Dab
νρ(x− y) = iδρµδ

abδ(x− y)

or
[
(1− d2k

2)(kµkν − k2ηµν)− 1
αf(−k2)kµkν

]
Dab
νρ(k) = iδρµδ

ab . (2.26)

The propagator can be easily obtained by plugging the ansatz

Dab
µν(k) = A(k2)ηµν +B(k2)kµkν (2.27)

into the above equation:

Dab
µν(k) = δab

[(
ηµν −

kµkν
k2

)
−i

k2(1− d2k2)
− iαkµkν
k4f(−k2)

]
. (2.28)

10



2.4 Power Counting

A convenient choice of the arbitrary function f is f(−k2) = 1− d2k
2

⇒ Dab
µν(k) = δab

(
ηµν − (1− α)

kµkν
k2

)
−i

k2(1− d2k2)
(2.29)

because with this choice the UV behavior of the propagator is k−4.
If one quantizes the theory in the two field formulation and fixes the gauge

in the usual way by adding the term 1
α(∂ ·A)2, the propagators are

Dµν =
−i
p2

(
ηµν − (1− α)

pµpν

p2

)
(2.30)

D̃µν =
i

p2 − d−1
2

(ηµν − d2p
µpν) (2.31)

It is clear that the two field formulation should yield the same results [28] but
the higher-derivative formulation with the special choice of gauge fixing term
provides the easiest calculation which will become clear in what follows.

2.4 Power Counting

As stated above the Lee-Wick gauge theory is a super-renormalizable theory.
This can be seen by power counting. Let NA, Nc denote the number of internal
gauge and ghost lines, Vn the number of n gauge field vertices and Vc the number
of ghost vertices in a given diagram, then the superficial degree of divergence
of a diagram is given by:

ω = 4L− 4NA − 2Nc +
6∑

n=3

(6− n)Vn + Vc . (2.32)

The number of loops is given by

L = NA +Nc −
6∑

n=3

Vn − Vc + 1 . (2.33)

The number of external particles is given by

EA =
6∑

n=3

nVn + Vc − 2NA , Ec = 2Vc − 2Nc . (2.34)

This gives the superficial degree of divergence

ω = 6− 2L− EA − 2Ec . (2.35)

For ordinary Yang-Mills theory one obtains by a similar calculation the degree
of divergence

ωYM = 4− Ec − EA . (2.36)

From this expression it is obvious that the Lee-Wick gauge theory is super-
renormalizable. The highest divergence is a potential quadratic divergence in the

11



Chapter 2: Diagrammatic Approach

gauge field 2-point function which is ruled out by the Slavnov-Taylor identity.
At two-loop only the gauge field 2-point function diverges. All diagrams with
external ghost fields or more than two loops converge. The only candidate for a
divergence in a diagram with external ghost fields is the ghost 2-point function
with ω = 0 at one-loop. But since one derivative of the vertices acts on an
external leg the diagram is finite. As a consequence the counterterms are gauge
independent in the minimal subtraction scheme and it is sufficient to calculate
the wave function renormalization to determine the β function. This can be
seen as follows:

No matter which vertex we take to define the bare coupling, the Slavnov-
Taylor identities [29], [30] or for example [2], tell us that the result has to be
the same:

Zg =
g0
g

= ZA3Z
− 3

2
A = Z

1
2

A4Z
−1
A = Zc̄AcZ

−1
c Z

− 1
2

A . (2.37)

This can be brought into the more familiar form

ZA4

ZA3

=
ZA3

ZA
=
Zc̄Ac
Zc

. (2.38)

From powercounting we know that Zc̄Ac = Zc = 1, what can also be found in
[31], and we get

ZA = ZA3 = ZA4 (2.39)

Hence the wavefunction renormalization is gauge independent and related to
the gauge coupling renormalization as well as to the renormalization of d2:

Zg = Z
− 1

2
A Zd2 = Z2

g . (2.40)

All these properties are consequences of the higher derivatives in the La-
grangian and the choice of gauge fixing term which ensures the k−4 UV behavior
of the propagator. As a direct consequence all one has to calculate is ZA and it
is in contrast to the case of ordinary Yang-Mills theory no advantage to use the
background field method. If one takes the limit d2 → 0 only (2.38) holds and
the background field method has the advantage that ZA is gauge independent.

2.5 Derivation of the Feynman Rules

In what follows we split all the vertices in their ordinary Yang-Mills part which
is represented in Feynman graphs by dots and the higher-derivative part repre-
sented by circles. Sticking to this convention it is clear that it will increase the
number of diagrams. However, not all of these diagrams are divergent and sim-
ple power counting tells which can be thrown away. The diagrams contributing
to the proper two-point and three-point function are listed in figure 2.1 and 2.2.

To calculate the one-loop diagrams we need to determine the new Feynman
rules corresponding to the higher-derivative term:

tr{(DµF
µρ)2} =

1
2
(DµF

µρ)a(DµF
µ
ρ)
a =

1
2
(∂µF aµν + gfabcAbµF cµν)

2 (2.41)

12



2.5 Derivation of the Feynman Rules

Figure 2.1: One-loop diagrams for the proper two-point function.

Figure 2.2: One-loop diagrams for the proper three gauge filed vertex not only
differing by a permutation of outer legs.

We derive the Feynman rules in momentum space and begin with the quadratic
part of the Lee-Wick term which in this calculation is involved in the propagator,
but the corresponding Feynman rules will be necessary to determine the one-
loop counterterms of Einstein Yang-Mills theory in Section 4.4.

i

∫
d4x d2 tr{(DµF

µν)2}|A2 =
i

2

∫
d4x d2(∂2Aaν − ∂µ∂νA

a
µ)

2

=
i

2

∫
d4q

(2π)4
d2δ

abq2(ηµνq2 − qµqν)Aaµ(q)A
b
ν(−q)

Both possible contractions with two external gauge particles give the same
contribution. And we obtain

q
µ ν = id2δ

abq2(ηµνq2 − qµqν) . (2.42)

Let us go on with the three gauge field vertex. The three gauge field part of the
Lee-Wick term is given by

i

∫
d4x d2 tr{(DµF

µν)2}|A3

= igd2f
abc

∫
d4x(∂2Aaν − ∂µ∂νA

a
µ)(∂

µAbµA
cν +Abµ(∂µAcν − ∂νAcµ))

= −
∫

d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+q+k)×

× gd2f
abc[p2δµα−pµpα][(2k + q)νηρα−ηνρqα]Aaµ(p)A

b
ν(q)A

c
ρ(k)

=
∫

d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+q+k)V µνρ abc

3gl (p, q, k)Aaµ(p)A
b
ν(q)A

c
ρ(k) .

13



Chapter 2: Diagrammatic Approach

From this expression one can easily read off the three gauge field vertex. One
of the 3! = 6 contraction gives

V µνρ abc
3gl (p, q, k) = d2gf

abc[ηνρ(qµp2 − pµpq) + (2k + q)ν(pµpρ − ηµρp2)]

and we have to sum up all them. Doing so we obtain the result

p q

k

a, µ b, ν

c, ρ

= d2gf
abc
[
+ ηµν{pρ(2pq + pk + 3qk)− qρ(2pq + qk + 3pk)}
+ ηµρ{kν(2pk + kq + 3pq)− pν(2pk + pq + 3qk)}
+ ηνρ{qµ(2kq + pq + 3pk)− kµ(2kq + pk + 3pq)}
− 2(kµkν(p− q)ρ + pνpρ(q − k)µ + qρqµ(k − p)ν)

− 3(pρqµkν − pνqρkµ)
]
. (2.43)

Next is the four gauge field vertex and therefore the four gauge field part of the
Lee-Wick term:

i

∫
d4x d2 tr{(DµF

µν)2}
∣∣
A4

= ig2d2f
abefecd

∫
d4x[(∂2Aaν − ∂µ∂νA

a
µ)A

b
µA

cµAdν

+
1
2
(∂µAaµA

b
ν +Aaµ(∂µAbν − ∂νA

b
µ))(∂

µAcµA
dν +Acµ(∂µAdν − ∂νAdµ))]

= −i
∫

d4p

(2π)4

∫
d4q

(2π)4

∫
d4k

(2π)4

∫
d4l δ(

4∑
i=1

pi)g2d2f
abefecd{(p2δµα−pµpα)ηνρηασ

+ 1
2 [(2q + p)µδνα− ηµνqα][(2l + k)ρησα− ηρσlα]}Aaµ(p)Abν(q)Acρ(k)Adσ(l) .

One contraction gives

V µνρσ abcd
4gl (p, q, k, l) = − i

2
g2d2f

abefecd{2ηνρ(ηµσp2− pµpσ)

+(2q+p)µ[(2l+k)ρησν−ηρσlν ]−ηµν [(2l+k)ρqσ−ηρσql]} ,

and the vertex is given by the sum of all 4!=24 possible contractions:

=
∑
i,j,k,l

|εijkl|V µiµjµkµl aiajakal
4gl (pi, pj , pk, pl) (2.44)

This is a rather formal expression but by far more illuminating than the at least
one page long explicit expression.

The last vertex we need is the five gauge field vertex. The five gauge field
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2.6 Regularization

part of the Lee-Wick term is

i

∫
d4x d2 tr{(DµF

µν)2}|A5

= i

∫
d4x fabmfmcnfnde(∂µAaµA

bν +Aaµ(∂µAbν − ∂νAbµ))A
cµAdµA

e
ν

=
∫ 5∏
i=1

d4pi
(4π)4

(4π)4δ(
5∑
i=1

pi)×

× fabmfmcnfndeηµ3µ4 [(p1+2p2)µ1ηµ5µ2−pµ5
2 ηµ1µ2 ]︸ ︷︷ ︸

=V µνρσγ abcde5gl

5∏
i=1

Aaiµi(pi) .

The formal expression for the five gluon vertex is given by

=
∑

i,j,k,l,m

|εijklm|V µiµjµkµlµm aiajakalam
5gl (pi, pj , pk, pl, pm) .

(2.45)
Again we do not give the explicit expression because it is to long. Obviously
there is also a six gauge field vertex, but since it is not necessary to determine
the one-loop renormalization of Lee-Wick gauge theory we do not derive it.

2.6 Regularization

Appart from some exceptions one is usually faced with divergent momentum
integrals appearing in the perturbation expansion. Fortunately this is not an
obstacle in extracting meanigfull quantities out of a quantum field theory. In
order to get rid of these infinities we have, as an intermediate step, to introduce
a regulator which renders the integrals finite and parametrizes its divergent
parts. Now we absorb the divergences into a renormalization of the parameters
of our theory and if done properly we can calculate physical quantities which
are independent of the regularization prescription used.

2.6.1 Cut-Off Regularization

The simplest regularization is just to cut off the integral at some large but
finite momentum Λ. The domain of integration is obviously a Lorentz invariant
subspace, hence cut-off regularization preserves Lorentz invariance. However it
is well known that it breaks gauge invariance and will therefore be of minor
importance here and in Chapter 3. Nevertheless, since we will be interested
in polynomial divergences in Part II we point out some properties of cut-off
regularization which will become important there.

Shift Invariance of Logarithmic Divergences

Beside its non-gauge-invariance there is an additional drawback of cut-off regu-
larization. If the leading divergence of an integral is more than quadratic even
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Chapter 2: Diagrammatic Approach

its divergent part is not invariant under a shift of the loop momentum. Only
lagarithmic divergent integrals yield shift invariant results.

In the following proof of the statement above all momenta are Euclidean.
Let f(k) be an arbitrary function which may depend on further momenta or be
tensor valued and BΛ(q) := {k | (k − q)2 ≤ Λ2}, BΛ(0) = BΛ. We can give the
estimate∫

BΛ

d4k f(k) =
∫

BΛ(q)

d4k f(k−q)

=
∫
BΛ

d4k f(k−q) +

=∆︷ ︸︸ ︷∫
BΛ(q)\BΛ

d4k f(k−q)−
∫

BΛ\BΛ(q)

d4k f(k−q)

⇒ |∆| ≤ sup
[BΛ(q)\BΛ]∪[BΛ\BΛ(q)]

|f(k−q)|
∫

[BΛ(q)\BΛ]∪[BΛ\BΛ(q)]

d4k . (2.46)

The easiest way to calculate the volume, is to calculate it indirectly:

Vol(BΛ(q) \BΛ) + Vol(BΛ \BΛ(q)) = 2Vol(BΛ(q) \BΛ)
= 2(Vol(BΛ)−Vol(BΛ(q) ∩BΛ)) .

(2.47)

and to use cylinder coordinates around the direction of q to calculate the volume
Vol(BΛ(q) ∩BΛ):∫
BΛ(q)∩BΛ

d4k =
∫

BΛ(q)∩BΛ

dz r2 sin(θ)drdθdϕ

= 4π

|q|/2∫
−Λ+|q|

dz

√
Λ2−(z−|q|)2∫

0

r2dr + 4π

Λ∫
|q|/2

dz

√
Λ2−z2∫
0

r2dr

=
8π
3

Λ∫
|q|/2

dz(Λ2 − z2)
3
2

=
π2

2
Λ4 − πΛ4

[
arcsin

(
|q|
2Λ

)
+
(

5
6
|q|
Λ − 1

12

(
|q|
Λ

)3
)√

1−
(
|q|
2Λ

)2
]
.

And consequently

2Vol(BΛ(q) \BΛ) = 2πΛ4

[
arcsin

(
|q|
2Λ

)
+
(

5
6
|q|
Λ − 1

12

(
|q|
Λ

)3
)√

1−
(
|q|
2Λ

)2
]

=
8π
3
|q|Λ3 − π

3
|q|3Λ +O(|q|5Λ−1) .

This gives the indeed rough estimate

|∆| ≤ sup
[BΛ(q)\BΛ]∪[BΛ\BΛ(q)]

|f(k−q)|8π
3
|q|Λ3 . (2.48)
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2.6 Regularization

Nevertheless this suffices for our purpose. For a logarithmic divergent Integral
sup|f(k−q)| is of order Λ−4. Therefore the fault one makes by neglecting the
shift of the domain of integration is at most of order |q|Λ−1.

In d dimensions it looks quite similar. We only do calculations in four di-
mensions here, but with regard to extradimensional scenarios it is interesting
to study the d dimensional case as well. In d dimensions we have∫
BΛ(q)∩BΛ

ddk =
2π

d−1
2

Γ(d−1
2 )

∫
BΛ(q)∩BΛ

dz rn−2dr =
4π

d−1
2

Γ(d−1
2 )

Λ∫
|q|/2

dz

√
Λ2−z2∫
0

rn−2dr

=
2π

d−1
2

Γ(d+1
2 )

Λ∫
|q|/2

dz(Λ2 − z2)
d−1
2 =

2π
d−1
2

Γ(d+1
2 )

Λd

π
2∫

arcsin
|q|
2Λ

dϕ cosd ϕ .

Taylor expanding the remaining integral gives
π
2∫

arcsin
|q|
2Λ

dϕ cosd ϕ =

π
2∫

0

dϕ cosd ϕ− |q|
2Λ

+
d− 1

6

(
|q|
2Λ

)3

+O
((

|q|
Λ

)5
)
.

Integration by parts yields the recursion formula
π
2∫

0

dϕ cosd ϕ =
d− 1
d

π
2∫

0

dϕ cosd−2 ϕ ,

which is solved by
π
2∫

0

dϕ cosd ϕ =

h
d
2

i
−1∏

k=0

d− 2k − 1
d− 2k

π
2∫

0

dϕ cosd−2
h
d
2

i
ϕ

=
(π

2

)−d+2
h
d
2

i
+1

h
d
2

i
−1∏

k=0

d
2 − k − 1

2
d
2 − k

=
(π

2

)−d+2
h
d
2

i
+1 Γ(d+1

2 )

Γ(d2 + 1)

Γ(d2 −
[
d
2

]
+ 1)

Γ(d2 −
[
d
2

]
+ 1

2)

=
√
π

2
Γ(d+1

2 )

Γ(d2 + 1)
.

This must have been the result because in the limit |q| → 0 we have to get the
volume of the d dimensional ball. Therefore we arrive at the estimate

|∆| ≤ sup
[BΛ(q)\BΛ]∪[BΛ)\BΛ(q)]

|f(k−q)| 2π
d−1
2

Γ(d−1
2 )

|q|Λd−1

The result for d = 4 is reproduced and obviously also in d dimensions the
logarithmic divergences are shift invariant. If we have an integral of divergence
index ω, then the fault is at most of order |q|Λω−1, independent of the dimension.
A list of cut-off integrals and their derivation can be found in Appendix B.
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2.6.2 Dimensional Regularilzation

In contrast to other regularization schemes as for example cut-off regulariza-
tion, dimensional regularization [32] has no meaning outside perturbation the-
ory. However it is the regularization which leads to the simplest perturbative
calculations.

In dimensional regularization one analytically continues the Feynman di-
agrams to an arbitrary value of the spacetime dimension d = 4 − ε. After
subtracting the poles at d = 4 which correspond to logarithmic divergences one
can send ε to zero and obtains finite Green functions.

Beside the calculational advantages dimensional regularization has the use-
full property that it respects all properties of a theory which are not sensitive to
the number of spacetime dimensions, e.g. gauge invariance. The only drawback
with respect to the calculations in this theses is that dimensional regularization
provides no straightforward way to determine polynomial divergences.

We will now gather some formulas, frequently used in our calculation. Start-
ing from the simple expression

1
A1A2 . . . An

=
∫

(R+)n

dns exp

(
−

n∑
i=1

siAi

)
(2.49)

we can make the change of variables

si = rxi with xn = 1−
n−1∑
i=1

xi and xi ∈ [0 , 1] , r ∈ R+ , (2.50)

whose Jacobian is equal to rn−1, to end up with

1
A1A2 . . . An

=
∫

[0,1]n

dnx δ(1−
∑
xi)

(n− 1)!
(
∑
xiAi)n

. (2.51)

By repeated differentiation of (2.51) one obtains the more general formula

1
Am1

1 Am2
2 . . . Amnn

=
∫

[0,1]n

dnx δ(1−
∑
xi)

∏
xmi−1
i

[
∑
xiAi]

P
mi

Γ(
∑
mi)∏

Γ(mi)
, (2.52)

which can be used to combine denominators in Feynman integrals. After shifting
the loop momentum to complete the square in the denominator, dropping all
odd terms and making the symmetry replacements∫

ddp f(p2)pµpν =
ηµν

d

∫
ddp f(p2)p2∫

ddp f(p2)pµpνpρpσ =
1

d(d+ 2)
(ηµνηρσ + ηµρηνσ + ηµσηνρ)

∫
ddp f(p2)p4

all integrals have the form: ∫
ddl

(2π)d
l2n

(l2 −∆)m
(2.53)
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2.7 One-Loop Divergences

and can be solved by Wick rotating to Euclidean momenta∫
ddl

(2π)d
l2n

(l2 −∆)m
=

i

(2π)d
(−1)n+m π

d/2

Γ(d2)

∞∫
0

yd/2+n−1

(y + ∆)n
dy .

Substituting z = ∆
y+∆ gives

=
i

(4π)d/2
(−1)n+m 1

Γ(d2)
∆n+d/2−m

1∫
0

dz zm−d/2−nzd/2+n−1 .

The remaining integral is nothing but the Euler beta function, which can be
written more conveniently as a combination of Gamma functions. To see this,
consider

Γ(x)Γ(y) =

∞∫
0

ds

∞∫
0

dt sx−1ty−1e−(s+t)

and make the change of variables s = rz, t = r(1−z). One immediately obtains
the well known result

B(x, y) =

1∫
0

dz zx−1(1− z)y−1 =
Γ(x)Γ(y)
Γ(x+ y)

.

Putting everything together we end up with the master formula in dimensional
regularization:∫

ddl
(2π)d

l2n

(l2 −∆)m
=

i

(4π)d/2
(−1)n+mΓ(m− d

2−n)Γ(d2 +n)

Γ(d2)Γ(m)
∆n+d/2−m . (2.54)

2.7 One-Loop Divergences

Now let us determine the one-loop renormalization of Lee-Wick gauge theory.
The divergent parts of the diagrams of figure 2.1 are

=
i

16π2
C2g

2δab
2
ε

[
− ηµν

d2

(
6 +

3
2
α)
)]

(2.55)

1
2

=
i

16π2
C2g

2δab
2
ε

[
ηµν

d2

(
12 +

3
2
α

)
(2.56)

+ ηµνq2
(

46
3

+
11
4
α

)
−qµqν

(
40
3

+ 2α
)]

1
2

=
i

16π2
C2g

2δab
2
ε

[
ηµν

d2

(
9
4

+
3
4
α

)]
(2.57)

1
2

=
i

16π2
C2g

2δab
2
ε

[
− ηµν

d2

(
33
4

+
3
4
α

)
(2.58)

− ηµνq2
(

33
4

+
11
4
α

)
+ qµqν (6 + 2α)

]
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=
i

16π2
C2g

2δab
2
ε

[
ηµνq2

1
12

+ qµqν
1
6

]
. (2.59)

Here the constant C2 denotes the Casimir operator of the adjoint representation
of the gauge group.

