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Abstract iii

Abstract

We study an extension of classical Wilson loops around lightlike polygons in N = 4
super Yang-Mills theory, which was introduced by Caron-Huot as an observable dual
to scattering amplitudes. After a thorough exposition of the underlying quantum field
theory, we use symmetry considerations to derive explicit expressions for the edge and
vertex operators of the resulting supersymmetric Wilson loops. The contributions to
the quantum expectation value coming from the edges and vertices are conveniently
summarised in the form of Feynman rules. Furthermore, we yield expressions for tree-
level components by explicit calculations. It turns out that there is indeed a striking
partial duality with scattering amplitudes which is, however, broken. This should be
independent of the regularisation method used. Finally, we repeat our treatment for a
natural variant of the edge and vertex operators with an analogous result.

Zusammenfassung

Wir untersuchen eine Erweiterung der klassischen Wilson-Schleifen um lichtartige Poly-
gone in der N = 4 Super-Yang-Mills-Theorie, die von Caron-Huot als zu Streuam-
plituden duale Observable eingeführt wurde. Nach einer gründlichen Darstellung der
zugrunde liegenden Quantenfeldtheorie benutzen wir Symmetrieüberlegungen, um ex-
plizite Ausdrücke für die Kanten- und Vertex-Operatoren der resultierenden supersym-
metrischen Wilson-Schleifen herzuleiten. Die Beiträge zum Quanten-Erwartungswert,
die von den Kanten und Ecken herrühren, lassen sich zweckmäßig in der Form von
Feynman-Regeln zusammenfassen. Desweiteren gewinnen wir durch explizite Rechnun-
gen Ausdrücke für Baumgraphen-Komponenten. Es stellt sich heraus, dass tatsächlich
eine bemerkenswerte Teil-Dualität mit Streuamplituden existiert, die jedoch gebrochen
ist. Dies sollte unabhängig von der benutzten Regularisierungs-Methode sein. Schließlich
wiederholen wir unsere Behandlung für eine natürliche Variante der Kanten- und Ecken-
Operatoren mit einem analogen Resultat.
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Preface

Gluon scattering amplitudes have been known to be dual to Wilson loops along light-
like polygons. While first shown at strong coupling (cf. [AM07]) through the famous
AdS/CFT duality introduced in [Mal98], this result has later been verified at weak
coupling (cf. [DKS08] and [BHT08]). For a review, consult [AR08]. Recently, a simi-
lar duality (at weak coupling) between the full scattering amplitudes of N = 4 super
Yang-Mills theory and a supersymmetric extension of the Wilson loop observable has
been claimed (cf. [CH11]). In this thesis, we analyse this conjecture through explicit
calculations. It is organised as follows.

In Chp. 1, we provide a thorough introduction to N = 4 super Yang-Mills theory.
The purpose is twofold. First, we lay the foudations for later chapters, providing no-
tation and important formulas including the Euler-Lagrange equations, supersymmetry
generators as well as the Feynman rules. Second, we aim at a self-contained introduction
to this theory, which is also readable for people with a mathematical background.

In Chp. 2, we analyse an ansatz for a super Wilson loop along lightlike polygons
which is obtained by symmetry considerations. For the edge and vertex operators, we
derive explicit formulas. While the calculations, especially for the vertex operators,
turn out to be rather lengthy, the result can be stated in the form of a simple recursion
formula. Our treatment remains purely classical.

In Chp. 3, we study the quantum field theory of supersymmetric Wilson loops. Af-
ter establishing Feynman rules for the contributions to the quantum expectation value
coming from the edges and vertices, we calculate explicit examples of tree-level compo-
nents and compare them with scattering amplitudes. Our main result, the breaking of
the proposed duality, can be found here. Finally, we repeat our treatment for a natural
variant of the supersymmetric Wilson loop.
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Chapter 1

N = 4 Super Yang-Mills Theory

N = 4 super Yang-Mills (SYM) theory plays an important role as a theoretical testing
ground for its less symmetric cousin, quantum chromodynamics. In this chapter, we
review its definition and properties. The advanced reader may skip the details.

1.1 Algebraic Preliminaries

In this section, we introduce the algebraic background for the fields of the theory. We
adopt the conventions of [BDKM04] whenever applicable, with the exception of the
charge conjugation matrix (cf. Sec. 1.1.2 below), where we follow [Ton07].

1.1.1 Odd Quantities and Matrices

In general, fermionic fields in a (pseudo-)classical field theory underlying a quantum
field theory are assumed to be ”odd”, i.e. anticommuting, in order to ensure Fermi-
Dirac statistics upon quantisation (consult [Nic91] as well as standard text books such
as [PS95]). Mathematically, oddness can be modelled by making the fields take values
in the odd part of a Grassmann algebra with suitably many generators. By consistency,
the bosonic fields should then take values in the even part of the same algebra.

We denote the parity of such a Grassmann ”number” a by |a| ∈ Z2 which, by
definition, is 0 if a is even and 1 if it is odd. The commutation rule can thus be written
a · b = (−1)|a||b|b · a. This is equivalent to the vanishing of the super commutator

[a, b] := a · b− (−1)|a||b|b · a(1.1)

In the following, we shall implicitly assume that all quantities occurring are Grassmann
valued, and as such are either even or odd. As the first example, consider real n × n
matrices A with parity |A| in the sense that their entries all have parity

∣∣Aij∣∣ = |A|.
This is to be distinguished from the parity of matrices in super-linear algebra ([Var04]).

Lemma 1.1.1. Let A,B,C be real n× n matrices. Then

tr(A ·B) = (−1)|A||B|tr(B ·A)

tr(A [B, C]) = (−1)(|A|+|B|)|C|tr(C [A, B])

where the bracket denotes the super commutator (1.1).
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Proof. The first equation follows immediately.

tr(AB) = AabBba = (−1)|A||B|BbaAab = (−1)|A||B|tr(BA)

For the second, we calculate

tr(A [B, C]) = Aab [B, C]ba

= Aab
(
BbcCca − (−1)|B||C|CbcBca

)
= AabBbcCca − (−1)|B||C|AabCbcBca

= (−1)(|A|+|B|)|C|Cef
(
AfbBbe −AaeBfa

)
= (−1)(|A|+|B|)|C|Cef

(
AfbBbe − (−1)|A||B|BfbAbe

)
= (−1)(|A|+|B|)|C|Cef [A, B]fe

= (−1)(|A|+|B|)|C|tr(C [A, B])

Special Unitary Lie Algebra

The fields of N = 4 SYM theory take value in the (real) Lie algebra i · su(N). By
definition, su(N) is the Lie algebra associated to the special unitary group SU(N) which,
by definition, consists of all complex n × n matrices that are both unitary and have
determinant 1. Upon differentiating these defining properties, we see that T ∈ su(N) if
and only if T is both antihermitian and traceless. The factor ”i” turns antihermitian
into hermitian. Therefore

T ∈ i · su(N) ⇐⇒ T = T † and tr(T ) = 0

where, as usual, ”†” denotes transposition followed by complex conjugation. It follows
immediately that dim(i · su(N)) = N2 − 1.

Lemma 1.1.2. For every constant C > 0 there is a basis (T 1, . . . , TN
2−1) of i · su(N)

such that tr(T aT b) = C · δab.

Proof. By Lem. 1.1.1, the N2 − 1 × N2 − 1-matrix Dab := tr(T aT b) is symmetric.
Denoting complex conjugation by ”∗”, we conclude from

(Dab)∗ = tr(T aT b)∗ = tr((T aT b)T )∗ = tr((T aT b)†) = tr((T b)†(T a)†) = tr(T bT a) = Dab

that it is also real. We may therefore replace each of the original basis elements by a
linear transformation thereof to obtain a new basis, also denoted (T 1, . . . , TN

2−1), such
that Dab is a diagonal matrix. By

tr(T aT a) = tr(T a(T a)†) = (T a)ij(T
a)∗ij =

∑
i,j
|(T a)ij |2 > 0

it moreover follows that Dab is positive definite, and the statement follows upon further
normalisation of the T a.
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Basis elements T a of i · su(N) are often called generators. In the following, they are
implicitly chosen such as to satisfy the statement of Lem. 1.1.2 with C = 1

2 , i.e.

tr(T aT b) =
1

2
· δab(1.2)

Since the commutator of two i · su(N)-matrices is an su(N)-matrix, there are real num-
bers fabc, called structure constants, such that[

T a, T b
]

= ifabcT c(1.3)

Lemma 1.1.3. fabc is totally antisymmetric in the indices abc. Moreover, it has the
explicit expression

fabc = −2i tr
(
T c
[
T a, T b

])
Proof. Multiplying either side of

[
T a, T b

]
= ifabdT d by T c and taking the trace, we

obtain

tr
(
T c
[
T a, T b

])
= ifabdtr(T cT d) =

i

2
fabc

and thus the formula stated. By Lem. 1.1.1, this expression is totally antisymmetric.

Lemma 1.1.4. The generators T a satisfy the following identity.

(T a)ij(T
a)kl =

1

2
δliδkj −

1

2N
δijδkl

Proof. The set of N2− 1 traceless generators T a is extended by the identity matrix to a
basis of Rn×n. Therefore, any such matrix can be written X = X0 · id +XaT a. Taking
the trace on either side, we obtain X0 = 1

N tr(X). On the other hand, contracting first
with T b and then taking the trace, we obtain tr(XT b) = Xatr(T aT b) = Xa 1

2δ
ab = 1

2X
b

or, equivalently, Xa = 2tr(XT a). Therefore, we find

Xij = X0 · idij +Xa(T a)ij =
1

N
Xmmδij + 2Xlm(T a)ml(T

a)ij

This can be rewritten

Xlm

(
δilδjm −

1

N
δmlδij − 2(T a)ml(T

a)ij

)
= 0

which immediately implies the statement.

1.1.2 Vectors and Spinors in Various Dimensions

As we will see below, N = 4 SYM, which is a theory in Minkowski space, arises from
dimensional reduction of a Lagrangian in 1 + 9 dimensions. We thus need to fix con-
ventions for vectors and spinors in dimension 1 + 3 (Minkowski space) and dimension
1 + 9 (ten-dimensional Lorentz space) as well as dimension 6 (six-dimensional Euclidean
space). While some of the constructions are specific to the dimensions mentioned, oth-
ers hold in much more generality. We refer to the standard books on spinors and Dirac
operators for the general theory such as [Bau81] and [Fri00].
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Minkowski Space I: Spinors

Minkowski space is the vector space R4 together with the metric (scalar product) of
signature (1, 3) which, in the convention chosen here, reads η = diag(+,−,−,−). We
denote the standard basis by (e0, e1, e2, e3) and let vµ denote the corresponding coeffi-
cients of a vector v = vµeµ. We further adopt the standard notation vµ := ηµνv

ν .

The representation space ∆1,3
∼= C4 of the spinor representation has dimension four.

Elements ψ ∈ ∆1,3 are often called Dirac spinors. We use the convention

ψ =

(
λα
λ̃α̇

)
=
(
λ1 λ2 λ̃1 λ̃2

)T
with λ, λ̃ ∈ C2 and indices α, α̇ ∈ {1, 2}. It can be shown that, if we let SL(2,C) ∼=
Spin+(1, 3) act on λ with the standard matrix representation, and on λ̃ with the complex-
conjugate representation, both subspaces ∼= C2 carry a natural symplectic structure,
which is invariant under the respective action of SL(2,C). We shall denote these sym-
plectic structures by

〈v, w〉 := vαw
α , [v, w] := vα̇w

α̇(1.4)

with the convention, following [BDKM04], that indices are raised and lowered via

λα = εαβλβ , λ̃α̇ = εα̇β̇λ̃
β̇ , λα = λβεβα , λ̃α̇ = λ̃β̇ε

β̇α̇

where

ε12 = ε12 = 1 , ε1̇2̇ = ε1̇2̇ = −1 , antisymmetric

Here, εαβ may be identified with the matrix ε =

(
0 1
−1 0

)
.

Lemma 1.1.5 (Schouten Identity).

aγb
γcα + bγc

γaα + cγa
γbα = 0 or, equivalently, 〈a, b〉 c+ 〈b, c〉 a+ 〈c, a〉 b = 0

Proof. Using the identity εαβεγδ = δαγδβδ − δαδδβγ , we yield

εαβεγδ + εγαεβδ + εβγεαδ

= δαγδβδ − δαδδβγ + δγβδαδ − δγδδαβ + δβαδγδ − δβδδγα
= δαγδβδ − δβδδγα + δγβδαδ − δαδδβγ + δβαδγδ − δγδδαβ
= 0

and the statement follows upon contracting either side with aαbβcγ .

The Clifford relation is γµγν + γνγµ = 2ηµν , and the Dirac matrices can be written,
in the so called chiral form,

γµ =

(
02 σµ

αβ̇

σµα̇β 02

)
, γ5 = iγ0γ1γ2γ3 =

(
12 02

02 −12

)
(1.5)
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where σµα̇β = (1,σ) and σµ
αβ̇

= (1,−σ) with the vector σ of Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
One easily checks that the chiral Dirac matrices indeed satisfy the Clifford relation. In
terms of the σ-matrices, it reads

σµαγ̇σ
νγ̇β + σναγ̇σ

µγ̇β = 2ηµνδβα , σµα̇γσν
γβ̇

+ σνα̇γσµ
γβ̇

= 2ηµνδα̇
β̇

(1.6)

As usual, the volume element γ5 is an involution (γ5γ5 = 14) and the spinor module
decomposes into its eigenspaces ∆±1,3

∼= C2 to the eigenvalues ±1. Elements of ∆±1,3 are
called Weyl spinors. The chiral form of the Dirac matrices is constructed such that a
Dirac spinor ψ decomposes, using the above notation, into the Weyl spinors λα and λ̃α̇,
on which the standard spinor representation of Spin+(1, 3) acts in the aforementioned
way (standard or conjugate). The indices α and α̇ are, therefore, also referred to as Weyl
indices. Consult [Str04] for more on the representation theory of spinors in Minkowski
space.

Let C be an invertible matrix (which operates on ∆1,3) that satisfies the following
property (following the conventions used in [Ton07]).

γµC = −C(γµ)∗ , ψ(c) := Cψ∗(1.7)

C is referred to as charge conjugation. While not being unique, it can be shown that a
charge conjugation matrix exists in any Lorentz space R1,d−1 (cf. [Tod11]). The concrete
shape of C clearly depends on the representation of the gamma matrices chosen. In
Minkowski space with chiral Dirac matrices as stated above, a possible choice is

C1,3 := iγ2 =

(
0 −ε
ε 0

)
(1.8)

A straightforward calculation shows that, in general, the charge conjugated Dirac spinor
ψ(c) transforms like ψ under a Lorentz transformation. As for the name, note that ψ
satisfies the Dirac equation γµD

µψ = 0 if and only if ψ(c) satisfies the same equation with
the coupling constant g (which equals the electric charge e in quantum electrodynamics)
replaced by −g (for notation cf. Sec. 1.2 below, the calculation can be found in [Ton07]).

Spinors with the property ψ(c) = ψ are called Majorana spinors. Upon quantisation,
a Majorana spinor is a fermion which is its own anti-particle. Majorana spinors that live
in either space ∆±1,3 are, therefore, referred to as Majorana-Weyl spinors. The Majorana
property is in fact a reality condition. Indeed, Majorana spinors exist if and only if the
corresponding (complex) pinor representation admits a real structure (cf. [FO06]). This
is not true for every spacetime signature. Moreover, the Majorana and Weyl conditions
can be mutually exclusive, as it is the case for the Minkowski signature.

Minkowski Space II: Vectors and Tensors

It turns out to be convenient to write vectors and tensors in terms of spinor indices. We
need the following three lemmas concerning the sigma matrices.

Lemma 1.1.6. The matrices σ and σ can be identified as follows.

σµα̇β = εβγσµ
γδ̇
εδ̇α̇ = σµβα̇
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Proof. From the explicit form of the Pauli matrices we see that εσT ε = σ and, therefore,

εβγσµ
γδ̇
εδ̇α̇ = (εσµ(−ε))T = −ε(1,−σ)T ε = (−ε2, εσT ε) = (1,σ) = σµα̇β

Lemma 1.1.7. Contraction of the spacetime indices can be written as follows.

σµ
αβ̇
σµγδ̇ = −2εαγεβ̇δ̇

Proof. By a direct calculation, using the explicit form of Pauli matrices, we obtain

σµ
1β̇
σµ1δ̇ = σ0

1β̇
σ0

1δ̇
− σ1

1β̇
σ1

1δ̇
− σ2

1β̇
σ2

1δ̇
− σ3

1β̇
σ3

1δ̇

= δ1β̇δ1δ̇ − δ2β̇δ2δ̇ − (−i)(−i)δ2β̇δ2δ̇ − δ1β̇δ1δ̇ = 0

and

σµ
2β̇
σµ2δ̇ = σ0

2β̇
σ0

2δ̇
− σ1

2β̇
σ1

2δ̇
− σ2

2β̇
σ2

2δ̇
− σ3

2β̇
σ3

2δ̇

= δ2β̇δ2δ̇ − δ1β̇δ1δ̇ − (i)(i)δ1β̇δ1δ̇ − (−1)(−1)δ2β̇δ2δ̇ = 0

and

σµ
1β̇
σµ2δ̇ = σ0

1β̇
σ0

2δ̇
− σ1

1β̇
σ1

2δ̇
− σ2

1β̇
σ2

2δ̇
− σ3

1β̇
σ3

2δ̇

= δ1β̇δ2δ̇ − δ2β̇δ1δ̇ − (−i)(i)δ2β̇δ1δ̇ − (−1)δ1β̇δ2δ̇

= 2
(
δ1β̇δ2δ̇ − δ2β̇δ1δ̇

)
= −2εβ̇δ̇

By these calculations, the statement is immediate.

Lemma 1.1.8. Contraction of the spinor indices can be written as follows.

σµαα̇σ
ναα̇ = 2ηµν

Proof. Using ε = iσ2, we calculate

σµαα̇σ
ναα̇ = σµαα̇ε

αβσν
ββ̇
εβ̇α̇ = εβασµαα̇ε

α̇β̇σν
ββ̇

= tr
(
εσµ(−ε)(σν)T

)
= tr

(
σ2σµσ2(σν)T

)
In the case µ = 2, we thus obtain

σ2
αα̇σ

ναα̇ = −tr
(
σ2σ2σ2(σν)T

)
= −tr

(
σ2(σν)T

)
= −(−1)δν2tr

(
σ2σν

)
= −(−1)ν∈{1,3}tr

(
σ2σν

)
= −(−1)ν∈{1,3}2δν2

= −2δν2

while in the case µ 6= 2, we yield

σµαα̇σ
ναα̇ = (−1)µ∈{1,3}tr

(
σ2σ2σµ(σν)T

)
= (−1)µ∈{1,3}tr

(
σµ(σν)T

)
= (−1)µ∈{1,3}(−1)δν2tr (σµσν)

= (−1)µ∈{1,3}(−1)δν2tr (σµσν)

= (−1)µ∈{1,3}(−1)δν22δµν

= (−1)µ∈{1,3}2δµν

Taken together, the statement is proved.
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It will turn out to be convenient to use the sigma matrices to assign a bispinor to a
vector pµ as follows.

pαα̇ := σµαα̇pµ = σµα̇αpµ =: pα̇α(1.9)

where the equality in the middle holds true by Lem. 1.1.6. In the following, we shall
make implicit use of (1.9) along with the identification pαα̇ = pα̇α. Lem. 1.1.8 implies
that

pαα̇k
αα̇ = σµαα̇pµσ

ναα̇kν = 2ηµνpµkν = 2pµk
µ(1.10)

It follows that for lightlike pµ (p2 = 0), the rank of the matrix pαα̇ is at most 1 and,
therefore, there are Weyl spinors λα and λ̃α̇ (which are unique up to a scaling invariance)
such that

p2 = 0 =⇒ pαα̇ = λαλ̃α̇(1.11)

Defining

σµν β
α :=

i

2

(
σµαγ̇σ

νγ̇β − σναγ̇σµγ̇β
)
, σµνα̇

β̇
:=

i

2

(
σµα̇γσν

γβ̇
− σνα̇γσµ

γβ̇

)
(1.12)

we may similarly assign two bispinors

Fαβ := Fµνσ
µναβ , F α̇β̇ := Fµνσ

µνα̇β̇(1.13)

to an antisymmetric 2-tensor Fµν . It follows at once that Fαβ = F βα.

Lemma 1.1.9. Identifying Fµν with a four-spinor according to (1.9), the following
identities hold, provided that Fµν is antisymmetric.

Fαα̇ ββ̇ = − i
2
εα̇β̇Fαβ +

i

2
εαβFα̇β̇ , FµνF

µν = −1

8
FαβF

αβ − 1

8
Fα̇β̇F

α̇β̇

Proof. We calculate

εαβε
αβ = −εαβεβα = −εαβεβα = −tr(ε2) = −tr(−id) = 2

and, using Lem. 1.1.6 and Lem. 1.1.8,

−2i(σµν)αβε
αβ =

(
σµαγ̇σ

νγ̇
β − σ

ν
αγ̇σ

µγ̇
β

)
εαβ

=
(
σµαγ̇σ

νγ̇α − σναγ̇σµγ̇α
)

=
(
σµαγ̇σ

ναγ̇ − σναγ̇σµαγ̇
)

= 2ηµν − 2ηνµ

= 0



10 1 N = 4 Super Yang-Mills Theory

Therefore, only the second term of the right hand side of the first equation survives
upon contraction with εαβ, and we yield(

− i
2
εα̇β̇Fαβ +

i

2
εαβFα̇β̇

)
εαβ =

i

2
2Fα̇β̇

= iFµν(σµν)α̇β̇

= −1

2
Fµν

(
σµα̇ασ

ν
ββ̇
− σνα̇ασ

µ

ββ̇

)
εβα

=
1

2
Fµν

(
σµαα̇σ

ν
ββ̇
− σναα̇σ

µ

ββ̇

)
εαβ

= Fµνσ
µ
αα̇σ

ν
ββ̇
εαβ

= Fαα̇ ββ̇ε
αβ

and, similarly, (
− i

2
εα̇β̇Fαβ +

i

2
εαβFα̇β̇

)
εα̇β̇ = Fαα̇ ββ̇ε

α̇β̇

Taken together, the first statement follows.