T aadT
a
ad = C2 ⇔ ifacdifdcb = C2δ

ab = tr{T aadT
b
ad} (2.60)

In the case of SU(N) it is for example given by C2 = N .
Summation of all the diagrams yields

qa, µ b, νg2 =
i

16π2
g2C2δ

ab 2
ε

(
ηµνq2 − qµqν

) 43
6
. (2.61)

All terms proportional to d−1
2 cancel due to the Slavnov-Taylor identity for the

two-point function. There is no renormalization of the longitudinal part. From
Section 2.4 we know that we could stop here because the divergent part of the
proper two-point function is gauge independent and completely determines the
one-loop renormalization of the theory. The two requirements of transversality
and independence of α are obviously fulfilled by (2.61) in contrast to the in-
dividual diagrams. Nevertheless we will also determine the proper three gauge
field vertex to cross check the calculation. For the divergent diagrams we obtain

+ + =
C2g

3

16π2
fabc

2
ε

(
49
8 α−

85
4

)
[ηµν(pρ − qρ) + ...]

(2.62)

=
C2g

3

16π2
fabc

2
ε

(
4 + 11

4 α
)
[ηµν(pρ − qρ) + ...]

(2.63)

=
C2g

3

16π2
fabc

2
ε

(
81
8 + 27

8 α
)
[ηµν(pρ − qρ) + ...]

(2.64)

+ =
C2g

3

16π2
fabc

2
ε

(
− 1

24

)
[ηµν(pρ − qρ) + ...] .

(2.65)

All other diagrams are finite by powercounting. To obtain these results we made
use of

if lamifmbnifncl = tr{T aadT
b
adT

c
ad} = ifabe tr{T eadT

c
ad}+ tr{T badT

a
adT

c
ad}

= i
2C2f

abc
(2.66)
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Summation of all diagrams yields the divergent part of the proper three
gauge field vertex.

p q

k

a, µ b, ν

c, ρ

g3 =
C2g

3

16π2
fabc

2
ε

(
−43

6

)[
ηµν(pρ−qρ) + ηµρ(kν−pν) + ηνρ(qµ−kµ)

]
(2.67)

As expected this agrees perfectly with the result for the proper two-point func-
tion.

Since it provides an additional check, we also performed the calculation
using cut-off regularization and obtained

g2 =
i

16π2
g2C2δ

ab

[
5
2
ηµν

(
Λ2 − µ2

)
+
(
ηµνq2 − qµqν

) 43
6

ln
Λ2

µ2

]
(2.68)

g3
=

1
16π2

fabcC2g
3 ln

Λ2

µ2

(
−43

6

)
[ηµν(pρ − qρ) + ...] . (2.69)

Because of the non gauge invariance of the cut-off regularization the quadratic
divergences of the proper gauge field two-point function do not cancel, similar
to ordinary Yang-Mills theory. This is a crucial point. We have to neglect the
quadratic divergence because it leads to a mass counterterm which contradicts
gauge invariance. In Part II we are faced with quadratic divergences which
cannot be ruled out by any symmetry of the theory and hence cannot be thrown
away.

2.8 The β Function

2.8.1 Lee-Wick Gauge Theory

In the minimal subtraction scheme the counterterm corresponding to the diver-
gences we have found is

δLc.t. = (ZA − 1)tr
{
−1

2F
2
µν

}
(2.70)

and the wave function renormalization factor, compare (2.61) and (2.67), has
been determined to be

ZA − 1 = ZA3 − 1 =
g2C2

16π2

43
6

2
ε
. (2.71)

The bare coupling g0 is defined by

g0 = gµ2−d/2Zg = gµ2−d/2Z
−1/2
A . (2.72)
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Differentiation with respect to the renormalization scale yields

0 = (2− d
2)gZg + β

∂

∂g
(gZg) . (2.73)

Therefore the β function is given by

β = µ
d
dµ

g = −(2− d
2)
(
∂ ln(gZg)

∂g

)−1

= −(2− d
2)

(
∂ ln(gZ−1/2

A )
∂g

)−1

. (2.74)

Expanding this result in powers of g and removing the regulator gives the one-
loop β function

β = −g
3C2

16π2

43
6

(2.75)

This result is independent of d2 and different from the well known −11
3 for

Yang-Mills theory. As the minus sign indicates, Lee-Wick gauge theory is also
asymptotically free. However, we see that the coupling constant runs approxi-
mately twice as fast as in Yang-Mills theory, which one also could have guessed
because of the two particles corresponding to the Lee-Wick gauge field. The
fact that we got only approximately a factor of two has to be addressed to the
interactions between the two particles in Lee-Wick gauge theory.

As we figured out after completing the calculation of the β function (2.75),
the one-loop β function of higher-derivative gauge theories has already been
investigated in [28] and [33], using the background field method. In order to
compare with these existing results, we also determined the β function in the
case of a general dimension six term d2 tr{(DµFµν)2 + ξigFµνF νρF

ρ
µ}. We just

state our results:

1
2

=
iC2g

2

16π2
δab

2
ε

[
− ηµν

d2
6 + ηµνq2

(
185
12

+
11
4
α− 9ξ +

9
8
ξ2
)

− qµqν
(

79
6

+ 2α− 9ξ +
9
8
ξ2
)]

(2.76)

1
2

=
iC2g

2

16π2
δab

2
ε

[
− ηµν

d2
6− ηµνq2

(
33
4

+
11
4
α

)
+ qµqν (6 + 2α)

]
. (2.77)

Here we did not split the vertices into the dimension four and dimension six part
and the shaded circles denote the full vertices. From the sum of both diagrams
we obtain

ZA − 1 =
g2C2

16π2

2
ε

(
43
6
− 9ξ +

9
8
ξ2
)

⇒ β = −g
3C2

16π2

(
43
6
− 9ξ +

9
8
ξ2
)
.

(2.78)

We note that this expression agrees with the recently obtained result of Grin-
stein and O’Connell [28], but differs from the β function found by Fradkin and
Tseytlin in appendix C of [33].
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Figure 2.3: One-loop diagrams for the proper ghost two-point function and the
vertex.

2.8.2 The Limit to Yang-Mills Theory

As the result (2.75) is apparently independent of d2 it seem interesting to per-
form the limit d2 → 0. In order to do this one has to include the divergences
which arise in this limit into the counterterms. The β function obtained in this
way is of course the well known Yang-Mills β function because 1

d2
→∞ is noth-

ing but a gauge invariant regulator. However, it is not sufficient to make all
diagrams finite and has to to be complemented by a second invariant regulator
to render the remaining divergent one- and two-loop diagrams finite.

This time it is more convenient to compute the running of g at the ghost
vertex because there are less contributing diagrams and all of them have no poles
at d = 4. As we showed before, the contribution from dimensional regularization
to the Z factors is gauge independent. However, this is not the case for the ln d−1

2

contributions. Only Zg is gauge independent in the limit d2 → 0. We performed
the calculation for arbitrary α to make the gauge dependence explicit and to
see that only Zg is independent of it.

It is convenient to use the following parameterization of the gauge field
propagator:

Dab
µν = iδab

(
ηµν − (1−α)

kµkν
k2

) 1
d2

k2(k2 − 1
d2

)

= iδab
(
ηµν − (1−α)

kµkν
k2

) 1
d2∫

0

dm
(k2 −m)2

.

(2.79)

In this way one can extract without difficulties the divergent parts of the Feyn-
man parameter integrals which remain after momentum integration. The inte-
grals over the mass square parameters in the gauge field propagators are all of
the form∫

dm
1

(A+ xm)n
or

∫
dm(A+ xm)n−1 ln(A+ xm) with n > 0

(2.80)
and easy to perform.

The diagrams for the proper ghost vertex and two-point function are listed
in figure 2.3 and the diagrams for the proper gauge field two-point function
have already been listed in figure 2.1.

Let us begin with the proper gauge field two-point function.
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For the individual diagrams we get

1
2

=
i

16π2
g2C2δ

ab

[
−
(

3
2

+
3
4
α

)
ηµν
d2

(2.81)

+
{(

25
12
− α

2

)
ηµνq2

+
(
α

2
− 7

3

)
qµqν

}
ln
d−1

2

µ2

]

=
i

16π2
g2C2δ

ab

[
−
(

6 +
3
2
α

)
ηµν
d2

2
ε

(2.82)

+
{

1 +
α

4

+
(

6 +
3
2
α

)(
γ + ln

d−1
2

µ2

)}
ηµν
d2

]
1
2

=
i

16π2
g2C2δ

ab

[(
12 +

3
2
α

)
ηµν
d2

2
ε

(2.83)

+
{

4 +
α

2

−
(

12 +
3
2
α

)(
γ + ln

d−1
2

µ2

)}
ηµν
d2

+
{(

46
3

+
11
4
α

)
ηµνq2

−
(

40
3

+ 2α
)
qµqν

}(
2
ε
− ln

d−1
2

µ2

)]
1
2

=
i

16π2
g2C2δ

ab

[
−
(

33
4

+
3
4
α

)
ηµν
d2

2
ε

(2.84)

+
{
− 31

8
− 5

8
α

+
(

33
4

+
3
4
α

)(
γ + ln

d−1
2

µ2

)}
ηµν
d2

+
{(

33
4

+
11
4
α

)
ηµνq2

− (6 + 2α)qµqν
}(

ln
d−1

2

µ2
− 2
ε

)]
1
2

=
i

16π2
g2C2δ

ab

[(
9
4

+
3
4
α

)
ηµν
d2

2
ε

(2.85)

+
{

3
8

+
5
8
α

−
(

9
4

+
3
4
α

)(
γ + ln

d−1
2

µ2

)}
ηµν
d2

]
.
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Again all terms proportional to 1
d2

cancel in the result due to the Slavnov-Taylor
identities and we obtain

q
a, µ b, νg2 =

ig2C2

16π2
δab
(
ηµνq2− qµqν

)[43
6

2
ε
−
(
5 +

α

2

)
ln
d−1

2

µ2

]
. (2.86)

If we use cut-off regularization instead of the dimensional regularization and
throw away the unphysical quadratic divergences we get

q
a, µ b, νg2 =

ig2C2

16π2
δab
(
ηµνq2− qµqν

)[43
6

ln
Λ2

d−1
2

+
(

13
6
− α

2

)
ln
d−1

2

µ2

]
.

(2.87)

The divergent part of the one-loop contribution to the proper ghost two-point
function has been calculated to be

q
a b =

i

16π2
g2C2δ

abq2
(
α

4
− 3

4

)
ln
d−1

2

µ2
. (2.88)

For the proper ghost vertex we get

=
g3C2

16π2
fabcqρ

(
−3

8
α ln

d−1
2

µ2

)
(2.89)

= 0 (2.90)

=
g3C2

16π2
fabcqρ

(
−1

8
α ln

d−1
2

µ2

)
. (2.91)

The above diagrams give

q

a b

c, ρ

g3 =
g3C2

16π2
fabcqρ

(
−α

2
ln
d−1

2

µ2

)
. (2.92)

The divergences of these diagrams determine the one-loop contributions to the
folowing counterterms:

δLA2 = (ZA − 1) tr{−1
2(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)} (2.93)
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δLc̄c = (Zc − 1){−c̄a∂2ca} (2.94)

δLc̄Ac = (Zc̄Ac − 1){gfabcAaρ(∂ρc̄c)cb} . (2.95)

The Z factors can be read off from the above results. In minimal subtraction
scheme one gets:

ZA − 1 =
g2C2

16π2

(
43
6

2
ε
−
(
5 +

α

2

)
ln
d−1

2

µ2

)
(2.96)

Zc − 1 =
g2C2

16π2

(
3
4
− α

4

)
ln
d−1

2

µ2
(2.97)

Zc̄Ac − 1 = −g
2C2

16π2

α

2
ln
d−1

2

µ2
. (2.98)

These gauge dependent Z factors combine to the gauge independent coupling
constant renormalization

Zg = Zc̄AcZ
−1
c Z

− 1
2

A = 1− g2C2

16π2

(
43
12

2
ε
− 7

4
ln
d−1

2

µ2

)
(2.99)

or with cut-off regularization

Zg = 1− g2C2

16π2

(
43
12

ln
Λ2

d−1
2

+
11
6

ln
d−1

2

µ2

)
. (2.100)

It is interesting to notice that the dependence Zc̄Ac ∼ α is fixed by the observa-
tion that in Lorenz gauge

Zc̄Ac|α=0 = 1 (2.101)

to all orders. From the powercounting analysis 2.36 we know that the superficial
degree of divergence of the ghost-vector vertex is one. Because one derivative
acts on an external ghost leg the degree of divergence is zero. The transversality
of the gauge field propagator reduces the degree of divergence further and the
ghost-vector vertex is in fact finite in Lorenz gauge.
The bare coupling is defined as

g0 = gµ2−d/2Zg = gµ2−d/2Zc̄AcZ
−1
c Z

− 1
2

A . (2.102)

Differentiating this equation with respect to the renormalization scale µ gives

0 = (2− d
2)gZg +

(
β
∂

∂g
− 2

∂

∂ ln Λ2

µ2

)
gZg . (2.103)

Therefore the β function is given by

β = µ
dg
dµ

= −(2− d
2)
(
∂ ln(gZg
∂g

)−1

+ 2
∂

∂ ln Λ2/µ2 gZg
∂
∂ggZg

. (2.104)

The first term in this expression is just the contribution to the β function from
dimensional regularization and the second term, which arises because of the
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2.8 The β Function

explicit dependence of the Z factors on µ through ln(d−1
2 /µ2), is the contribution

of the higher-derivative regulator. Taking the ordered limit ε → 0, d2 → 0 of
the expansion in powers of g one obtains the well known result

β = −g
3C2

16π2

11
3

(2.105)

Note that we could have written this down without calculating anything.
What we have done by performing the limit d2 → 0 was nothing but a higher
covariant derivative regularization [31], supplemented by a dimensional regular-
ization. The result is also clear from the two particle formulation of Lee-Wick
gauge theory. If we send d2 to zero, or equivalently the mass d−1/2

2 to infinity,
the massive Lee-Wick field decouples according to the Appelquist-Carazzone
decoupling theorem [34].
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Chapter 3

Background Field Method

We will now apply the background field method to determine the β function
of the Lee-Wick gauge theory and of Yang-Mills theory. As stated at the be-
ginning of the previous chapter, in the case of Lee-Wick gauge theory this is
no advantage. In addition the background field calculation for Lee-Wick gauge
theory has already been done by Grinstein and O’Connell [28] with the same
result as in Chapter 2. Hence our motivation to redo the calculation is solely
educational.

3.1 The Formalism

At first let us briefly review the background field method following the lines of
[35]. The generating functional of correlation functions is defined by

Z(J) = eiW (J) =
∫
DQ det(∂ ·D) exp

[
i

∫
d4x

(
L(Q)− 1

2α(∂ ·Qa)2 + Ja ·Qa
)]

(3.1)
and the conventional effective action Γ is the Legendre transform of the gener-
ating functional of connected Green’s functions W (J).

Γ(Q̂) = W (J)−
∫

d4x Ja · Q̂a (3.2)

where
Q̂aµ =

δW

δJaµ
. (3.3)

Note that we have chosen the gauge fixing condition Ga = ∂ ·Qa and of course
one could also use another one without any impact on physical quantities.

Γ(Q̂) is the generating functional of proper Green’s functions, hence its
derivatives with respect to Q̂ give the one-particle-irreducible vertices. It there-
fore plays an essential role in the theory of renormalization.

Denoting by A the background field and by Q the quantum fluctuation we
define the background field generating functional

Z̃(J,A) =
∫
DQ det(D · D̃) exp

[
i

∫
d4x

(
L(A+Q)− 1

2α(D ·Qa)2 + Ja ·Qa
)]

.

(3.4)
Here and throughout this chapter Dµ = ∂µ − igAµ denotes the background
field covariant derivative and D̃µ = Dµ − igQµ is the covariant derivative cor-
responding to A+Q.

Note that the chosen gauge fixing condition is gauge covariant with respect
to the background field. We define the background effective action

Γ̃(Q̃, A) = W̃ (J,A)−
∫

d4xJa · Q̃a (3.5)
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with

W̃ (J,A) = −i ln Z̃(J,A) and Q̃aµ =
δW̃

δJaµ
. (3.6)

It is obvious that Z̃ and W̃ are invariant under a gauge transformation of the
background field

A→ Au = UAU−1 − i
gdUU

−1 J → UJU−1 (3.7)

with the source transforming homogeneously. Consequently, the background
effective action has the property

Γ̃(UQ̃U−1, Au) = Γ̃(Q̃, A) . (3.8)

What we found thereby is that Γ̃(0, A) is a gauge invariant functional of A.
Γ̃(0, A) is the gauge-invariant effective action which one computes in the back-
ground field method. Making the change of variables Q → Q − A in (3.4) it
follows that W and W̃ are related by

W̃ (J,A) = W (J)−
∫

d4xJa ·Aa (3.9)

where W (J) is the conventional generating functional with the background field
dependent gauge fixing condition G = Dµ(Qµ −Aµ). We also find

Q̃ = Q̂−A and Γ̃(Q̃, A) = Γ(Q̃+A), (3.10)

and thus obtain the desired relation

Γ̃(0, A) = Γ(A) . (3.11)

The gauge-invariant effective action is equal to the conventional effective action
evaluated in an unconventional A-dependent gauge.

To compute Γ̃(0, A) we have to sum up all one-particle-irreducible diagrams
with A fields on external legs and Q and ghost fields inside loops.

In fact, if we are interested in the β function, we only need to calculate
the proper diagrams with two external background fields, because as a direct
consequence of the gauge invariance of Γ̃(0, A) the divergences must have the
manifestly gauge invariant form

− 1
2(ZA − 1) tr

(
F 2
µν

)
(3.12)

which implies the relation

Zg = Z
− 1

2
A (3.13)

between the coupling constant and background field renormalization factors.
This is exactly the relation we obtained in Section 2.4 without the background
field method only by choosing an unconventional gauge fixing term.
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3.2 Yang-Mills Theory

Before we do the background field calculation for Lee-Wick gauge theory, let us
do the much simpler calculation for Yang-Mills theory to get familiar with the
method. This calculation can be found for example in [35] and [3].

The starting point is the Lagrangian

L(A,Q, c̄, c) = tr{−1
2(Fµν +DµQν −DνQµ − ig[Qµ, Qν ])2 − 1

α(DµQ
µ)2}

+ c̄a[−D ·D̃]abcb . (3.14)

Its quadratic part in the quantum field is

L|Q2 = tr{−1
2(DµQν −DνQµ)2 + igFµν [Qµ, Qν ]− 1

α(DµQ
µ)2}

= tr{Qµ(D2ηµν −DνDµ + 1
αD

µDν)Qν + igFµν [Qµ, Qν ]} .
(3.15)

Because of [Dµ, Dν ] = −igFµν it is convenient to set α = 1 and further simplify
the above expression by using

DµDνQ = [Dµ, [Dν , Q]] = [Dν , [Dµ, Q]]− ig[Fµν , Q] . (3.16)

To keep the notation simple it is also convenient to make use of the fact that if
A, B and C are fields in the adjoint representation then the following equations
hold.

[A,B]a = ifabcAbBc = Ab(T bad)
acBc = ad(A)acBc

tr{A[B,C]} = 1
2A

a ad(B)abCb
(3.17)

In what follows we will stick to the convention Bab := ad(B)ab.
Applying all this to equation (3.15) we find

L|Q2 = tr{Qµ(D2ηµν)Qν − 2igQµ[Fµν , Qν ]}
= −1

2Q
a
µ[−D2ηµν + 2igFµν ]abQbν

= −1
2Q

a
µ∆

µν
abQ

b
ν .

(3.18)

The quadratic term in ghost fields is simply

L|c2 = c̄a[−(D2)ab]cb . (3.19)

To one-loop order the effective action is given by

eiΓ[A] = exp
[
i

∫
d4x tr{−1

2F
2
µν}
]

(det ∆)−1/2 det(−D2) . (3.20)

In order to compute the determinant of a gauge covariant operator ∆ we expand
it in powers of A and exploit its gauge invariance. ∆n is of order n in the
background field.

ln det∆ = Tr{ln(∆0 + ∆1 + ∆2 + . . . )}
= ln det ∆0 + Tr{ln[1 + ∆−1

0 (∆1 + ∆2 + . . . )]}
= ln det ∆0 + Tr{∆−1

0 ∆2} − 1
2 Tr{∆−1

0 ∆1∆−1
0 ∆1}+ . . .

(3.21)
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We can drop det∆0 because it is just an infinite constant.
In our case

∆µν
0 (x− y) = −∂2ηµνδ(x− y) (3.22)

and because of

−D2 = −∂2 + ig(∂µAµ +Aµ∂
µ) + g2A2

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] ,
(3.23)

∆1 and ∆2 are given by

∆µν
1 (x− y) = ig

[
(∂ ·A+A · ∂)ηµν + 2((∂µAν)− (∂νAµ))

]
δ(x− y) (3.24)

= g

∫
d4k

(2π)4
Aρ(k)

∫
d4p

(2π)4
[
(k + 2p)ρηµν

+ 2(kµηρν − kνηρµ)
]
e−ikx−ip(x−y)

∆µν
2 (x− y) =

[
g2A2ηµν + traceless

]
δ(x− y) (3.25)

= g2

∫
d4k

(2π)4

∫
d4q

(2π)4

∫
d4p

(2π)4
Aρ(k)Aσ(q)ηρσηµνe−i(k+q)x−ip(x−y) .

Here we dropped traceless terms because they do not contribute at one-loop
level.

Let us first calculate the ghost determinant. According to (3.21) the two
contributions are

Tr[(−∂2)−1gA2] = g2

∫
d4k

(2π)4
tr{Aµ(k)Aν(−k)}

∫
ddp

(2π)d
ηµν

p2
= 0 (3.26)

and

− 1
2

Tr[{(−∂2)−1ig(∂ ·A+A · ∂)}2 (3.27)

= −g
2

2

∫
d4k

(2π)4
tr{Aµ(k)Aν(−k)}

∫
ddp

(2π)d
(2p+ k)µ(2p+ k)ν

p2(p+ k)2

=
1
2

∫
d4k

(2π)4
Aaµ(k)A

b
ν(−k)δab(k2ηµν − kµkν)

[
i

16π2

g2C2

3
2
ε

+ . . .

]
.

Therefore we get for the divergent part of the ghost determinant

ln det(−D2)|A2 =
1
2

∫
d4k

(2π)4
Aaµ(k)A

b
ν(−k)δab(k2ηµν − kµkν)

i

16π2

g2C2

3
2
ε
.

(3.28)
In terms of diagrams the A2 part of the ghost determinant is given by

A A + A A (3.29)

and of course the sum of both diagrams yields the same result.
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Let us proceed with the calculation of det∆. In the following expression the
trace over spacetime indices is already performed.

− 1
2

Tr[(∂2)−1(∆1)µν(∂2)−1∆νµ
1 ] (3.30)

=
−g2

2

∫
d4k

(2π)4
tr{Aµ(k)Aν(−k)}

∫
ddp

(2π)d
d(2p+k)µ(2p+k)ν+8(k2ηµν−kµkν)

p2(p+ k)2

= −
∫

d4k

(2π)4
Aaµ(k)A

b
ν(−k)δab(k2ηµν − kµkν)

[
ig2C2

16π2

10
3

2
ε

+ . . .

]
Consequently the divergent contribution of the determinant of ∆ to the effective
action is given by

− 1
2

ln det∆|A2 =
1
2

∫
d4k

(2π)4
Aaµ(k)A

b
ν(−k)δab(k2ηµν − kµkν)

i

16π2
g2C2

10
3

2
ε

(3.31)
and the background field renormalization is

Z−2
g = ZA = 1 +

g2C2

16π2

11
3

2
ε
, (3.32)

leading to the Yang-Mills β function

β = −g
3C2

16π2

11
3
. (3.33)

While the gauge invariance of the background field effective action follows
directly from its definition, the gauge independence is not obvious. For example
ZA has to be independent of α if α is kept arbitrary throughout the calculation,
which is indeed the case. We have

∆µν
0 (x− y) = (P−1)µν(x− y) =

[
−∂2ηµν + 1

α∂
µ∂ν
]
δ(x− y)

⇒ Pµν =
∫

d4p

(2π)4
1
p2

(
ηµν − (1− α)pµpν

p2

)
e−ip(x−y) ,

(3.34)

∆µν
1 (x− y) = ig

[
(∂ ·A+A · ∂)ηµν − (∂νAµ +Aν∂µ)

+ 1
α(∂µAν +Aµ∂ν) + (∂µAν)− (∂νAµ)

]
δ(x− y)

= g

∫
d4k

(2π)4
Aρ(k)

∫
d4p

(2π)4
[
(k+2p)ρηµν − ηµρ(p+2k− 1

αp)
ν

+ ηνρ(k−p+ 1
α(p+ k))µ

]
e−ikx−ip(x−y) .

(3.35)
Proceeding as in the case α = 1, we end up with the same result, which we
don’t give here again.

Beside the calculation presented above it is also possible to apply the usual
Feynman diagram technique.
The Feynman rules we need are

p
a, µ b, ν=

−iδab

p2

(
ηµν − (1− α)pµpν

p2

)
(3.36)
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p
a b =

iδab

p2
(3.37)

p

q k

Aaµ

b, ν c, ρ

= gfabc[ηνρ(q − k)µ + ηµρ(k − p+ 1
αq)

ν + ηµν(p− q − 1
αk)

ρ]

(3.38)

q k

Aaµ

b c

= −gfabc(q + k)µ (3.39)

All these Feynman rules are straightforward to obtain from equation (3.14). For
example one contraction of the one-background field two-quantum fields vertex
can be directly read off from expression (3.35). Of course the results are the
same and independent of α:

1
2 A A =

i

16π2
g2C2δ

ab 2
ε

(
ηµνq2 − qµqν

) 10
3

(3.40)

1
2 A A =

i

16π2
g2C2δ

ab 2
ε

(
ηµνq2 − qµqν

) 1
3
. (3.41)

3.3 Lee-Wick Gauge Theory

After this short Yang-Mills theory warm-up to get familiar with the background
field method let us apply it to Lee-Wick gauge theory. We start with the La-
grangian

L(A,Q, c̄, c) = tr{ − 1
2(Fµν +DµQν −DνQµ − ig[Qµ, Qν ])2 − 1

α(DµQ
µ)2}

+ d2

(
DµFµν +Dµ(DµQν −DνQµ − ig[Qµ, Qν ])

− ig[Qµ, Fµν +DµQν −DνQµ − ig[Qµ, Qν ]]
)2

+ c̄a[−D·D̃]abcb .
(3.42)

The quadratic part in the quantum field is

L|Q2 = tr{ − 1
2(DµQν −DνQµ)2 + igFµν [Qµ, Qν ]− 1

α(DµQ
µ)2}

+ d2 tr{(Dµ(DµQν −DνQµ)− ig[Qµ, Fµν ])
2

− 2ig(DρF
ρν)(Dσ[Qσ, Qν ] + [Qµ, DµQν −DνQµ])}

= tr{Qµ(D2ηµν −DνDµ + 1
αD

µDν)Qν + igFµν [Qµ, Qν ]}
+ d2 tr{(Dµ(DµQν −DνQµ))

2 − 2igQµ[Fµν , D2Qν ]

+ 2igQµ[Fµρ, DνDρQν ] + g2Qµ[Fµρ, [F νρ, Qν ]]

+ 2ig(DσDρF
ρν)[Qσ, Qν ]

+ 2igQµ[(DρF
ρν), DµQν ]− 2igQµ[(DρF

ρν), DνQ
µ]} .

(3.43)
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Again we set α = 1 for convenience and further simplify the above expression
by making use of [Dµ, Dν ] = −igFµν :

(D2Qµ−DρDµQρ)2 = Qµ(D4ηµν −D2DνDµ)Qν
−Qµ(DνDµD2 −DρDµDνDρ)Qν

= Qµ(D4ηµν −D2DνDµ)Qν − igQµ[F ρµ, DνDρQν ]

− igQµ(+Dµ[F ρν , DρQν ] + [Fµν , D2Qν ]) .
(3.44)

Plugging this into the previous equation we get

L|Q2 = tr{Qµ(D2ηµν)Qν − 2igQµ[Fµν , Qν ]}
+ d2 tr{Qµ(D4ηµν −D2DνDµ)Qν

+ g2Qµ[Fµρ, [F νρ, Qν ]]− 2igQµ[(DµDρF
ρν), Qν ]

− igQµ(3[F ρµ, DνDρQν ] +Dµ[F ρν , DρQν ] + 3[Fµν , D2Qν ])
+ 2igQµ[(DρF

ρν), DµQν ]− 2igQµ[(DρF
ρν), DνQ

µ]}
= − 1

2Q
a
µ[−D2ηµν + 2igFµν ]abQbν − d2

2 Q
a
µ[−D4ηµν +D2DνDµ]abQbν

− d2
2 Q

a
µ[−g2FµρF νρ + 3igF ρµDνDρ + igDµF ρνDρ + 3igFµνD2

+ 2ig(DµDρF
ρν) + 2ig(DρFρσ)(ηµνDσ − ηνσDµ)]abQbν

= − 1
2Q

a
µ∆

µν
abQ

b
ν

(3.45)
The one-loop effective action is now given by

eiΓ[A] = exp
[
i

∫
d4x tr{−1

2F
2
µν + d2(DµFµν)2}

]
(det ∆)−1/2 det(−D2) (3.46)

To calculate the determinant of ∆ we will apply the usual Feynman diagram
technique. Both determinants are determinants of gauge covariant operators
and thus individually gauge invariant.

To determine the required Feynman rules we need the expansion in powers
of the background field of all the operators which ∆ consists of. We have

∆µν = −(∂2 + d2∂
4)ηµν + d2∂

2∂µ∂ν + ∆µν
1 + ∆µν

2 + ∆µν
3 + ∆µν

4 . (3.47)

Here ∆n is of order n in the background field. The appearing operators are

D4 = ∂4 − ig[∂2(∂ ·A+A · ∂) + (∂ ·A+A · ∂)∂2] (3.48)

−g2[(∂ ·A+A · ∂)2 + (∂2A2 +A2∂2)] +O(A3)

D2DνDµ = ∂2∂ν∂µ − ig[(∂ ·A+A · ∂)∂ν∂µ (3.49)

+ ∂2(∂νAµ +Aν∂µ)]

− g2[(∂ ·A+A · ∂)(∂νAµ +Aν∂µ)

+ ∂2AνAµ +A2∂ν∂µ] +O(A3)
(DµDρF

ρν) = ∂µ∂ρ(∂ρAν − ∂νAρ) (3.50)
− ig

(
∂µ[Aρ, F ρν ] + [Aµ, ∂ρF ρν ]

+ ∂µ∂ρ[Aρ, Aν ]
)

+O(A3)
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FµρF νρ = (∂µAρ − ∂ρAµ)(∂νAρ − ∂ρA
ν) +O(A3) (3.51)

DµF ρνDρ = ∂µ[(∂ρAν)− (∂νAρ)]∂ρ (3.52)
− igAµ[(∂ρAν)− (∂νAρ)]∂ρ
− ig∂µ[(∂ρAν)− (∂νAρ)]Aρ − ig∂µ[Aρ, Aν ]∂ρ +O(A3)

F ρµDνDρ = [(∂ρAµ)− (∂µAρ)]∂ν∂ρ (3.53)

−ig[(∂ρAµ)−(∂µAρ)](∂νAρ+Aν∂ρ)−ig[Aρ, Aµ] +O(A3)

FµνD2 = [(∂µAν)− (∂νAµ)]∂2 − ig[Aµ, Aν ]∂2 (3.54)

−ig[(∂µAν)− (∂νAµ)](∂ ·A+A · ∂) +O(A3)

(DρFρσ)2ην[µDσ] = [(∂2Aσ)− (∂ρ∂σAρ)](ηµν∂σ − ηνσ∂µ) (3.55)
−ig(∂ρ[Aρ, Aσ] + [Aρ, ∂ρAσ − ∂σAρ])(ηµν∂σ − ηνσ∂µ)

−ig[(∂2Aσ)− (∂ρ∂σAρ)](ηµνAσ − ηνσAµ) +O(A3) .

The propagator of the field Q is given by

(D−1)µνab = −iδab(∂2 + d2∂
4)ηµν + id2δab∂

2∂µ∂ν

Dab
µν =

∫
d4p

(2π)4
δab

−i(ηµν − d2pµpν)
p2(1− d2p2)

e−ip(x−y) .
(3.56)

Note that because the UV behavior of the propagator is only k−2, the su-
perficial degree of divergence of the diagrams (3.62) and (3.63) is four, but as
we will see all the higher divergences cancel and they are only logarithmically
divergent.

To obtain the one and two background, two quantum fields vertices we need
∆1 and ∆2.

∆µν
1 (x−y) = g

[
− i(∂ ·A+A · ∂)ηµν + 2i((∂µAν)− (∂νAµ)) (3.57)

+ id2η
µν [∂2(∂ ·A+A · ∂) + (∂ ·A+A · ∂)∂2]

− id2[(∂ ·A+A · ∂)∂ν∂µ + ∂2(∂νAµ +Aν∂µ)]

+ 2id2[∂µ∂ρ(∂ρAν − ∂νAρ)] + 3ig[(∂ρAµ)− (∂µAρ)]∂ν∂ρ
+ id2∂

µ[(∂ρAν)− (∂νAρ)]∂ρ + 3ig[(∂µAν)− (∂νAµ)]∂2

+ 2i[(∂2Aσ)− (∂ρ∂σAρ)](ηµν∂σ − ηνσ∂µ)
]
δ(x− y)

= g

∫
d4k

(2π)4
Aρ(k)

∫
d4p

(2π)4
[
(k + 2p)ρηµν + 2(kµηρν − kνηρµ) (3.58)

+ d2

{
− ((p+ k)2 + p2)(k + 2p)ρηµν + (k + 2p)ρpµpν

+ (p+k)2((k + p)νηρµ + pµηρν)− 2kµ(k2ηνρ − kνkρ)
− 3pν(kpηµρ − kµpρ)− (k + p)µ(kpηνρ − kνpρ)

− 3(kµηνρ − kνηµρ)p2 − 2ηµν(pρk2 − kρkp)

+ 2(ηνρk2 − kνkρ)pµ
}]
e−ikx−ip(x−y)

As in Yang-Mills theory we can easily read off one contraction of the one-
background field two-quantum fields vertex. We don’t give the explicit expres-
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sion because it does not contain more information than equation (3.59).

∆µν
2 (x−y) = g2

[
A2ηµν + d2η

µν [(∂ ·A+A · ∂)2 + (∂2A2 +A2∂2)] (3.59)

− d2[(∂ ·A+A · ∂)(∂νAµ +Aν∂µ) + ∂2AνAµ +A2∂ν∂µ]

− d2[(∂µAρ)− (∂ρAµ)][(∂νAρ)− (∂ρAν)]

+ 3d2[(∂ρAµ)− (∂µAρ)](∂νAρ +Aν∂ρ)

+ d2[Aµ[(∂ρAν)− (∂νAρ)]∂ρ + ∂µ[(∂ρAν)− (∂νAρ)]Aρ]

+ 3d2[(∂µAν)− (∂νAµ)](∂ ·A+A · ∂)

+ 2d2[(∂2Aσ)− (∂ρ∂σAρ)](ηµνAσ − ηνσAµ)

+ traceless
]
δ(x−y)

= g2

∫
d4k

(2π)4

∫
d4q

(2π)4

∫
d4p

(2π)4
Aρ(k)Aσ(q)

[
ηρσηµν (3.60)

− d2[ηµν(k + 2q + 2p)ρ(q + 2p)σ + ηµνηρσ((k + q + p)2 + p2)]

+ d2[(k + 2q + 2p)ρ((p+ q)νηµσ + pµηνσ) + (p+ q + k)2ηνρηµσ

+ d2[ηρσpµpν ]kµ(qνηρσ − qρηνσ) + ηµρ(qkηνσ − qνkσ)]
− 3d2[ηµρ(kpηνσ + (q + p)νkσ)− kµ((q + p)νηρσ + pρηνσ)]
− d2[ηµρ(qpηνσ − qνpσ) + (k + p+ q)µ(kσηνρ − kνηρσ)]
− 3d2[(kµηνρ − kνηµρ)(q + 2p)σ]

− 2d2[(k2ηρσ − kρkσ)ηµν − (k2ηνρ − kνkρ)ηµσ
]
e−i(k+q)x−ip(x−y)

In the above expression we omitted the traceless part because it clearly does
not contribute at one-loop level and is therefore irrelevant in our calculation.
Again we can read off one contraction of the two-background two-quantum
fields vertex from the expression for ∆2 given in (3.60).

Since we didn’t change the gauge fixing condition the contribution of the
ghost fields is the same as in Yang-Mills theory and we just state the result
obtained in Section 3.2

ln det(−D2)|A2 =
1
2

∫
d4k

(2π)4
Aaµ(k)A

b
ν(−k)δab(k2ηµν − kµkν)

i

16π2

g2C2

3
2
ε
.

(3.61)
It still remains to compute the determinant of the fluctuation operator ∆.

The contribution of det∆ to the generating functional of proper vertices is
determined by the following two Feynman diagrams:

1
2 A A =

ig2C2

16π2
δab
[
ηµν
{

181
12

q2
2
ε
− 47

4
ln d−1

2
µ2

+
1
d2

(
23
8

+
21
4

2
ε
− 21

4

(
γ + ln d−1

2
µ2

))}
+ qµqν

{
−77

6
2
ε

+
19
2

ln d−1
2
µ2

}]
(3.62)
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1
2 A A =

ig2C2

16π2
δab
[
ηµνq2

{
− 33

4
2
ε

+
33
4

ln d−1
2
µ2

− 1
d2

(
23
8

+
21
4

2
ε
− 21

4

(
γ + ln d−1

2
µ2

))}
+ qµqν

{
6
2
ε
− 6 ln d−1

2
µ2

}]
. (3.63)

Their sum is

q
Aaµ Abνg2 =

i

16π2
g2C2δ

ab 2
ε

(
ηµνq2 − qµqν

) [41
6
− 7

2
ln d−1

2
µ2

]
. (3.64)

Together with the ghost determinant we get

Z−2
g = Z3 = 1 +

g2

16π2
C2

43
6

2
ε
, (3.65)

similar to Section 2.8. And in the limit d2 → 0

Zg = 1− g2

16π2
C2

(
43
12

2
ε
− 7

4
ln
d−1

2

µ2

)
, (3.66)

which exactly reproduces our previous result (2.99).

3.3.1 Improving the Convergence

As in [28] we will now use the gauge fixing term

− tr{(DµQ
µ)(1 + d2D

2)(DνQ
ν)} (3.67)

to improve the convergence of the integrals. This is nothing but the background
field analogue of the gauge fixing term we used in Chapter 2 however in contrast
to Section 2.3 the weight corresponding to the counterterm depends on the
background field and thus we have to include the A dependent normalization
factor (det(1+d2D

2))1/2.
The Lagrangian we start with this time is

L(A,Q, c̄, c) = tr{ − 1
2(Fµν +DµQν −DνQµ − ig[Qµ, Qν ])2

+ d2(DµFµν +Dµ(DµQν −DνQµ − ig[Qµ, Qν ])

− ig[Qµ, Fµν +DµQν −DνQµ − ig[Qµ, Qν ]])2

− (DµQ
µ)(1 + d2D

2)(DνQ
ν)}+ c̄a[−D ·D̃]abcb

. (3.68)

The quadratic part in the quantum field is

L|Q2 = tr{Qµ(D2ηµν)Qν − 2igQµ[Fµν , Qν ]}
+ d2 tr{Qµ(D4ηµν −D2DνDµ +DµD2Dν)Qν
+ g2Qµ[Fµρ, [F νρ, Qν ]]− 2igQµ[(DµDρF

ρν), Qν ]

− igQµ(3[F ρµ, DνDρQν ] +Dµ[F ρν , DρQν ] + 3[Fµν , D2Qν ])
+ 2igQµ[(DρF

ρν), DµQν ]− 2igQµ[(DρF
ρν), DνQ

µ]} .

(3.69)
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Again one can use [Dµ, Dν ] = −igFµν to further simplify the above expression.

DµD2DνQ = − ig[Fµρ, DρD
νQ]− igDρ[Fµρ, DνQ]

− igD2[Fµν , Q] +D2DνDµQ

[Fµρ, DρD
νQ] = ig[Fµρ, [F νρ, Q]− [F ρµ, DνDρQ]

tr{QµD2[Fµν , Qν ]} = tr{Qµ[Fµν , D2Qν ]}+ t.d.

(3.70)

Applying this to the last equation we get

L|Q2 = tr{Qµ(D2ηµν)Qν − 2igQµ[Fµν , Qν ]} (3.71)

+ d2 tr{Qµ(D4ηµν) + 2g2Qµ[Fµρ, [F νρ, Qν ]]− 2igQµ[(DµDρF
ρν), Qν ]

− igQµ(2[F ρµ, DνDρQν ] +Dρ[Fµρ, DνQν ])

− igQµ(Dµ[F ρν , DρQν ] + 4[Fµν , D2Qν ])
+ 2igQµ[(DρF

ρν), DµQν ]− 2igQµ[(DρF
ρν), DνQ

µ]}
= −1

2Q
a
µ[−D2ηµν + 2igFµν ]abQbν − d2

2 Q
a
µ[−D4ηµν ]abQbν (3.72)

−d2
2 Q

a
µ[−2g2FµρF νρ + 2F ρµDνDρ + igDµF ρνDρ + igDρF

µρDν

+4igFµνD2 + 2ig(DµDρF
ρν) + 2ig(DρFρσ)(ηµνDσ − ηνσDµ)]abQbν

= −1
2Q

a
µ∆

µν
abQ

b
ν (3.73)

The one-loop effective action is given by

eiΓ[A] = exp
[
i

∫
d4x (L(A) + Lc.t.)