To show the second statement, we use the expression derived in the first as well as
Lem. 1.1.8 to obtain

FµνF
µν =

1

4
Fαα̇ ββ̇F

αα̇ ββ̇

=
1

4

(
− i

2
εα̇β̇Fαβ +

i

2
εαβFα̇β̇

)(
− i

2
εα̇β̇Fαβ +

i

2
εαβF α̇β̇

)
=

1

4

(
−1

4
εα̇β̇Fαβε

α̇β̇Fαβ − 1

4
εαβFα̇β̇ε

αβF α̇β̇
)

= −1

8
FαβF

αβ − 1

8
Fα̇β̇F

α̇β̇

using that the mixed terms vanish by the first calculation in this proof.

Six-Dimensional Euclidean Space

Consider the vector space R6 with the metric η = diag(−,−,−,−,−,−). We denote
the standard basis by (ê1, . . . , ê6) and let va denote the coefficients of a vector v = vaêa.
The representation space ∆0,6

∼= C8 of the spinor representation has dimension eight.
For elements ψ ∈ ∆0,6, we use the convention

ψ =

(
λA

λA

)
=
(
λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

)T
with λA, λA ∈ C4 and upper and lower indices A ∈ {1, 2, 3, 4}. The Clifford relation is
γ̂aγ̂b + γ̂bγ̂a = −2δab, and the Dirac matrices can be written

γ̂a =

(
04 ΣaAB

Σ
a
AB 04

)
, γ̂7 = iγ̂1γ̂2γ̂3γ̂4γ̂5γ̂6 =

(
14 04

04 −14

)
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where Σ and Σ denote the sigma matrices

(Σ1AB, . . . ,Σ6AB) = (η1AB, η2AB, η3AB, iη1AB, iη2AB, iη3AB)

(Σ
1
AB, . . . ,Σ

6
AB) = (η1AB, η2AB, η3AB,−iη1AB,−iη2AB,−iη3AB)

which are defined in terms of the ’t Hooft symbols

ηiAB := εiAB + δiAδ4B − δiBδ4A , ηiAB := εiAB − δiAδ4B + δiBδ4A

One easily checks that the Dirac matrices stated indeed satisfy the Clifford relation.
Analogous to the Minkowski case, the spinor module decomposes into the eigenspaces
∆±0,6

∼= C4 of the volume element γ̂7 such that, using the above notation, a (Dirac)

spinor ψ decomposes into the Weyl spinors λA and λA. As for any Euclidean signature,
it is possible to define charge conjugation by a property similar to (1.7). We omit the
details and refer the reader to [Tod11].

We denote by εABCD the antisymmetric four-tensor, which is normalised to ε1234 = 1.
It satisfies the identity

εDABCεDKLM = δKLMABC + δKLMBCA + δKLMCAB − δKLMCBA − δKLMBAC − δKLMACB(1.14)

where the delta symbols on the right hand side are defined to be 1 if the lower indices
coincide with the upper ones, and 0 otherwise. By simple calculations, the ’t Hooft
symbols are seen to have the following properties.

ηiAB =
1

2
εABCD ηiCD , ηiAB = −1

2
εABCD ηiCD

ηiABηjAB = 4δij , ηiABηjAB = 4δij , ηiABηjAB = 0

ηiABηiCD = δACδBD − δADδBC + εABCD

ηiABηiCD = δACδBD − δADδBC − εABCD

The next lemma follows as an immediate corollary.

Lemma 1.1.10. The sigma matrices satisfy the following identities.

Σ
a
AB = (ΣaAB)∗ =

1

2
εABCD ΣaCD , ΣaAB =

1

2
εABCD Σ

a
CD

Σ
a
ABΣ

a
CD = 2εABCD , ΣaABΣ

b
AB = 4δab

By the first equation Σ
a
AB = −Σ

a
BA is, in particular, antisymmetric.

Analogous to (1.9), we assign a matrix to a vector φM as follows.

φAB :=
1√
2

ΣM ABφM , φAB :=
1√
2

Σ
a
ABφ

a(1.15)

By Lem. 1.1.10, they are related via

φAB = (φAB)∗ =
1

2
εABCDφ

CD , φAB = (φAB)∗ =
1

2
εABCD φCD(1.16)

and the scalar product can be written as a trace:

XABY AB =
1

2
ΣaABΣ

b
ABX

aY b = 2XaY a = −2XaYa(1.17)

In particular, it follows that XABY AB = XABY
AB.
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Ten-Dimensional Lorentz Space

Consider the vector space R10 with the metric η = diag(+,−, . . . ,−). We denote the
standard basis by (e1, . . . , e10) and let vM denote the coefficients of a vector v = vMeM
The representation space ∆1,9

∼= C32 of the spinor representation has dimension 32. For
elements ξ ∈ ∆1,9, we use the convention

ξ =

(
1
0

)
⊗
(
ξAα
ξ̃α̇A

)
+

(
0
1

)
⊗
(
ξαA
ξ̃α̇A

)
with ξAα , ξ̃

α̇A, ξαA, ξ̃
α̇
A ∈ C8 and indices α, α̇ ∈ {1, 2} as well as upper and lower indices

A ∈ {1, 2, 3, 4}. The Clifford relation is ΓMΓN +ΓNΓM = 2ηMN , and the Dirac matrices
ΓM and the volume element Γ11 can be constructed from those of R1,3 and R6 as follows.

ΓM =

{
18 ⊗ γµ for M = µ ∈ {0, 1, 2, 3}
γ̂a ⊗ γ5 for M = a+ 3 ∈ {4, 5, 6, 7, 8, 9} , Γ11 = γ̂7 ⊗ γ5

One easily checks that the Dirac matrices stated indeed satisfy the Clifford relation.
Weyl spinors are defined as usual. Using the explicit forms for γ5 and γ̂7 as stated
above, the defining equation Γ11ξ = ξ for ξ ∈ ∆+

1,9
∼= C16 reads

Γ11ξ =

(
1
0

)
⊗
(

ξAα
−ξ̃α̇A

)
−
(

0
1

)
⊗
(
ξαA
−ξ̃α̇A

)
!

= ξ

which is equivalent to the vanishing of ξ̃α̇A = ξαA = 0. Therefore,

ξ ∈ ∆+
1,9 ⇐⇒ ξ =

(
1
0

)
⊗
(
ξAα
0

)
+

(
0
1

)
⊗
(

0

ξ̃α̇A

)
(1.18)

Charge conjugation is defined as in (1.7) with γµ replaced by ΓM , and the subsequent
remarks (concerning every Lorentz spacetime signature (1, d− 1)) apply in particular to
the present case of d = 10. We choose the explicit form

C1,9 :=

(
0 14

14 0

)
⊗ C1,3

with C1,3 as defined in (1.8). One easily checks that C1,9 satisfies the analogon of (1.7).
Indeed, for M ∈ {0, 1, 2, 3} this is induced by the properties of C1,3 while for M ≥ 4,

this follows from γ5C1,3 = −C1,3γ
5 = −C1,3(γ5)∗ and γ̂a

(
0 14

14 0

)
=

(
0 14

14 0

)
(γ̂a)∗

where the latter equation holds by definition of γ̂a and Lem. 1.1.10.
It turns out that, unlike in the Minkowski case, the Majorana and Weyl conditions

ξ = ξ(c) and, respectively, Γ11ξ = ξ can be (non-trivially) satisfied at the same time:
For a Weyl spinor ξ ∈ ∆+

1,9, the Majorana condition reads

C1,9ξ
∗ =

(
0
1

)
⊗
(

0
ε · (ξAα )∗

)
+

(
1
0

)
⊗
(
−ε · (ξ̃α̇A)∗

0

)
!

= ξ

which can be written

ξ = ξ(c) ∈ ∆+
1,9 ⇐⇒ (ξ̃α̇A)∗ = ξAα and (ξαA)∗ = ξ̃α̇A(1.19)

Setting ξ := ξ†Γ0, the assertion (ξ,Ψ) 7→ ξΨ defines an indefinite Hermitian scalar
product which is invariant under the action of Spin+(1, 9), a construction which gener-
alises to all spacetime signatures (cf. [Bau81]).
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Lemma 1.1.11. Let ξ and Ψ be Majorana-Weyl spinors. Then

ξΓµΨ = ξ̃α̇Aσ
µα̇βψAβ + ξαAσµ

αβ̇
ψ̃β̇A , ξΓa+3Ψ = −ΣaAB ξ̃α̇Aψ̃

α̇
B + Σ

a
ABξ

αAψBα

Proof. Using (1.19), we calculate

ξ = ξ†Γ0 =
((

1 0
)
⊗
(
ξ̃α̇A 0

)
+
(
0 1

)
⊗
(
0 ξαA

))
(18 ⊗ γ0)

=
(
1 0

)
⊗
(
0 ξ̃α̇A

)
+
(
0 1

)
⊗
(
ξαA 0

)
We thus obtain

ξΓµΨ = ξ(18 ⊗ γµ)Ψ =
(
0 ξ̃α̇A

)
γµ
(
ψAβ
0

)
+
(
ξαA 0

)
γµ

(
0

ψ̃β̇A

)
= ξ̃α̇Aσ

µα̇βψAβ + ξαAσµ
αβ̇
ψ̃β̇A

and

ξΓa+3Ψ = ξ(γ̂a ⊗ γ5)Ψ =
(
1 0

)
γ̂a
(

0
1

)
(−ξ̃α̇Aψ̃α̇B) +

(
0 1

)
γ̂a
(

1
0

)
(ξαAψBα )

= −ΣaAB ξ̃α̇Aψ̃
α̇
B + Σ

a
ABξ

αAψBα

which concludes the proof of the statement.

From the explicit formulas in Lem. 1.1.11 and the properties of sigma matrices (Lem.
1.1.6 and Lem. 1.1.10) immediately find, for Majorana-Weyl spinors,

ξΓMΨ = (−1)|ξ||Ψ|ΨΓMξ(1.20)

where |ξ| denotes the Grassmann parity of ξ as in Sec. 1.1.1.

1.2 The Fields and the Lagrangian

In this section, we introduce the fields and the Lagrangian of N = 4 super Yang-Mills
(SYM) theory in Minkowski space as induced by N = 1 SYM theory in ten dimensions.
The gauge group is SU(N) and the coupling constant g ∈ R. As usual in particle
physics, we adopt units such that ~ = c = 1.

In general, a Lagrangian L in d dimensions is considered only up to transforma-
tions which leave the action

∫
ddxL invariant, thus leading to the same Euler-Lagrange

equations (cf. Sec. 1.4). We assume that every field B(x) goes sufficiently fast to 0 as
|x| → ∞. Then, the addition of any exact term to L is such an invariance transforma-
tion. In particular, we are free to move around the covariant derivative DM as shown
in the next lemma.

Lemma 1.2.1. Let B and C be matrix valued fields (Grassmann even or odd) which
go sufficiently fast to 0 as |x| → ∞. Then∫

ddx tr
(
B(DMC)

)
= −

∫
ddx tr

(
(DMB)C

)
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Proof. For DM replaced by ∂M , this follows simply from the product rule, writing∫
:=
∫
ddx for brevity:

0 =

∫
∂M tr(BC) =

∫
tr(∂M (BC)) =

∫
tr
(
(∂MB)C +B(∂MC)

)
Moreover, using both parts of Lem. 1.1.1, we yield∫

tr
(
B(DMC)

)
=

∫
tr
(
B∂MC − igB

[
AM , C

])
=

∫
tr
(
B∂MC − (−1)|B||C|igC

[
B, AM

])
=

∫
tr
(
−(∂MB)C + (−1)|B||C|igC

[
AM , B

])
=

∫
tr
(
−(∂MB)C + ig

[
AM , B

]
C
)

= −
∫

tr
(
(DMB)C

)

The Field Content

We introduce the field content of N = 4 SYM. First, denote the gauge field (gluon) by
A. To fix notation, this is supposed to mean that −igA ∈ Ω1(R4, su(N)) is a connection
on R4 with covariant derivative (in the adjoint representation)

Dµf = ∂µf − ig [Aµ, f ]

for any su(N)-valued field f (cf. [Bau09] and [Bär09] for the general theory of connec-
tions). Let F denote the field strenth, i.e. −igF ∈ Ω2(R4, su(N)) is the curvature form
of the connection −igA. This implies that

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] ∈ C∞(R4, i · su(N))

such that, obviously, Fµν = −Fνµ. Moreover, F satisfies the Bianchi identity

DµFνκ = DνFµκ +DκFνµ(1.21)

A gauge transformation translates one connection into another. In general, this is a
diffeomorphism of the principal fiber bundle (here, the frame bundle of Minkowski space)
which is compatible with the action of the Lie group (here SU(N)). In our context, there
is a bijection with the set of smooth maps V : R4 → SU(N), and the action of such a
gauge transformation can be written

Aµ 7→ V ·
(
Aµ +

i

g
∂µ

)
· V † , Fµν 7→ V · Fµν · V †(1.22)

Yang-Mills theories are constructed such as to be symmetric under gauge transforma-
tions (cf. [Ebe89]). In terms of the next section, gauge transformations are thus finite
symmetries. This applies, in particular, to N = 4 SYM theory. We leave the proof to
the reader as an exercise.
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The field content further consists of six ”scalar” fields

φM ∈ C∞(R4, i · su(N)) , M = 1, . . . , 6

which are rewritten as fields φAB and φAB according to (1.15), and fermions

ψAα , ψ̃
α̇
A ∈ C∞(R4, i · su(N)) , (ψAα )∗ = ψ̃α̇A , A ∈ {1, 2, 3, 4} , α, α̇ ∈ {1, 2}

It is implicitly understood that the fermions are Grassmann odd, in the sense as ex-
plained in Sec. 1.1.1, while the gauge and scalar fields, being bosons, are even.

Lemma 1.2.2. With the definition (1.13), we have

Fαβ = i∂αγ̇A
βγ̇ + i∂βγ̇A

αγ̇ + g
[
Aαγ̇ , A

γ̇β
]

Proof. This is shown by the following straightforward calculation.

Fαβ =
i

2
(∂µAν − ∂νAµ − ig [Aµ, Aν ])

(
σµαγ̇σ

νγ̇β − σναγ̇σµγ̇β
)

= i∂µAν

(
σµαγ̇σ

νγ̇β − σναγ̇σµγ̇β
)

+ i(−ig) [Aµ, Aν ]σµαγ̇σ
νγ̇β

= i∂αγ̇A
γ̇β − i∂γ̇βAαγ̇ + g

[
Aαγ̇ , A

γ̇β
]

= i∂αγ̇A
βγ̇ + i∂βγ̇A

αγ̇ + g
[
Aαγ̇ , A

γ̇β
]

Let A ∈ Ω1(R10, i · su(N)) be a connection on R10 and Ψ ∈ C∞(R10,∆+
1,9 ⊗ isu(N))

be an (odd) Majorana-Weyl spinor, such that A and Ψ only depend on the coordinates
xµ on R4 ⊆ R10. Then, prescribing,

Aµ := AM for M = µ ∈ {0, 1, 2, 3} , φM := AM+3 for M ∈ {1, . . . , 6}(1.23)

and using the explicit form (1.19) for Ψ, the fields stated are easily obtained, a technique
referred to as dimensional reduction.

The Lagrangian from Dimensional Reduction

Dimensional reduction allows the canonical construction of a Lagrangian in Minkowski
space out of a Lagrangian in ten-dimensional Lorentz space. Consider thus the N = 1
SYM Lagrangian

L10 := tr

(
−1

2
FMNF

MN + iΨΓMD
MΨ

)
(1.24)

We will see in the next section that it is supersymmetric, from which supersymmetry
of the dimensionally reduced Lagrangian L4 in Minkowski space, to be calculated next,
then easily follows.

Lemma 1.2.3. Dimensional reduction of L10 to Minkowski space yields L4 as follows,
which is referred to as the N = 4 SYM Lagrangian.

L4 = tr

(
−1

2
FµνF

µν +
1

2
(Dµφ

AB)(DµφAB) +
1

8
g2
[
φAB, φCD

] [
φAB, φCD

]
+2i ψ̃α̇Aσ

α̇β
µ DµψAβ −

√
2 gψαA

[
φAB, ψ

B
α

]
+
√

2 gψ̃α̇A

[
φAB, ψ̃α̇B

])
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Proof. We calculate

−1

2
FMNF

MN = −1

2
FµνF

µν − 1

2
FabF

ab − FµaFµa

thus already obtaining the first term of L4. Since ∂aAb = 0 by dimensional reduction,
we obtain F ab = −ig

[
Aa, Ab

]
. Lem. 1.17 then yields, for the second term,

−1

2
FabF

ab = −1

2
(−ig)(−ig) [Aa, Ab]

[
Aa, Ab

]
=

1

8
g2
[
φAB, φCD

] [
φAB, φCD

]
while the third term gives

−FµaFµa = −(DµAa)(D
µAa)

= (DµA
a)(DµAa)

=
1

2
(Dµφ

AB)(DµφAB)

Moreover, by Lem. 1.1.11, Lem. 1.1.6 and Lem. 1.2.1 we yield

ΨDµΓµΨ = ψ̃α̇Aσ
µα̇βDµψ

A
β + ψαAσµ

αβ̇
Dµψ̃

β̇
B

= 2ψ̃α̇Aσ
µα̇βDµψ

A
β + exact

and, similarly,

ΨDaΓ
aΨ = −ΣaABψ̃α̇ADaψ̃

α̇
B + Σ

a
ABψ

αADaψ
B
α

= −ΣaABψ̃α̇A(−ig)
[
Aa, ψ̃

α̇
B

]
+ Σ

a
ABψ

αA(−ig)
[
Aa, ψ

B
α

]
= −ig

√
2ψ̃α̇A

[
φAB, ψ̃α̇B

]
+ ig
√

2ψαA
[
φAB, ψ

B
α

]
This concludes the derivation of L4.

Writing Aµ = AaµT a with generators T a of i · su(N), and analogous for the other
fields, we obtain the following form of the Lagrangian, which turns out to be useful in
the derivation of the Feynman rules in Sec. 1.5.

Lemma 1.2.4. The Lagrangian L4, written in component form, reads

L4 = −1

4
(∂µA

c
ν − ∂νAcµ)2 +

1

4
(∂µφ

cAB)(∂µφ
c
AB) + iψ̃cα̇Aσ

α̇β
µ ∂µψcAβ

− gfabc(∂µAaν)AbµAcν − g2

4
fabef cdeAaµA

b
νA

cµAdν

+
g

2
fabcAaµφ

b
AB(∂µφ

cAB) +
g2

4
fabef cdeAaµφ

bABAcµφ
d
AB

+ igfabcσα̇βµ AaµψbAβ ψ̃cα̇A −
√

2ig

2
fabcφ

a
ABψ

bB
α ψcαA +

√
2ig

2
fabcφaABψ̃bα̇B ψ̃

c
α̇A

− g2

16
fabef cdeφaABφbCDφ

c
ABφ

d
CD
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Proof. The first three terms ∼ g0 follow directly from replacing Dµ by ∂µ and using the
normalisation (1.2). The gluon terms (second line) are obtained by Lem. 1.1.3 to be

L4|g1,gluon = −1

2
tr(FµνF

µν)|g1

= ig tr ((∂µAν − ∂νAµ) [Aµ, Aν ])

= −g
2

(∂µA
c
ν − ∂νAcµ)AaµAbνfabc

= −g(∂µA
c
ν)AaµAbνfabc

= −gfabc(∂µAaν)AbµAcν

and, similarly,

L4|g2,gluon = −1

2
tr(FµνF

µν)|g2

= −1

2
tr ((−ig [Aµ, Aν ])(−ig [Aµ, Aν ]))

=
g2

2
tr ([Aµ, Aν ] [Aµ, Aν ])

=
g2

2
AaµA

b
νA

cµAdνtr
([
T a, T b

] [
T c, T d

])
=
g2

2
AaµA

b
νA

cµAdνifabetr
(
T e
[
T c, T d

])
= −g

2

4
fabef cdeAaµA

b
νA

cµAdν

We further calculate the gluon-scalar terms (third line)

L4|g1,gluon−scalar = − ig
2

tr
(
(∂µφ

AB)
[
Aµ, φAB

]
+
[
Aµ, φ

AB
]

(∂µφAB)
)

= −ig tr
(
(∂µφ

AB)
[
Aµ, φAB

])
=
g

2
fabcAaµφ

b
AB(∂µφ

cAB)

and

L4|g2,gluon−scalar = −g
2

2
tr
([
Aµ, φ

AB
] [
Aµ, φAB

])
=
g2

4
fabef cdeAaµφ

bABAcµφ
d
AB

The fourth line with terms containing fermions is immediate, while the four-scalar term
(last line) is obtained by

L4|g2,scalar =
g2

8
tr
([
φAB, φCD

] [
φAB, φCD

])
=
g2

8
φaABφbCDφ

c
ABφ

d
CDtr(ifabeT eif cdfT f )

= −g
2

16
fabef cdeφaABφbCDφ

c
ABφ

d
CD

This concludes the derivation of the component form.
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1.3 Supersymmetry

In general, a (finite) symmetry of a (classical) field theory is a transformation of the
fields which leaves the action invariant. This holds in particular for a transformation
that alters the Lagrangian at most by an exact term. In good cases, the symmetries of
a theory are induced by the action of some Lie group. Differentiation then yields the
corresponding Lie algebra action which acts by derivations that cancel the Lagrangian
(up to an exact term). This is referred to as an infinitesimal symmetry. In the following,
saying ”symmetry”, we will exclusively mean one or several derivations δ which are, by
definition, linear and satisfy the product rule

δ(BC) = δ(B)C +Bδ(C)(1.25)

where B and C are any two fields of the theory. In particular, we do not care about
whether such a ”symmetry” is indeed an infinitesimal symmetry. Consult [DF99a] for a
more in-depth treatment.

A supersymmetry (finite or infinitesimal) is a symmetry that exchanges bosons and
fermions. Some supersymmetric field theories admit a so called superspace formulation,
in which the fields can all be combined into a single morphism of supermanifolds and
such that ”supersymmetry” really means infinitesimal supersymmetry (cf. [DF99b] and
[Hél09]). For N = 4 SYM theory, such a formulation seems not to be known.

However, N = 4 SYM does have supersymmetry transformations (in the simplified
meaning explained). They are most conveniently obtained by dimensional reduction
from supersymmetry transformations of the ten-dimensional theory as follows. Let ξ ∈
∆+

1,9 be a constant (odd) Majorana-Weyl spinor and consider the following derivations.

δΨ =
i

2
FMNΓMNξ , δAM = −iξΓMΨ , ΓMN :=

i

2
(ΓMΓN − ΓNΓM )(1.26)

By the next theorem, they are indeed symmetries.