]
det(−D2)(det(1+d2D

2))
1
2

(det ∆)
1
2

(3.74)

where L(A) is the Lee-Wick Lagrangian (2.1). Again all the determinants are
individually gauge invariant. As stated at the beginning of this section the fac-
tor (det(1+d2D

2))1/2 has to be included because of the additional background
field dependence of the gauge fixing term. To calculate this determinant dia-
grammaticly one has to introduce further ghost fields, but we will not do this
here.

Let us begin with the calculation of the determinant coming from the gauge
fixing term. We have

1 + d2D
2 = 1 + d2∂

2 − igd2(∂ ·A+A · ∂)− d2g
2A2 . (3.75)

According to the expansion (3.21) there are the two contributions

− Tr{(1+d2∂
2)−1d2g

2A2} (3.76)

=
∫

d4k

(2π)4
tr{Aµ(k)Aν(−k)}

∫
d4p

(2π)4
g2ηµν

p2 − d−1
2

=
1
2

∫
d4k

(2π)4
tr{Aµ(k)Aν(−k)}

[
i

16π2
ηµν(−2)g2d−1

2 Γ(1− d
2)
(
d−1

2

µ2

) d
2
−2
]
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and

g2d2
2

2
Tr{[(1 + d2∂

2)−1(∂ ·A+A · ∂)]2} (3.77)

= −1
2

∫
d4k

(2π)4
tr{Aµ(k)Aν(−k)}

∫
d4p

(2π)4
g2(2p+ k)µ(2p+ k)ν

(p2 − d−1
2 )((p+ k)2 − d−1

2 )

=
1
2

∫
d4k

(2π)4
tr{Aµ(k)Aν(−k)}

ig2

16π2

[
(ηµνk2−kµkν)1

3
Γ(2− d

2)
(
d−1

2

µ2

) d
2
−2

+ 2ηµνd−1
2

(
d−1

2

µ2

) d
2
−2

Γ(1− d
2) + . . .

]
.

They sum up to give the divergent part of the determinant

1
2

ln det(1 + d2D
2)|A2 (3.78)

=
1
2

∫
d4k

(2π)4
Aaµ(k)A

b
ν(−k)δab(ηµνk2 − kµkν)

[
i

16π2

g2C2

6
Γ(2− d

2)
(
d−1

2

µ2

) d
2
−2
]
.

It is quite obvious that this expression does not contribute to the β function
in the limit d2 to zero, no matter wether we perform the limit before or after
sending d→ 4.

As in the previous section we will calculate the determinant of ∆ using the
Feynman diagram technique. Hence again the expansion of ∆ in powers of the
background field is needed:

∆µν = −(∂2 + d2∂
4)ηµν + ∆µν

1 + ∆µν
2 + ∆µν

3 + ∆µν
4 . (3.79)

Beside the operators (3.49)-(3.55) we also need

DρF
µρDν = ∂ρ[(∂µAρ)− (∂ρAµ)]∂ν − igAρ[(∂µAρ)− (∂ρAµ)]∂ν (3.80)

− ig∂ρ[(∂µAρ)− (∂ρAµ)]Aν − ig∂ρ[Aµ, Aρ]∂ν +O(A3)

The quantum field propagator is given by

(D−1)µνab = −iδab(∂2 + d2∂
4)ηµν

Dab
µν =

∫
d4p

(2π)4
δab

−iηµν
p2(1− d2p2)

e−ip(x−y)
(3.81)

and now has the UV behaviour k−4.
Similar to the previous section the necessary Feynman rules can be obtained

from ∆1 and ∆2.

∆µν
1 (x−y) = ig

[
(∂ ·A+A · ∂)ηµν + 2((∂µAν)− (∂νAµ)) (3.82)

+ d2η
µν [∂2(∂ ·A+A · ∂) + (∂ ·A+A · ∂)∂2]

+ 2d2[∂µ∂ρ(∂ρAν − ∂νAρ)] + d2∂
µ[(∂ρAν)− (∂νAρ)]∂ρ

+ d2∂ρ[(∂µAρ)− (∂ρAµ)]∂ν + 4d2[(∂µAν)− (∂νAµ)]∂2

+ 2d2[(∂ρAµ)− (∂µAρ)]∂ν∂ρ
+ 2d2[(∂2Aσ − ∂ρ∂σAρ](ηµν∂σ − ηνσ∂µ)

]
δ(x− y)
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= g

∫
d4k

(2π)4
Aρ(k)

∫
d4p

(2π)4
[
(k + 2p)ρηµν + 2(kµηρν − kνηρµ) (3.83)

+d2

{
− ((p+ k)2 + p2)(k + 2p)ρηµν − 2kµ(k2ηνρ − kνkρ)

− (k + p)µ(kpηνρ − kνpρ)− ((k + p)ρkµ − ηµρ(k2 + pk))pν

− 4(kµηνρ − kνηµρ)p2 − 2pν(kpηµρ − kµpρ)

− 2ηµν(pρk2 − kρkp) + 2(ηνρk2 − kνkρ)pµ
}]
e−ikx−ip(x−y)

∆µν
2 (x− y) = g2

[
A2ηµν + d2η

µν [(∂ ·A+A · ∂)2 + (∂2A2 +A2∂2)] (3.84)

− 2d2[(∂µAρ)− (∂ρAµ)][(∂νAρ)− (∂ρAν)]

+ d2[Aµ[(∂ρAν)− (∂νAρ)]∂ρ + ∂µ[(∂ρAν)− (∂νAρ)]Aρ]

+ d2[Aρ[(∂µAρ)− (∂ρAµ)]∂ν + ∂ρ[(∂µAρ)− (∂ρAµ)]Aν ]

+ 4d2(∂ ·A+A · ∂)[(∂µAν)− (∂νAµ)]

+ 2d2[(∂ρAµ)− (∂µAρ)](∂νAρ +Aν∂ρ)

+ 2d2g[(∂2Aσ)− (∂ρ∂σAρ)](ηµνAσ − ηνσAµ)

+ traceless terms
]
δ(x− y)

= g2

∫
d4k

(2π)4

∫
d4q

(2π)4

∫
d4p

(2π)4
Aρ(k)Aσ(q)

[
ηρσηµν (3.85)

− d2[ηµν(k + 2q + 2p)ρ(q + 2p)σ + ηµνηρσ((k + q + p)2 + p2)]
+ 2d2[kµ(qνηρσ − qρηνσ) + ηµρ(qkηνσ − qνkσ)]
− d2[ηµρ(qpηνσ − qνpσ) + (k + p+ q)µ(kσηνρ − kνηρσ)]
− d2[(qµηρσ − qρηµσ)pν + ((p+ k + q)ρkµ − k(k+p+q)ηµρ)ηνσ]
− d2[(kµηνρ − kνηµρ)(q + 2p)σ + (k + 2p+ 2q)ρ(qµηνσ − qνηµσ)]
− 2d2[ηµρ(kpηνσ + (q + p)νkσ)− kµ((q + p)νηρσ + pρηνσ)]

− 2d2[(k2ηρσ − kρkσ)ηµν − (k2ηνρ − kνkρ)ηµσ]
]
e−i(k+q)x−ip(x−y)

One contraction of the one and two background, two quantum fields vertices can
be directly read off from (3.83) and (3.85) respectively. We don’t give the explicit
expressions as they appeared only as intermediate steps in our calculation and
do not contain more information than (3.83) and (3.85) whereas being much
longer.

Now we have everything together to determine the contribution of the de-
terminant of ∆ to the A2 part of the effective action. It is determined by the
following two diagrams:

1
2 A A =

ig2C2

16π2
δab
[
ηµνq2

{
56
3

2
ε
− 46

3
ln d−1

2
µ2

+
1
d2

(
6 + 8

2
ε
− 8

(
γ + ln d−1

2
µ2

))}
+ qµqν

{
−44

3
2
ε

+
34
3

ln d−1
2
µ2

}]
(3.86)
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1
2 A A =

ig2C2

16π2
δab
[
ηµνq2

{
− 12

2
ε

+ 12 ln d−1
2
µ2

− 1
d2

(
6 + 8

2
ε
− 8

(
γ + ln d−1

2
µ2

))}
+ qµqν

{
8
2
ε
− 8 ln d−1

2
µ2

}]
(3.87)

Their sum is

A Ag2 =
i

16π2
g2C2δ

ab
(
ηµνq2 − qµqν

)(20
3

2
ε
− 10

3
ln d−1

2
µ2

)
. (3.88)

All terms contradicting gauge invariance exactly cancel.
If we add up the contributions (3.61), (3.78) and (3.88) we get the same

result as several times before (3.65), (3.66).
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Part II
Gravitational
Corrections

We investigate the one-loop counterterms of Yang-Mills theory min-
imally coupled to gravity, including fermionic and scalar matter, to
find out wether or not the fermionic and the scalar higher-derivative
counterterms coincide with the higher-derivative terms of the Lee-Wick
Standard Model. Furthermore, we determine the gravitational correc-
tions to the running of the ϕ4 and Yukawa coupling.





Chapter 4

Lee-Wick Fields out of Gravity

Motivated by the works of Grinstein, O’Connel, and Wise [4] and by Ebert,
Plefka and Rodigast [18], we investigate the one-loop counterterms of Einstein
Yang-Mills theory. We include fermionic and scalar multiplets to find out wether
or not the fermionic and the scalar higher-derivative counterterms coincide with
the higher-derivative terms of the Lee-Wick Standard Model, as is the case in
the gauge sector [18].

A similar analysis has been done by Wu and Zhong with positive outcome,
but the results they present in [36] are questionable. They only calculate two-
point functions which, as we will show explicitly, alone do not determine the
higher-derivative counterterms.

4.1 General Relativity as an Effective Field Theory

Up to now, the true theory of quantum gravity is still unknown and the gen-
eral wisdom is that general relativity and quantum mechanics are presently
incompatible.

It is a well known fact that the quantization of general relativity leads to a
non-renormalizable quantum field theory. Loop diagrams generate divergences
which cannot be absorbed into a renormalization of the original Lagrangian.
Instead, we have to add an increasing number of new terms to the Lagrangian
in order to renormalize the theory at a given loop order.

Nevertheless, treated as an effective field theory, quantized general relativity
should lead to the correct low energy quantum corrections because the correct
degrees of freedom and the correct vertices at low energies are used. It has
been established by Donoghue [37, 38, 39] that general relativity naturally fits
into the framework of effective field theories and therefore calculations made
with quantized general relativity can be used to determine genuine low-energy
predictions of quantum gravity.

Since the gravitational interactions are proportional to the energy, they can
easily be organized into an energy expansion. Furthermore, as has been shown
in [40], higher order loop diagrams always generate higher orders in the energy
expansion. Thus general relativity is well suited to organize all calculations in
a systematic expansion in the energy, which forms the basis of an effective field
theory treatment.

However, it is crucial that the quantum corrections obtained within the
framework of effective field theory only have to coincide with the predictions
of the correct theory of quantum gravity at energies well below the Planck
mass Mp ∼ 1019GeV, where we expect the theory to break down. Hence, any
extrapolation of the thus obtained results to energies comparable to the Planck
mass or greater is speculative.
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4.2 The Graviton

The general theory of relativity is described by the Einstein-Hilbert Lagrangian
given by

LEH =
2
κ2

√
−gR , (4.1)

where κ is the gravitational coupling related to Newtons constant by κ2 = 32πG,
g is the determinant of the metric gµν and R = gµνRµν is the scalar curvature
defined by

Rµν = ∂µΓρρν − ∂ρΓρµν + ΓρµλΓ
λ
ρν − ΓρρλΓ

λ
µν

Γρµν = 1
2gρσ(∂µgνσ + ∂νgµσ − ∂σgµν) .

(4.2)

In order to quantize gravity, we expand the metric gµν around the flat
background ηµν

gµν = ηµν + κhµν . (4.3)

Starting from this expression we expand the Einstein-Hilbert Lagrangian in
powers of the symmetric tensor field hµν , the graviton. The inverse metric be-
comes

gµν = ηµν − κhµν + κ2hµαhνα +O(κ3) (4.4)

and the expansion of the measure is given by
√
−g = 1 + κ

2h+ κ2

8 (h2 − 2hαβhαβ) +O(κ3) . (4.5)

Here and in the following indices are raised and lowered with ηµν and h = hµµ.
As an intermediate step we give the expansion of the affine connection

Γρµν = κ
2 (∂µhρν+∂νhρµ−∂ρhµν)− κ2

2 h
ρσ(∂µhνσ+∂νhµσ−∂σhµν)+O(κ3) . (4.6)

which together with (4.4) can be plugged into the definition of the curvature
scalar

R = κ(∂2h− ∂α∂βhαβ)− κ2

2

[
hαβ(∂2hαβ + ∂α∂βh− 2∂ρ∂αh

ρ
β)

+ ∂αh∂βh
αβ − (∂αh)2 + 1

2∂µhαβ∂
µhαβ

− ∂αhµβ∂
βhµα + t.d.

]
+O(κ3) .

(4.7)

To lowest order in κ, the Einstein Hilbert action is given by:

LEH = ∂αh∂βh
αβ − 1

2(∂µh)2 + 1
2(∂µhαβ)2 − ∂αhµβ∂

βhµα + t.d. +O(κ) . (4.8)

It is not necessary to expand the action any further because we are only in-
terested in one-loop diagrams with no external gravitons. General coordinate
invariance implies that the action is invariant under

δhµν = 2hσ(µ∂ν)ξ
σ + ξσ∂σhµν + 2

κ∂(µξν) . (4.9)

To fix this freedom we proceed exactly as in Section 2.3 and use the Faddeev-
Popov trick [27], in order to get a gauge fixed Lagrangian. We take the harmonic
(de Donder) gauge fixing condition

Gµ = ∂νhµν − 1
2∂µh (4.10)
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with the gauge fixing term

Lgf = (∂νhµν − 1
2∂µh)

2 = 1
4(∂µh)2 + (∂νhµν)2 − ∂αh∂βh

αβ (4.11)

This is a convenient choice because the quadratic part of the Einstein Hilbert
action simplifies to

LEH|h2 + Lgf = 1
2hαβ(

1
2η

αβηγδ − ηα(γηδ)β)∂2hγδ . (4.12)

This leads to the graviton propagator in d dimensions

p
α β γ δ = i

(
ηα(γηδ)β − 1

d−2ηαβηγδ
) 1
p2

. (4.13)

Note that with the gauge fixing condition we have chosen the operator δGµ
δξν

depends on the graviton.

δGµ
δξν

= ∂ρhµν∂ρ+∂ρhνρ∂µ+∂ρ(∂νhµρ)−∂µhνρ∂ρ− 1
2∂µ(∂νh)+ 1

κηµν∂
2 (4.14)

Hence, we have to include its determinant, which can be written in terms of a
local Lagrangian by introducing gravitational ghosts

Lgh = −b̄µ
(
κ
δGµ
δξν

)
bν . (4.15)

However, since we are only interested in one-loop diagrams with no external
gravitons, we do not need the graviton ghosts in our calculation.

4.3 Renormalization of the YM Coupling Constant

Before starting to calculate loop integrals it is helpful to have a closer look at
the renormalization factors and to exploit the relations between them. From
Slavnov-Taylor identities, we know that the universality of the gauge coupling
is preserved by renormalization, which as in Section 2.4 implies

Zg =
g0
g

= ZA3Z
− 3

2
A = Z

1
2

A4Z
−1
A = Zc̄AcZ

−1
c Z

− 1
2

A (4.16)

or equivalently

ZA4

ZA3

=
ZA3

ZA
=
Zc̄Ac
Zc

. (4.17)

Since the graviton does not couple to the ghosts of the gauge fields, it follows
immediately that

Zc̄Ac
∣∣
O(κ2)

= Zc
∣∣
O(κ2)

= 0 (4.18)

and hence
ZA4

ZA3

∣∣∣∣
O(κ2)

=
ZA3

ZA

∣∣∣∣
O(κ2)

= 0 . (4.19)
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At one-loop level this means

ZA
∣∣
O(κ2)

= ZA3

∣∣
O(κ2)

= ZA4

∣∣
O(κ2)

, (4.20)

and therefore
Zg
∣∣
O(κ2)

= −1
2ZA

∣∣
O(κ2)

. (4.21)

This simple observation leads to an interesting fact: if there is a gravitational
contribution to the running of the gauge coupling, then it is solely determined
by the wavefunction renormalization ZA of the gauge field.

In the case of fermions ψ and scalars φ, we know that

g0
g

= Zg = Z
− 1

2
A ZψAψZ

−1
ψ = Z

− 1
2

A Zφ†AφZ
−1
φ = Z

− 1
2

A Z
1
2

φ†A2φ
Z
− 1

2
φ (4.22)

holds, which together with (4.20) results in

ZψAψ
Zψ

∣∣∣∣
O(κ2)

= 0

Zφ†Aφ
Zφ

∣∣∣∣
O(κ2)

=
Zφ†A2φ

Zφ†Aφ

∣∣∣∣
O(κ2)

= 0 .
(4.23)

At one-loop level this further simplifies to

Zψ
∣∣
O(κ2)

= ZψAψ
∣∣
O(κ2)

Zφ
∣∣
O(κ2)

= Zφ†Aφ
∣∣
O(κ2)

= Zφ†A2φ

∣∣
O(κ2)

.
(4.24)

All these relations between the various Z factors provide nontrivial tests for the
following calculations and hence will be very useful.

4.4 Gauge Fields

Before treating fermions and scalars we are going to investigate the one-loop
divergences in the gauge sector. This has already been done in [18] in order to
determine the gravitational contribution to the running of the gauge coupling.
Indeed, the result obtained in [18] was the starting point of this thesis and
hence, in order to substantiate the motivation for the investigation of Lee-Wick
gauge theory in Chapter 2, we will show explicitly how the Lee-Wick term arises
as a one-loop counterterm of Einstein Yang-Mills theory.

It is straightforward to couple gauge fields to gravity. The evident general-
ization of the flat space Yang-Mills Lagrangian is given by

LYM = −1
2

√
−ggµρgνσ tr{FµνFρσ} . (4.25)

The theory to be investigated in this section, as well as in Sections 4.5 and 4.6,
is the non-renormalizable Einstein Yang-Mills theory including fermionic and
scalar multiplets, described by the Lagrangian

L = LYM + LEH + Lf + Ls . (4.26)
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Similar to the case of the Einstein-Hilbert action we expand the Yang-Mills
Lagrangian in orders of κ and obtain

LYM = − 1
2 tr{F 2

µν}+ κ
2

[
ηµρhνσ + ηνσhµρ − 1

2η
µρηνσh

]
tr{FµνFρσ}

+ κ2

2

[
− 1

8(h2 − 2hαβhαβ)ηµρηνσ − ηµρhναhσα − ηνσhµαhρα

+ 1
2h(η

µρhνσ + ηνσhµρ)− hµρhνσ
]
tr{FµνFρσ}+O(κ3) .

(4.27)

Now we fix the gauge freedom as usual by adding to the Lagrangian a gauge
fixing term and the corresponding ghost Lagrangian.

LYM → LYM − 1
α tr{(∂µAµ)2} − 2 tr{c̄ ∂ ·Dc} (4.28)

This leads to the well known gauge field propagator and Feynman rules in-
cluding only gauge fields and their ghosts, which are listed in Appendix A. An
arbitrary number of gravitons can couple to each of these vertices. However, for
a one-loop calculation we only need vertices with less than three gravitons. To
get the Feynman rules we proceed exactly as in Section 2.5. For some interme-
diate steps have a look at [19].

Note that in order to fix the gauge freedom in the Lagrangian (4.26) we
have to impose five independent conditions. However, physical quantities do
not dependent on them and we can fix this freedom in a convenient way for
our calculations. With the gauge fixing conditions we have chosen (4.10) and
(4.28), Lorentz invariance is manifest. Additionally, there is no coupling between
gravitons and the ghosts of the gauge fields (4.28) and the vector ghost fields
(4.15) coming from the harmonic gauge fixing condition are irrelevant in our
calculation, which is a great simplification.