Theorem 1.3.1. L10 is invariant under supersymmetry transformations (1.26), i.e.

δL10 = 0

holds (up to an exact term).

Proof. We proof that the variation of the bosonic part of the Lagrangian cancels with
that of the fermionic part, up to exact terms (which are not of interest) and an expression
trilinear in the spinor field Ψ which can be shown to vanish.

We calculate the variation of the bosonic part:

δ tr

(
−1

2
FMNF

MN

)
= −tr

(
(δFMN )FMN

)
= −tr

(
δ(∂MAN − ∂NAM − ig [AM , AN ])FMN

)
= −2tr

(
(∂MδAN − ig [AM , δAN ])FMN

)
= 2itr

(
ξΓN∂MΨ− ig

[
AM , ξΓNΨ

])
= 2itr

(
(ξΓNDMΨ)FMN

)
= 2igMLtr

(
ξΓN (DLΨ)FMN

)
= −2i gMLtr

(
ξΓNΨDLFMN

)
(+ exact)

= 2i gMLtr
(
ΨΓND

LFMNξ
)

(+ exact)
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where the last two equation are, respectively, due to Lem. 1.2.1 and (1.20).
We calculate the variation of the fermionic part:

δ tr
(
iΨΓMD

MΨ
)

= itr
(
(δΨ)ΓMD

MΨ
)

+ itr
(
ΨΓMD

MδΨ
)

+ itr
(
ΨΓM (δDM )Ψ

)
=: (1) + (2) + (3)

As a side calculation using iA ∈ su(N), note that

DMΨ = (DMΨ)†Γ0 = DMΨ†Γ0 = DMΨ

Further using F † = F as well as (1.20) and 1.2.1, we see that the first two contributions
coincide:

(1) = −1

2
tr
(
FAB(ΓABξ)ΓM (DMΨ)

)
=

1

2
tr
(
FABDMΨΓMΓABξ

)
=

1

2
tr
(
FABDMΨΓMΓABξ

)
= −1

2
tr
(
(DMFAB)ΨΓMΓABξ

)
= −1

2
tr
(
ΨΓMD

MFABΓABξ
)

= itr
(
ΨΓMD

MδΨ
)

= (2)

Therefore,

(1) + (2) = −tr
(
ΨΓMD

MFABΓABξ
)

= −tr

(
i

2
ΨΓMD

MFAB(ΓAΓB − ΓBΓA)ξ

)
= −itr

(
ΨΓMD

MFABΓAΓBξ
)

= −itr
(
ΨΓLΓMΓND

LFMNξ
)

Using the Clifford relation and the Bianchi identity (1.21), we further yield

ΓLΓMΓND
LFMN

= ΓLΓMΓN

(
2

3
DLFMN +

1

3
DLFMN

)
=

1

3
ΓLΓMΓN

(
2DLFMN +DMFLN +DNFML

)
=

1

3
ΓLΓMΓN

(
DLFMN +DMFLN

)
+

1

3
ΓLΓMΓN

(
DLFMN +DNFML

)
=

1

3
(ΓLΓM + ΓMΓL)ΓND

LFMN +
1

3
(ΓLΓMΓN + ΓNΓMΓL)DLFMN

=
2

3
gMLΓND

LFMN +
1

3
(−ΓLΓNΓM + 2gMNΓL + ΓNΓMΓL)DLFMN

=
2

3
gMLΓND

LFMN +
1

3
(−ΓLΓNΓM + ΓNΓMΓL)DLFMN

=
1

3
(2gMLΓN + ΓNΓLΓM − 2gNLΓM + ΓNΓMΓL)DLFMN

=
1

3
(2gMLΓN + 2ΓNgLM − 2gNLΓM )DLFMN

= 2gMLΓND
LFMN

Summarising, we obtain

(1) + (2) = −itr
(
ΨΓLΓMΓND

LFMNξ
)

= −2igMLtr
(
ΨΓND

LFMNξ
)
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But this is exactly minus the bosonic variation.

Up to exact terms, we finally conclude δL10 = (3) ∼ tr
(
ΨΓM (ξΓMΨ)Ψ

)
. This

expression vanishes by the existence of a normed division algebra in dimension 8. Consult
[BH10] for a very general and self-contained (but abstract) treatment.

N = 4 Supersymmetry from Dimensional Reduction

Performing dimensional reduction upon (1.26) yields the following result concerning
N = 4 SYM theory.

Lemma 1.3.2. L4 is invariant under the following supersymmetry transformations.

δAµ = −iξαAσµ
αβ̇
ψ̃β̇A − iξ̃α̇Aσ

µα̇βψAβ(1.27a)

δφAB = −i
√

2
(
ξαAψBα − ξαBψAα − εABCD ξ̃α̇Cψ̃α̇D

)
(1.27b)

δψAα =
i

2
Fµνσ

µν β
α ξAβ −

√
2(Dµφ

AB)σµ
αβ̇
ξ̃β̇B + ig

[
φAB, φBC

]
ξCα(1.27c)

δψ̃α̇A =
i

2
Fµνσ

µνα̇

β̇
ξ̃β̇A +

√
2(DµφAB)σµα̇βξBβ + ig

[
φAB, φ

BC
]
ξ̃α̇C(1.27d)

In other words, δL4 = 0 holds up to an exact term.

Proof. Lem. 1.1.11 yields

δAµ = −iξΓµΨ = −i
(
ξ̃α̇Aσ

µα̇βψAβ + ξαAσµ
αβ̇
ψ̃β̇B

)
δAa+3 = −iξΓa+3Ψ = −i

(
−ΣaAB ξ̃α̇Aψ̃

α̇
B + Σ

a
ABξ

αAψBα

)
By dimensional reduction (1.23), we thus immediately obtain (1.27a), and (1.27b) follows
from

δφAB =
1√
2

ΣaABδAa

= − i√
2

ΣaAB
(
−ΣaCD ξ̃α̇Cψ̃

α̇
D + Σ

a
CDξ

αCψDα

)
= − i√

2

(
−2εABCD ξ̃α̇Cψ̃

α̇
D + (2δACδBD − 2δADδBC)ξαCψDα

)
= i
√

2
(
εABCD ξ̃α̇Cψ̃

α̇
D − ξαAψBα + ξαBψAα

)
using (1.14) and Lem. 1.1.10. In the following, we blur the distinction between indices
a and a + 3. The respective use should be clear from the context. The curvature term
in the variation of Ψ decomposes into

FMNΓMN = FµνΓµν + F abΓab + 2FµaΓµa

Now, according to definitions (1.5) and (1.12), we obtain

Γµν =
i

2
(18 ⊗ γµγν − 18 ⊗ γνγµ) = 18 ⊗

(
σµν β

α 0

0 σµνα̇
β̇

)
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such that

i

2
FµνΓµνξ =

(
1
0

)
⊗

(
i
2Fµνσ

µν β
α ξAβ

0

)
+

(
0
1

)
⊗

(
0

i
2Fµνσ

µνα̇

β̇
ξ̃β̇A

)

Similarly, we find

Γab =
i

2
(γ̂aγ̂b − γ̂bγ̂a)⊗ (γ5)2

=
i

2

(
ΣaABΣ

b
BC − ΣbABΣ

a
BC 0

0 Σ
a
ABΣbBC − Σ

b
ABΣaBC

)
⊗ 14

Inserting F ab = −ig
[
Aa, Ab

]
(derivatives vanish by dimensional reduction), we thus

yield

i

2
FabΓ

abξ = ig

(
1
0

)
⊗
([
φAB, φBC

]
ξCα

0

)
+ ig

(
0
1

)
⊗
(

0[
φAB, φ

BC
]
ξ̃α̇C

)
Moreover

Γµa =
i

2
γ̂a ⊗ (γµγ5 − γ5γµ) = iγ̂a ⊗ γµγ5

With Fµa = ∂µAa − ig [Aµ, Aa] = DµAa, we thus find

2
i

2
FµaΓ

µaξ = −DµAa(γ̂
a ⊗ γµγ5)ξ

= −DµAa

(
0 ΣaAB

Σ
a
AB 0

)
⊗

(
0 −σµ

αβ̇

σµα̇β 0

)
ξ

=

(
1
0

)
⊗

(
DµAaσ

µ

αβ̇
ΣaAB ξ̃β̇B

0

)
+

(
0
1

)
⊗
(

0

−DµAaσ
µα̇βΣ

a
ABξ

B
β

)

=

(
1
0

)
⊗

(
−
√

2(Dµφ
AB)σµ

αβ̇
ξ̃β̇B

0

)
+

(
0
1

)
⊗
(

0√
2(DµφAB)σµα̇βξBβ

)
in the last step using that Aa = −Aa. Picking up terms in this and the previous
calculations, we arrive at (1.27c) and (1.27d).

Supersymmetry Generators

For any field O (e.g. O = Aµ), we define the supersymmetry generators qαA and q̃Aα̇ by

δO = ξAα q
α
A(O) + ξ̃Aα̇ q̃

Aα̇(O)(1.28)

Note that the supersymmetry generators thus defined are odd superderivations rather
than ordinary derivations (1.25).

Corollary 1.3.3. L4 is invariant under the action of supersymmetry generators, i.e.

qαA(L4) = 0 , q̃Aα̇(L4) = 0

holds up to exact terms.
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Proof. Choosing ξAα := δAA0δαα0 fixes ξ̃Aα̇ by the Majorana condition (1.19), and the
right hand side of (1.28) becomes (qα0

A0
+ q̃A0α̇0)(O). Similarly, ξAα := iδAA0δαα0 leads to

i(qα0
A0
− q̃A0α̇0)(O). By Lem. 1.3.2, both expressions vanish for O replaced by L4 (up to

exact terms) and, therefore, each generator applied to L4 vanishes individually.

Lemma 1.3.4. Thus supersymmetry generators act on the fields as follows.

qαA(Aββ̇) = 2i εαβψ̃β̇A , q̃Aα̇(Aββ̇) = −2i εα̇β̇ψβA

qαA(φBC) = i
√

2 εABCDψ
αD , q̃Aα̇(φBC) = −i

√
2 ψ̃α̇[Bδ

A
C]

qαA(ψBβ) =
i

2
F βαδBA + iεβαg

[
φAC , φ

BC
]
, q̃Aα̇(ψBβ) = −

√
2Dβα̇φAB

qαA(ψ̃β̇B) = −
√

2Dβ̇αφAB , q̃Aα̇(ψ̃β̇B) = − i
2
F β̇α̇δAB + ig

[
φAC , φBC

]
εα̇β̇

Proof. From (1.27a) we immediately find qαA(Aµ) = iσµα
β̇
ψ̃β̇A and q̃Aα̇(Aµ) = −iσµα̇βψAβ .

By Lem. 1.1.7 and Lem. 1.1.6, we thus obtain

qαA(Aββ̇) = σ ββ̇
µ qαA(Aµ) = iσ ββ̇

µ σµαε̇ψ̃
ε̇
A = i(εβγσµγγ̇ε

γ̇β̇)(εαδσµδε̇)ψ̃
ε̇
A

= −2iεβγεγ̇β̇εαδ(εγδεγ̇ε̇)ψ̃
ε̇
A = −2i(εβγεαδεγδ)(ε

γ̇β̇εγ̇ε̇ψ̃
ε̇
A) = −2i εβαψ̃β̇A

and

q̃Aα̇(Aββ̇) = σ ββ̇
µ q̃Aα̇(Aµ) = −iσ ββ̇

µ σµα̇εψAε = −i(εβλσµλλ̇ε
λ̇β̇)(εεγσµ

γδ̇
εδ̇α̇)ψAε

= 2iεβλελ̇β̇εεγεδ̇α̇(ελγελ̇δ̇)ψ
A
ε = 2i(ελ̇β̇εδ̇α̇ελ̇δ̇)(ε

βλεεγελγψ
A
ε ) = 2iεβ̇α̇ψβA

From (1.27b), we find qαA(φBC) = i
√

2
(
δABψαC − δACψαB

)
and, moreover, q̃Aα̇(φBC) =

i
√

2εABCDψ̃α̇D. We thus obtain

qαA(φBC) =
1

2
εBCDEq

α
A(φDE) =

i
√

2

2
εBCAEψ

αE − i
√

2

2
εBCDAψ

αD = i
√

2 εABCDψ
αD

and

q̃Aα̇(φBC) =
1

2
εBCDE q̃

Aα̇(φDE) = i
√

2
1

2
εBCDEε

ADEF ψ̃α̇F = i
√

2
1

2
εDEBCε

DEAF ψ̃α̇F

= i
√

2(δABδCF − δACδBF )ψ̃α̇F = i
√

2(δABψ̃
α̇
C − δACψ̃α̇B) = −i

√
2ψ̃α̇[Bδ

A
C]

From (1.27c) and (1.27d), we find, respectively,

δψBβ =
i

2
Fµνσ

µνβγξBγ −
√

2(Dµφ
BC)σµβγ̇ ξ̃

γ̇
C + ig

[
φBC , φCD

]
ξDβ

= ξAα

(
i

2
Fµνσ

µνβαδAB + ig
[
φBC , φCA

]
εβα
)

+ ξ̃α̇A
√

2(Dµφ
BA)σµβα̇

and

δψ̃β̇B =
i

2
Fµνσ

µνβ̇
γ̇ ξ̃
γ̇
B +
√

2(DµφBC)σµβ̇γξCγ + ig
[
φBC , φ

CD
]
ξ̃β̇D

= ξAα
√

2(DµφBA)σµβ̇α + ξ̃Aα̇

(
− i

2
Fµνσ

µνβ̇α̇δAB + ig
[
φBC , φ

CA
]
εα̇β̇
)

This yields the remaining equations and thus finishes the proof.
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Corollary 1.3.5. The supersymmetry generators act on derived fields as follows.

qαA(F γξ) = −2εαξDγ
γ̇ψ̃

γ̇
A − 2εαγDξ

γ̇ψ̃
γ̇
A

qαA(Dβ̇γφBC) = 2gεαγ
[
ψ̃β̇A, φBC

]
+ i
√

2 εABCDD
β̇γψαD

qαA(Dβ̇γψξB) =
i

2
Dβ̇γF ξαδBA + 2gεαγ

[
ψ̃β̇A, ψ

ξB
]

+ 2iεξαg
[
φAC , D

β̇γφBC
]

+
i

2
εξαg

[
Dβ̇γφDE , φDE

]
δBA

Proof. We use the supersymmetry generators from Lem. 1.3.4. For the first equation,
we use Lem. 1.2.2 to calculate

qαA(F γξ) = qαA

(
i∂γγ̇A

ξγ̇ + i∂ξγ̇A
γγ̇ + g

[
Aγγ̇ , A

γ̇ξ
])

= −2εαξ∂γγ̇ψ̃
γ̇
A − 2εαγ∂ξγ̇ψ̃

γ̇
A + 2igεαγ

[
ψ̃γ̇A, A

γ̇ξ
]

+ 2igεαξ
[
Aγγ̇ , ψ̃

γ̇
A

]
= −2εαξ

(
∂γγ̇ − ig

[
Aγγ̇ , ·

])
ψ̃γ̇A − 2εαγ

(
∂ξγ̇ − ig

[
Aξγ̇ , ·

])
ψ̃γ̇A

= −2εαξDγ
γ̇ψ̃

γ̇
A − 2εαγDξ

γ̇ψ̃
γ̇
A

For the second equation, we calculate

qαA(Dβ̇γφBC) = qαA(Dβ̇γ)φBC +Dβ̇γqαA(φBC)

= −ig
[
qαA(Aβ̇γ), φBC

]
+Dβ̇γqαA(φBC)

= 2gεαγ
[
ψ̃β̇A, φBC

]
+ i
√

2 εABCDD
β̇γψαD

Finally, the third equation follows from

qαA(Dβ̇γψξB) = qαA(Dβ̇γ)ψξB +Dβ̇γqαA(ψξB)

= 2gεαγ
[
ψ̃β̇A, ψ

ξB
]

+
i

2
Dβ̇γF ξαδBA + iεξαgDβ̇γ

[
φAC , φ

BC
]

and

Dβ̇γ
[
φAC , φ

BC
]

=
[
φAC , D

β̇γφBC
]

+
[
Dβ̇γφAC , φ

BC
]

=
[
φAC , D

β̇γφBC
]

+
1

4
εACDEεBCFG

[
Dβ̇γφDE , φFG

]
=
[
φAC , D

β̇γφBC
]

+
1

2

(
δBFGADE + δBFGDEA + δBFGEAD

) [
Dβ̇γφDE , φFG

]
=
[
φAC , D

β̇γφBC
]

+
1

2

[
Dβ̇γφDE , φDE

]
δBA

+
1

2

[
Dβ̇γφBE , φEA

]
+

1

2

[
Dβ̇γφDB, φAD

]
= 2

[
φAC , D

β̇γφBC
]

+
1

2

[
Dβ̇γφDE , φDE

]
δBA

where we used (1.14) and antisymmetry of φDE (Lem. 1.1.10).
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1.4 Euler-Lagrange Equations

We calculate the Euler-Lagrange equations next, that is the equations of motion which
are the critical points of the action functional

∫
d4xL4 corresponding to the N = 4 SYM

Lagrangian L4. They are easily obtained from those of L10 by dimensional reduction,
analogous to the derivation of the supersymmetry transformations in Lem. 1.3.2. For a
change, we perform a direct calculation here.

Lemma 1.4.1. The Euler-Lagrange equations of the N = 4 SYM Lagrangian L4 from
Lem. 1.2.3 are as follows.

DνFνµ = − i
2
g
[
Dµφ

AB, φAB
]

+ gσα̇βµ

[
ψ̃α̇A, ψ

A
β

]
DµDµφ

AB = −1

2
g2
[[
φAB, φCD

]
, φCD

]
+
√

2g
[
ψαA, ψBα

]
−
√

2

2
gεABCD

[
ψ̃α̇C , ψ̃

α̇
D

]
Dα̇βψAβ = i

√
2 g
[
φAB, ψ̃α̇B

]
Dα̇βψ̃α̇A = i

√
2 g
[
φAB, ψ

βB
]

where the bracket denotes the supercommutator (1.1).

Proof. Since ψ and ψ̃ are related to each other by complex conjugation, they may be

treated as independent variables. Consider first a variation ψ̃ = ψ̃ε with dψ̃
dε = γ̃ at ε = 0

and fix the other fields (A,ψ, φ). Using Lem. 1.1.1, we then yield

dL4

dε
|0 =

d

dε
|0tr

(
2i ψ̃α̇Aσ

α̇β
µ DµψAβ +

√
2 gψ̃α̇A

[
φAB, ψ̃α̇B

])
= tr

(
2i γ̃α̇Aσ

α̇β
µ DµψAβ +

√
2 gγ̃α̇A

[
φAB, ψ̃α̇B

]
+
√

2 gψ̃α̇A
[
φAB, γ̃α̇B

])
= tr

(
2i γ̃α̇Aσ

α̇β
µ DµψAβ +

√
2 gγ̃α̇A

[
φAB, ψ̃α̇B

]
−
√

2 gγ̃α̇B

[
ψ̃α̇A, φ

AB
])

= tr
(

2i γ̃α̇Aσ
α̇β
µ DµψAβ + 2

√
2 gγ̃α̇A

[
φAB, ψ̃α̇B

])
The integral thereof is required to vanish for any γ̃, and thus we are lead to the following
Euler-Lagrange equation.

0 = i σα̇βµ DµψAβ +
√

2 g
[
φAB, ψ̃α̇B

]
Next, we consider a variation ψ = ψε with dψ

dε = γ at ε = 0 and fix the other fields

(A, ψ̃, φ). By Lem. 1.2.1, we replace the term involving ψ and ψ̃ to yield

dL4

dε
|0 =

d

dε
|0tr

(
−2i σα̇βµ (Dµψ̃α̇A)ψAβ −

√
2 gψαA

[
φAB, ψ

B
α

])
= tr

(
−2i σα̇βµ (Dµψ̃α̇A)γAβ −

√
2 gγαA

[
φAB, ψ

B
α

]
−
√

2 gψαA
[
φAB, γ

B
α

])
= tr

(
2i γAβ σ

α̇β
µ Dµψ̃α̇A −

√
2 gγαA

[
φAB, ψ

B
α

]
+
√

2 gγBα
[
ψαA, φAB

])
= tr

(
2i γAβ σ

α̇β
µ Dµψ̃α̇A + 2

√
2 gγAα

[
φAB, ψ

αB
])

The integral thereof is required to vanish for any γ, and thus we are lead to the following
Euler-Lagrange equation.

0 = i σα̇βµ Dµψ̃α̇A +
√

2 g
[
φAB, ψ

βB
]
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Next, we consider a variation A = Aε with dA
dε = B at ε = 0. Then

dL4

dε
|0 =

d

dε
|0tr

(
−1

2
FµνF

µν +
1

2
(Dµφ

AB)(DµφAB) + 2i ψ̃α̇Aσ
α̇β
µ DµψAβ

)
=: (1) + (2) + (3)

We further evaluate the first term, using Lem. 1.2.1.

(1) = −tr

(
Fµν

d

dε
|0 (∂µAν − ∂νAµ − ig [Aµ, Aν ])

)
= −tr (Fµν(∂µBν − ∂νBµ − ig [Bµ, Aν ]− ig [Aµ, Bν ]))

= −tr (Fµν(DµBν −DνBµ))

= tr ((DµFµν)Bν − (DνFµν)Bµ)

= 2tr ((DνFνµ)Bµ)

The second term reads

(2) =
1

2
tr
(
Dµφ

AB(−ig)
[
Bµ, φAB

]
+ (−ig)

[
Bµ, φ

AB
]
DµφAB

)
=
i

2
gtr
(
Dµφ

AB
[
φAB, B

µ
]

+DµφAB
[
φAB, Bµ

])
=
i

2
gtr
(
Bµ
[
Dµφ

AB, φAB
]

+Bµ
[
DµφAB, φ

AB
])

=
i

2
gtr
(
Bµ
[
Dµφ

AB, φAB
]
−Bµ

[
φAB, D

µφAB
])

= igtr
(
Bµ
[
Dµφ

AB, φAB
])

while the third equals

(3) = tr
(

2i ψ̃α̇Aσ
α̇β
µ (−ig)

[
Bµ, ψAβ

])
= −2gtr

(
ψ̃α̇Aσ

α̇β
µ

[
ψAβ , B

µ
])

= −2gtr
(
Bµσα̇βµ

[
ψ̃α̇A, ψ

A
β

])
The integral over (1) + (2) + (3) is required to vanish for any B, and thus we are lead
to the following Euler-Lagrange equation.

0 = 2DνFνµ + ig
[
Dµφ

AB, φAB
]
− 2gσα̇βµ

[
ψ̃α̇A, ψ

A
β

]
Next, we consider a variation φ = φε with dφ

dε = ξ at ε = 0. Then

dL4

dε
|0 =

d

dε
|0tr

(
1

2
(Dµφ

AB)(DµφAB) +
1

8
g2
[
φAB, φCD

] [
φAB, φCD

]
−
√

2 gψαA
[
φAB, ψ

B
α

]
+
√

2 gψ̃α̇A

[
φAB, ψ̃α̇B

])
=: (1) + (2) + (3) + (4)
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For the first term we obtain, using (1.17),

(1) =
1

2
tr
(
(Dµξ

AB)(DµφAB) + (Dµφ
AB)(DµξAB)

)
= −1

2
tr
(
ξABDµD

µφAB + ξABD
µDµφ

AB
)

= −tr
(
ξABD

µDµφ
AB
)

The second term is

(2) =
1

4
g2tr

([
φAB, φCD

](∂L
∂ε
|0
[
φAB, φCD

]))
=

1

4
g2tr

([
φAB, φCD

]
(
[
ξAB, φCD

]
+
[
φAB, ξCD

]
)
)

= −1

2
g2tr

([
φAB, φCD

] [
φCD, ξAB

])
= −1

2
g2tr

(
ξAB

[[
φAB, φCD

]
, φCD

])
while the third term equals

(3) =
√

2 gtr
(
ψαA

[
ψBα , ξAB

])
=
√

2 gtr
(
ξAB

[
ψαA, ψBα

])
and the fourth term

(4) = −
√

2 gtr
(
ψ̃α̇A

[
ψ̃α̇B, ξ

AB
])

= −
√

2 gtr
(
ξAB

[
ψ̃α̇A, ψ̃

α̇
B

])
= −
√

2

2
gtr
(
εABCD ξAB

[
ψ̃α̇C , ψ̃

α̇
D

])
The integral over −((1) + (2) + (3) + (4)) is required to for all ξ, and thus we are lead
to the following Euler-Lagrange equation.

0 = DµDµφ
AB +

1

2
g2
[[
φAB, φCD

]
, φCD

]
−
√

2g
[
ψαA, ψBα

]
+

√
2

2
gεABCD

[
ψ̃α̇C , ψ̃

α̇
D

]
This concludes the derivation of the Euler-Lagrange equations as stated.

Corollary 1.4.2. The first Euler-Lagrange equation of Lem. 1.4.1 can be, equivalently,
written

Dβγ̇F γ
β = g

[
Dγγ̇φAB, φAB

]
+ 4ig

[
ψ̃γ̇A, ψ

γA
]

Proof. Supposing that there should be a more elegant proof, we calculate

DνFνµσ
µ
γγ̇ =

1

2
Dββ̇Fββ̇ γγ̇ =

i

4
(−Dββ̇εβ̇γ̇Fβγ +Dββ̇εβγFβ̇γ̇) =

i

4
(D β̇

γ Fβ̇γ̇ +Dβ
γ̇Fβγ)

Moreover, Bianchi’s identity (1.21) yields

D β̇
γ Fβ̇γ̇ = σµ β̇

γ σνκ
β̇γ̇
DµFνκ

=
i

2
(σµ β̇

γ σν λ

β̇
σκλγ̇ − σµ β̇

γ σκ λ

β̇
σνλγ̇)(DνFµκ +DκFνµ)

=
i

2
(σν β̇

γ σµ λ

β̇
σκλγ̇ − σν β̇

γ σκ λ

β̇
σµλγ̇ + σκ β̇

γ σν λ

β̇
σµλγ̇ − σ

κ β̇
γ σµ λ

β̇
σνλγ̇)DµFνκ
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We use the Clifford relation for the respective second and third factors in the first and
fourth term to obtain

D β̇
γ Fβ̇γ̇ =

i

2
(2σν β̇

γ gµκδβ̇γ̇ − σ
ν β̇
γ σκ λ

β̇
σµλγ̇ − σ

ν β̇
γ σκ λ

β̇
σµλγ̇ + σκ β̇

γ σν λ

β̇
σµλγ̇

− 2σκ β̇
γ gµνδβ̇γ̇ + σκ β̇

γ σν λ

β̇
σµλγ̇)DµFνκ

= i(σνγγ̇g
µκ − σκγγ̇gµν + σκ β̇

γ σν λ

β̇
σµλγ̇ − σ

ν β̇
γ σκ λ

β̇
σµλγ̇)DµFνκ

= (−2σκν λ
γ σµλγ̇ + iσνγγ̇g

µκ − iσκγγ̇gµν)DµFνκ

= 2Dλγ̇F
λ

γ + iσνγγ̇D
κFνκ − iσκγγ̇DνFνκ

= 2Dλγ̇F
λ

γ − 2iDνFνµσ
µ
γγ̇

Using the first calculation in this proof, we thus yield

D β̇
γ Fβ̇γ̇ = 2Dλγ̇F

λ
γ +

1

2
(D β̇

γ Fβ̇γ̇ +Dβ
γ̇Fβγ)

and

1

2
D β̇
γ Fβ̇γ̇ = 2Dλγ̇F

λ
γ +

1

2
Dβ

γ̇Fβγ = −2Dλ
γ̇Fγλ +

1

2
Dβ

γ̇Fγβ = −3

2
Dβ

γ̇Fβγ

Now, going back to the first calculation, we obtain

DνFνµσ
µ
γγ̇ =

i

4
(D β̇

γ Fβ̇γ̇ +Dβ
γ̇Fβγ) =

i

4
(−3Dβ

γ̇Fβγ +Dβ
γ̇Fβγ) = − i

2
Dβ

γ̇Fβγ

Using Lem. 1.1.7, we finally arrive at

− i
2
Dβγ̇F γ

β = DνFνµσ
µγγ̇

=

(
− i

2
g
[
Dµφ

AB, φAB
]

+ gσα̇βµ

[
ψ̃α̇A, ψ

A
β

])
σµγγ̇

= − i
2
g
[
Dγγ̇φAB, φAB

]
+ g(σβα̇µ σµγγ̇)

[
ψ̃α̇A, ψ

A
β

]
= − i

2
g
[
Dγγ̇φAB, φAB

]
− 2gεβγεα̇γ̇

[
ψ̃α̇A, ψ

A
β

]
= − i

2
g
[
Dγγ̇φAB, φAB

]
+ 2g

[
ψ̃γ̇A, ψ

γA
]

which concludes the proof of the statement.

1.5 Feynman Rules

Our treatment of N = 4 SYM theory has been completely classical so far. We will now,
for the rest of this chapter, derive the Feynman rules, the diagrammatic building blocks
for perturbatively calculating quantum field theoretic expectation values of observables.
This derivation is conveniently done via the path integral, for which no mathematically
satisfying theory exists. For details, consult the usual books such as [PS95], as well as
[Pol05] and [Kle11] which are better suited for mathematicians.
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QFT in Zero Dimensions

The usual strategy is to study the zero-dimensional case which is, at least in some
cases, sound, and then extend the resulting formulas to the cases of interest. For self-
containedness, let us briefly repeat the relevant facts. Consider R0 = {0} as ”spacetime”
and fields x : R0 → X that assume values in a parameter space X ∼= Rd. The space of
fields can thus be identified with X itself. Consider a Lagrangian of the form

L(x) =
1

2
〈Ax, x〉+ gU(x) , S(x) = L(x)(1.29)

where A is some d × d matrix, U a potential function and g the coupling constant of
the theory. In zero dimensions, the Lagrangian coincides with the action S. The basic
quantity of quantum field theory is the correlation function〈

xi1 , . . . , xim
〉
U

=
1∫

ddx e−S(x)

∫
ddx e−S(x)xi1 · · ·xim(1.30)

In good cases (most notably, A should be invertible and satisfy some definiteness condi-
tion), it can be calculated perturbatively (order by order in g) as summarised next. In
bad cases, some integrals in the derivation are ill-defined but we still use the resulting
formulas and pretend everything to work, since the infinite-dimensional case, which is
of interest, is even less based on solid ground. In all cases, convergence of the gk series
is another subtle question.

First, assume that U can be expanded to a sum U =
∑
Ul of multilinear maps

of the form Ul =
∑

k1,...,kl
Uk1,...,klx

k1 . . . xkl . We think of g · Ul as an l-valent vertex
with label gUk1,...,kl . Now consider graphs with n inner vertices (corresponding to gn),
m external legs (univalent vertices) labelled i1, . . . im (corresponding to xi1 . . . xim) and
edges, labelled

〈
xi, xj

〉
0
, connecting two vertices with labels i and j. We denote the set

of all such graphs which do not contain vacuum diagrams, i.e. components without legs,
by Γnm. Then〈

xi1 , . . . , xim
〉
U

=
∑

Γ∈Γnm

gn

|AutΓ|
∑

labels

∏
edges (i,j)

∏
vertices v

Uv1,...,vlv
〈
xi, xj

〉
0

The symmetry factor |AutΓ| occurs since every graph is considered only up to auto-
morphisms (mapping the graph to itself, thereby only exchanging names of the labels),
whereas the sum

∑
labels leads to vertices being connected in all possible fashions. This

can be rewritten〈
xi1 , . . . , xim

〉
U

=
∑

Γ∈Γnm

gn

|AutΓ|
∏

edges (i,j)
i,j∈{vi,ij}

∏
vertices

v=(v1,...,vl)
Iv
〈
xi, xj

〉
0

(1.31)

where now

Iv = Iv1,...,vl =
∑

permutationsσ
Uσ(v1),...,σ(vl)(1.32)

encodes that edges can end in every possible way (permutation) on the corresponding
vertex.

In usual terminology, Iv1,...,vl is called an inner vertex while
〈
xi, xj

〉
0

is called a
propagator. As the notation suggests, the propagator coincides with the correlation
function with respect to the potential U = 0. One can show that the propagator〈

xi, xj
〉

0
=

1∫
ddx e−

1
2
〈Ax, x〉

∫
ddx e−

1
2
〈Ax, x〉xixj = (A−1)ij(1.33)
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equals the (i, j)-th entry of the inverse matrix of A. Iv and
〈
xi, xj

〉
0

are depicted by an
l-valent vertex and an edge, both with labels as explained above. By (1.32) and (1.33),
they can be calculated directly from the Lagrangian L. Together with the externel legs,
these are collectively refered to as the Feynman rules of the theory.

The formulas stated so far accordingly hold (with the difficulties mentioned) for
complex valued fields, i.e. for x ∈ Cd. Moreover, fermionic (anticommuting) fields are,
in the zero dimensional theory, Grassmann generators θj , and the correlation function
involving such generators is defined as in (1.30) but with the usual integral over Rd
replaced by the super integral over all even coordinates xi and odd coordinates θj . By
now, the theory of supermanifolds has become a well-established mathematical area.
For a good introduction, which also covers integration, we refer the reader to [Var04].
In the following, let θj be a complex generator and θ∗j its complex conjugate. One can
show that, analogous to (1.33),〈

θk, θ∗l
〉

0
=

(∏
i

∫
dθ∗idθi

)
θkθ∗le−θ

∗iBijθj(∏
i

∫
dθ∗idθi

)
e−θ

∗iBijθj
= (B−1)kl(1.34)

holds for a suitable matrix B (cf. (9.69) and (9.70) in [PS95]). Unlike the bosonic
propagator (1.33), the fermionic propagator (1.34) is not symmetric in the arguments
but antisymmetric. It is, therefore, depicted by a directed edge (an edge with an arrow).

Gauge Theories and Ghosts

The assumption that the matrix A in (1.29) is invertible was crucial for our previous
considerations. In gauge theories, on the other hand, this is not the case: Assume that
A has l degenerate directions corresponding to the (free etc.) action of an l-dimensional
Lie group G on X, which leaves the Lagrangian L invariant. Instead of critical points,
the classical solutions of the Euler-Lagrange equations now come as critical orbits each
of which contains a continuous set of physically equivalent states. Therefore, we should
count each such state only once and reduce integration over X in (1.30) to the integral
over the quotient space X̃ = X/G of G-orbits. In good cases, this is based on solid
mathematical ground and related to the Haar measure.

In ”many” cases (with less justification) it seems to work as follows. Let X0 ⊆ X be
a submanifold which intersects every G-orbit exactly once, such that there is a bijection
with X̃, and assume that it is defined by l equations F 1(x) = . . . = F l(x) = 0 for
some F : X → Rl, i.e. X0 = {x0 ∈ X

∣∣ F (x0) = 0}. Moreover, the orbits should be
intersected transversally such that

∫
X dx =

∫
X0
dx0

∫
G dg holds, at least upon restriction

to some tubular neighbourhood of X0. In such a neighbourhood, we can then treat F
as a local coordinate in the fiber over x0, and the gauge-fixed partition function (the
denominator of the correlation function) becomes, performing a change of coordinates,∫

X0

dd−lx0 e
−S(x0) =

∫
X0

dd−lx0

∫
Rl
dlF δ(F )e−S(x0)

=

∫
X0

dd−lx0

∫
G
dg δ(F (gx0))

∣∣∣∣det

(
∂F (gx0)

∂g

)∣∣∣∣ e−S(x0)

Setting x = gx0, the delta function restricts integration to F (x) = F (gx0) = 0 where
g = 1 and x = x0. We thus yield∫

X0

dd−lx0 e
−S(x0) =

∫
X
ddx δ(F (x)) |det(Λ)| e−S(x0) , Λ :=

∂F (gx)

∂g
|g=1
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Several difficulties arise with this approach. Firstly, the Fadeev-Popov matrix Λ should
be invertible, and each orbit should be intersected exactly once. Even if this can be
achieved locally, it might not be possible to ensure for the whole of X0 due to some
complicated topology, which is referred to as the Gribov problem (cf. [EPZ04]).

To continue, let us further assume that the integral over X0 does in fact only depend
on X̃. The exact form of F is then unimportant, and we may replace F by F − ω for
some reference vector ω ∈ Rl. Let further ξ ∈ R+ and N(ξ) be the constant, depending

on ξ, which is defined by N(ξ)−1 :=
∫
dω e

−ω
2

2ξ (this is a standard Gaussian integral).
Inserting 1 and further redefining N(ξ) to include the sign of det Λ, we thus yield∫

X0

dd−lx0 e
−S(x0) = N(ξ)

∫
dω

∫
X
ddx e

−ω
2

2ξ δ(F (x)− ω) det Λe−S(x)

= N(ξ)

∫
X
ddx e−S(x)e

−F (x)2

2ξ det Λ

To deal with det Λ, we introduce new (complex) Grassmann generators c1, . . . , cl. Anal-
ogous to (1.34) one can show that (for suitable Λ)(∏

i

∫
dc∗idci

)
e−c

∗iΛijcj = det Λ

holds. Remembering S = L, our calculations may be summarised∫
X0

dx0 e
−L(x0) = N(ξ)

∫
X
dxdc∗dc e−LGF(x) , LGF = L+

F (x)2

2ξ
+ 〈c∗, Λc〉(1.35)

We are free to choose a convenient value of the parameter ξ (a ”gauge”). Constant
factors in the correlation function (1.30) cancel out. We have thus solved the gauge
ambiguity problem by introducing new fermionic fields c and c∗, which are called ghosts,
and replacing the original Lagrangian L in (1.29) with the gauge fixed Lagrangian LGF

as in (1.35). The first extra term allows for the calculation of Feynman rules for the
gauge field A, while the second introduces new Feynman rules involving the ghosts.

QFT in Finite Dimensions: The Infinite Dimensional Case

Let us now move from zero to four (or any finite number of) spacetime dimensions.
The space of fields is then a non-trivial infinite set of functions. Let us pretend that
the formulas for the zero-dimensional theory have canonical analoga and consider again
N = 4 super Yang-Mills theory.

As mentioned above, gauge transformations are finite symmetries, such that the
original Lagrangian L4 need to be replaced by a gauge fixed Lagrangian. We choose
the Lorentz gauge F (A) = i∂µAµ(x). The first extra term in (1.35) then becomes
− 1

2ξ (∂µA
cµ)2. To calculate the ghost contribution, note that the group action, previously

denoted gx, is now replaced by gauge transformations (1.22). Let α : R4 → su(N). The
set of such maps can be identified with the tangent space at a gauge transformation.
This is a bit subtle but should be OK (cf. similar situations such as the transversality
arguments in Chp. 3 of [MS04]). We thus calculate, using α† = −α,

Λ[α] = i∂µ
d

dV
|V=1

(
V AµV

† +
i

g
V ∂µV

†
)

[α] = i∂µ
(
− [Aµ, α]− i

g
∂µα

)
=

1

g
∂µDµα
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After having calculated the ghost propagator and ghost-gluon vertex later in Sec. 1.5.2
and Sec. 1.5.3, we will see that every graph in (1.31) contains exactly the same num-
ber of propagators and vertices such that absorbing the scaling factor 1/g into the
normalisation of c and c∗ does not change the result and can be omitted. Writ-
ten as a matrix with respect to the generators T a of i · su(N), we thus arrive at
Λac = δac∂µ∂µ(·) + gfabc∂µ(Abµ·), and the gauge-fixed Lagrangian becomes

LGF =

(
L4 −

1

2ξ
(∂µA

cµ)2

)
+ c∗a(∂µ∂µc

a)− gfabc∂µ(c∗a)Abµc
c(1.36)

Upon replacing L4 by LGF we obtain, in particular, the analoga of the formulas
(1.33) and (1.34) for bosonic fields φ (and now also A) and fermionic fields ψ (and
ghosts c) in four dimensions:

〈φ(x), φ(y)〉 =

∫
Dφ exp

(
i
∫
d4xL(φ)|g0

)
φ(x)φ(y)∫

Dφ exp
(
i
∫
d4xL

)(1.37a)

〈
ψ(x), ψ̃(y)

〉
=

∫
Dψ̃Dψ exp

(
i
∫
d4xL(ψ)|g0

)
ψ(x)ψ̃(y)∫

Dψ̃Dψ exp
(
i
∫
d4xL

)(1.37b)

where the (ill-defined) integral (the path-integral) goes over the respective space of
all fields. These propagators are calculated analogous to the zero dimensional case as
the matrix elements of the ”inverse” (Green’s function) of the integral kernels which
correspond to the previous matrices A and B.

In fact, the analogy between the respective propagators as stated holds only up to a
factor of −i. This is another subtlety due to the transition from Euclidean to Minkowski
space. In between, one performs some Wick rotation to translate the Euclidean into the
Minkowski metric. While this is a standard trick that seems to work, it is usually hard to
justify mathematically. For simplicity, we shall use (1.37a) and (1.37b) without further
ado in the following, pressed into the form (1.33) and (1.34) by

L → −iL(1.38)

When it comes to Green’s function in the next subsection, we will encounter some
problems which are inevitable relics of this transformation.

1.5.1 Green’s Functions

The infinite-dimensional analogon for the inverse of a matrix A or B, as occurring in
(1.33) and (1.34) is the Green’s function of some differential operator. It is worthwhile
summarising the relevant formulas here before applying the Feynman formalism to N =
4 super Yang-Mills theory in the next two subsections. We need the following lemma.

Lemma 1.5.1. The four-dimensional delta function can be expressed as the Fourier
transform of the constant function 1:∫

d4p

(2π)4
e−ip(x−y) = δ(4)(x− y)

Proof. It is well-known that the delta ”function” is a distribution. Likewise, the left
hand side (the Fourier transform of 1) should be regarded as a distribution. For a
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formal treatment, consult e.g. Chp. VIII of [Wer02]. In this context, the formula
appears rather as a definition than a statement.

The left hand side (with x− y replaced by x) also appears as the limit (in a distri-
butional sense) of the sequence

δk(x) :=

∫
d4p

(2π)4
e−ipx−δkp

2
E , k ∈ N , δk → 0(1.39)

where p2
E :=

∑
µ p

µ · pµ denotes the Euclidean square of p (in contrast to the Minkowski

square p2 = pµp
µ). For this to see, it suffices to show that δk(x) is a Dirac sequence (cf.

Chp. 2 of [Alt02]): In (1.39), we perform the transformation p0 → p0 and pl → −pl for
l = 1, 2, 3 to obtain∫ ∞

−∞
dpl e−ip

l·xl−δkpl·pl =

∫ −∞
∞

dpl (−1)eip
l·xl−δkpl·pl =

∫ ∞
−∞

dpl eip
l·xl−δkpl·pl

and, therefore,

δk(x) =

∫
d4p

(2π)4
e−ip·Ex−δkp

2
E

where p ·E x :=
∑

µ p
µ · xµ. We now make a shift pµ = qµ − i

2δk
xµ such that

−ip ·E x− δk · p2
E = −i

(
q ·E x−

i

2δk
x2
E

)
− δk

(
q2
E −

i

δk
q ·E x−

1

4δ2
k

x2
E

)
= −δkq2

E −
1

4δk
x2
E

and

δk(x) =
∏

µ

(∫ ∞+ i
2δk

xµ

−∞+ i
2δk

xµ

dqµ

2π

)
e−δkq

2
Ee
− 1

4δk
x2E

Now, the function e−δkq
µ·qµ is holomorphic (without poles) in qµ and, therefore, the

integral thereof over the boundary of a box (−R,R) × (0, 1
2δk
xµ) with R > 0 in the

complex qµ plane vanishes. For the integral over the right side vertical line, we obtain∣∣∣∣∣
∫ R+ i

2δk
xµ

R
dqµ e−δkq

µ·qµ
∣∣∣∣∣ ≤ xµ

2δk
e−δkR

2
e
δk

(
xµ

2δk

)2
R→∞−−−−→ 0

and analogous for the integral over left side vertical line. Therefore, we may replace, for
each µ, the integral over the shifted real line by minus the integral over the ordinary
real line to obtain the Gaussian integral

δk(x) =

∫
d4p

(2π)4
e−δkp

2
Ee
− 1

4δk
x2E =

1

(2π)4

√
π

δk

4

e
− 1

4δk
x2E

By this expression, it is clear that δk(x) is indeed a Dirac sequence. In particular, it
satisfies the normalisation condition∫

d4x δk(x) =
1

(2π)4

√
π

δk

4√
4πδk

4
= 1

which is calculated again by the Gaussian integral.
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Lemma 1.5.2. The function

G(x− y) := −
∫

d4p

(2π)4

e−ip(x−y)

p2 + iε

is a Green’s function for ∂µ∂
µ (i.e. it satisfies ∂µ∂

µG(x− y) = δ(4)(x− y)).