Some of the Feynman rules we need are quite long and therefore we will
write them down in such a way that at least the symmetries of the vertices are
evident. To do so, we define Pµν αβ := ηµ(αηβ)ν − 1

2η
µνηαβ. Note that Pµν αβ is

symmetric in each pair of indices and under exchange of the pairs.

p q

a, µ b, ν

α, β

= −iκδab
[
Pµν αβqp+ ηµνq(αpβ) − ηµ(αqβ)pν (4.29)

− ην(αpβ)qµ + 1
2η

αβqµpν
]

p

k

q

a, µ b, ν

α β c, ρ

= κgfabc
[

Pαβ µν(q − p)ρ (4.30)

+ Pαβ µρ(p− k)ν

+ Pαβ νρ(k − q)µ

+ ηµνηρ(α(q − p)β)

+ ηµρην(α(p− k)β)

+ ηνρηµ(α(k − q)β)
]
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p q

a, µ b, ν

α β γ δ

= iκ2δab
[

1
2(pνqµ − ηµνpq)Pαβ γδ (4.31)

+ qk
(
ηµ(αηβ)(γηδ)ν + ηµ(γηδ)(αηβ)ν

− 1
2η

µ(αηβ)νηγδ − 1
2η

µ(γηδ)νηαβ
)

+ ηµνp(αηβ)(γqδ) + ηµνp(γηδ)(αqβ)

+ ηµ(αηβ)νp(γqδ) + ηµ(γηδ)νp(αqβ)

+ ηµ(αqβ)ην(γpδ) + ηµ(γqδ)ην(αpβ)

+ ηµ(αηβ)(γqδ)pν + ηµ(γηδ)(αqβ)pν

+ ην(αηβ)(γpδ)qµ + ην(γηδ)(αpβ)qµ

− 1
2η

µνηαβp(γqδ) − 1
2η

µνηγδp(αqβ)

− 1
2η

αβηµ(γqδ)pν − 1
2η

γδηµ(αqβ)pν

− 1
2η

αβην(γpδ)qµ − 1
2η

γδην(αpβ)qµ
]

k

p q

α β
γ δ

c, ρ

a, µ b, ν

= κ2gfabc
[

(k − q)µ
(

1
2η

νρPαβ γδ + 1
2η

ν(αηβ)ρηγδ (4.32)

+ 1
2η

ν(γηδ)ρηαβ − ην(αηβ)(γηδ)ρ

− ην(γηδ)(αηβ)ρ
)

+ (p− k)ν
(

1
2η

µρPαβ γδ + 1
2η

µ(αηβ)ρηγδ

+ 1
2η

µ(γηδ)ρηαβ − ηµ(αηβ)(γηδ)ρ

− ηµ(γηδ)(αηβ)ρ
)

+ (q − p)ρ
(

1
2η

µνPαβ γδ + 1
2η

µ(αηβ)νηγδ

+ 1
2η

µ(γηδ)νηαβ − ηµ(αηβ)(γηδ)ν

− ηµ(γηδ)(αηβ)ν
)

+ (q − p)(α
(

1
2η

β)ρηµνηγδ − ηβ)(γηδ)ρηµν

− ηβ)ρηµ(γηδ)ν
)

+ (q − p)(γ
(

1
2η

δ)ρηµνηαβ − ηδ)(αηβ)ρηµν

− ηδ)ρηµ(αηβ)ν
)

+ (p− k)(α
(

1
2η

β)νηγδηµρ − ηβ)(γηδ)νηµρ

− ηβ)νηµ(γηδ)ρ
)

+ (p− k)(γ
(

1
2η

δ)νηαβηµρ − ηδ)(αηβ)νηµρ

− ηδ)νηµ(αηβ)ρ
)]

Note that the two gauge field one graviton vertex (4.29) is transverse with
respect to pµ and qν . Hence, without calculating we already know that the diver-
gent parts of the one-loop diagrams listed in figures 4.1 and 4.2 are independent
of the arbitrary parameter α in the gauge fixing term (4.28) because only the
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Figure 4.1: Order κ2 one-loop diagrams for the gauge boson 2-point function.

Figure 4.2: Order gκ2 one-loop diagrams for the proper gauge field 3-point
function not only differing by a permutation of outer legs.

longitudinal part (α = 1) of the propagator survives.
All diagrams were computed using both cut-off and dimensional regulariza-

tion and agreement was found.
Let us begin with the order κ2 gravitational contribution to the proper gauge

field two-point function:

=
κ2

16π2
δab
(
ηµνq2 − qµqν

) [
3
2η

µν
(
Λ2 − µ2

)
− q2

6 ln Λ2

µ2

]
(4.33)

1
2

=
κ2

16π2
δab
(
ηµνq2 − qµqν

) [
− 3

2η
µν
(
Λ2 − µ2

) ]
. (4.34)

In contrast to 2.68, we are now faced with quadratic divergences, which
do not contradict gauge invariance, but astonishingly, they exactly cancel each
other. Hence, as a consequence of (4.20), we find that there is no gravitational
contribution to the running of the gauge coupling. This contradicts the result of
Robinson and Wilczec [20]. However, it has been shown by Pietrykowski in [21],
that the result of Robinson and Wilczec is gauge dependent and therefore cannot
be correct. Furthermore, the calculation of Toms [22], using the Vilkovisky-
DeWitt effective action, agrees with our result.

qa, µ b, νκ2 =
κ2

16π2
δabq2

(
ηµνq2 − qµqν

)(
− 1

6
ln

Λ2

µ2

)
(4.35)

or in dimensional regularization

qa, µ b, νκ2 =
κ2

16π2
δabq2

(
ηµνq2 − qµqν

)(
− 1

6
2
ε

)
. (4.36)

The result is proportional to the Lee-Wick term tr{(DµF
µν)2} equation (2.42)

in Lee-Wick gauge theory. However, at this point it is not clear that this will be
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the counterterm. The possible gauge and Lorentz invariant candidates for the
dimension six counterterm are

tr{DµFνρD
µF νρ} = 2 tr{DµFνρD

νFµρ}
tr{DµF

µνDρFρν}
ig tr{FµνF νρF ρµ}

. (4.37)

These three terms are not independent of one another:

tr{DµF
µνDρFρν} = − tr{Fµν [Dµ, [Dρ, Fρν ]}+ t.d.

= − tr{Fµν([Dρ, [Dµ, Fρν ] + [Fρν , [Dρ, Dµ])}+ t.d.

= tr{DρFµνD
µF ρν}+ ig tr{Fµν [Fρν , F ρµ]}+ t.d.

= 1
2 tr{DµFνρD

µF νρ} − 2ig tr{FµνF νρF ρµ}+ t.d. ,

(4.38)

which implies that the counterterm has to be a linear combination of the form

d1 ig tr{FµνF νρF ρµ}+ d2 tr{DµF
µνDρFρν} , (4.39)

where d1 and d2 have mass dimension minus two. From the result for the two-
point function (4.35) we already know d2 = 1

16π2
κ2

6 ln Λ2

µ2 .
To determine the value of d1, we have to calculate the gravitational one-loop

contribution to the proper three gauge field vertex. As a consequence of (4.20),
the quadratic divergences of the vertex correction have to cancel as well in order
to be consistent with the two-point function result (4.35).

+

+

=
gκ2

16π2
fabc

[
− 3

2

(
Λ2 − µ2

) [
ηµν(p− q)ρ + ηµρ(k − p)ν

+ ηνρ(q − k)µ
]

+ ln Λ2

µ2

[
pνpρ(q − k)µ + qµqρ(k − p)ν

+ kµkν(p− q)ρ

− 3
4p
νqρkµ + 3

4p
ρqµkν

+ ηµν{ qρ(7
6pq + 1

6qk + 3
4pk)

− pρ(7
6pq + 1

6pk + 3
4qk)}

+ ηµρ{ pν(7
6pk + 1

6pq + 3
4qk)

− kν(7
6pk + 1

6qk + 3
4pq)}

+ ηνρ{ kµ(7
6qk + 1

6pk + 3
4pq)

− qµ(7
6qk + 1

6pq + 3
4pk)}

]]
(4.40)
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+

+

=
gκ2

16π2
fabc ln Λ2

µ2

[
− 5

6p
νpρ(q − k)µ − 5

6q
µqρ(k − p)ν

− 5
6k

µkν(p− q)ρ

+ 1
4p
νqρkµ + 1

4p
ρqµkν

+ ηµν
(
pρ(5

6pq+
1
4qk)− qρ(5

6pq+
1
4pk)

)
+ ηµρ

(
kν(5

6pk+ 1
4pq)− pν(5

6pk+ 1
4qk)

)
+ ηνρ

(
qµ(5

6qk+ 1
4pk)− kµ(5

6qk+ 1
4pq)

)]
(4.41)

1
2

=
gκ2

16π2
fabc

[
3
2

(
Λ2 − µ2

) [
ηµν(p− q)ρ + ηµρ(k − p)ν

+ ηνρ(q − k)µ
]]

(4.42)

Summation of all the diagrams yields

p q

k

a, µ b, ν

c, ρ

gκ2 =
gκ2

16π2
fabc

[
ηµν{pρ(2pq + pk + 3qk)− qρ(2pq + qk + 3pk)}

+ ηµρ{kν(2pk + kq + 3pq)− pν(2pk + pq + 3qk)}

+ ηνρ{qµ(2kq + pq + 3pk)− kµ(2kq + pk + 3pq)}

− 2(kµkν(p− q)ρ + pνpρ(q − k)µ + qρqµ(k − p)ν)

− 3(pρqµkν − pνqρkµ)
] (
−1

6 ln Λ2

µ2

)
.

(4.43)

This is proportional to the higher-derivative part of the three gauge field vertex
(2.43) of Lee-Wick gauge theory and the factor of −1

6 ln Λ2

µ2 is consistent with
the result for the two-point function (4.35). Consequently, the one-loop higher-
derivative counterterm is exactly given by

d2 tr{(DµF
µν)2} with d2 =

1
16π2

κ2

6
ln Λ2

µ2 , (4.44)

which agrees with the results of [19] and [41, 42].
It is quite interesting that we only get the Lee-Wick term which as we

have seen in Section 2.2 corresponds to a massive vector field, and not the
linear combination (4.39), which does not allow for a two particle formulation
in which all operators are of dimension four or less. This observation was the
main motivation for our investigation of Lee-Wick gauge theory in Part I.
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4.5 Fermions

While the coupling of gravity to scalars and gauge bosons is straightforward,
the coupling to fermions leads to an immediate difficulty: there are no finite
dimensional spinor representations of GL(d). To circumvent this problem, one
has to make use of the fact that there are spinor representations of the Lorentz
group. First it is necessary to introduce a local frame in the tangent space of
the manifold. The vector fields

ea = e µ
a

∂

∂xµ
(4.45)

are called vielbeins. If the manifold has Lorentz signature, the frame can be
chosen such that

g(ea, eb) = e µ
a e

ν
b gµν = ηab . (4.46)

The inverse vielbeins θa = eaµdx
µ are the dual one-forms of the vielbeins:

θa(eb) = δab . (4.47)

Their components are given by

eaµ = gµνη
abe ν

b , (4.48)

and are the matrix inverses of the vielbeins. This can be used to express the
metric in terms of the inverse vielbeins

g = gµνdxµ ⊗ dxν = ηab θ
a ⊗ θb

or gµν = ηabe
a
µe
b
ν .

(4.49)

The metric is oviously invariant under O(1, d − 1) rotations of the vielbeins.
Let Λab(x) be such a local Lorentz transformation. Then the metric is invariant
under the transformations

θa → Λabθ
b ⇐⇒ ea → (Λ−1)baeb . (4.50)

A local Lorentz transformation can be written as

Λ = exp(− i
2λabJ

ab) = eλ , (4.51)

where the matrices
(J ab)cd = i(δac δ

b
d − δadδ

b
c) (4.52)

fulfill the Lorentz algebra

[Lab, Lcd] = i
(
ηbcLad − ηacLbd − ηbdLac + ηadLbc

)
(4.53)

and where λ satisfies

λT = −ηλη−1 ⇔ λab = −λba . (4.54)
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The fermions have to transform under the spinor representation ρ of this local
Lorentz symmetry, which is given by

ρ(Λ) = exp(− i
2λabS

ab) . (4.55)

Here Sab is the spinor representation of the Lorentz algebra (4.53)

Sab = i
4 [γa, γb] = i

2γab (4.56)

and the spinors transform as

ψ → ρ(Λ)ψ ψ → ψρ(Λ)−1 . (4.57)

The space time gamma matrices can be defined by

γµ = γae µ
a (4.58)

and fulfill the Clifford algebra

{γµ,γν} = e µ
a e

ν
b {γa, γb} = 2gµν (4.59)

To write down a Lagrangian, we have to define the covariant derivative of a
spinor such that the vector Dµψ transforms as a spinor:

Dµψ → (Dµψ)′ = ρ(Λ)Dµψ . (4.60)

In order to construct this covariant derivative, we need the components of the
Levi-Civita connection with respect to the vielbeins. They are determined by
the equation

∇µea = ωbµaeb . (4.61)

From the orthogonality of the vielbeins it follows directly that

ωab = g(ea,∇eb) . (4.62)

Because of the metric compatibility of the covariant derivative, ωab is antisym-
metric. Plugging ea = e µ

a ∂µ into equation (4.61) one can obtain a relation to
the coordinate components of the connection:

∇µe
ν
a = ∂µe

ν
a + Γνµρe

ρ
a = ωbµae

ν
b . (4.63)

We therefore arrive at

ωabµ = eaν∇µe
bν = eaν∂µe

bν + eaνe
bσΓνµσ , (4.64)

or equivalently by inserting the Christoffel symbols Γρµν from equation (4.2) and
making use of eaν∂µe

bν = −ebν∂µeaν − eaρebν∂µgνρ

ωabµ = 1
2e
a
ν∂µe

bν + 1
2e
aνebσ∂σgµν − (a↔ b) . (4.65)

With all these ingredients at hand one can write down the Lagrangian for
fermions coupled to gravity.

Lf =
√
−g ψ(i /D −mψ)ψ (4.66)
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Chapter 4: Lee-Wick Fields out of Gravity

Here, /D = γµDµ = γaDa means contraction with a gamma matrix. The co-
variant derivative acting on a spinor multiplet is given by

Dµ = Dµ − iΩµ = ∂µ − iΩµ − igAµ , (4.67)

were Ωµ is the spin connection

Ωµ = 1
2Sab ω

ab
µ . (4.68)

The explicit form of the fermion Lagrangian therefore is

Lf =
√
−g ψ

(
γaie µ

a (∂µ + 1
4γbcω

bc
µ − igAµ)−mψ

)
ψ. (4.69)

It remains to be shown that this is indeed a scalar under coordinate and local
Lorentz transformations. Because of

ρ(Λ)−1γaρ(Λ) = Λabγ
b or ρ(Λ)γaρ(Λ)−1 = Λbaγb , (4.70)

the vector ψγaeaψ is a scalar under local Lorentz transformations. The spin
connection has to transform inhomogeneously

Ω → ρ(Λ)Ωρ(Λ)−1 − idρ(Λ)ρ(Λ)−1 . (4.71)

From equation (4.62) it is easy to see that under a local Lorentz transformation
the connection transforms as

ωab → ΛacΛ
b
dω

cd + ηcdΛacdΛbd . (4.72)

Inserting this into the definition of the spin connection gives

Ω → Ω′ = i
8 [γa, γb]

(
ΛacΛ

b
dω

cd + ηcdΛacdΛbd
)

= ρ(Λ)ωρ(Λ)−1 + i
8 [ρ(Λ)γaρ(Λ)−1, dρ(Λ)γaρ(Λ)−1 + ρ(Λ)γadρ(Λ)−1]

= ρ(Λ)ωρ(Λ)−1 + i
4(−ddρ(Λ)ρ(Λ)−1 + ρ(Λ)γaρ(Λ)−1dρ(Λ)γaρ(Λ)−1)

= ρ(Λ)ωρ(Λ)−1 − idρ(Λ)ρ(Λ)−1 (4.73)

To verify the last step in the above calculation we consider γaρ(Λ)−1dρ(Λ)γa

and make use of γaγbγcγa = 2ηbc + (d− 4)γbγc:

γaρ(Λ)−1dρ(Λ)γa = − i
2γaSbcγ

adλbc

= − i
2(d− 4)Sbcdλbc

= (d− 4)ρ(Λ)−1dρ(Λ).

(4.74)

Now that we have established how to couple fermions to gravity we can
proceed as before and expand the Lagrangian (4.69) around flat space. We
begin with the components of the vielbeins

e µ
a = δµa − κ

2h
µ
a + 3κ2

8 hµρh
ρ
a +O(κ3) (4.75)
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and their inverses

eaµ = δaµ + κ
2h

a
µ − κ2

8 h
a
ρh

ρ
µ +O(κ3) . (4.76)

The expansion of the spin connection is given by

ωabµ = κ
2∂

bhaµ + κ2

4 h
νb(∂ahµν − ∂νh

a
µ + 1

2∂µh
a
ν)− (a↔ b) +O(κ3) . (4.77)

Plugging everything together, we get the expansion of the Lagrangian up to
order κ2:

Lf = ψ(i /D −mψ)ψ + iκ2ψ[h( /D + imψ)− γahµaDµ + 1
2∂b/haγ

ab]ψ

+ iκ
2

8 ψ
[
(h2−2hαβhαβ)( /D + imψ)

+ (3γahµρh
ρ
a − 2hγahµa)Dµ

+ hνb (∂a/hν − ∂ν/ha + 1
2
/∂hνa)γab

+ h∂b/haγ
ab − γahµa∂chµbγ

bc
]
ψ +O(κ3) .

(4.78)

To compute the one-loop diagrams contributing to the proper fermion two point
function and the proper fermion, gauge boson vertex, listed in figures 4.3 and
4.4, we need the following Feynman rules:

q

p

α β

= iκ
2 [ηαβ(/q −mψ + 1

2/p)− γ(α(q + 1
2p)

β)] (4.79)

α β a, µ

= igκ
2 [ηαβγµ − ηµ(αγβ)]ta (4.80)

q

p1 p2

α β γ δ

= iκ2
[
(/p1

+ /p2
)( 5

16γ
(αηβ)(γγδ) + 5

16γ
(γηδ)(αγβ) + 1

8η
αβηγδ)

+ γ(αηβ)(γ(3
8q + 1

2p1 − 3
8p2)δ) − γ(α(1

4q + 1
8p2)β)ηγδ

+ γ(γηδ)(α(3
8q + 1

2p2 − 3
8p1)β) − γ(γ(1

4q + 1
8p1)δ)ηαβ

− 1
2(/q −mψ)Pαβ γδ

]
(4.81)

α β
γ δ

a, µ

= ig κ
2

2

[
3
4

(
γ(αηβ)(γηδ)µ + γ(γηδ)(αηβ)µ

)
(4.82)

− 1
2

(
γ(αηβ)µηγδ + γ(γηδ)µηαβ

)
− γµPαβ γδ

]
ta

Here ta are the generators in the irreducible representation of the gauge group
which the fermion multiplet belongs to.
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Chapter 4: Lee-Wick Fields out of Gravity

Figure 4.3: Order κ2 diagrams for the proper fermion two-point function.

It is straight forward to obtain the Feynman rules from the expansion of the
Lagrangian (4.78). One can for instance read off the hψψ and the hψAψ vertex
from the following two expressions

i

∫
d4xLf |hψψ = −

∫
d4xκ2 ψ [h(/∂ + imψ)− γahµa∂µ + 1

2∂b/haγ
ab]ψ (4.83)

=
∫

d4q

(2π)4

∫
d4k

(2π)4

∫
d4p δ(q+p−k)×

× iκ
2 hµν(p)ψ(k)[ηµν(/q −mψ)− γ(µqν) + 1

2pργ
(µγν)ρ]ψ(q)

and

i

∫
d4xLf |hψAψ = i

∫
d4xgκ2 ψ [h /A− γahµaAµ]ψ (4.84)

=
∫

d4q

(2π)4

∫
d4k

(2π)4

∫
d4p

(2π)4

∫
d4l δ(q+p+l−k)×

× igκ
2 hαβ(l)ψ(k)[ηαβγµ − ηµ(αγβ)]taψ(q)Aaµ(p) .

As the lowest order gravitational corrections are proportional to κ2 and
the combination κ2mψ has mass dimension minus one, we expect counterterms
containing dimension three and dimension two operators to appear. Possible
operators of dimension three are

i /D /D /D

i /DD2

iD2 /D

iDµ /DD
µ

and

gFµνγνDµ

gDµF
µνγν

g[Dµ, F
µν ]γν

gγµνF
µν /D or gFµν /Dγµν

g /DFµνγµν or gγµν /DF
µν

g[ /D,Fµν ]γµν or gγµν [ /D,Fµν ]

. (4.85)

Only four of these terms are independent of one another. Because of the simple
identity

[γµν , γρ] = ησρ(γ[µγν]γσ + γ[µγσγ
ν])− 2γ[νηµ]ρ = 4γ[µην]ρ (4.86)

we have

gγµνF
µν /D = gFµν /Dγµν + 4gFµνγµDν

g /DFµνγµν = gγµν /DF
µν + 4gDµF

µνγν

g[ /D,Fµν ]γµν = gγµν [ /D,Fµν ] + 4g[Dµ, F
µν ]γν .

(4.87)
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Figure 4.4: One-loop diagrams for the proper two fermion one gauge boson
vertex.