Here, we meet the ”iε-prescription”: The p0-integral
∫
dp0

e−ip(x−y)

p2
is not well-

defined. This can be remedied by shifting the poles, which are located at (p0)± = ± |p|,
slightly parallel to the imaginary axis towards (p0)± → ±

(
|p| − iε

2|p|

)
with some small

parameter ε > 0. As a result, the p0-integral can now be evaluated as the residue at one
of the poles, depending on whether x0 is positive or negative such that the corresponding
arc which closes the integration line vanishes at infinity. In the limit ε→ 0, the integral
is independent of the convention for the shift, which was chosen such that

p2 = (p0 − |p|)(p0 + |p|)→
(
p0 −

(
|p| − iε

2 |p|

))(
p0 +

(
|p| − iε

2 |p|

))
= (p0)2 −

(
|p| − iε

2 |p|

)2

= p2 + iε+
ε2

4 |p|2

In the limit ε → 0, one can further see that the term ε2

4|p|2 is irrelevant and, as a

consequence, we can write the shift as p2 → p2 + iε. Although usually omitted, it is
implicitly understood that ε is sent to 0 (in front of the integral).

Proof of Lem. 1.5.2. This follows from Lem. 1.5.1 by the following calculation.

−∂µ∂µ
∫

d4p

(2π)4

e−ip(x−y)

p2 + iε
= −

∫
d4p

(2π)4
(−p2)

e−ip(x−y)

p2 + iε
=

∫
d4p

(2π)4
e−ip(x−y)

= δ(4)(x− y)

In this calculation, we freely exchanged differentiation, limits and integration without
having checked the hypotheses. We believe that this can be done (and has beed done
somewhere) rigorously and leave the details to the reader.

Lemma 1.5.3. The function

G(x− y)αα̇ := −σµαα̇∂µ
∫

d4p

(2π)4

e−ip(x−y)

p2 + iε

is a Green’s function for σβ̇βµ ∂µ.

Proof. This follows from (1.6) and Lem. 1.5.1 by the following calculation, where the
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comment in the proof of Lem. 1.5.2 applies accordingly.

−σβ̇βν σµβγ̇∂
ν∂µ

∫
d4p

(2π)4

e−ip(x−y)

p2 + iε
=

∫
d4p

(2π)4

pνσβ̇βν pµσ
µ
βγ̇

p2 + iε
e−ip(x−y)

=

∫
d4p

(2π)4

pνσ
νβ̇βpµσ

µ
βγ̇

p2 + iε
e−ip(x−y)

=
1

2

∫
d4p

(2π)4

pνpµ(σνβ̇βσµβγ̇ + σµβ̇βσνβγ̇)

p2 + iε
e−ip(x−y)

=

∫
d4p

(2π)4

pνpµη
µνδβ̇γ̇

p2 + iε
e−ip(x−y)

= δβ̇γ̇

∫
d4p

(2π)4
e−ip(x−y)

= δβ̇γ̇ δ
(4)(x− y)

For the integral A4(x) occuring in Lem. 1.5.2 and Lem. 1.5.3, we need an explicit
expression. For dimensional regularisation, to be explained below, it will be neces-
sary to consider the analogous integral in d dimensional Lorentz space with signature
(+,−, . . . ,−) rather than Minkowski space.

Lemma 1.5.4. The integral Ad(x) can be written

Ad(x) :=

∫
ddp

(2π)d
e−ipx

p2 + iε
= i

Γ(d2 − 1)

4π
d
2

1

(x2)
d
2
−1

, A4(x) =
i

4π2

1

x2

Proof. Again, the right hand side has to be understood as a distribution (more precisely
also with some kind of iε-prescription). By a simple calculation, one finds that the
application of the operator ∂µ∂

µ to it vanishes for x 6= 0. It should be possible to prove
that it is indeed a Green’s function and, moreover, coincides with the Green’s function
on the left hand side.

One could also first evaluate the p0-integral by the residue theorem and then solve
the remaining integral in d− 1 (Euclidean) dimensions by a direct calculation involving
spherical coordinates, following [LFQ+10] and (for d = 4) [GR09].

Instead, we shall be satisfied by a simple calculation using Schwinger parametrisation
and Gauss integration. This calculation contains several steps a mathematician would
call terribly wrong (the reader is invited to spot all those), yet it seems to provide a
reasonable result. Here is how it works. The Schwinger trick is writing

1

p2
=

1

p2

∫ ∞
0

dσ e−σ =

∫ ∞
0

dτ e−τ ·p
2

Therefore

Ad(x) =
1

(2π)d

∫ ∞
0

dτ

∫
ddp e−τ ·p

2−ip·x
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As in the proof of Lem. 1.5.1, we now make a shift pµ = qµ − i
2τ xµ such that

Ad(x) =
1

(2π)d

∫ ∞
0

dτ

(∫
ddq e−τq

2

)
e−

1
4τ
x2 =

√
π
d

(2π)d

∫ ∞
0

dτ τ−
d
2 e−

1
4τ
x2

Besides having tacitly moved the integration line back to R, we have neglected that q2

can be negative. To solve the latter problem (and make the calculation even wronger),
we perform a Wick rotation q0 → iq0, followed by changing the integration line from iR
back to R. This gives an additional factor i. The substitution α = x2

4τ then yields

Ad(x) = i

√
π
d

(2π)d

∫ 0

∞
dα

(
− x2

4α2

)(
x2

4α

)− d
2

e−α

= i

√
π
d

(2π)d
4
d
2
−1

(x2)
d
2
−1

∫ ∞
0

dαα
d
2
−2e−α

= i
Γ(d2 − 1)

4π
d
2

1

(x2)
d
2
−1

having introduced the Γ-function. For d = 4, this coincides with the expression stated
in Chp. 2 of [GR09].

1.5.2 Propagators

With this preparation, we are now in a position to derive explicit expressions for the
propagators of N = 4 SYM theory. We consider the gauge-fixed Lagrangian LGF of
N = 4 SYM theory from (1.36), multiplied with a factor −i due to (1.38).

Scalar Propagator

We calculate the scalar propagator. By Lem. 1.2.4 and (1.17), the relevant term can be
written as follows.

−iL4(φ)|g0 = − i
4

(∂µφ
cCD)(∂µφ

c
CD)

= − i
2

(∂µφ
cM )(∂µφcM )

=
i

2

(
∂µ∂

µφcM
)
φcM

where the last equality holds upon integration. This is identified with the bilinear form
−1

2 〈Aφ, φ〉 where A denotes the ”matrix” with entries AaM bN = −iδabδMN∂µ∂
µ. We

use the formula in infinite dimensions which is analogous to (1.33), where as the ”inverse”
of A we take a suitable Green’s function (Green’s functions are not unique), chosen
according to a standard physical argument involving the causal structure of the theory
(cf. Chp. 2 of [PS95]), which is built from the Green’s function G(x− y) = ”(∂µ∂

µ)−1”
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of ∂µ∂
µ as stated in Lem. 1.5.2. Further using Lem. 1.1.10, we thus obtain〈

φ
a
AB(x), φ

b
CD(y)

〉
=

1

2
Σ
M
ABΣ

N
CD

〈
φaM (x), φbN (y)

〉
=

1

2
Σ
M
ABΣ

N
CD(A−1)aM bN

=
i

2
Σ
M
ABΣ

N
CDδ

abδMN (∂µ∂
µ)−1

= −iδabεABCD
∫

d4p

(2π)4

e−ip(x−y)

p2 + iε

Substituting the expression from Lem. 1.5.4 for the integral A4(x− y), we thus find

=
〈
φ
a
AB(x), φ

b
CD(y)

〉
=

1

4π2

εABCDδ
ab

(x− y)2
(1.40)

as the scalar propagator.
Quantum field theory is a theory of infinities. Besides the convergence problem

of the infinite dimensional analogon of the sum (1.31), already individual graphs can
contribute as infinity due to a vanishing denominator in the propagator (1.40). To solve
this problem, we use a trick which seems to be standard: We make the propagators
depend on a parameter ε > 0 (which has nothing to do with the iε-prescription) such
that, in the limit ε → 0, the original propagators are obtained. If done neatly, the
individual graphs would then have a finite part plus some summand with a pole in ε
and, in the sum over all graphs contributing to some order n of the coupling constant
g, the latter ”infinities” cancel out, leaving a finite result which survives in the limit
ε→ 0. This technique is referred to as regularisation.

From a mathematician’s point of view, the infinity problem is closely related to the
propagator, and a fortiori the individual Feynman graph, being a distribution rather
than a function (cf. the discussion in the proof of Lem. 1.5.4). Via regularisation,
each graph is approximated by a series of ordinary functions (like a Dirac sequence
approximating the delta function). It seems natural but remains unclear (at least to the
author) whether this approach can be made rigorous.

Of the several possible ways of regularisation, we choose the so called dimensional
regularisation. This works as follows. Calculate the propagators up to the occurrence
of the integral A4(x − y) in the calculation preceeding (1.40); we shall see below that
the same integral appears for the fermion and gluon propagators as well. Then replace
A4(x − y) by Ad(x − y) (cf. Lem. 1.5.4) and, finally, set d = 4 − 2ε, except that the
Lorentz metric ηµν is considered in honest d = 4 dimensions (the factor 2 convention
turns out to be convenient). Doing so for the scalar propagator, we immediately yield

=
〈
φ
a
AB(x), φ

b
CD(y)

〉
=

Γ(1− ε)
4π2−ε

εABCDδ
ab

((x− y)2)1−ε(1.41)

as the (dimensionally) regularised scalar propagator. For comparison with the literature,
note that the coupling constant g carries a (physical) dimension in dimensions other
than 4. This can be seen by the necessity of the action being dimensionless, which
appears in the analogon of (1.33) as the argument of the exponential. To make g again
dimensionless, it is often rescaled using a mass scale parameter µ which then would
appear in (1.41).
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In the following lemma, we state derivatives of the regularised propagator expression
needed later on, which are easily calculated. Here, the last expression in O(ε) does not
completely vanish only because ηµν is the metric in d = 4 rather than in d = 4 − 2ε
dimensions (for which then ηµνηµν = d = 4− 2ε).

Lemma 1.5.5. For x, y ∈ R4 with (x− y)2 6= 0, we have

∂(x)µ
1

((x− y)2)1−ε = −2(1− ε) (x− y)µ

((x− y)2)2−ε

∂(x)ν∂(x)µ
1

((x− y)2)1−ε = − 2(1− ε)
((x− y)2)2−ε

(
ηµν − 2(2− ε)(x− y)µ(x− y)ν

(x− y)2

)
Replacing the x-derivative ∂(x)µ by the y-derivative ∂(y)µ yields a minus sign. Moreover,
contraction with ηµν yields

∂(x)µ∂
µ
(x)

1

((x− y)2)1−ε = − 4ε(1− ε)
((x− y)2)2−ε

ε→0−−−→ 0

Fermion Propagator

We calculate the fermion propagator. By Lem. 1.2.4, the relevant term can be written
as follows.

−iL4(ψ)|g0 = ψ̃c
β̇C
σβ̇βµ ∂µψcCβ

This is identified with the bilinear form −
〈
ψ̃, Bψ

〉
where B denotes the ”matrix” with

entries Baβ̇A bβB = −δabδABσβ̇βµ ∂µ. We use the formula in infinite dimensions which is
analogous to (1.34), where as the ”inverse” of B we take the Green’s function which

is built from the Green’s function G(x − y)αα̇ = (”(σµ∂
µ)−1”)αα̇ of σβ̇βµ ∂µ as stated in

Lem. 1.5.3. We thus obtain〈
ψaAα (x), ψ̃bα̇B(y)

〉
= −δabδABG(x− y)αα̇

= δabδABσµαα̇∂µ

∫
d4p

(2π)4

e−ip(x−y)

p2 + iε

At this point, we perform dimensional regularisation as in the calculation of the scalar
propagator to obtain the following expression (using Lem. 1.5.4 and setting d = 4−2ε).〈

ψaAα (x), ψ̃bα̇B(y)
〉

= i
Γ(1− ε)
4π2−ε ∂µ

δabδABσµαα̇
((x− y)2)1−ε

Calculating the derivative (Lem. 1.5.5), we immediately yield

=
〈
ψaAα (x), ψ̃bα̇B(y)

〉
= − i(1− ε)Γ(1− ε)

2π2−ε δabδAB
(x− y)αα̇

((x− y)2)2−ε(1.42)

as the (dimensionally) regularised fermion propagator (without having introduced a
mass scale). For ε = 0, this propagator reduces to

=
〈
ψaAα (x), ψ̃bα̇B(y)

〉
= − i

2π2
δabδAB

(x− y)αα̇
(x− y)4

(1.43)
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Gluon Propagator

We calculate the gluon propagator. Here, we need to consider indeed the gauged fixed
Lagrangian (1.36), and the relevant terms can be written

−iLGF(A)|g0 =
i

4
(∂µA

c
ν − ∂νAcµ)2 +

i

2ξ
(∂µA

cµ)2

=
i

2

(
(∂µA

c
ν)(∂µAcν)− (∂µA

c
ν)(∂νAcµ) +

1

ξ
(∂νAcν)(∂µAcµ)

)
= − i

2
Acν

(
∂ρ∂

ρηµν −
(

1− 1

ξ

)
∂µ∂ν

)
Acµ

where the last equality holds upon integration. From now on choosing Feynman gauge
ξ = 1, this is identified with the bilinear form −1

2 〈CA, A〉 where C denotes the ”matrix”
with entries Caµ bν = iδabηµν∂ρ∂

ρ. We thus obtain〈
Aaµ(x), Abν(y)

〉
= (A−1)aµ

b
ν = −iδabηµν(∂ρ∂

ρ)−1

The further derivation exactly parallels that of the scalar propagator, and we obtain

=
〈
Aaµ(x), Abν(y)

〉
= −Γ(1− ε)

4π2−ε
ηµνδ

ab

((x− y)2)1−ε(1.44)

as the regularised gluon propagator in Feynman gauge. For ε = 0, this propagator
reduces to

=
〈
Aaµ(x), Abν(y)

〉
= − 1

4π2

ηµνδ
ab

(x− y)2
(1.45)

Ghost Propagator

We finally calculate the ghost propagator. The relevant term of (1.36) is

−iLGF(c)|g0 = −ic∗a(∂µ∂µca)

As in the derivation of the fermion propagator (actually, this is a fermionic propaga-
tor), this expression is identified with the bilinear form −〈c∗, Bc〉 where B denotes the
”matrix” with entries Bab = iδab∂µ∂

µ. The inverse is (B−1)ab = −iδab(∂µ∂µ)−1, and we
immediately obtain

=
〈
ca(x), c∗b(y)

〉
= −Γ(1− ε)

4π2−ε
δab

((x− y)2)1−ε(1.46)

as the regularised ghost propagator. For ε = 0, this propagator reduces to

=
〈
ca(x), c∗b(y)

〉
= − 1

4π2

δab

(x− y)2
(1.47)

1.5.3 Inner Vertices

Having calculated the propagators, we now come to the inner vertices. According to
(1.32), every vertex is obtained from symmetrisation of the correponding interaction
term of the N = 4 SYM Lagrangian from Lem. 1.2.4 with the addition of the gauge-
fixing terms in (1.36) and multiplied with a factor −i due to (1.38). For the rest of this
chapter, we summarise these calculations and summarise the resulting formulas.
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Antighost-Gluon-Ghost (cgc) Vertex

The antighost-gluon-ghost interaction term of the Lagrangian reads

−iLc∗gc = igfabc∂µ(c∗a)Abµc
c =

(
igfabc∂µ(1)

)(
c∗aAbµc

c
)

Here, we do not need to consider permutations since we have three different fields such
that I = U . Therefore, we find the following expression for the antighost-gluon-ghost
vertex.

c a

b,µ

= (Ic∗gc)
a bµ c = igfabc∂µ(1)

3-Gluon (ggg) Vertex

The 3-gluon interaction term of the Lagrangian reads

−iLggg =
(
igfa1a2a3ηµ1µ3∂µ2(1)

)
(Aa1µ1A

a2
µ2A

a3
µ3) =: (Ua1µ1 a2µ2 a3µ3)(Aa1µ1A

a2
µ2A

a3
µ3)

Using Lem. 1.1.3, we calculate

(Iggg)
a1µ1 a2µ2 a3µ3

=
∑

permutations of
a1µ1 a2µ2 a3µ3

Ua1µ1 a2µ2 a3µ3

= ig
(
fa1a2a3ηµ1µ3∂µ2(1) + fa2a3a1ηµ2µ1∂µ3(2) + fa3a1a2ηµ3µ2∂µ1(3)

+fa1a3a2ηµ1µ2∂µ3(1) + fa3a2a1ηµ3µ1∂µ2(3) + fa2a1a3ηµ2µ3∂µ1(2)

)
= igfa1a2a3

(
ηµ1µ3∂µ2(1) + ηµ2µ1∂µ3(2) + ηµ3µ2∂µ1(3)

−ηµ1µ2∂µ3(1) − η
µ3µ1∂µ2(3) − η

µ2µ3∂µ1(2)

)
Therefore, we find the following expression for the 3-gluon vertex.

a2,µ2 a1,µ1

a3,µ3

= (Iggg)
a1µ1 a2µ2 a3µ3

= −igfa1a2a3
(
ηµ3µ1(∂µ2(3) − ∂

µ2
(1)) + ηµ1µ2(∂µ3(1) − ∂

µ3
(2))

+ηµ2µ3(∂µ1(2) − ∂
µ1
(3))
)

4-Gluon (gggg) Vertex

The 4-gluon interaction term of the Lagrangian reads

−iLgggg =

(
ig2

4
fa1a2bfa3a4bηµ1µ3ηµ2µ4

)
(Aa1µ1A

a2
µ2A

a3
µ3A

a4
µ4)

=: (Ua1µ1 a2µ2 a3µ3 a4µ4)(Aa1µ1A
a2
µ2A

a3
µ3A

a4
µ4)
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We abbreviate U(1, 2, 3, 4) := Ua1µ1 a2µ2 a3µ3 a4µ4 , to find

U(1, 2, 3, 4) =

(
ig2

4
fa1a2bfa3a4bηµ1µ3ηµ2µ4

)
=

(
ig2

4
fa2a1bfa4a3bηµ2µ4ηµ1µ3

)
= U(2, 1, 4, 3)

and

U(1, 2, 3, 4) =

(
ig2

4
fa1a2bfa3a4bηµ1µ3ηµ2µ4

)
=

(
ig2

4
fa3a4bfa1a2bηµ3µ1ηµ4µ2

)
= U(3, 4, 1, 2)

Applying both symmetries after each other, we thus obtain.

U(1, 2, 3, 4) = U(3, 4, 1, 2) = U(4, 3, 2, 1) = U(2, 1, 4, 3)

Therefore, it suffices to consider permutations of (1234) where 1 is fixed at the first
position, weighted with a factor of 4 as follows.

(Igggg)
a1µ1 a2µ2 a3µ3 a4µ4 =

∑
permutations

U(1, 2, 3, 4)

= 4 (U(1, 2, 3, 4) + U(1, 3, 4, 2) + U(1, 4, 2, 3)

+U(1, 2, 4, 3) + U(1, 4, 3, 2) + U(1, 3, 2, 4))

= ig2
(
fa1a2bfa3a4bηµ1µ3ηµ2µ4 + fa1a3bfa4a2bηµ1µ4ηµ3µ2

+ fa1a4bfa2a3bηµ1µ2ηµ4µ3 + fa1a2bfa4a3bηµ1µ4ηµ2µ3

+fa1a4bfa3a2bηµ1µ3ηµ4µ2 + fa1a3bfa2a4bηµ1µ2ηµ3µ4
)

Therefore, we find the following expression for the 4-gluon vertex.

a2,µ2 a1,µ1

a3,µ3 a4,µ4

= (Igggg)
a1µ1 a2µ2 a3µ3 a4µ4

= ig2
(
fa1a2bfa3a4b(ηµ1µ3ηµ2µ4 − ηµ1µ4ηµ2µ3)

+fa1a3bfa2a4b(ηµ1µ2ηµ3µ4 − ηµ1µ4ηµ3µ2)

+ fa1a4bfa2a3b(ηµ1µ2ηµ3µ4 − ηµ1µ3ηµ2µ4)
)

Gluon-2-Scalar (gss) Vertex

The gluon-2-scalar interaction term of the Lagrangian reads

−iLgss = − ig
2
fabcAaµφ

b
AB(∂µφ

cAB)

=

(
− ig

4
fab2b3εABCD∂

µ
(3)

)
(Aaµφ

b2
ABφ

b3
CD)

=: (Uaµ b2AB
b3
CD)(Aaµφ

b2
ABφ

b3
CD)
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such that

(Igss)
aµ b2

AB
b3
CD =

∑
permutations

Uaµ b2AB
b3
CD

= − ig
4

(
fab2b3εABCD∂

µ
(3) + fab3b2εCDAB∂

µ
(2)

)
Therefore, we find the following expression for the gluon-2-scalar vertex.

b1,AB b2,CD

a3,µ3

= (Igss)
aµ b2

AB
b3
CD = − ig

4
fab2b3εABCD(∂µ(3) − ∂

µ
(2))

2-Gluon-2-Scalar (gsgs) Vertex

The 2-gluon-2-scalar interaction term of the Lagrangian reads

−iLgsgs = − ig
2

4
fabef cdeAaµφ

bABAcµφ
d
AB

=

(
− ig

2

8
ηµ1µ2fa1b1cfa2b2cεABCD

)
(Aa1µ1φ

b1
ABA

a2
µ2φ

b2
CD)

= (Ua1µ1 b1AB
a2µ2 b2

CD)(Aa1µ1φ
b1
ABA

a2
µ2φ

b2
CD)

such that

(Igsgs)
a1µ1 b1

AB
a2µ2 b2

CD =
∑

permutations
Ua1µ1 b1AB

a2µ2 b2
CD

= − ig
2

8

(
ηµ1µ2fa1b1cfa2b2cεABCD + ηµ2µ1fa2b1cfa1b2cεABCD

+ηµ1µ2fa1b2cfa2b1cεCDAB + ηµ2µ1fa2b2cfa1b1cεCDAB

)
Therefore, we find the following expression for the 2-gluon-2-scalar vertex.

a2,µ2 a1,µ1

b1,AB b2,CD

= (Igsgs)
a1µ1 b1

AB
a2µ2 b2

CD

= − ig2

4 η
µ1µ2εABCD(fa1b1cfa2b2c + fa1b2cfa2b1c)

Gluon-Fermion-Antifermion (gfa) Vertex

The gluon-fermion-antifermion interaction term of the Lagrangian reads

−iLgfa = (gfabcσµαα̇δAB)(Aaµψ
bA
α ψ̃cBα̇ )

Here, no permutation occurs since there are different types of fields such that I = U .
Therefore, we find the following expression for the gluon-fermion-antifermion vertex.

bαA cα̇B

aµ

= (Igfa)
aµ bα

A
cα̇
B = gfabcσµαα̇δAB
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Scalar-2-Fermion (sff) Vertex

The scalar-2-fermion interaction term of the Lagrangian reads

−iLsff =

(√
2g

2
fab1b2εβ1β2δA1B1δA2B2

)
(φ
a
A1A2

ψb1B1
β1

ψb2B2
β2

)

Therefore

(Isff )aA1A2

b1β1
B1

b2β2
B2

=

√
2g

2

(
fab1b2εβ1β2δA1B1δA2B2 − fab2b1εβ2β1δA1B2δA2B1

)
=

√
2g

2
fab1b2εβ1β2 (δA1B1δA2B2 − δA1B2δA2B1)

where the sign comes from the oddness of ψ (which gives a sign upon permuting). This
has to be understood upon contraction with φA1A2

(which is antisymmetric in (A1A2)).
Therefore, we find the following expression for the scalar-2-fermion vertex.
b2β2B2 b1β1B1

a,A1A2

= (Isff )aA1A2

b1β1
B1

b2β2
B2

=
√

2gfab1b2εβ1β2δA1B1δA2B2

Scalar-2-Antifermion (saa) Vertex

The scalar-2-antifermion interaction term of the Lagrangian reads

−iLsaa =

(
−
√

2g

4
fab1b2εA1A2B1B2ε

α̇1α̇2

)
(φ
a
A1A2

ψ̃b1α̇1B1
ψ̃b2α̇2B2

)

such that

(Isaa)
a
A1A2

b1α̇1
B1

b2α̇2
B2

= −
√

2g

4

(
fab1b2εA1A2B1B2ε

α̇1α̇2 − fab2b1εA1A2B2B1ε
α̇2α̇1

)
Therefore, we find the following expression for the scalar-2-antifermion vertex.

b2B2α̇2 b1B1α̇1

a,A1A2

= (Isaa)
a
A1A2

b1α̇1
B1

b2α̇2
B2

= −
√

2g

2
fab1b2εA1A2B1B2ε

α̇1α̇2

4-Scalar (ssss) Vertex

The 4-scalar interaction term of the Lagrangian reads

−iLssss =
ig2

16
fabef cdeφaABφbCDφ

c
ABφ

d
CD

=

(
ig2

64
fa1a2bfa3a4bεA1B1A3B3εA2B2A4B4

)
(φ
a1
A1B1

φ
a2
A2B2

φ
a3
A3B3

φ
a4
A4B4

)

The symmetries U(1, 2, 3, 4) = U(2, 1, 4, 3) = U(3, 4, 1, 2) = U(4, 3, 2, 1) are obtained
analogous to the calculation of Igggg above, with analogous notation. Therefore, it
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suffices to consider permutations of (1234) where 1 is at the first position, weighted with
a factor of 4 as follows.

Issss(1, 2, 3, 4)

=
∑

permutations
U(1, 2, 3, 4)

= 4 (U(1, 2, 3, 4) + U(1, 3, 4, 2) + U(1, 4, 2, 3)

+U(1, 2, 4, 3) + U(1, 4, 3, 2) + U(1, 3, 2, 4))

=
ig2

16

(
fa1a2bfa3a4bεA1B1A3B3εA2B2A4B4 + fa1a3bfa4a2bεA1B1A4B4εA3B3A2B2

+ fa1a4bfa2a3bεA1B1A2B2εA4B4A3B3 + fa1a2bfa4a3bεA1B1A4B4εA2B2A3B3

+ fa1a4bfa3a2bεA1B1A3B3εA4B4A2B2 + fa1a3bfa2a4bεA1B1A2B2εA3B3A4B4

)
Therefore, we find the following expression for the 4-scalar vertex.

a2,A2B2 a1,A1B1

a3,A3B3 a4,A4B4

= (Issss)
a1
A1B1

a2
A2B2

a3
A3B3

a4
A4B4

=
ig2

16

(
fa1a2bfa3a4b(εA1B1A3B3εA2B2A4B4 − εA1B1A4B4εA2B2A3B3)

+ fa1a3bfa2a4b(εA1B1A2B2εA3B3A4B4 − εA1B1A4B4εA3B3A2B2)

+ fa1a4bfa2a3b(εA1B1A2B2εA4B4A3B3 − εA1B1A3B3εA4B4A2B2)
)
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Chapter 2

Supersymmetric Wilson Loops

In this chapter, we derive an extension of the classical Wilson loop which is super-
symmetric in a sense to be explained. We will see that this supersymmetry condition
ensures the existence of a solution which is not unique but has a determined shape.
Our treatment remains purely classical, and we defer the quantum theory to the next
chapter.

2.1 The Super Wilson Loop Ansatz and its Symmetries

As in Sec. 1.2, we denote the gauge field by A such that −igA is a connection with gauge
group SU(N) on Minkowski space R4. Let x : [0, 1]→ R4 be a path in Minkowski space
connecting x(0) with x(1). Parallel transport, which maps a vector v0 ∈ Tx(0)R4 ∼= R4

to a vector v(t) ∈ Tx(t)R4 ∼= R4, is defined by the differential equation Dtv(t) = 0. Given
the initial condition v(0) = v0, this equation is shown to have a unique solution which
can be written in the form v(t) = B(t)·v0 with B : [0, 1]→ su(N) being the path-ordered
exponential of igA. Taking the trace and dividing by N defines the classical Wilson line
(for t = 1) as follows.

W :=
1

N
trB(1) =

1

N
trP exp

(
ig

∫ 1

0
dt
dxµ

dt
Aµ(x(t))

)
(2.1)

If x is a loop (such that x(0) = x(1)), B is also known as the holonomy around x, and
W is called a Wilson loop. For the classical theory, consult e.g. [Bau09] or [Bär09].

Recently, two approaches appeared for a supersymmetric version of (2.1), which are
both motivated by a proposed extension of the duality of gluon scattering amplitudes
with (quantised) Wilson loops to a duality involving scattering amplitudes with any
kind of N = 4 SYM particles. We will come back to this duality in Sec. 3.2 and, in
this chapter, solely concentrate on the classical theory. The first approach ([MS10])
originates in momentum twistor space and translates into the integral over some kind of
superconnection. Without having checked, we assume that this can indeed be identified
with the superholonomy of a superconnection in the sense of [Gal09].

The second approach, followed here, is due to Caron-Huot ([CH11]) and works for
polygons with lightlike edges only. It was shown in [BKS12] that, in the common
domain of definition, both approaches agree modulo the Euler-Lagrange equations of
Sec. 1.4. Consider then a polygon with n vertices xi and vectors pi := xi − xi−1 such

that xi(t) := xi−1 + tpi connects xi(0) = xi−1 with xi(1) = xi, and
dxµi
dt = pµi . We shall
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refer to the pi as ”momenta”, a denomination not justified until Sec. 3.2, which we
assume to be lightlike such that pi = λiλ̃i decomposes according to (1.11). Since the
polygon closes, we trivially observe momentum conservation

p1 + p2 + . . .+ pn = 0(2.2)

We endow the spacetime-coordinates of Minkowski space by Grassmann generators

ηAi , i ∈ {1, . . . , n} , A ∈ {1, . . . , 4}(2.3)

and, for the supersymmetric Wilson loop, make the ansatz

Wn =
1

N
tr (Vn1WnVn−1,n . . .W2V12W1)(2.4)

where Vj j+1 ∈ C⊗ su(N), which is thought of as a vertex operator located at xj , takes
values in the Grassmann algebra generated by the ηAi , and where

Wj := P exp

(
ig

∫ 1

0
dt Ej(t)

)
(2.5)

is an extension of the parallel transport along pj with Ej = pj ·A+O(η).

...

p2

p1

pn
pn−1

x2x1

xn

xn−1 xn−2

...

W2

W1

Wn

Wn−1

V23V12

Vn1

Vn−1n Vn−2n−1

In the following, we will derive explicit expressions for Vj j+1 and Ej by symmetry con-
siderations.

Lemma 2.1.1. Consider the following ”super” analogon of a gauge transformation
(1.22) with V : R4 → SU(N).

Ei(t)→ V (xi(t))

(
Ei(t) +

i

g
∂t

)
V †(xi(t)) , Vi,i+1 → V (xi)Vi,i+1V

†(xi)(2.6)

Then Wn →Wn is invariant under (2.6).

Proof. Denote the ”super” extension of the covariant derivative Dt along an edge by the
same symbol:

Dt := ∂t − ig [Ei(t), ·]

As for the classical parallel transport, one shows that (2.5) is the unique solution of the
equation DtWi = 0 for a given initial condition Ei(0). Under (2.6), Dt transforms by
definition as

Dt → ∂t − igV (xi(t))

(
Ei(t) +

i

g
∂t

)
V †(xi(t)) = V (xi(t))DtV

†(xi(t))
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and V (xi)WiV
†(xi−1) satisfies (V DtV

†)(V (xi(t))WiV
†(xi−1)) = 0 if and only if DtWi =

0. It follows that Wi transforms under (2.6) as

Wi → V (xi)WiV
†(xi−1)(2.7)

As a consequence, the Wilson loop ansatz (2.4) transforms as

Wn =
1

N
tr (Vn1WnVn−1,n . . .W2V12W1)

→ 1

N
tr
((
V (xn)Vn1V

†(xn)
)(

V (xn)WnV
†(xn−1)

)
. . .

. . .
(
V (x1)V12V

†(x1)
)(

V (x1)W1V
†(xn)

))
=

1

N
tr
(
V (xn)Vn1WnVn−1,n . . .W2V12W1V

†(xn)
)

= Wn

where we have used Lem. 1.1.1.

Lemma 2.1.2. Let Q be a variation such that

QEi(t) =
1

g
(∂t − ig [Ei(t), ·])X(xi(t)) , QVi,i+1 = iX(xi)Vi,i+1 − iVi,i+1X(xi)

for some X : R4 → C⊗ su(N). Then QWn = 0.

Proof. We denote the gauge transformed edge and vertex operators on the respective
right hand side in (2.6) by Ei(V ) and Vi,i+1(V ) and consider first α : R4 → su(N) and
X := −iα : R4 → i · su(N). Analogous to the calculation of the gauge fixing term Λ[α]
in Sec. 1.5, we find that

dEi(V )[α] =
1

g
(∂tX − ig [Ei, X]) = QEi

dVi,i+1(V )[α] = iX(xi)Vi,i+1 − iVi,i+1X(xi) = QVi,i+1

It follows that

dWi(V )[α] = dWi ◦ dEi(V )[α] = dWi ◦ QEi = QWi

and we obtain

QWn = Q
(

1

N
tr (Vn1WnVn−1,n . . .W2V12W1)

)
= d

(
1

N
tr (Vn1WnVn−1,n . . .W2V12W1)

)
(V )[α]

= dWn(V )[α] = 0

by invariance Wn = Wn(V ) from Lem. 2.1.1. The general case (X and α taking values
in C⊗ su(N)) follows by complex linear extension of the derivatives.

We have seen that the variation stated in the previous lemma is just the infinitesimal
form of a super gauge transformation (2.6). In the following, we shall need a weaker
form as treated next.
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Lemma 2.1.3. Let Q be a variation such that

QEi(t) =
1

g
(∂t − ig [Ei(t), ·])Xi(t) , QVi,i+1 = iXi+1(0)Vi,i+1 − iVi,i+1Xi(1)

for some Xi : [0, 1]→ C⊗ su(N). Then QWn = 0.

Proof. If we can find X : R4 → C ⊗ su(N) such that X(xi(t)) = Xi(t) for all i, the
statement follows immediately from the previous lemma. Otherwise (if Xi cannot be
smoothly connected with Xi+1) we proceed as follows. Assuming that Xi has sufficient
regularity properties, we at least find X̃i, which is defined in a neighbourhood of the
”interval” [xi−1, xi] ⊆ R4, such that X̃i(xi(t)) = Xi(t). Then

QWi = dWi[α̃i(xi(t))] = iX̃i(xi)Wi − iWiX̃i(xi−1) = iXi(1)Wi − iWiXi(0)

holds with α̃i = iX̃i, using (2.7). We then calculate

Q(Vi,i+1Wi) = (QVi,i+1)Wi + Vi,i+1(QWi)

= (iXi+1(0)Vi,i+1 − iVi,i+1Xi(1))Wi + Vi,i+1 (iXi(1)Wi − iWiXi(0))

= iXi+1(0)Vi,i+1Wi − iVi,i+1WiXi(0)

and

Q(Vi,i+1WiVi−1,iWi−1) = Q(Vi,i+1Wi)Vi−1,iWi−1 + Vi,i+1WiQ(Vi−1,iWi−1)

= (iXi+1(0)Vi,i+1Wi − iVi,i+1WiXi(0))Vi−1,iWi−1

+ Vi,i+1Wi(iXi(0)Vi−1,iWi−1 − iVi−1,iWi−1Xi−1(0))

= iXi+1(0)Vi,i+1WiVi−1,iWi−1 − iVi,i+1WiVi−1,iWi−1Xi−1(0)

Proceeding by induction, we obtain

Q(Vn−1,nWn−1 . . .W2V12W1)

= iXn(0)Vn−1,nWn−1 . . .W2V12W1 − iVn−1,nWn−1 . . .W2V12W1X1(0)

and, therefore,

QWn =
1

N
trQ (Vn1WnVn−1,n . . .W2V12W1)

=
i

N
tr (X1(0)Vn1WnVn−1,n . . .W2V12W1 − Vn1WnVn−1,n . . .W2V12W1X1(0))

which vanishes by Lem. 1.1.1.

Our ansatz (2.4) for the Wilson loop Wn depends on the fields of the theory as well
as on the Grassmann generators (2.3), and we endow the supersymmetry generators qαA
as stated in Lem. 1.3.4 by generators QαA which act on superspace as follows.

QαA := qαA +QαA := qαA + c0

∑
i
λαi

∂

∂ηAi
(2.8)

Since the two sets of generators act on different spaces, we have added a constant c0

which remains undetermined for the time being. We aim at constructing Ei and Vi,i+1

such that Wn is supersymmetric in the sense of QαAWn = 0 (ignoring the second half of
supersymmetries q̃Aα̇). By Lem. 2.1.3, this is achieved if we further find Xα

iA(t) such
that

QαAEi =
1

g
(∂t − ig [Ei, ·])Xα

iA(t)(2.9a)

QαAVi,i+1 = iXα
i+1A(0)Vi,i+1 − iVi,i+1X

α
iA(1)(2.9b)
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2.2 Derivation of Edge Operators

In this section, we derive a solution of (2.9a) whose shape is determined by this sym-
metry. It turns out that, once Xα

iA is fixed, (2.9b) has a unique solution, for which an
explicit recursion formula exist. This will be the subject matter of Sec. 2.3. For the
sake of brevity, we write

〈i, j〉 := 〈λi, λj〉 , [i, j] :=
[
λ̃i, λ̃j

]
, 2pi · pj = 〈i, j〉 [i, j](2.10)

where the brackets denote the symplectic structures (1.4), and the last equation holds
by (1.10). Moreover, we denote by O(ηk) any polynomial in the Grassmann generators
(2.3) of a degree of at least k.

Theorem 2.2.1. We make the ansatz Ei = pi · A + O(η) (such that, at lowest order,
Wi in (2.5) equals B(1) in the classical Wilson line (2.1)). Then (2.9a) is satisfied with

Ei =
1

2
λiβλ̃iβ̇A

ββ̇ +
i

c0
λ̃iβ̇ψ̃

β̇
Aη

A
i −

i
√

2

2c2
0

λ̃iβ̇λ(i−1)γD
β̇γφAB

〈i, i− 1〉
ηAi η

B
i

+
1

3c3
0

εABCD
λ(i−1)ξλ̃iβ̇λ(i−1)γD

β̇γψξA

〈i, i− 1〉2
ηBi η

C
i η

D
i

+
i

24c4
0

εABCD
λ(i−1)γλ(i−1)ξλ̃iβ̇λ(i−1)βD

β̇βF γξ

〈i, i− 1〉3
ηAi η

B
i η

C
i η

D
i

and

Xα
iA :=

gλαi−1

c0 〈i, i− 1〉

(
−2i
√

2φABη
B
i + εABCD

2λ(i−1)γψ
γB

c0 〈i, i− 1〉
ηCi η

D
i

+
i

3c2
0

εABCD
λ(i−1)γλ(i−1)βF

γβ

〈i, i− 1〉2
ηBi η

C
i η

D
i

)

This result holds upon the Euler-Lagrange equations of Sec. 1.4.

Proof. We use the notation

Ei = E(0)
i + E(1)

i + E(2)
i + E(3)

i + E(4)
i , Eki := E(0)

i + . . .+ E(k)
i

and similarly for Xα
iA, with E(k)

i denoting the term of order (ηi)
k. Starting with E0

i :=

pi · A = 1
2λiβλ̃iβ̇A

ββ̇, we calculate, order by order in the η terms, the supersymmetry

variation QαA(Eki ) (Lem. 1.3.4). Upon multiplication with 1 =
λiγλ

γ
i−1

〈i i−1〉 and using the

Schouten identity (Lem. 1.1.5), this variation can be written as a sum QαA(Eki ) =
λαi E

k
iA + λαi−1R

k
iA of terms proportional to either λαi or λαi−1. Now

λαi E
k
iA =

1

S
·
(
c0

∑
i
λαi

∂

∂ηAi

)(
ηAi
EkiA
c0

)
= QαA

(
ηAi

EkiA
S · c0

)
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where S is a symmetry factor depending on EkiA. Setting E(k+1)
i := −ηAi

EkiA
S·c0 , we thus

obtain

QαA(Ek+1
i ) = λαi E

k
iA + λαi−1R

k
iA −QαA

(
ηAi

EkiA
S · c0

)
= −qαA

(
ηAi

EkiA
S · c0

)
+ λαi−1R

k
iA

= qαA

(
E(k+1)
i

)
+ λαi−1R

k
iA

!
= λαi E

k+1
iA + λαi−1R

k+1
iA

By recursion, this fixes the edge operator Ei = E4
i . Finally, we find that QαA(Ei) =

λαi−1R
4
iA (i.e. E4

iA = 0). Moreover we find, again order by order, that there is Xα
iA such

that

λαi−1R
4
iA =

1

g
(∂t − ig [Ei, ·])Xα

iA(t)(2.11)

The details of the calculations occupy the rest of this section.

2.2.1 Proof: Part 1 (Calculation of Ei and RiA)

First Order

Starting with E0
i = 1

2λiβλ̃iβ̇A
ββ̇, we find

QαA(E0
i ) =

1

2
λiβλ̃iβ̇q

α
A(Aββ̇) = iλiβλ̃iβ̇ε

αβψ̃β̇A = λαi · iλ̃iβ̇ψ̃
β̇
A = λαi E

0
iA

such that we find E(1)
i := −ηAi i

c0
λ̃iβ̇ψ̃

β̇
A = i

c0
λ̃iβ̇ψ̃

β̇
Aη

A
i .

Second Order

Furthermore

QαA(E1
i ) =

i

c0
λ̃iβ̇ q

α
A(ψ̃β̇B) ηBi = − i

√
2

c0
λ̃iβ̇D

β̇αφABη
B
i = −

λiγλ
γ
i−1

〈i, i− 1〉
i
√

2

c0
λ̃iβ̇D

β̇αφABη
B
i

and the Schouten identity yields

QαA(E1
i ) =

i
√

2λαi
c0

λ̃iβ̇λ(i−1)γ

〈i, i− 1〉
Dβ̇γφABη

B
i −

i
√

2λαi−1

c0

λ̃iβ̇λiγ

〈i, i− 1〉
Dβ̇γφABη

B
i

= λαi E
1
iA + λαi−1R

1
iA

Now ∂
∂ηAi

(
φBCη

B
i η

C
i

)
= φACη

C
i − φBAη

B
i = 2φABη

B
i such that S = 2 and we find

E(2)
i := − i

√
2

2c20

λ̃iβ̇λ(i−1)γ

〈i, i−1〉 Dβ̇γφBCη
B
i η

C
i .
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Third Order

We further calculate, using Cor. 1.3.5:

QαA(E2
i )

= qαA

(
− i
√

2

c2
0

λ̃iβ̇λ(i−1)γ

〈i, i− 1〉
Dβ̇γφBCη

B
i η

C
i

)
+ λαi−1R

1
iA

=
1

c2
0

εABCD
λiξλ

ξ
(i−1)

〈i, i− 1〉
λ̃iβ̇λ(i−1)γD

β̇γψαD

〈i, i− 1〉
ηBi η

C
i

− ig
√

2

c2
0

λ̃iβ̇λ
α
(i−1)

[
ψ̃β̇A, φBC

]
〈i, i− 1〉

ηBi η
C
i + λαi−1R

1
iA

= −λ
α
i

c2
0

εABCD
λ(i−1)ξλ̃iβ̇λ(i−1)γD

β̇γψξD

〈i, i− 1〉2
ηBi η

C
i

+ λαi−1

εABCD λiξλ̃iβ̇λ(i−1)γD
β̇γψξD

c2
0 〈i, i− 1〉2

ηBi η
C
i −

ig
√

2

c2
0

λ̃iβ̇

[
ψ̃β̇A, φBC

]
〈i, i− 1〉

ηBi η
C
i +R1

iA


= λαi E

2
iA + λαi−1R

2
iA

Now ∂
∂ηAi

(
εBCDEψ

ξEηBi η
C
i η

D
i

)
= 3εACDEψ

ξEηCi η
D
i holds such that S = 3, and we find

E(3)
i = 1

3c30
εBCDE

λ(i−1)ξλ̃iβ̇λ(i−1)γD
β̇γψξB

〈i, i−1〉2 ηCi η
D
i η

E
i .