Furthermore, using the identity [Dµ, Dν ] = −igFµν , we get the relations

igFµνγνDµ = /DD2 −Dµ /DD
µ

igDµF
µνγν = −D2 /D +Dµ /DD

µ

[ /D,Fµν ]γµν = 2[Dµ, F
µν ]γν − γµν [ /D,Fµν ]− [ /D,Fµν ]γµν

= 2[Dµ, F
µν ]γν

ig[Dµ, F
µν ]γν = −D2 /D − /DD2 + 2Dµ /DD

µ

igγµνF
µν /D = 2D2 /D − 2 /D /D /D

ig /DFµνγµν = 2 /DD2 − 2 /D /D /D .

(4.88)

Possible operators of dimension two are

D2, /D
2
, γµ /DDµ and igFµνγ

µν . (4.89)

They are related by

/D
2 = 2D2 − γµ /DDµ = D2 − ig2Fµνγ

µν . (4.90)

The basis we choose is /D
2, igFµνγµν , i /D

3, i /DD2, iD2 /D and iDµ /DD
µ. The

Feynman rules belonging to these higher-derivative operators are determined
by the following equations:

i

∫
d4xψ( /D2)

∣∣
A
ψ =

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+ q − k)× (4.91)

× ψ(k)
[
−ig(/pγµ + 2qµ)ta

]
ψ(q)Aaµ(p)

i

∫
d4xψ(igFµνγµν)

∣∣
A
ψ =

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+ q − k)× (4.92)

× ψ(k)
[
ig(/pγµ − pµ)ta

]
ψ(q)Aaµ(p)

i

∫
d4xψ(i /D3)

∣∣
A
ψ =

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+ q − k)× (4.93)

× ψ(k)
[
−ig{γµ(q2 + p2)

+ 2qµ(/p+ /q) + /q/pγ
µ}ta

]
ψ(q)Aaµ(p)
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i

∫
d4xψ(iD2 /D)

∣∣
A
ψ =

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+ q − k)× (4.94)

× ψ(k)
[
−ig{(2q + p)µ/q + (q + p)2γµ}ta

]
ψ(q)Aaµ(p)

i

∫
d4xψ(i /DD2)

∣∣
A
ψ =

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+ q − k)× (4.95)

× ψ(k)
[
−ig{(2q + p)µ(/p+ /q) + q2γµ}ta

]
ψ(q)Aaµ(p)

i

∫
d4xψ(iDµ /DD

µ)
∣∣
A
ψ =

∫
d4p

(2π)4

∫
d4q

(2π)4

∫
d4k δ(p+ q − k)× (4.96)

× ψ(k)
[
−ig{(2q + p)µ/q

+ (q + p)µ/p+ q(q + p)γµ}ta
]
ψ(q)Aaµ(p)

Now that we have investigated the structure of the higher-derivative countert-
erms, let us turn to the evaluation of the one-loop diagrams, starting with the
fermion two-point function.

=
i

16π2
κ2
[{

15
32/q −

3
4mψ

}
(Λ2 − µ2) (4.97)

+
{

3
8mψq

2 + 1
4m

2
ψ/q − 1

4m
3
ψ − 1

8/qq
2
}

ln Λ2

µ2

]
1
2

=
i

16π2
κ2
{

5
2mψ − 3

2/q
}
(Λ2 − µ2) (4.98)

The sum is

q
κ2 =

i

16π2
κ2
[{

7
4mψ − 33

32/q
}
(Λ2 − µ2) (4.99)

+
{

3
8mψq

2 + 1
4m

2
ψ/q − 1

4m
3
ψ − 1

8/qq
2
}

ln Λ2

µ2

]
It is important to notice that the degree of divergence of the diagram (4.97)

is three. Therefore, the quadratic divergence of the proper fermion two-point
function cannot be determined using the non shift invariant cut-off regulariza-
tion. Because of (2.48), this leads to a dependence of the quadratic divergence
on the parametrization of the loop integral. However, there is an easy way to
circumvent this problem.

As we have figured out in equation (4.24), the gravitational contributions to
the Z factors are related. The vertex function is only quadratically divergent and
therefore can be used to determine the quadratic divergence of the two-point
function.

Interestingly, the “natural“ parametrization, in which the ingoing fermion
momentum flows along the fermion line, leads to the right quadratic divergence.

Another thing to notice is that the m2
ψ-term of (4.99) yields a logarithmic

contribution to the fermion wavefunction renormalization and thus a potential
contribution to the running of the gauge coupling. However we know from (4.24)
as well as from the fact that at order κ2, no m2

ψ-term can emerge in the gauge
sector, that this contribution has to be canceled by an analogous term in the
vertex renormalization.
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For the diagrams of figure 4.4 we get

1
2

=
i

16π2
gκ2taγµ

[
− 3

2(Λ2 − µ2)
]
ln Λ2

µ2 (4.100)

=
i

16π2
gκ2ta

[
9
32(Λ2 − µ2)γµ (4.101)

+
{

9
16mψq

µ − 3
16mψ/qγ

µ + 15
32m

2
ψγ

µ

− 5
48/qq

µ − 11
96γ

µq2
}

ln Λ2

µ2

]

=
i

16π2
gκ2ta

[
9
32(Λ2 − µ2)γµ (4.102)

+
{

9
16mψk

µ − 3
16mψγ

µ/k + 15
32m

2
ψγ

µ

− 5
48
/kkµ − 11

96γ
µk2
}

ln Λ2

µ2

]

=
i

16π2
gκ2ta

[
3
8γ

µp2 − 3
8/pp

µ
]
ln Λ2

µ2 (4.103)

=
i

16π2
gκ2ta

[
− 3

32(Λ2 − µ2)γµ (4.104)

+
{

3
16mψp

µ − 3
16mψ/pγ

µ − 11
16m

2
ψγ

µ

− 1
24/qq

µ− 13
48/qp

µ+ 1
4/q/pγ

µ+ 11
48/pq

µ− 1
16/pp

µ

+ 5
48γ

µq2− 7
48γ

µqp+ 5
32γ

µp2
}

ln Λ2

µ2

]

=
i

16π2
gκ2ta

[
− 3

16mψp
µ + 3

16mψ/pγ
µ (4.105)

+ 7
16/qp

µ − 7
16/q/pγ

µ − 3
4/pq

µ

− 1
16/pp

µ + 3
4γ

µqp+ 1
16γ

µp2
]
ln Λ2

µ2
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=
i

16π2
gκ2ta

[
− 3

16mψp
µ + 3

16mψ/pγ
µ (4.106)

+ 7
16/qp

µ − 7
16/q/pγ

µ − 1
8/pq

µ

+ 1
4/pp

µ + 1
8γ

µqp− 1
4γ

µp2
]
ln Λ2

µ2 .

These diagrams sum up to

q

p

a, µ

gκ2 =
i

16π2
gκ2ta

[
− 33

32(Λ2 − µ2)γµ (4.107)

+
{

3
4mψq

µ + 3
8mψ/pγ

µ + 1
4m

2
ψγ

µ

− 1
4/qq

µ + 1
2/qp

µ − 5
8/q/pγ

µ

− 3
4/pq

µ − 17
48/pp

µ − 1
8γ

µq2

+ 1
2γ

µqp+ 11
48γ

µp2
}

ln Λ2

µ2

]
.

Comparing this with the higher-derivative vertices (4.91)-(4.96), we determine
the corresponding higher-derivative counterterm to be

Lc.t. =
κ2

16π2
ln Λ2

µ2ψ
[

3
8mψ /D

2 − 5
8 i /D /D /D + 41

48 iD
2 /D − 29

24 i /DD
2 + 41

48 iDµ /DD
µ
]
ψ .

(4.108)
At the level of the two-point function, all the dimension three operators are
indistinguishable. The only thing we can conclude from the two-point function
result (4.99) is that their coefficients necessarily add up to −1

8 , which is indeed
the case. As predicted the m2

ψ-terms of (4.107) and (4.99) are exactly such that
Zψ|O(κ2) = ZψAψ|O(κ2). Everything else would imply that we had made a serious
mistake.

Coming back to our initial goal, we see that even in the massless case we
do not get the single dimension six higher-derivative term ψi /D

3
ψ, as has been

claimed in [36]. Instead we found a linear combination of all possible terms.

4.6 Scalars

The coupling of a massive, charged scalar multiplet to gravity is straight for-
ward. The evident generalization of the flat space Lagrangian is

Ls =
√
−g
[
gµν(Dµφ)†Dνφ−m2

φ φ
†φ
]
. (4.109)

The multiplet φ belongs to an irreducible representation of the gauge group
whose generators we, as in the case of fermions, denote by ta, allthough they
not necessarily belong to the same representation.
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Figure 4.5: Order κ2 diagrams for the proper scalar two-point function.

In order to derive the Feynman rules involving gravitons we expand the
Lagrangian in orders of κ:

Ls = − φ†(D2 +m2
φ)φ+ κ

[
1
2η

µνh− hµν
]
(Dµφ)†Dνφ− κ

2hm
2
φφ
†φ

+ κ2
[

1
8(h2 − 2hαβhαβ)ηµν + hµαhνα − 1

2hh
µν
]
(Dµφ)†Dνφ+O(κ3) .

(4.110)

To determine all the higher-derivative counterterms, we have to calculate
the gravitational contribution to the proper scalar two-point function and the
proper two-scalar, one- and two-gauge field vertices. The corresponding one-
loop diagrams are listed in figures 4.5, 4.6 and 4.7. For their calculation we
need the following Feynman rules:

q k

α β

= iκ
[

1
2η

αβ(qk −m2
ϕ)− q(αkβ)

]
(4.111)

q k

α β a, µ

= iκg
[

1
2η

αβ(q + k)µ − ηµ(α(q + k)β)
]
ta (4.112)

α β
a, µ

b, ν

= iκg2
[

1
2η

µνηαβ − ηµ(αηβ)ν
]
{ta, tb} = −iκg2Pαβ µν{ta, tb}

(4.113)

q k

α β γ δ

= −iκ2
[

1
2P

αβ γδ(qk −m2
ϕ) + 1

2η
αβq(γkδ) + 1

2η
γδq(αkβ)

− q(αηβ)(γkδ) − q(γηδ)(αkβ)
]

(4.114)

q k

α β
γ δ

a, µ

= −igκ2
[

1
2P

αβ γδ(q + k)µ + P γδ µ(α(q + k)β) (4.115)

+ Pαβ µ(γ(q + k)δ)
]
ta

α β b, ν

γ δ a, µ

= −ig2κ2
[

1
2η

µνPαβ γδ + P γδ ν(αηβ)µ + Pαβ ν(γηδ)µ
]
{ta, tb}
(4.116)
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Figure 4.6: Order gκ2 diagrams for the two-scalar one-gauge boson vertex.

As in the case of fermions and gauge fields, we expect higher-derivative
counterterms to appear. The corresponding higher-derivative operators must
have mass dimension four because the gravitational corrections come along with
a factor of κ2. In contrast to the fermions, the square of the scalar mass and
not the mass itself is a parameter of the theory and therefore, no operators of
dimension three can appear. The dimension four operators are

(D2)2

DµD
2Dµ

DµDνD
µDν

,

igDµF
µνDν

ig[Dµ, F
µν ]Dν

igDν [Dµ, F
µν ]

and g2FµνFµν . (4.117)

Only three of these terms are independent of one another. The relations between
them are

DµD
2Dµ = g2

2 FµνF
µν +DµDνD

µDν

igDµF
µνDν = DµDνD

µDν − (D2)2

igDν [Dµ, F
µν ] = ig[Dµ, F

µν ]Dν

ig[Dµ, F
µν ]Dν = 2DµDνD

µDν − (D2)2 −DµD
2Dµ .

(4.118)

A possible basis is (D2)2, igDµF
µνDν and FµνFµν . The one-loop counterterm

will therefore have the general form

Lc.t. = φ†
(
α1(D2)2 + α2igDµF

µνDν + α3g
2FµνFµν

)
φ . (4.119)

We begin with the proper scalar two-point function. For the two diagrams of
figure 4.5 we obtain

=
i

16π2
κ2
[
−1

2q
2
(
Λ2 − µ2

)
+
{
m2
φq

2 −m4
φ

}
ln Λ2

µ2

]
(4.120)

=
i

16π2
κ2 5

2m
2
φ

(
Λ2 − µ2

)
. (4.121)
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The one-loop result is

q
κ2 =

i

16π2
κ2
[{

5
2m

2
φ − 1

2q
2
}(

Λ2 − µ2
)
+
{
m2
φq

2 −m4
φ

}
ln Λ2

µ2

]
.

(4.122)
The terms containing no momenta lead to a quadratic and a logarithmic

mass renormalization. The terms proportional to q2 correspond to a quadratic
and a logarithmic wave function renormalization. Since there is no logarith-
mically divergent term proportional to q4, we do not need a dimension six
counterterm involving only covariant derivatives and no field strength tensor.
In the chosen basis (4.119), this means α1 = 0 and hence there is no Lee-Wick
term φ†D4φ.

We proceed with the diagrams of figure 4.6.

=
i

16π2
κ2gta

[
− 1

2q
µ
(
Λ2 − µ2

)
(4.123)

+
{
(3
4q
µ + 1

2k
µ)m2

φ

+ 1
2q
µqk − 1

4k
µq2
}

ln Λ2

µ2

]

=
i

16π2
κ2gta

[
− 1

2q
µ
(
Λ2 − µ2

)
(4.124)

+
{
(3
4k

µ + 1
2q
µ)m2

φ

+ 1
2k

µqk − 1
4q
µk2
}

ln Λ2

µ2

]

=
i

16π2
κ2gta

[
3
2q
µ(k − q)k + 3

2k
µ(q − k)q

]
ln Λ2

µ2 (4.125)

=
i

16π2
κ2gta

[
− 1

4(q + k)µm2
φ

+ 1
4q
µ(k − 2q)k + 1

4k
µ(q − 2k)q

]
ln Λ2

µ2 (4.126)

=
i

16π2
κ2gta

[
3
4q
µ(q − k)k + 3

4k
µ(k − q)q

]
ln Λ2

µ2 (4.127)

=
i

16π2
κ2gta

[
3
4q
µ(q − k)k + 3

4k
µ(k − q)q

]
ln Λ2

µ2 (4.128)
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= 0 (4.129)

All these diagrams sum up to

q k

a, µ

gκ2 =
i

16π2
κ2gta(q + k)µ

[
−1

2

(
Λ2 − µ2

)
+m2

φ ln Λ2

µ2

]
+ finite .

(4.130)

This simply is a quadratic and logarithmic vertex renormalization. Conse-
quently, there is no counterterm involving one field strength tensor and α2 is
zero as well.

In order to find out wether or not there is a counterterm involving two field
strength tensors, it is necessary to investigate the one-loop divergences of the
φ†A2φ -vertex. From the calculation above we know that the result has to be
α3g

2φ†FµνFµνφ.
Note that our result for the scalar two-point function already showed, that

the one-loop counterterms do not coincide with the Lee-Wick term φ†D4φ.
Nevertheless, to complete the investigation of the counterterms in the scalar
sector, we will also give the result for the proper φ†A2φ -vertex. To simplify
this calculation we considered only the Abelian case. This reduces the number
of diagrams compared to the non-Abelian ones listed in figure 4.7. However,
gravity is insensitive to the gauge group and we can generalize our result to the
non-Abelian case.

The result for the proper φ†A2φ -vertex is

a, µ b, ν

g2κ2 =
ig2κ2

16π2
ηµν{ta, tb}

[
−1

2(Λ2 − µ2) +m2
φ ln Λ2

µ2

]
+ finite .

(4.131)

This agrees with our previous results (4.122), (4.130) and yields α3 = 0. Hence
there is no higher derivative counterterm at all and similar to the fermions we
find no connection to the Lee-Wick standard Model.
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+ crossed

+ crossed

+ crossed + crossed + crossed

+ crossed + crossed + crossed

+ crossed + crossed + crossed + crossed

+ crossed + crossed + crossed

Figure 4.7: One-loop diagrams for the proper two-scalar two-gauge boson vertex.
Here crossed refers to the corresponding diagram with exchanged outer gauge
boson legs.
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Chapter 5

Running of the Yukawa and ϕ4

Couplings

Motivated by Robinson [43], we are going to determine the gravitational con-
tributions to the running of Yukawa and ϕ4 coupling.

5.1 Yukawa Theory

Yukawa interactions play an essential role in the Standard Model of elementary
particles. Therefore it is interesting to investigate how gravity modifies the
running of the Yukawa coupling.

The starting point is the Lagrangian of a fermion ψ and a real scalar ϕ,
minimally coupled to gravity and interacting via a Yukawa term.

L = 2
κ2

√
−gR +

√
−g(ψ(i /D −mψ)ψ + 1

2gµν∂µϕ∂νϕ− 1
2mϕϕ

2 − λϕψψ) (5.1)

The Feynman rules for the fermion graviton vertices are the same as in Section
4.5. The rules including the real scalar field ϕ are:

q k

α β

= −iκ
[

1
2η

αβ(qk +m2
ϕ)− q(αkβ)

]
(5.2)

q k

α β γ δ

= iκ2
[

1
2P

αβ γδ(qk +m2
ϕ) + 1

2η
αβq(γkδ) + 1

2η
γδq(αkβ)

− q(αηβ)(γkδ) − q(γηδ)(αkβ)
]
. (5.3)

Now also k points into the vertex.

α β

= −iκ2λη
αβ (5.4)

α β
γ δ

= −iκ2

4 λ
[
ηαβηγδ − 2ηα(γηδ)β

]
(5.5)
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Figure 5.1: Order λκ2 diagrams of the proper Yukawa vertex.

The one-loop diagrams determining the gravitational contribution to the proper
Yukawa vertex are listed in figure 5.1.

Again we expect to find higher-derivative counterterms. The possible con-
terterms containing two derivatives or one derivative are:

ψψ∂2ϕ

ϕψ∂2ψ

ψ∂µψ∂µϕ

ψ/∂γµψ∂µϕ

and
iψγµψ∂µϕ

iϕψ/∂ψ
. (5.6)

This time the counterterms only have to be Lorentz invariant and there is no
gauge invariance, which limits the number of possible higher-derivative interac-
tions.

We calculated all diagrams in dimensional and in cut-off regularization, but
for the individual diagrams we only give the cut-off result because the result
from dimensional regularization is just the cut-off result with the quardratic
divergences dropped and ln Λ2

µ2 replaced by 2
ε .

=
i

16π2
κ2λ

[
−3

8(Λ2 − µ2) +
{
−5

8m
2
ψ + 1

16mψ/q + 3
16q

2
}

ln Λ2

µ2

]
(5.7)

=
i

16π2
κ2λ

[
−3

8(Λ2 − µ2) +
{
−5

8m
2
ψ + 1

16mψ/k + 3
16k

2
}

ln Λ2

µ2

]
(5.8)

=
i

16π2
κ2λ

[
−m2

φ + 1
4p

2
]
ln Λ2

µ2 (5.9)
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=
i

16π2
κ2λ

[
1
2m

2
ψ + 3

16mψ(/q + /k) (5.10)

− 9
32q

2 + 7
8qk −

9
32k

2 − 5
16/q/k

]
ln Λ2

µ2

=
i

16π2
κ2λ

[
3
8m

2
φ + 7

32mψ(/q − /k)

+ 3
32q

2 − 1
8qk −

3
16k

2 + 7
32/q/k

]
ln Λ2

µ2 (5.11)

=
i

16π2
κ2λ

[
3
8m

2
φ + 7

32mψ(/k − /q)

+ 3
32k

2 − 1
8qk −

3
16q

2 + 7
32/q/k

]
ln Λ2

µ2 (5.12)

1
2

=
i

16π2
κ2λ

[
5
2(Λ2 − µ2)

]
(5.13)

The one-loop result is

q k
κ2λ =

i

16π2
κ2λ

[
7
4(Λ2 − µ2) (5.14)

+
{
− 3

4m
2
ψ − 1

4m
2
φ + 1

4mψ(/q + /k)

+ 1
16(q + k)2 + 1

8/q/k
}

ln Λ2

µ2

]
,

or with dimensional regularization

q k
κ2λ =

iλκ2

16π2

[
−3

4m
2
ψ − 1

4m
2
φ + 1

4mψ(/q + /k) + 1
16(q + k)2 + 1

8/q/k
]2
ε
.

(5.15)

The higher-derivative counterterm is

Lc.t. =
κ2λ

16π2
ln Λ2

µ2

[
− 1

4mψiψγ
µψ∂µϕ+ 1

2mψiϕψ/∂ψ (5.16)

− 5
16ψψ∂

2ϕ+ 3
8ϕψ∂

2ψ + 1
4ψ∂

µψ∂µϕ+ 1
8ψ/∂γ

µψ∂µϕ
]
.