Fourth Order

We further calculate, using Cor. 1.3.5,

QαA(E3
i ) = qαA

 1

3c3
0

εBCDE
λ(i−1)ξλ̃iβ̇λ(i−1)γD

β̇γψξB

〈i, i− 1〉2
ηCi η

D
i η

E
i

+ λαi−1R
2
iA

=
i

6c3
0

εABCD
λiγλ

γ
i−1

〈i i− 1〉
λ(i−1)ξλ̃iβ̇λ(i−1)βD

β̇βF ξα

〈i, i− 1〉2
ηBi η

C
i η

D
i + . . .+ λαi−1R

2
iA
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where ”. . .” refers to the remaining terms of qαA(Dβ̇γψξB). By the Schouten identity, we
thus find

QαA(E3
i ) = − i

6c3
0

εACDE
λαi λ(i−1)γλ(i−1)ξλ̃iβ̇λ(i−1)βD

β̇βF γξ

〈i, i− 1〉3
ηCi η

D
i η

E
i

+ λαi−1

 i

6c3
0

εACDE
λiγλ(i−1)ξλ̃iβ̇λ(i−1)βD

β̇βF γξ

〈i, i− 1〉3
ηCi η

D
i η

E
i

+
2g

3c3
0

εBCDE
λ̃iβ̇λ(i−1)γ

[
ψ̃β̇A, ψ

γB
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

− 2ig

3c3
0

εBCDE
λ̃iβ̇λ(i−1)γ

[
φAF , D

β̇γφBF
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

− ig

6c3
0

εACDE
λ̃iβ̇λ(i−1)γ

[
Dβ̇γφFG, φFG

]
〈i, i− 1〉2

ηCi η
D
i η

E
i +R2

iA


= λαi E

3
iA + λαi−1R

3
iA

Now ∂
∂ηAi

(
εBCDEη

B
i η

C
i η

D
i η

E
i

)
= 4εACDEη

C
i η

D
i η

E
i holds such that S = 4, and we find

E(4)
i = i

24c40
εBCDE

λ(i−1)γλ(i−1)ξλ̃iβ̇λ(i−1)βD
β̇βF γξ

〈i, i−1〉3 ηBi η
C
i η

D
i η

E
i . This finishes the calculation

of Ei.

The Remaining Terms

To finish the calculation of RiA, we calculate

QαA(E4
i ) = qαA

 i

24c4
0

εBCDE
λ(i−1)γλ(i−1)ξλ̃iβ̇λ(i−1)βD

β̇βF γξ

〈i, i− 1〉3
ηBi η

C
i η

D
i η

E
i

+ λαi−1R
3
iA

To proceed, we calculate, using Cor. 1.3.5,

qαA(Dβ̇βF γξ) = qαA(Dβ̇β)F γξ +Dβ̇βqαA(F γξ)

= −ig
[
qαA(Aβ̇β), F γξ

]
+Dβ̇β

(
−2εαξDγ

γ̇ψ̃
γ̇
A − 2εαγDξ

γ̇ψ̃
γ̇
A

)
∼= 2gεαβ

[
ψ̃β̇A, F

γξ
]

+ 4εαξDβ̇βDγγ̇ψ̃γ̇A

where the last equation holds upon contraction with λ(i−1)γλ(i−1)ξ. Using the equations
of motion (Lem. 1.4.1), we thus yield

qαA(Dβ̇βF γξ)

∼= 2gεαβ
[
ψ̃β̇A, F

γξ
]

+ 4i
√

2 gεαξDβ̇β
[
φAB, ψ

γB
]

= 2gεαβ
[
ψ̃β̇A, F

γξ
]

+ 4i
√

2 gεαξ
[
Dβ̇βφAB, ψ

γB
]
− 4i
√

2 gεαξ
[
Dβ̇βψγB, φAB

]
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and

QαA(E4
i ) = λαi−1R

3
iA +

iλαi−1εBCDEλ(i−1)γλ(i−1)βλ̃iβ̇

24c4
0 〈i, i− 1〉3

(
2g
[
ψ̃β̇A, F

γβ
]

+4i
√

2 g
[
Dβ̇βφAK , ψ

γK
]
− 4i
√

2 g
[
Dβ̇βψγK , φAK

])
ηBi η

C
i η

D
i η

E
i

= λαi−1R
4
iA

This finishes the calculation of RiA.

2.2.2 Proof: Part 2 (Calculation of Xα
iA)

We need to find Xα
iA such that (2.11) holds. Sorting order by order, this is equivalent to

λαi−1R
(1)
iA =

1

g

(
∂t − ig

[
E0
i , ·
])
X
α(1)
iA

λαi−1R
(2)
iA =

1

g

(
∂t − ig

[
E0
i , ·
])
X
α(2)
iA − i

[
E(1)
i , X

α(1)
iA

]
λαi−1R

(3)
iA =

1

g

(
∂t − ig

[
E0
i , ·
])
X
α(3)
iA − i

[
E(1)
i , X

α(2)
iA

]
− i
[
E(2)
i , X

α(1)
iA

]
λαi−1R

(4)
iA =

1

g

(
∂t − ig

[
E0
i , ·
])
X
α(4)
iA − i

[
E(1)
i , X

α(3)
iA

]
− i
[
E(2)
i , X

α(2)
iA

]
− i
[
E(3)
i , X

α(1)
iA

]
First Order

From the above calculations, we collect

λαi−1R
(1)
iA = −

i
√

2λαi−1

c0

λ̃iβ̇λiγ

〈i, i− 1〉
Dβ̇γφABη

B
i

= −
2i
√

2λαi−1

c0 〈i, i− 1〉
1

2
λ̃iβ̇λiβ

(
∂β̇β − ig

[
Aβ̇β , ·

])
φAB η

B
i

=

(
∂t − ig

[
1

2
λ̃iβ̇λiβA

ββ̇, ·
])(

−
2i
√

2λαi−1

c0 〈i, i− 1〉
φABη

B
i

)

=
1

g

(
∂t − ig

[
E0
i , ·
])(
−

2ig
√

2λαi−1

c0 〈i, i− 1〉
φABη

B
i

)
=:

1

g

(
∂t − ig

[
E0
i , ·
])
X
α(1)
iA

where we used 1
2 λ̃iλiD = (∂t − ig[E0

i , ·]), thus fixing X
α(1)
iA .

Second Order

From the above calculation, we deduce

λαi−1R
(2)
iA = − ig

√
2

c2
0

λ̃iβ̇λ
α
(i−1)

[
ψ̃β̇A, φBC

]
〈i, i− 1〉

ηBi η
C
i

+
λα(i−1)

c2
0

εABCD
λiξλ̃iβ̇λ(i−1)γD

β̇γψξD

〈i, i− 1〉2
ηBi η

C
i
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We transform the second term by the Schouten identity and the equations of motion
(Lem. 1.4.1):

λiξλ̃iβ̇(λ(i−1)γD
β̇γψξD) = λiξλ̃iβ̇(λξ(i−1)D

β̇γψDγ ) + λiξλ̃iβ̇(λ(i−1)γD
β̇ξψγD)

= i
√

2 g 〈i, i− 1〉 λ̃iβ̇
[
φDK , ψ̃β̇K

]
+ λiξλ̃iβ̇λ(i−1)γD

β̇ξψγD

In the next step, we combine the two terms with a commutator to obtain

ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

([
φBC , ψ̃

β̇
A

]
+ εABCD

[
φDK , ψ̃β̇K

])
ηBi η

C
i

=
ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

([
φBC , ψ̃

β̇
A

]
+

1

2
εABCDεDKLM

[
φLM , ψ̃

β̇
K

])
ηBi η

C
i

=
ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

[
φLM , ψ̃

β̇
K

](
δKLMABC −

1

2
εDABCεDKLM

)
ηBi η

C
i

Further using (1.14), we obtain for the commutator terms

ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

[
φLM , ψ̃

β̇
K

] (
δKLMABC − δKLMABC − δKLMBCA − δKLMCAB

)
ηBi η

C
i

=
ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

[
ψ̃β̇K , φLM

] (
δKLMBCA + δKLMCAB

)
ηBi η

C
i

=
ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

(
[
ψ̃β̇B, φCA

]
+
[
ψ̃β̇C , φAB

]
)ηBi η

C
i

= −
2ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

[
ψ̃β̇B, φAC

]
ηBi η

C
i

Therefore

λαi−1R
(2)
iA = −

2ig
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

[
ψ̃β̇B, φAC

]
ηBi η

C
i

+
λα(i−1)

c2
0

εABCD
λiξλ̃iβ̇λ(i−1)γD

β̇ξψγD

〈i, i− 1〉2
ηBi η

C
i

=
1

g

(
∂t − ig

[
E0
i , ·
])(

εABCD
2gλα(i−1)λ(i−1)γψ

γB

c2
0 〈i, i− 1〉2

ηCi η
D
i

)

− i

(
2g
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

[
ψ̃β̇B, φAC

]
ηBi η

C
i

)

=:
1

g

(
∂t − ig

[
E0
i , ·
])

(X
α(2)
iA )− i

(
2g
√

2λα(i−1)λ̃iβ̇

c2
0 〈i, i− 1〉

[
ψ̃β̇B, φAC

]
ηBi η

C
i

)

=
1

g

(
∂t − ig

[
E0
i , ·
])

(X
α(2)
iA )− i

([
i

c0
λ̃iβ̇ψ̃

β̇
Bη

B
i , −

2ig
√

2λαi−1

c0 〈i, i− 1〉
φACη

C
i

])
=

1

g

(
∂t − ig

[
E0
i , ·
])

(X
α(2)
iA )− i

([
E(1)
i , X

α(1)
iA

])
This fixes X

α(2)
iA , and at the same time provides a consistency check for X

α(1)
iA .
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Third Order

From the above calculation, we deduce

λαi−1R
(3)
iA = λαi−1

 i

6c3
0

εACDE
λiγλ(i−1)ξλ̃iβ̇λ(i−1)βD

β̇βF γξ

〈i, i− 1〉3
ηCi η

D
i η

E
i

+
2g

3c3
0

εBCDE
λ̃iβ̇λ(i−1)γ

[
ψ̃β̇A, ψ

γB
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

− 2ig

3c3
0

εBCDE
λ̃iβ̇λ(i−1)γ

[
φAF , D

β̇γφBF
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

− ig

6c3
0

εACDE
λ̃iβ̇λ(i−1)γ

[
Dβ̇γφFG, φFG

]
〈i, i− 1〉2

ηCi η
D
i η

E
i


=: (1) + (2) + (3) + (4)

Consider the first term. We use the Schouten identity and Cor. 1.4.2 to obtain

λiγλ(i−1)βD
β̇βF γξ

= λiβλ(i−1)γD
β̇βF γξ − λiβλβi−1D

β̇

γ
F γξ

= λiβλ(i−1)γD
β̇βF γξ + λiβλ

β
i−1D

β̇γF ξ
γ

= λiβλ(i−1)γD
β̇βF γξ + 〈i, i− 1〉 g

[
Dξβ̇φAB, φAB

]
+ 4i 〈i, i− 1〉 g

[
ψ̃β̇A, ψ

ξA
]

and thus

(1) =
i

6c3
0

εACDE
λαi−1λ̃iβ̇λiβλ(i−1)ξλ(i−1)γD

β̇βF γξ

〈i, i− 1〉3
ηCi η

D
i η

E
i

+
ig

6c3
0

εACDE
λαi−1λ̃iβ̇λ(i−1)ξ

[
Dξβ̇φFG, φFG

]
〈i, i− 1〉2

ηCi η
D
i η

E
i

− 2g

3c3
0

εACDE
λαi−1λ̃iβ̇λ(i−1)ξ

[
ψ̃β̇F , ψ

ξF
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

=: (1a) + (1b) + (1c)

We identify the first term thereof with

(1a) =
i

3c3
0

εACDE
λαi−1(∂t − ig

[
E0
i , ·
]
)λ(i−1)ξλ(i−1)γF

γξ

〈i, i− 1〉3
ηCi η

D
i η

E
i

=
1

g
(∂t − ig

[
E0
i , ·
]
)(X

α(3)
iA )
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This fixes X
α(3)
iA . Now (4) cancels with (1b), and we arrive at

λαi−1R
(3)
iA − (1a) = − 2g

3c3
0

εACDE
λαi−1λ̃iβ̇λ(i−1)ξ

[
ψ̃β̇F , ψ

ξF
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

+
2g

3c3
0

εBCDE
λαi−1λ̃iβ̇λ(i−1)γ

[
ψ̃β̇A, ψ

γB
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

− 2ig

3c3
0

εBCDE
λαi−1λ̃iβ̇λ(i−1)γ

[
φAF , D

β̇γφBF
]

〈i, i− 1〉2
ηCi η

D
i η

E
i

=: (i) + (ii) + (iii)

It remains to show that this equals the sum of the commutators ∼ [η, ηη] + [ηη, η] of
−i[E , X]. We show that the first two terms can be combined into the form required. In
the first equation, we use that (with ACDE fixed) F can obtain exactly the values A
and C because otherwise η’s cancel.

(ψ̃F η
F )(εACDEψ

CηDηE)

= εACDEψ̃Aη
AψCηDηE + εACDEψ̃Cη

CψCηDηE

= (ψ̃Aψ
C)εCADEη

AηDηE − (ψ̃Cψ
C)εACDEη

CηDηE

=
1

3

∑
C 6=A

(ψ̃Aψ
C)εCKDEη

KηDηE − 1

3

∑
F 6=A

(ψ̃Fψ
F )εACDEη

CηDηE

=
1

3

∑
C 6=A

(ψ̃Aψ
C)εCKDEη

KηDηE

+
1

3
(ψ̃Aψ

A)εACDEη
CηDηE − 1

3
(ψ̃Fψ

F )εACDEη
CηDηE

=
1

3
(ψ̃Aψ

C)εCKDEη
KηDηE − 1

3
(ψ̃Fψ

F )εACDEη
CηDηE

We thus conclude that

(i) + (ii) =
2g

c3
0

λαi−1λ̃iβ̇λ(i−1)ξ

〈i, i− 1〉2
[
ψ̃β̇F η

F
i , εACDEψ

ξCηDi η
E
i

]
= −i

[
i

c0
λ̃iβ̇ψ̃

β̇
F η

F
i ,

2gλαi−1λ(i−1)ξ

c2
0 〈i, i− 1〉2

εACDEψ
ξCηDi η

E
i

]
= −i

[
E(1)
i , X

α(2)
iA

]
as it should be. We finally show that the last term has the form required.

εBCDEφAFDφ
BF ηCηDηE =

1

2
εBCDEεBFKLφAFDφKLη

CηDηE

= 3δCDEFKLφAFDφKLη
CηDηE

= 3φAFDφKLη
F ηKηL

= 3(φAF η
F )(DφKLη

KηL)
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Therefore

(iii) = −2ig

c3
0

λαi−1λ̃iβ̇λ(i−1)γ

〈i, i− 1〉2
[
φAF η

F
i , D

β̇γφKLη
K
i η

L
i

]
= −i

[
− i
√

2

2c2
0

λ̃iβ̇λ(i−1)γ

〈i, i− 1〉
Dβ̇γφKLη

K
i η

L
i , −

2i
√

2 gλαi−1φAF η
F
i

c0 〈i, i− 1〉

]
= −i

[
E(2)
i , X

α(1)
iA

]
This concludes the verification to third order, thus providing a consistency check for

X
α(1)
iA and X

α(2)
iA .

Fourth Order

From the above calculation, we deduce

λαi−1R
(4)
iA =

iλαi−1εBCDEλ(i−1)γλ(i−1)βλ̃iβ̇

24c4
0 〈i, i− 1〉3

(
2g
[
ψ̃β̇A, F

γβ
]

+4i
√

2 g
[
Dβ̇βφAK , ψ

γK
]
− 4i
√

2 g
[
Dβ̇βψγK , φAK

])
ηBi η

C
i η

D
i η

E
i

=: (1) + (2) + (3)

In the following, we show that each of these three terms equals one of the three terms

in −i [Ei, Xα
iA] |η4 . This fixes X

α(4)
iA = 0. We calculate (no sum over A!):

ψ̃A εBCDE η
BηCηDηE = 4ψ̃A εACDE η

AηCηDηE

= 4(ψ̃Aη
A)(εACDE η

CηDηE)

= 4(ψ̃F η
F )(εACDE η

CηDηE)

where the last equation holds since, for CDE fixed, the value of F is required to be A
since otherwise the η terms vanish. Therefore

(1) =
iλαi−1εBCDEλ(i−1)γλ(i−1)βλ̃iβ̇

24c4
0 〈i, i− 1〉3

2g
[
ψ̃β̇A, F

γβ
]
ηBi η

C
i η

D
i η

E
i

=
igλαi−1λ(i−1)γλ(i−1)βλ̃iβ̇

3c4
0 〈i, i− 1〉3

[
ψ̃β̇F η

F
i , F

γβεACDE η
C
i η

D
i η

E
i

]
= −i

[
i

c0
λ̃iβ̇ψ̃

β̇
F η

F
i ,

igλαi−1

3c3
0

εABCD
λ(i−1)γλ(i−1)βF

γβ

〈i, i− 1〉3
ηBi η

C
i η

D
i

]
= −i

[
E(1)
i , X

α(3)
iA

]
As for the second term, we similarly calculate (no sum over A and K):

φAKεBCDEη
BηCηDηE = 4φAKεACDEη

AηCηDηE

= 12φAKεAKDEη
AηKηDηE

= 12(φAKη
AηK)(εAKDEη

DηE)

= 6(φLMη
LηM )(εAKDEη

DηE)
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Therefore

(2) =
iλαi−1εBCDEλ(i−1)γλ(i−1)βλ̃iβ̇

24c4
0 〈i, i− 1〉3

4i
√

2 g
[
Dβ̇βφAK , ψ

γK
]
ηBi η

C
i η

D
i η

E
i

= −
√

2 gλαi−1λ(i−1)γλ(i−1)βλ̃iβ̇

c4
0 〈i, i− 1〉3

[
Dβ̇βφLMη

LηM , ψγKεAKDEη
DηE

]
= −i

− i√2

2c2
0

λ̃iβ̇λ(i−1)βD
β̇βφLM

〈i, i− 1〉
ηLi η

M
i ,

2gλαi−1λ(i−1)γψ
γK

c2
0 〈i, i− 1〉2

εAKDEη
DηE


= −i

[
E(2)
i , X

α(2)
iA

]
Moreover (no sum over A and K):

ψKφAKεBCDEη
BηCηDηE = 4ψKφAKεKCDEη

KηCηDηE

= −4(εKCDEψ
KηCηDηE)(φAKη

K)

= −4(εKCDEψ
KηCηDηE)(φALη

L)

Therefore

(3) = −
iλαi−1εBCDEλ(i−1)γλ(i−1)βλ̃iβ̇

24c4
0 〈i, i− 1〉3

4i
√

2 g
[
Dβ̇βψγK , φAK

]
ηBi η

C
i η

D
i η

E
i

= −
2
√

2 gλαi−1λ(i−1)γλ(i−1)βλ̃iβ̇

3c4
0 〈i, i− 1〉3

[
εKCDED

β̇βψγKηCi η
D
i η

E
i , φALη

L
i

]
= −i

 1

3c3
0

εABCD
λ(i−1)γ λ̃iβ̇λ(i−1)βD

β̇βψγA

〈i, i− 1〉2
ηBi η

C
i η

D
i , −

2i
√

2 gλαi−1

c0 〈i, i− 1〉
φALη

L
i


= −i

[
E(3)
i , X

α(1)
iA

]
This concludes the verification to fourth order, thus providing a consistency check for

X
α(1)
iA and X

α(2)
iA and X

α(3)
iA and fixing X

α(4)
iA = 0.

2.3 Derivation of Vertex Operators

For the vertex operators, we make the ansatz Vi,i+1 = 1 +O(η) and require that it only
depends on the generators ηi and ηi+1. By (requested) construction, Vi,i+1 then consists
of terms with maximal η order ∼ η4

i η
4
i+1. We can thus expand

Vi,i+1 =
∑4

k=0

∑4

l=0
VA1...Ak B1...Bl η

A1
i . . . ηAki ηB1

i+1 . . . η
Bl
i+1(2.12)

and aim at a result in this form. Similarly, we denote the coefficients of Xα
iA by

Xα
iA = X

α(1)
iA +X

α(2)
iA +X

α(3)
iA = X

α(1)
iAA1

ηA1
i +X

α(2)
iAA1A2

ηA1
i ηA2

i +X
α(3)
iAA1A2A3

ηA1
i ηA2

i ηA3
i

Proposition 2.3.1. Let V0 = 1 (i.e. Vi,i+1 = 1 + O(η)) and require that Vi i+1 only
depends on the generators ηi and ηi+1. Then (2.9b) with Xα

iA as in Thm. 2.2.1 has the
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following unique solution: All coefficients VB1,...,Bd = 0 for d > 0 (i.e. all ”pure ηi+1-
terms”) vanish and the remaining coefficients are determined by the following recursion
formula.

VAA1...Ak B1...Bl

=
(−1)d+1λ(i+1)α

(k + 1)c0 〈i+ 1, i〉

(
−qαA(VA1...Ak B1...Bl) + iX

α(1)
(i+1)ABl

VA1...Ak B1...Bl−1

+iX
α(2)
(i+1)ABl−1Bl

VA1...Ak B1...Bl−2
+ iX

α(3)
(i+1)ABl−2Bl−1Bl

VA1...Ak B1...Bl−3

−i(−1)lVA1...Ak−1B1...BlX
α(1)
iAAk

− i(−1)dVA1...Ak−2B1...BlX
α(2)
iAAk−1Ak

−i(−1)lVA1...Ak−3B1...BlX
α(3)
iAAk−2Ak−1Ak

)
where d = k + l, and we use the notation (2.10).

Proof. For calculations, it is easier to work with an expansion where the generators ηi
and ηi+1 can stand in any order:

Vi,i+1 =
∑8

d=0
Cj1...jdB1...Bd

ηB1
j1
. . . ηBdjd

= 1 + CjBη
B
j + CjkBCη

B
j η

C
k + CjklBCDη

B
j η

C
k η

D
l + CjklmBCDEη

B
j η

C
k η

D
l η

E
m + . . .

with ji ∈ {i, i + 1} and Bi ∈ {1, 2, 3, 4}. By construction, the coefficient Cj1...jdB1...Bd
is

totally antisymmetric with respect to index pairs ji
Bi

. Now consider terms with k times

an ηi and l times an ηi+1. There are

(
k + l
k

)
possibilities to have k ηi-terms within a

set of k + l η-terms, and thus

VA1...Ak B1...Bl η
A1
i . . . ηAki ηB1

i+1 . . . η
Bl
i+1 =

∑
#{jm=i}=k

#{jm=i+1}=l
C
j1...jk+l
B1...Bk+l

ηB1
j1
. . . η

Bk+l
jk+l

=

(
k + l
k

)
CiA1

...