This is exactly what one expects because of the non-renormalizability of the
theory, but we are not interested in higher-derivative counterterms now.
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The order λ2 contribution to the wave function renormalization of the scalar
and the fermion are determined by the logarithmic divergences of the following
two diagrams:

q
= λ2

∫
d4k

(2π)4
/k + /q +mψ

((k + q)2 −m2
ψ)(k2 −m2

φ)

=
iλ2

16π2
{1

2/q +mψ} ln Λ2

µ2 (5.17)

q
= −λ2

∫
d4k

(2π)4
tr{(/k + /q +mψ)(/k +mψ)}
((k + q)2 −mψ)(k2 −mψ)

=
i

16π2
λ2
[
4(Λ2−µ2) + {2q2 − 12m2

ψ} ln Λ2

µ2

]
. (5.18)

The order λ2 contribution to the vertex renormalization factor is determined
by:

q
= λ3

∫
d4k

(2π)4
(/k + /q +mψ)(/k + /p+mψ)

((k + q)2 −m2
ψ)((k + p)2 −mψ)(k2 −mφ)

=
i

16π2
λ3 ln Λ2

µ2 . (5.19)

So far we have computed all diagrams that are necessary to determine the
one-loop renormalization of the coupling constant. However, it is not clear to us
how to proceed now. The first possibility is to use the results from dimensional
regularization to determine the running of the coupling. In this way only the
logarithmic divergences contribute to the β function. If we adapt the Wilsonian
point of view instead [44], then the evolution of the coupling is determined by
integrating out a momentum shell from µ to Λ, where Λ is the cutoff of our
theory. In this scheme it is obvious that quadratic divergences contribute to the
dependence of the coupling on µ and thus contribute to the β function. In what
follows we will investigate both possibilities and their consequences.

The Z factors in the minimal subtraction scheme are

Zϕψψ − 1 =
λ2

16π2
ln Λ2

µ2 +
κ2

16π2
7
4(Λ2 − µ2)− κ2

16π2
(3
4m

2
ψ + 1

4m
2
φ) ln Λ2

µ2

Zψ − 1 = − λ2

16π2

1
2

ln Λ2

µ2 +
κ2

16π2

33
32

(Λ2 − µ2)− κ2

16π2
1
4m

2
ψ ln Λ2

µ2

Zϕ − 1 = − λ2

16π2
2 ln Λ2

µ2 +
κ2

16π2

1
2
(Λ2 − µ2)− κ2

16π2
m2
φ ln Λ2

µ2 .

(5.20)

The bare couplings are defined by

λ0 = λZϕψψZ
−1
ψ Z

− 1
2

ϕ = λZλ

κ0 = κZκ .
(5.21)

We are now going to derive an expression for the β function of λ. Even
though it is intuitively clear that at one-loop there is no influence between the
running of κ and λ we will show explicitly that the flows decouple at one-loop.
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The starting point is the µ independence of the bare couplings λ0 and κ0.
Differentiating both equations (5.21) with respect to µ and using the chain rule

µ
d
dµ

= βλ
∂

∂λ
+ βκ

∂

∂κ
+ µ

∂

∂µ
, (5.22)

one obtains the equations

0 = βλ
∂

∂λ
(λZλ) + λβκ

∂Zλ
∂κ

+ λµ
∂Zλ
∂µ

0 = κβλ
∂Zκ
∂λ

+ βκ
∂

∂κ
(κZκ) + κµ

∂Zκ
∂µ

,

(5.23)

which can be easily solved for βλ.

βλ = −λ
µ∂Zλ∂µ

∂
∂κ(κZκ)− κ∂Zλ∂κ µ

∂Zκ
∂µ

∂
∂λ(λZλ) ∂

∂κ(κZκ)− λ∂Zκ∂λ
∂Zλ
∂κ

(5.24)

As allready stated we expect that the running of κ does not contribute to the
one-loop result for βλ. Observing that at one-loop level one has

κ
∂Zλ
∂κ

∼ κ2 ∂

∂κ
(κZκ) = O(1)

µ
∂Zκ
∂µ

∼ κ2 ∂Zκ
∂λ

= 0 ,
(5.25)

the one-loop β function simplifies to

βλ = −λ
µ∂Zλ∂µ
∂
∂λ (λZλ)

(5.26)

This is the result one would obtain by setting βκ = 0 at the beginning. At
one-loop order this can be simplified further to

βλ = −λµ∂Zλ
∂µ

= −λµ ∂

∂µ

(
ZϕψψZ

−1
ψ Z

− 1
2

ϕ

)
=

5
16π2︸ ︷︷ ︸
=a

λ3 − κ2

16π2
(m2

ψ − 1
2m

2
φ)︸ ︷︷ ︸

=b

λ+
κ2

16π2

15
16︸ ︷︷ ︸

=c

λµ2 .
(5.27)

Now that we have found the gravitational corrections to the β function we
will try to figure out their consequences. In order to do this, we determine the
solution of the differential equation (5.27) assuming κ, mψ and mφ and thus
a,b and c to be constant. This simplification should nevertheless yield the right
qualitative behavior in the region where our perturbative calculations are valid.
Especially at low energies the predictions should be trustworthy.

To solve the equation, it is convenient to rewrite it as a one-form and try to
find an integrating factor.

0 = − 1
λ3

dλ+
a

µ
dµ− b

µλ2
dµ+

c

λ2
µdµ (5.28)
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An integrating factor f , which is only µ dependent, has to satisfy

df
dµ

= 2
(
cµ− b

µ

)
f . (5.29)

This is solved by f(µ) =
( µ
µ0

)−2b exp
(
cµ2
)
. Now we can easily write down the

running coupling:

λ2(µ) =
λ2(µ0)( µ

µ0

)2b exp[c(µ2
0 − µ2)]− 2aλ2(µ0)µ2b

µ∫
µ0

dk k−2b−1 exp[c(k2 − µ2)]
.

(5.30)
This has to be compared with the result in the absence of gravity (c = 0, b = 0):

λ2(µ) =
λ2(µ0)

1− aλ2(µ0) ln µ2

µ2
0

with

∂λ

∂µ
> 0 , µpole = µ0 exp

(
1

2aλ2(µ0)

)
and lim

µ→0
λ = 0 .

(5.31)

Here µpole denotes the Landau pole. Before considering the Wilsonian running
with non-zero masses (b, c 6= 0), let us investigate the result in dimensional
regularization (c = 0):

λ2(µ) =
λ2(µ0)( µ

µ0

)2b(1− λ2(µ0)ab
)

+ λ2(µ0)ab
(5.32)

There are two regions of distinct behaviour. They are seperated by the fixpoint
λ2
? = b

a .

• 0 < λ(µ0) < λ?

In this region we get asymptotic freedom and λ approches the fix point
when µ tends to zero:

∂λ

∂µ
< 0 lim

µ→∞
λ(µ) = 0 lim

µ→0
λ(µ) = λ? . (5.33)

• λ(µ0) > λ?

In this region λ grows with energy and is bounded from below by the fixed
point. There is a pole at µpole:

∂λ

∂µ
> 0 µpole = µ0

(
1− b

aλ2(µ0)

)− 1
2b

lim
µ→0

λ(µ) = λ? . (5.34)

The fact that we at least get a region of asymptotic freedom is particularly
interesting. Of course we expect this region to be small and far away from any
resonable values of λ, as

√
b is essentially the ratio of the masses and the Planck

scale. Nevetheless, asymptotic freedom of the interaction between two massive
fields as a consequence of gravity is astonishing.
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The region λ(µ0) > λ? apparently resembles the non-gravitational behaviour.
The main difference is that gravity prevents the coupling to exactly vanish in
the infrared. The pole is slightly shifted

µpole = µ0 exp
(

1
2aλ2(µ0)

)(
1 +

b

4
1

a2λ4(µ0)
+O(b2)

)
. (5.35)

The differences to the absence of gravity are controlled by the small value of b
and therefore are probably out of experimental reach.

Let us come back to the Wilsonian running of the coupling (5.30). If we
write it down in the form

λ2(µ) =
λ2(µ0)( µ

µ0

)2b exp(−cµ2)
[
exp(cµ2

0)− 2aλ2(µ0)µ2b
0

µ∫
µ0

dk k−2b−1 exp(ck2)
] ,

(5.36)
then it is obvious that we have a pole determined by

µpole∫
µ0

dk k−2b−1 exp(ck2) =
µ−2b

0 exp(cµ2
0)

2aλ2(µ0)
. (5.37)

Applying the rule of l’Hôspital we find that

lim
µ→0

µ2b

µ∫
µ0

dk k−2b−1 exp(ck2) = − 1
2b

(5.38)

and hence

lim
µ→0

λ(µ) = λ? =

√
b

a
. (5.39)

Again the coupling does not vanish in the infrared if at least one of the masses
is nonzero. For the massless case (b = 0) and µ→ 0 the Yukawa coupling (5.30)
tends to zero as

λ2 µ→0−→ λ2(µ0)

exp (cµ2
0) + 2aλ2(µ0)

µ0∫
0

dk
k (exp(ck2)− 1)− aλ2(µ0) ln µ2

µ2
0

(5.40)

Interesting is the small region λ2(µ) < λ2
? − c

aµ
2 because λ has negative slope

there. If we start at λ2(µ0) < λ2
? − c

aµ
2
0, then the coupling decreases with

increasing energy at most until µ =
√
b/c, which is of order of the masses. If

one of the masses would be bigger than any energy accessable in experiments,
this would look like asymptotic freedom.
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5.2 ϕ4 Theory

One of the simplest interacting field theories is ϕ4 theory. The most important
particle physics example of a ϕ4 interaction in a real world model is the self
interaction of the Higgs field in standard electroweak theory.

We are now going to investigate the gravitational contributions to the run-
ning of the ϕ4 coupling. The starting point is the Lagrangian of a massive, real
scalar field with a ϕ4 selfinteraction term, minimally coupled to gravity:

L = 2
κ2

√
−gR +

√
−g
(

1
2gµν∂µϕ∂νϕ− 1

2m
2
ϕϕ

2 − λ
4!ϕ

4
)
. (5.41)

As several times before we expand the Lagrangian around flat space. Beside the
Feynman rules including two scalars (5.2) and (5.3), we need the Feynman rules
for the four-scalar one- and two-graviton vertices to calculate the diagrams of
figure 5.2

Figure 5.2: Order λκ2 diagrams for the proper four-scalar vertex, which not
only differ in a permutation of outer legs.

α β

= −iλκ2η
αβ (5.42)

α β

γ δ

= iλκ
2

2

[
ηα(γηδ)β − 1

2η
αβηγδ

]
. (5.43)

This time there is only one possible higher-derivative counterterm:

ϕ3∂2ϕ = −3ϕ2(∂µϕ)2 + t.d. (5.44)

The divergent order λκ2 contribution to the proper ϕ4-vertex is given by

+
5 diagrams corresponding

to permutations
of (p1, p2, p3, p4)

=
i

16π2
λκ2 1

4

(∑
p2
i

)
ln Λ2

µ2 (5.45)

+
3 diagrams corresponding

to permutations
of (p1, p2, p3, p4)

=
i

16π2
λκ2

[
− 4mϕ

+ 1
4

(∑
p2
i

)]
ln Λ2

µ2

(5.46)
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1
2

=
i

16π2
λκ2 5

2

(
Λ2 − µ2

)
. (5.47)

These one-loop diagrams add up to

λκ2 =
i

16π2
λκ2

[
5
2

(
Λ2 − µ2

)
− 4m2

ϕ ln Λ2

µ2 + 1
2

(∑
p2
i

)
ln Λ2

µ2

]
=

i

16π2
λκ2

[
5
2

(
Λ2 − µ2

)
− 4m2

ϕ ln Λ2

µ2−
(∑
i<j

pipj

)
ln Λ2

µ2

]
.

(5.48)
The order λ contribution to the vertex renormalization factor is determined by
the diagrams:

1
2

+
1
2

+
1
2

=
i

16π2

3
2
λ2 ln Λ2

µ2 (5.49)

There is no order λ contribution to Zϕ, because there is only the tadpole dia-
gram. We obtain the Z factors

Zϕ4 − 1 =
λ

16π2
3
2 ln Λ2

µ2 +
κ2

16π2
5
2

(
Λ2 − µ2

)
− κ2

16π2
4m2

φ ln Λ2

µ2 (5.50)

Zϕ − 1 =
κ2

16π2

1
2
(Λ2 − µ2)− κ2

16π2
m2
φ ln Λ2

µ2 . (5.51)

The bare coupling is defined by

λ0 = Zϕ4Z−2
ϕ λ . (5.52)

Differentiating with respect to µ and neglecting the µ dependence of κ we arrive,
analogous to Section 5.1, at the following expression for the β function

βλ = −λ
µ ∂
∂µZϕ4Z−2

ϕ

∂
∂λ(λZϕ4Z−2

ϕ )
(5.53)

which at one-loop simplifies to

βλ = −λµ ∂

∂µ

(
Zϕ4Z−2

ϕ

)
=

3
16π2︸ ︷︷ ︸
=:a

λ2 − 1
4π2

κ2m2
φ︸ ︷︷ ︸

=:b

λ+
3κ2

16π2︸ ︷︷ ︸
=:c

λµ2 .
(5.54)

By the same reasoning as in Section 5.1 we treat a, b and c as constants in the
following investigation. Rewriting this differential equation as a one-form

0 = − 1
λ2

dλ+
a

µ
dµ− b

µλ
dµ+

c

λ
µdµ , (5.55)
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we find the integrating factor

df
dµ

=
(
cµ− b

µ

)
f ⇒ f =

( µ
µ0

)−b exp
(
c
2µ

2
)

(5.56)

and thus obtain the solution

λ(µ) =
λ(µ0)( µ

µ0

)b exp[ c2(µ2
0 − µ2)]− aλ(µ0)µb

µ∫
µ0

dk k−b−1 exp[ c2(k2 − µ2)]
. (5.57)

This has to be compared to

λ(µ) =
λ(µ0)

1− aλ(µ0) ln µ
µ0

with

∂λ

∂µ
> 0 , µpole = µ0 exp

(
1

aλ(µ0)

)
and lim

µ→0
λ = 0 .

(5.58)

in the absence of gravity. Let us begin with the examination of the result in
dimensional regularization (c = 0):

λ =
λ(µ0)( µ

µ0

)b(1− λ(µ0)ab
)

+ λ(µ0)ab
(5.59)

Similar to the Yukawa coupling we have two regions of distinct behavior, seper-
ated by the fixpoint λ? = b

a .

• 0 < λ(µ0) < λ?

In this region we get asymptotic freedom and λ approches the fixpoint
when µ tends to zero:

∂λ

∂µ
< 0 lim

µ→∞
λ(µ) = 0 lim

µ→0
λ(µ) = λ? . (5.60)

• λ(µ0) > λ?

In this region λ grows with energy and is bounded from below by the fixed
point. There is a pole at µpole.

∂λ

∂µ
> 0 µpole = µ0

(
1− b

aλ(µ0)

)− 1
b

lim
µ→0

λ(µ) = λ? (5.61)

Astonishingly, we see again that gravity can lead to asymptotic freedom in
the massive case. The region of asymptotic freedom is very small since λ? is
essentially the ratio of the mass and the Planck scale.

Above the fixed point we get allmost the non-gravitational behaviour. Sim-
ilar to the Yukawa interaction gravity prevents the coupling to exactly vanish
in the infrared and the pole is slightly shifted

µpole = µ0 exp
(

1
aλ(µ0)

)(
1 +

b

2
1

a2λ2(µ0)
+O(b2)

)
. (5.62)
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The differences to the absence of gravity are controlled by the small value of b
and therefore are probably out of experimental reach.

Let us come back to the Wilsonian running of the coupling (5.57). Writing
the coupling down in following form

λ(µ) =
λ(µ0)( µ

µ0

)b exp(− c
2µ

2)
[
exp( c2µ

2
0)− aλ(µ0)µb0

µ∫
µ0

dk k−b−1 exp( c2k
2)
] ,
(5.63)

it is obvious that we have a pole determined by

µpole∫
µ0

dk k−b−1 exp( c2k
2) =

µ−b0 exp( c2µ
2
0)

aλ(µ0)
. (5.64)

Applying the rule of l’Hôspital we find that

lim
µ→0

µb
µ∫

µ0

dk k−b−1 exp( c2k
2) = −1

b
(5.65)

and hence
lim
µ→0

λ(µ) = λ? =
b

a
. (5.66)

Again the coupling does not vanish in the infrared if the mass is nonzero. For
the massless case (b = 0) and µ→ 0 the Yukawa coupling (5.30) tends to zero
as

λ
µ→0−→ λ(µ0)

exp ( c2µ
2
0) + aλ(µ0)

µ0∫
0

dk
k (exp( c2k

2)− 1)− aλ(µ0) ln µ
µ0

(5.67)

Interesting is the small region λ(µ) < λ? − c
aµ

2, because λ has negative slope
there. If we start at λ(µ0) < λ?− c

aµ
2
0, then the coupling decreases with increas-

ing energy at most until µ =
√
b/c, which is of order of the mass of the scalar.

If this mass would be bigger than any energy accessable in experiments, this
would look like asymptotic freedom. On the other hand we have λ < λ? in this
region and this is probably to small to be measured.
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Chapter 6

Summary and Conclusions

Motivated by the recently proposed Lee-Wick standard model [4] and the obser-
vation that Einstein Yang-Mills theory can be renormalized at one-loop order by
adding the Lee-Wick term d2Tr{(DµF

µν)2} to the Lagrangian, we investigated
Lee-Wick gauge theory in Part I.

We established in Chapter 2 that the renormalization of Lee-Wick gauge
theory is completely determined by the wavefunction renormalization of the
gauge field, if a modified gauge fixing term is used.

Performing a diagrammatic calculation, we determined the one-loop β func-
tion and found agreement with the results of [28], obtained by applying the
background field method. In accordance with the general statement of Cole-
man and Gross [45], that among renormalizable quantum field theories in four
dimensions, only non-Abelian gauge theories are asymptotically free, we found
asymptotic freedom for Lee-Wick gauge theory. The coupling runs approxi-
mately twice as fast as in Yang-Mills theory. Hence, bearing in mind that the
higher-derivative gauge field corresponds to two degrees of freedom, this almost
confirms the intuitive guess.

One might hope that the modified gauge field contribution to the running of
the coupling results in improved unification properties of the Lee-Wick standard
model, but according to [28] this is not the case.

Furthermore, we performed the limit to Yang-Mills theory, which equals
sending the mass of the Lee-Wick field to infinity. Thus we obtained the well
known Yang-Mills β function in agreement with the decoupling theorem [34].

In Chapter 3 we applied the background field method and reproduced all
the previous results. In comparison we consider the diagrammatic calculation
of Chapter 2 to be more appropriate for loop calculations in higher-derivative
gauge theories.

Gravitational corrections, obtained in the framework of effective field theo-
ries, were the topic of Part II.

In Chapter 4 we investigated the one-loop divergences of Einstein Yang-Mills
theory, to find out wether the fermionic and scalar dimension six counterterms
coincide with the higher-derivative terms in the Lee-Wick standard model.

First we established that the gravitational contributions to the dimension
four counterterms are related, which provided a consistency check for the fol-
lowing computations.

Because it was the motivation for our investigations we reperformed the
calculation of [18], to show that the gauge field dimension six counterterm is
given by the Lee-Wick term. But our results show that this is special to the
gauge fields.

We determined the fermionic dimension six counterterm to be a linear com-
bination of the four possible terms and found that there is no dimension six
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counterterm for scalars, thereby proving that there is no general connection be-
tween the higher-derivative counterterms and the Lee-Wick terms. This result
is in agreement with the calculation of Rodigast [46], who investigated the same
question in an extra-dimensional scenario.

Although the gauge field counterterm is given by the Lee-Wick term, it is
important to notice that this is just one term in an infinite series of counterterms
of a non-renormalizable field theory. One might argue that the higher order
terms are exactly such that they correspond to further new particles, as in the
higher-derivative Lee-Wick standard model recently proposed by Carone [47].

However, we do not think that it is in general possible to conclude the
existence of further particles from the appearance of special counterterms in
an effective field theory, because these terms are only the residual low-energy
effects of the unknown physics at high energies.

In Chapter 5 we determined the gravitational contributions to the β func-
tions of the Yukawa and the ϕ4 coupling. We calculated the Wilsonian running
couplings as well as the running of the couplings in dimensional regulariza-
tion and showed how gravity modifies their behavior at energies well below the
Planck scale.

We found that all gravitational corrections are probably undetectable be-
cause they are exceedingly small. However, this does not mean that they are
unimportant because it underlines, that the exclusion of gravity from the stan-
dard model is not a poor substitute for a unknown quantum theory but rather
an extreme good approximation.

Furthermore, the quantum corrections we found reveal interesting properties
of the quantum theory. For non-zero masses gravity causes the couplings not to
vanish in the infrared and leads to regions of negative slope. Extrapolating our
results to high energies, we found that gravity can lead to asymptotic freedom
of the Yukawa and ϕ4 coupling if the fields are massive. Of course we expect
the region of asymptotic freedom to be small and far away from any reasonable
values of the couplings, as its size is controlled by the ratio of the masses and
the Planck scale. Nevetheless, asymptotic freedom of the interaction between
massive fields as a consequence of gravity is astonishing and worthy of further
investigations.

Recently Toms showed in [48] that a non-vanishing positive cosmological
constant leads to a similar contribution to the β function of quantum electro-
dynamics as we found for Yukawa and ϕ4 theory.

The possibility, that quantum gravity renders a theory asymptotic free which
can not be asymptotically free in four dimensions without gravity, is intriguing
and should be investigated further.

One possible program to confirm our results is to use the gauge invariant
and gauge condition independent Vilkovisky-DeWitt effective action [49, 50] to
determine the quatum gravity contribution to the β functions of Yukawa and
ϕ4 theory.
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Appendix A

Feynman Rules of YM Theory

In Chapters 2 and 4 we need some of the Feynman rules of Yang-Mills theory
with fermionic and scalar multiplets defined by the gauge fixed Lagrangian

LYM = tr{−1
2FµνF

µν − φ†(D2 +m2
φ)φ+ ψ(i /D−mψ)ψ− 1

α(∂ ·A)2 − 2c̄ ∂ ·D c} .

Indices of the group representations, as well as spinor indices are omitted when-
ever possible.

Propagators

gauge field
p

µ ν =
−i
p2

(
ηµν − (1− α)

pµpν
p2

)
ghost

p
=

i

p2

scalars
p

=
i

p2 −m2
φ

fermions
p

=
i

/p−mψ

Vertices

p q

k

a, µ b, ν

c, ρ

= gfabc
[
ηµν(pρ − qρ) + ηµρ(kν − pν) + ηνρ(qµ − kµ)

]

a, µ b, ν

c, ρ d, σ

=

− ig2
[

fabef cde(ηµρηνσ − ηµσηνρ)

+ facef bde(ηµνηρσ − ηµσηνρ)

+ fadef bce(ηµνηρσ − ηµρηνσ)
]

q

a, µ

b c

= −gfabcqµ
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q k

a, µ

= ig(q + k)µta

a, µ b, ν

= ig2ηµν{ta, tb}

a, µ

= igγµ
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Appendix B

Cut-Off Integrals

In Section 2.6.1 we showed that in cut-off regularization logarithmically diver-
gent integrals are shift invariant. This can be used to determine the correct
asymptotics of arbitrary cut-off integrals. We give a complete list of one-loop
integrals with two propogators up to divergence index of four and of three
propagator integrals up to divergence index of three.

Logarithmically Divergent Integrals

We start with the easiest of the integrals:

D0 =
∫

d4k

(2π)4
1

(k2 + 2pk +D)2
.

This logarithmic divergent integral can be calculated without difficulties. Shift
the integration variable k → k+p, Wick rotate and integrate over all Euclidean
momenta fulfilling k2

E ≤ Λ2. In all calculations y is defined by y = k2
E. We get

D0 =
i

16π2

Λ2∫
0

dy
y

(y + p2 −D)2

=
i

16π2

[
ln
(

Λ2

p2 −D

)
− 1
]
.

Linearly Divergent Integrals

Throughout the following calculations we will frequently use the simple formula:

1
αn

− 1
βn

= −
1∫

0

dx
n(α− β)

((α− β)x+ β)n+1
(B.1)

to combine fractions. Integrals of divergence index one have the general form

Dµ
1 =

∫
d4k

(2π)4
kµ

(k2 + 2pk +D)2

=
∫

d4k

(2π)4

[
kµ

(k2 + 2pk +D)2
−

= 0︷ ︸︸ ︷
kµ

(k2 +D)2

]
(B.1)
= −4pν

1∫
0

dz
∫

d4k

(2π)4
kµkν

(k2 + 2zpk +D)3
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The remaining momentum integral is only logarithmically divergent and we can
shift k → k+ zp, perform a Wick rotation and integrate over the ball of radius
Λ arround the origin.

Dµ
1 =

i

16π2
pν

1∫
0

dz

Λ2∫
0

dy
pµpν4z2y − ηµνy2

(y + z2p2 −D)3

=
i

16π2
pµ

1∫
0

dz
{

2z2p2

(z2p2 −D)
− ln

(
Λ2

p2z2 −D

)
+

3
2

}

=
i

16π2
pµ
[
3
2
− ln

(
Λ2

p2 −D

)]

Quadratically Divergent Integrals

All integrals of divergence index two have the form:

Dµν
2 =

∫
d4k

(2π)4
kµkν

(k2 + 2pk +D)2

=
∫

d4k

(2π)4

[
kµkν

(k2 + 2pk +D)2
− kµkν

(k2 +D)2

]
+

=Aµν2 (q)︷ ︸︸ ︷
1∫

0

dx
∫

d4k

(2π)4
kµkν

(k2 +D)2
.

Aµν2 can be calculated easily since its denominator is a function of k2. We can
make the replacement kµkν → 1

4η
µν and get

Aµν2 = − i

16π2

ηµν

4

Λ2∫
0

y2

(y −D)2
=

i

16π2
ηµν

[
−Λ2

4
− D

2
ln
(
−Λ2

D

)
+
D

4

]
.

For the sake of simplicity we will use the condensed notation
n∏
i=1

kµi := kµ1... µn

if n is greater than three. Let us continue with:

Dµν
2 −Aµν2 = −4pσ

1∫
0

dz
∫

d4k

(2π)4

[
kµkνkσ

(k2 + 2zpk +D)3
− kµkνkσ

(k2 +D)3

]

= 24pσpρ

1∫
0

dz

1∫
0

dw
∫

d4k

(2π)4
zkµνσρ

(k2 + 2zwpk +D)4

= 24pσpρ

1∫
0

dz

1∫
0

dw
∫

d4l

(2π)4
z
lµνσρ + 6z2w2p(µpν lσlρ) + z4w4pµνσρ

(l2 − z2w2p2 +D)4
.

Again due to symmetry we can make the replacement lµνρσ → Cη(µνηρσ)l4. The
constant C can be determined by contracting all indices. To be more explicit
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we make the replacement lµνρσ → 1
24(ηµνηρσ + ηµρηνσ + ηµσηνρ)l4. Hence we

get

Dµν
2 −Aµν2

=
i24pσpρ
16π2

1∫
0

dz

1∫
0

dw

Λ2∫
0

dy z
1
8η

(µνηρσ)y3 − z2w2 3
2p

(µpνηρσ)y2 + z4w4pµνρσy

(y + z2w2p2 −D)4

=
i

16π2

1∫
0

dz

1∫
0

dw z

[
ηµνp2

{
ln
(

Λ2

z2w2p2 −D

)
− 2z2w2p2

z2w2p2 −D
− 11

6

}

+pµpν
{

2 ln
(

Λ2

z2w2p2 −D

)
+

4z4w4p4

(z2w2p2 −D)2
− 10z2w2p2

z2w2p2 −D
− 11

3

}]

=
i

16π2

1∫
0

dz z
[
ηµνp2

{
ln
(

Λ2

z2p2 −D

)
− 11

6

}
+ pµpν

{
2 ln

(
Λ2

z2p2 −D

)
− 2D
z2p2 −D

− 17
3

}]
=

i

16π2

[
ηµνp2

{
1
2

ln
(

Λ2

p2 −D

)
+

D

2p2
ln
(
p2 −D

−D

)
− 5

12

}
+ pµpν

{
ln
(

Λ2

p2 −D

)
− 11

6

}]
.

The result is∫
d4k

(2π)4
kµkν

(k2+2pk+D)2
=

i

16π2

[
ηµν
{
− Λ2

4
+

1
2
(p2−D) ln

(
Λ2

p2−D

)
− 5

12
p2 +

D

4

}
+ pµpν

{
ln
(

Λ2

p2−D

)
− 11

6

}]
.

Cubically Divergent Integrals

Integrals of divergence index three have the general form

Dµνρ
3 =

∫
d4k

(2π)4
kµkνkρ

(k2 + 2pk +D)2

=
∫

d4k

(2π)4

[
kµkνkρ

(k2 + 2pk +D)2
− kµkνkρ

(k2 +D)2

]

= −4pσ

1∫
0

dz
∫

d4k

(2π)4

[
kµνρσ

(k2 + 2zpk +D)3
− kµνρσ

(k2 +D)3

]
+Aµνρ3 .

Here Aµνρ3 is given by

Aµνρ3 = 4pσ
∫

d4k

(2π)4
−kµνρσ

(k2 +D)3
=

i

16π2
pσ

1
2
η(µνηρσ)

Λ2∫
0

dy
y3

(y −D)3
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Aµνρ3 =
i

16π2
qσ

1
2
η(µνηρσ)

[
Λ2 + 3D ln

(
Λ2

−D

)
− 5

2
D

]
=

i

16π2
(ηµνpρ + ηµρpν + ηνρpµ)

[
Λ2

6
+
D

2
ln
(

Λ2

−D

)
− 5

12
D

]
.

We go on with the computation of

Dµνρ
3 −Aµνρ3 = 24pσpα

1∫
0

dz

1∫
0

dw
∫

d4k

(2π)4

[
zkµνρσα

(k2 + 2zwpk +D)4
− zkµνρσα

(k2 +D)4

]

= −192pσpαpβ

1∫
0

dz

1∫
0

dw

1∫
0

dv
∫

d4k

(2π)4
z2wkµνρσαβ

(k2 + 2zwvpk +D)5

= −192pσpαpβ

1∫
0

dz

1∫
0

dw

1∫
0

dz
∫

d4l

(2π)4
z2w ×

×
[
lµνρσαβ + 15(zwv)2p(µpν lρσαβ)

(l2 − (zwv)2p2 +D)5

+
15(zwv)4l(µlνpρσαβ) + (zwv)6pµνρσαβ

(l2 − (zwv)2p2 +D)5

]
.

Now we can make the replacement lµνρσαβ → 5
64η

(µνηρσηαβ) due to symmetry.
To ceep it clear we define the tensors:

Iµνρ1 :=
5
64
pσpαpβη

(µνηρσηαβ) =
1

192
[
3p2 (ηµνpρ+ηµρpν+ηνρpµ) + 6pµpνpρ

]
Iµνρ2 :=

15
8
pσpαpβp

(µpνη(ρσηαβ)) =
p2

24
[
6p2 (ηµνpρ+ηµρpν+ηνρpµ) + 27pµpνpρ

]
Iµνρ3 :=

15
4
pσpαpβp

(µpνpρpσηαβ) =
p4

4
[
p2 (ηµνpρ+ηµρpν+ηνρpµ) + 12pµpνpρ

]
.

With this convention we get

Dµνρ
3 −Aµνρ3

=
i

16π2
192

1∫
0

dz

1∫
0

dw

1∫
0

dv

Λ2∫
0

dy z2w ×

× −Iµνρ1 y4 + z2w2v2Iµνρ2 y3 − z4w4v4Iµνρ3 y2 + z6w6v6pµνρp6y

(y + z2w2v2p2 −D)5

=
i

16π2
192

1∫
0

dz

1∫
0

dw

1∫
0

dv z2w

[
Iµνρ1

{
− ln

(
Λ2

z2w2v2p2 −D

)
+

25
12

}

+
Iµνρ2

4
z2w2v2

z2w2v2p2 −D
− Iµνρ3

12
z4w4v4

(z2w2v2p2 −D)2
+

pµνρ

12
z6w6v6p6

(z2w2v2p2 −D)3

]
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Dµνρ
3 −Aµνρ3

=
i

16π2

1∫
0

dz

1∫
0

dw

1∫
0

dv z2w

×
[
3η(µνpρ)p2

{
−3 ln

(
Λ2

z2w2v2p2 −D

)
+ 12

z2w2v2p2

z2w2v2p2 −D

− 4
z4w4v4

(z2w2v2p2 −D)2
+

25
4

}
+ pµpνpρ

{
−6 ln

(
Λ2

z2w2v2p2 −D

)
+

54z2w2v2p2

z2w2v2p2 −D

− 48z4w4v4

(z2w2v2p2 −D)2
+

16z6w6v6p6

(z2w2v2p2 −D)3
+

25
2

}]

=
i

16π2

1∫
0

dz

1∫
0

dw z2w

[
3η(µνpρ)p2

{
−3 ln

(
Λ2

z2w2p2 −D

)
+

2D
z2w2p2 −D

+
33
4

}
−pµpνpρ

{
6 ln

(
Λ2

z2w2p2 −D

)
− 6D
z2w2p2 −D

+
4D2

(z2w2p2 −D)2
− 45

2

}]

=
i

16π2

1∫
0

dz z2

[
3η(µνpρ)p2

{
−3

2
ln
(

Λ2

z2p2−D

)
− D

2p2
ln
(
z2p2−D
−D

)
+

21
8

}

+pµpνpρ
{
−3 ln

(
Λ2

z2p2 −D

)
+

2D
z2w2p2 −D

+
33
4

}]
=

i

16π2

[
3η(µνpρ)p2

{
−1

2
ln
(

Λ2

p2 −D

)
− D

2p2
ln
(
p2 −D

−D

)
+

13
24

}
+ pµpνpρ

{
− ln

(
Λ2

p2 −D

)
+

25
12

}]
The result we obtain is∫

d4k

(2π)4
kµkνkρ

(k2 + 2pk +D)2
=

i

16π2

[
3η(µνpρ)

{
Λ2

6
− 1

2
(p2−D) ln

(
Λ2

p2−D

)
+

13
24
p2 − 5

12
D

}
− pµpνpρ

{
ln
(

Λ2

p2−D

)
− 25

12

}]
.

Quartically Divergent Integrals

The general form of an integral of divergence index four is

Dµνρσ
4 =

∫
d4k

(2π)4
kµkνkρkσ

(k2 + 2pk +D)2
.
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Dµνρσ
4 =

∫
d4k

(2π)4

[
kµνρσ

(k2 + 2pk +D)2
− kµνρσ

(k2 +D)2

]
+Aµνρσ4

Here Aµνρσ4 is given by

Aµνρσ4 =
∫

d4k

(2π)4
kµνρσ

(k2 +D)2
=

i

16π2

1
8
η(µνηρσ)

Λ2∫
0

dy
y3

(y −D)2

=
i

16π2
3η(µνηρσ)

{
Λ4

48
+
D

12
Λ2 +

D2

8
ln
(

Λ2

−D

)
− D2

24

}
and we go on with

Dµνρσ
4 −Aµνρσ4

= −4pκ

1∫
0

dx
∫

d4k

(2π)4

[
kµνρσκ

(k2 + 2xpk +D)3
− kµνρσκ

(k2 +D)3

]

= 24pκpα

1∫
0

dx

1∫
0

dz
∫

d4k

(2π)4

[
xkµνρσκα

(k2 + 2xzpk +D)4
− xkµνρσκα

(k2 +D)4

]
+Bµνρσ

4 ,

where Bµνρσ
4 is given

Bµνρσ
4 = 12pκpα

∫
d4k

(2π)4
kµνρσκα

(k2 +D)4

=
i

16π2

1
16

(
3η(µνηρσ)p2 + 12p(µpνηρσ)

) Λ2∫
0

dy
−y4

(y −D)4

=
i

16π2

(
3η(µνηρσ)p2 + 12p(µpνηρσ)

)[
−Λ2

16
− D

4
ln
(

Λ2

−D

)
+

13
48
D

]
.

It remains to compute

Dµνρσ
4 −Aµνρσ4 −Bµνρσ

4

= 192pκpαpβ

1∫
0

dx

1∫
0

dz

1∫
0

dw
∫

d4k

(2π)4

[
x2zkµνρσκαβ

(k2+2xzwpk+D)5
− x2zkµνρσκαβ

(k2 +D)5

]

= 1920pκαβγ

1∫
0

dx

1∫
0

dz

1∫
0

dw

1∫
0

dv
∫

d4k

(2π)4
x3z2wkµνρσκαβγ

(k2 + 2xzwvpk +D)6

= 1920pκαβγ

1∫
0

dx

1∫
0

dz

1∫
0

dw

1∫
0

dv
∫

d4k

(2π)4
x3z2w

×
[
lµνρσκαβγ + 28x2z2w2v2p(µpν lρσκαβγ) + 70x4z4w4v4p(µνρσlκαβγ)

(l2 − x2z2w2v2p2 +D)6

+
28x6z6w6v6l(µlνpρσκαβγ) + x8z8w8v8pµνρσκαβγ

(l2 − x2z2w2v2p2 +D)6

]
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With the definitions

Iµνρσ1 :=
7

128
pκαβγη

(µνηρσηκαηβγ)

Iµνρσ2 :=
35
16
pκαβγp

(µpνη(ρσηκαηβγ))
and

Iµνρσ3 :=
35
4
pκαβγp

(µνρση(καηβγ))

Iµνρσ4 := 7 pκαβγp(µνρσκαηβγ)

we get

Dµνρσ
4 −Aµνρσ4 −Bµνρσ

4

=
i

16π2
1920

1∫
0

dx

1∫
0

dz

1∫
0

dw

1∫
0

dv

Λ2∫
0

dy x3z2w ×

×
[
Iµνρσ1 y5 − x2z2w2v2Iµνρσ2 y4 + x4z4w4v4Iµνρσ3 y3

(y + x2z2w2v2p2 −D)6

+
−x6z6w6v6Iµνρσ4 y2 + x8z8w8v8pµνρσp8y

(y + x2z2w2v2p2 −D)6

=
i

16π2
1920

1∫
0

dx

1∫
0

dz

1∫
0

dw

1∫
0

dv x3z2w ×

×
[
Iµνρσ1

(
ln
(

Λ2

x2z2w2v2p2−D

)
− 137

60

)
− 1

5
Iµνρσ2

x2z2w2v2

x2z2w2v2p2 − L
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1
20
Iµνρσ3

x4z4w4v4

(x2z2w2v2p2 − L)2

− 1
30
Iµνρσ4

x6z6w6v6

(x2z2w2v2p2 − L)3
+

1
20
pµνρσp8 x8z8w8v8

(x2z2w2v2p2 − L)4

]

=
i

16π2

1∫
0
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1∫
0

dz

1∫
0

dw

1∫
0

dv x3z2w ×

×
[
3p4η(µνηρσ)

{
3 ln

(
Λ2

x2z2w2v2p2−D

)
− 12

x2z2w2v2p2

x2z2w2v2p2 − L

+ 4
x4z4w4v4p4

(x2z2w2v2p2 − L)2
− 137

20

}
+ 6η(µνpρpσ)p2

{
12 ln

(
Λ2

x2z2w2v2p2−D

)
− 78

x2z2w2v2p2

x2z2w2v2p2 − L
− 137

5

+ 56
x4z4w4v4p4

(x2z2w2v2p2 − L)2
− 16

x6z6w6v6p6

(x2z2w2v2p2 − L)3

}
+ pµνρσ

{
24 ln

(
Λ2

x2z2w2v2p2−D

)
− 336

x2z2w2v2p2

x2z2w2v2p2 − L
+ 492

x4z4w4v4p4

(x2z2w2v2p2 − L)2

− 352
x6z6w6v6p6

(x2z2w2v2p2 − L)3
+ 96

x8z8w8v8p8

(x2z2w2v2p2 − L)4
− 274

5

}]
.
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Performing the remaining integrations yields

Dµνρσ
4 −Aµνρσ4 −Bµνρσ

4

=
i

16π2

[
3p4η(µνηρσ)

{
1
8

ln
(

Λ2

p2−D

)
− D2

8p4
ln
(
p2−D
−D

)
+

D

4p2
ln
(
p2−D
−D

)
− 47

480
− 1

8
D

p2

}
+ 6η(µνpρpσ)p2

{
1
2

ln
(

Λ2

p2−D

)
+

D

2p2
ln
(
p2−D
−D

)
− 77

120

}
+ pµνρσ

{
ln
(

Λ2

p2−D

)
− 137

60

}]
.

Our final result is∫
d4k

(2π)4
kµkνkρkσ

(k2 + 2pk +D)2
=

i

16π2

[
3η(µνηρσ)

{
Λ4

48
+
(
D

12
− p2

16

)
Λ2

+
1
8
(p2−D)2 ln

(
Λ2

p2−D

)
− 47

480
p4 +

7
48
p2D − D2

24

}
+ 6η(µνpρpσ)

{
−Λ2

8
+

1
2
(p2−D) ln

(
Λ2

p2−D

)
− 77

120
p2 +

13
24
D

}
+ pµνρσ

{
ln
(

Λ2

p2−D

)
− 137

60

}]
.

Differentiating a general two propagator integral with divergence index n with
respect to p, we obtain a three propagator integral with index n − 1. In this
way we can also obtain integrals with further propagators, but since we did not
need them in our calculation, we leave it at three propagators.
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B.1 List Of Cut-Off Integrals

General Two Propagator Integrals

∫
d4k

(2π)4
1

(k2+2pk+D)2
=
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Massless Two Propagator Integrals

∫
d4k
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General Three Propagator Integrals
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Massless Three Propagator Integrals
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