...
i
Ak

i+1
B1

...

...
i+1
Bl

ηA1
i . . . ηAki ηB1

i+1 . . . η
Bl
i+1

or, equivalently,

VA1...Ak B1...Bl =

(
k + l
k

)
CiA1

...

...
i
Ak

i+1
B1

...

...
i+1
Bl

(2.13)

Now, applying from the left a fixed ∂
∂ηAk

in the C-expansion kills the corresponding η

terms which can occur at every position, thus giving a symmetry factor of d and a sign.
Therefore(

c0

∑
k
λαk

∂

∂ηAk

)
(Vi,i+1) = c0

∑8

d=1
d (−1)

∣∣∣Ckj1...jd−1
AB1...Bd−1

∣∣∣
λαk C

kj1...jd−1

AB1...Bd−1
ηB1
j1
. . . η

Bd−1

jd−1

= c0

∑7

d=0
(d+ 1) (−1)

∣∣∣Ckj1...jdAB1...Bd

∣∣∣
λαk C

kj1...jd
AB1...Bd

ηB1
j1
. . . ηBdjd

and

QαA(Vi,i+1) =
∑8

d=0

(
qαA(Cj1...jdB1...Bd

) + c0(d+ 1) (−1)

∣∣∣Ckj1...jdAB1...Bd

∣∣∣
λαk C

kj1...jd
AB1...Bd

)
ηB1
j1
. . . ηBdjd

= c0(−1)|CkA|λαkCkA +

(
qαA(CjB) + 2c0(−1)

∣∣∣CkjAB∣∣∣
λαkC

kj
AB

)
ηBj +O(η2)
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with the implicit understanding that C ”with too many indices” vanishes.

We now show by induction that the coefficients are of parity
∣∣∣Cj1...jdB1...Bd

∣∣∣ ≡2 d: The

base case d = 0 is already established. Restricting to ∼ ηd, the previous calculation
shows that (2.9b) is equivalent to the recursion formula

c0(d+ 1) (−1)

∣∣∣Ckj1...jdAB1...Bd

∣∣∣
λαk C

kj1...jd
AB1...Bd

ηB1
j1
. . . ηBdjd

= −qαA(Cj1...jdB1...Bd
)ηB1
j1
. . . ηBdjd + (iXα

i+1AVi,i+1 − iVi,i+1X
α
iA)|ηd

= −qαA(Cj1...jdB1...Bd
)ηB1
j1
. . . ηBdjd + i

∑
k+l=d

(Xα
i+1A|ηkVi,i+1|ηl − Vi,i+1|ηkXα

iA|ηl)

By induction hypothesis, Cj1...jdB1...Bd
has parity d and, therefore, qαA applied to it has parity

d + 1 as it should be. We further note that the η-coefficient of Xα
i+1A|ηk has parity

k + 1 and the coefficient of Vi,i+1|ηl has parity l (again by induction hypothesis), and
analogous for the last summand, such that the sum term on the right hand side also has
parity k + 1 + l = d+ 1. Therefore, the left hand side has parity d+ 1 which was to be
shown.

Also by induction, we see that that all coefficients Ci+1...i+1
B1...Bd

= 0 vanish: In the
recursion formula so far established, we consider the case j1 = . . . jd = i+1 and multiply
both sides with λiα. Then only the left hand side with k = i+ 1 remains and

Ci+1,i+1...i+1
AB1...Bd

ηB1
i+1 . . . η

Bd
i+1 =

(−1)d+1λiα
〈i, i+ 1〉 c0(d+ 1)

(
−qαA(Ci+1...i+1

B1...Bd
)ηB1
i+1 . . . η

Bd
i+1

)
since λiαX

α
i+1A = 0 and Xα

iA = O(ηi). For d = 0, the right hand side ∼ qαA(1) = 0

vanishes and thus Ci+1
B = 0. Take this as induction basis and assume that Ci+1...i+1

B1...Bd
= 0.

The same recursion formula then implies that Ci+1,i+1...i+1
AB1...Bd

= 0, thus proving the claim.

Now, by multiplying both sides of the recursion formula with λ(i+1)α, only the left
hand side with k = i remains and

Cij1...jdAB1...Bd
ηB1
j1
. . . ηBdjd

=
(−1)d+1λ(i+1)α

〈i+ 1, i〉 c0(d+ 1)

(
−qαA(Cj1...jdB1...Bd

)ηB1
j1
. . . ηBdjd + (iXα

i+1AVi,i+1 − iVi,i+1X
α
iA)|ηd

)
where, with the parities already established,

(Xα
i+1AVi,i+1)|ηd = (X

α(1)
(i+1)ACη

C
i+1)(C

j1...jd−1

B1...Bd−1
ηB1
j1
. . . η

Bd−1

jd−1
)

+ (X
α(2)
(i+1)ACDη

C
i+1η

D
i+1)(C

j1...jd−2

B1...Bd−2
ηB1
j1
. . . η

Bd−2

jd−2
)

+ (X
α(e)
(i+1)ACDEη

C
i+1η

D
i+1η

E
i+1)(C

j1...jd−3

B1...Bd−3
ηB1
j1
. . . η

Bd−3

jd−3
)

= (X
α(1)
(i+1)ACC

j1...jd−1

B1...Bd−1
) ηB1

j1
. . . η

Bd−1

jd−1
ηCi+1

+ (X
α(2)
(i+1)ACDC

j1...jd−2

B1...Bd−2
) ηB1

j1
. . . η

Bd−2

jd−2
ηCi+1η

D
i+1

+ (X
α(3)
(i+1)ACDEC

j1...jd−3

B1...Bd−3
) ηB1

j1
. . . η

Bd−3

jd−3
ηCi+1η

D
i+1η

E
i+1
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and

(Vi,i+1X
α
iA)|ηd = (C

j1...jd−1

B1...Bd−1
ηB1
j1
. . . η

Bd−1

jd−1
)(X

α(1)
iAC η

C
i )

+ (C
j1...jd−2

B1...Bd−2
ηB1
j1
. . . η

Bd−2

jd−2
)(X

α(2)
iACDη

C
i η

D
i )

+ (C
j1...jd−3

B1...Bd−3
ηB1
j1
. . . η

Bd−3

jd−3
)(X

α(3)
iACDEη

C
i η

D
i η

E
i )

= (−1)d+1(C
j1...jd−1

B1...Bd−1
X
α(1)
iAC ) ηCi η

B1
j1
. . . η

Bd−1

jd−1

+ (−1)d(C
j1...jd−2

B1...Bd−2
X
α(2)
iACD) ηCi η

D
i η

B1
j1
. . . η

Bd−2

jd−2

+ (−1)d+1(C
j1...jd−3

B1...Bd−3
X
α(3)
iACDE) ηCi η

D
i η

E
i η

B1
j1
. . . η

Bd−3

jd−3

Let k+l = d and consider only the terms such that #{jm = i} = k and #{jm = i+1} = l
in the recursion formula. For the left hand side, we then obtain, using (2.13)

Cij1...jdAB1...Bd
ηB1
j1
. . . ηBdjd |ηki ηli+1

=

(
k + l
k

)
CiA

i...i
A1...Ak

i+1...i+1
B1...Bl

ηA1
i . . . ηAki ηB1

i+1 . . . η
Bl
i+1

=

(
k + l
k

)
(
k + l + 1
k + 1

)VAA1...Ak B1...Blη
A1
i . . . ηAki ηB1

i+1 . . . η
Bl
i+1

=
k + 1

d+ 1
VAA1...Ak B1...Blη

A1
i . . . ηAki ηB1

i+1 . . . η
Bl
i+1

For the first term on the right side, we simply obtain

qαA(Cj1...jdB1...Bd
)ηB1
j1
. . . ηBdjd |ηki ηli+1

= qαA(VA1...Ak B1...Bl) η
A1
i . . . ηAki ηB1

i+1 . . . η
Bl
i+1

Similarly, the second term yields

(Xα
i+1AVi,i+1)|ηki ηli+1

= (X
α(1)
(i+1)ACVA1...Ak B1...Bl−1

) ηA1
i . . . ηAki ηB1

i+1 . . . η
Bl−1

i+1 ηCi+1

+ (X
α(2)
(i+1)ACDVA1...Ak B1...Bl−2

) ηA1
i . . . ηAki ηB1

i+1 . . . η
Bl−2

i+1 ηCi+1η
D
i+1

+ (X
α(3)
(i+1)ACDEVA1...Ak B1...Bl−3

) ηA1
i . . . ηAki ηB1

i+1 . . . η
Bl−3

i+1 ηCi+1η
D
i+1η

E
i+1

and the third

(Vi,i+1X
α
iA)|ηki ηli+1

= (−1)d+1(VA1...Ak−1B1...BlX
α(1)
iAC ) ηCi η

A1
i . . . η

Ak−1

i ηB1
i+1 . . . η

Bl
i+1

+ (−1)d(VA1...Ak−2B1...BlX
α(2)
iACD) ηCi η

D
i η

A1
i . . . η

Ak−2

i ηB1
i+1 . . . η

Bl
i+1

+ (−1)d+1(VA1...Ak−3B1...BlX
α(3)
iACDE) ηCi η

D
i η

E
i η

A1
i . . . η

Ak−3

i ηB1
i+1 . . . η

Bl
i+1

= (−1)l(VA1...Ak−1B1...BlX
α(1)
iAC ) ηA1

i . . . η
Ak−1

i ηCi η
B1
i+1 . . . η

Bl
i+1

+ (−1)d(VA1...Ak−2B1...BlX
α(2)
iACD) ηA1

i . . . η
Ak−2

i ηCi η
D
i η

B1
i+1 . . . η

Bl
i+1

+ (−1)l(VA1...Ak−3B1...BlX
α(3)
iACDE) ηA1

i . . . η
Ak−3

i ηCi η
D
i η

E
i η

B1
i+1 . . . η

Bl
i+1

Putting everything together, the statement is proved.
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By the recursion formula of Prp. 2.3.1, the coefficients of higher order Grassmann
monomials are uniquely determined by those of lower order ones (and X) and can be
explicitly calculated. The following brackets will be needed throughout the calculations.

i− := 〈i, i− 1〉 , i+ := 〈i+ 1, i〉 , i± := 〈i+ 1, i− 1〉

such that

X
α(1)
iAA1

= −
2i
√

2 gλαi−1

c0i−
φAA1

, X
α(2)
iAA1A2

= εAA1A2C

2gλαi−1λ(i−1)γψ
γC

c2
0i

2
−

X
α(3)
iAA1A2A3

= εAA1A2A3

igλαi−1λ(i−1)βλ(i−1)γF
βγ

3c3
0i

3
−

and

X
α(1)
(i+1)AB1

= −2i
√

2 gλαi
c0i+

φAB1
, X

α(2)
(i+1)AB1B2

= εAB1B2C
2gλαi λiγψ

γC

c2
0i

2
+

X
α(3)
(i+1)AB1B2B3

= εAB1B2B3

igλαi λiβλiγF
βγ

3c3
0i

3
+

Theorem 2.3.2. Make the ansatz Vi,i+1 = 1+O(η) and require that it only depends on
the generators ηi and ηi+1. Then (2.9b) with Xα

iA as in Thm. 2.2.1 is uniquely satisfied
by

Vi,i+1 = 1−
√

2 gi±
c2

0i−i+
φA1A2

ηA1
i ηA2

i +
2
√

2 g

c2
0i+

φA1B1
ηA1
i ηB1

i+1

+
2ig

3c3
0

i±
(
−i−λ(i+1)γ + i+λ(i−1)γ

)
ψγC

i2−i
2
+

εA1A2A3C η
A1
i ηA2

i ηA3
i

+
2igλ(i+1)γψ

γC

c3
0i

2
+

εA1A2B1C η
A1
i ηA2

i ηB1
i+1 −

2igλiγψ
γC

c3
0i

2
+

εA1B1B2C η
A1
i ηB1

i+1η
B2
i+1

+O(η4)

along with the higher order terms listed next.

Fourth Order

The (non-vanishing) fourth order coefficients (2.12) of Vi,i+1 in Thm. 2.3.2 are as follows.

VA1A2A3A4 =

(
gi±

(
i2−λ(i+1)βλ(i+1)γ − i−i+λ(i−1)βλ(i+1)γ + i2+λ(i−1)βλ(i−1)γ

)
F βγ

12c4
0i

3
−i

3
+

+
g2i2±φCDφ

CD

12c4
0i

2
−i

2
+

)
εA1A2A3A4

VA1A2A3B1 = −
gλ(i+1)βλ(i+1)γF

βγ

3c4
0i

3
+

εA1A2A3B1 −
4g2i±
c4

0i−i
2
+

φA1B1
φA2A3

VA1A2B1B2 =
gλiβλ(i+1)γF

βγ

2c4
0i

3
+

εA1A2B1B2 −
g2

c4
0i

2
+

[
φA1A2

, φB1B2

]
− 4g2

c4
0i

2
+

φA1B1
φA2B2

VA1B1B2B3 = −
gλiβλiγF

βγ

3c4
0i

3
+

εA1B1B2B3
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Fifth Order

The fifth order coefficients of Vi,i+1 in Thm. 2.3.2 are as follows.

VA1A2A3A4B1 =
i
√

2 g2i±
3c5

0i
2
−i

3
+

(
4(i−λ(i+1)γ − i+λ(i−1)γ)εA2A3A4CφA1B1

ψγC

−6i−λ(i+1)γψ
γCεA1A2B1CφA3A4

)
VA1A2A3B1B2 =

i
√

2 g2λ(i+1)β

3c5
0i

3
+

(
εA2A3B1B2

[
φA1C , ψ

βC
]

+ εA1A2A3C

[
φB1B2

, ψβC
]

− εA1B1B2C

[
φA2A3

, ψβC
]
− 4εA1A2B1Cψ

βCφA3B2

−8εA2A3B1CφA1B2
ψβC

)
+

2i
√

2 g2i±λiγ
c5

0i−i
3
+

εA1B1B2Cψ
γCφA2A3

VA1A2B1B2B3 =
2i
√

2 g2λiγ
3c5

0i
3
+

(
−
[
φA1C , ψ

γC
]
εA2B1B2B3 + 3

[
φA1B1

, ψγC
]
+
εA2B2B3C

)

where [X, Y ]+ := XY + Y X (regardless of the Grassmann parity of X and Y ) denotes
the anticommutator.

Sixth Order

The sixth order coefficients of Vi,i+1 in Thm. 2.3.2 are as follows.

VA1A2A3A4B1B2 = −
√

2g2λ(i+1)αλ(i+1)β

24c6
0i

4
+

εA1A2A3A4

[
φB1B2

, F βα
]

+

√
2g2λ(i+1)αλ(i+1)β

6c6
0i

4
+

εA1A2A3B1

(
F βαφA4B2

+ 3φA4B2
F βα

)
−
√

2g2i±
2c6

0i−i
4
+

λiβλ(i+1)γF
βγφA1A4

εA2A3B1B2

+

√
2 g3i±

2c6
0i−i

3
+

(
2
[
φA1A2

, φB1B2

]
φA3A4

+ 8φA2B1
φA3B2

φA1A4

)
+

g2

3c6
0i

2
−i

4
+

(
εA2A3A4CεA1B1B2D(i2−λ(i+1)γλ(i+1)δ)

+ εA1B1B2CεA2A3A4D(i2−λ(i+1)γλ(i+1)δ + 4i−i±λiγλ(i+1)δ

− 4i+i±λiγλ(i−1)δ)

+ εA2A3B1CεA1A4B2D(6i2−λ(i+1)γλ(i+1)δ)
)
ψγCψδD
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and

VA1A2A3B1B2B3 =

√
2 g2λiγλ(i+1)α

9c6
0i

4
+

([
φA1A2

, F γα
]
εA3B1B2B3

+3
[
φA2B1

, F γα
]
+
εA3B2B3A1 + 3φA1B3

F γαεA2A3B1B2

)
+

√
2 g2i±λiγλiβF

γβφA1A2

3c6
0i−i

4
+

εA3B1B2B3

+
2
√

2 g3

18c6
0i

3
+

([
φA2C ,

[
φA1D, φEF

]]
εCDEF εA3B1B2B3

+ 6
[
φA2B1

,
[
φA1A3

, φB2B3

]]
+

−6φA1B3

[
φA2A3

, φB1B2

]
− 24φA1B3

φA2B1
φA3B2

)
+

4g2λiγλ(i+1)α

9c6
0i

4
+

(
−εA1A2CDεA3B1B2B3

[
ψαD, ψγC

]
+

+ 3εA3B2B3CεA1A2B1D

[
ψαD, ψγC

]
−3εA1B2B3CεA2A3B1Dψ

γCψαD
)

VA1A2B1B2B3B4 =

√
2 g2λiγλiβ

[
F γβ, φA1B1

]
+
εA2B2B3B4

3c6
0i

4
+

+
2g2λiγλiδψ

γCψδD

c6
0i

4
+

εA1B3B4CεA2B1B2D

Seventh and Eighth Order

The seventh and eighth order coefficients of Vi,i+1 in Thm. 2.3.2 have the following
structure.

VA1A2A3B1B2B3B4 ∼
g2

c7
0

Fψ +
g3

c7
0

φφψ

VA1A2A3A4B1B2B3 ∼
g3

c7
0

φφψ +
g2

c7
0

Fψ

VA1A2A3A4B1B2B3B4 ∼
g3

c8
0

φψψ +
g2

c8
0

FF +
g3

c8
0

Fφφ+
g4

c8
0

φ
4

Here, we (schematically) denote terms such as
[
φ, F

]
simply by φF ∼ Fφ. We decided

in favour of schematic expressions since the exact formulas (and their calculation) turn
out to be very long and are not needed in the following.

2.3.1 Calculation up to Fourth Order

To proof Thm. 2.3.2, we use the recursion formula in Prp. 2.3.1 to calculate the
coefficients (2.12) of Vi,i+1. Consider first d = 0, i.e. the coefficients ∼ η1 of order 1.
We already know that VB = 0. Considering VA, we observe that the right hand side of
the formula only consists of the (vanishing) variation of V0 = 1 such that also VA = 0
vanishes. The calculation of the higher order coefficients is analogous and occupies the
rest of this chapter.
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Second Order (d = 1, k = 1 and l = 0)

VAA1 =
λ(i+1)α

2c0i+

(
−qαA(VA1) + 0 + 0 + 0− iXα(1)

iAA1
+ 0 + 0

)
= −

iλ(i+1)α

2c0i+
X
α(1)
iAA1

= −
√

2 gi±
c2

0i−i+
φAA1

Second Order (d = 1, k = 0 and l = 1)

VAB1 =
λ(i+1)α

c0i+

(
iX

α(1)
(i+1)AB1

)
=

2
√

2 g

c2
0i+

φAB1

Third Order (d = 2, k = 2 and l = 0)

Using Lem. 1.3.4, we calculate

VAA1A2 =
−λ(i+1)α

3c0i+

(
−qαA(VA1A2)− iXα(2)

iAA1A2

)
=
−λ(i+1)α

3c0i+

(√
2 gi±

c2
0i−i+

(i
√

2 εAA1A2Cψ
αC)− εAA1A2C

2igλαi−1λ(i−1)γψ
γC

c2
0i

2
−

)

=
2ig

3c3
0

i±
(
−i−λ(i+1)γ + i+λ(i−1)γ

)
ψγC

i2−i
2
+

εAA1A2C

Third Order (d = 2, k = 1 and l = 1)

VAA1B1 =
−λ(i+1)α

2c0i+
(−qαA(VA1B1)) =

√
2 gλ(i+1)α

c3
0i

2
+

(i
√

2 εAA1B1Cψ
αC)

=
2igλ(i+1)γψ

γC

c3
0i

2
+

εAA1B1C

Third Order (d = 2, k = 0 and l = 2)

Now, for k = 0 and l = 2:

VAB1B2 =
−λ(i+1)α

c0i+

(
iX

α(2)
(i+1)AB1B2

)
=
−2igλiγψ

γC

c3
0i

2
+

εAB1B2C
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Fourth Order (d = 3, k = 3 and l = 0)

VAA1A2A3 =
λ(i+1)α

4c0i+

(
−qαA(VA1A2A3)− iVA1A2X

α(1)
iAA3

− iXα(3)
iAA1A2A3

)
=
λ(i+1)α

4c0i+

(
2ig

3c3
0

i±
(
i−λ(i+1)γ − i+λ(i−1)γ

)
qαA(ψγC)

i2−i
2
+

εA1A2A3C

−i

(
−
√

2 gi±
c2

0i−i+
φA1A2

)(
−

2i
√

2 gλαi−1

c0i−
φAA3

)

−i

(
εAA1A2A3

igλαi−1λ(i−1)βλ(i−1)γF
βγ

3c3
0i

3
−

))
=: (1) + (2) + (3)

We calculate (1). The term corresponding to the second summand ∼
[
φAD, φ

CD
]

of the
supersymmetry transformation qαA(ψγC) in Lem. 1.3.4 vanishes upon pairing with the η
terms. This follows from[
φAD, φ

CD
]
εCA1A2A3η

A
i η

A1
i ηA2

i ηA
3

i =
1

2
εCDEF εCA1A2A3

[
φAD, φEF

]
ηAi η

A1
i ηA2

i ηA
3

i

=
1

2
(δA1A2A3
DEF + . . .− . . .)

[
φAD, φEF

]
ηAi η

A1
i ηA2

i ηA
3

i

= 3
[
φAD, φEF

]
ηAi η

D
i η

E
i η

F
i

and [
φAD, φEF

]
ηAi η

D
i η

E
i η

F
i = −

[
φEF , φAD

]
ηAi η

D
i η

E
i η

F
i

= −
[
φEF , φAD

]
ηEi η

F
i η

A
i η

D
i

= −
[
φAD, φEF

]
ηAi η

D
i η

E
i η

F
i

such that

(1) =
2igλ(i+1)α

12c4
0i+

i±
(
i−λ(i+1)γ − i+λ(i−1)γ

)
i2−i

2
+

(
i

2
F γαδCA

)
εA1A2A3C

=
gi±

(
i−λ(i+1)γ − i+λ(i−1)γ

)
λ(i+1)αF

γα

12c4
0i

2
−i

3
+

εAA1A2A3

Moreover

(3) =
λ(i+1)α

4c0i+
εAA1A2A3

gλαi−1λ(i−1)βλ(i−1)γF
βγ

3c3
0i

3
−

=
gi±λ(i−1)βλ(i−1)γF

βγ

12c4
0i

3
−i+

εAA1A2A3

such that

(1) + (3) =
gi±

(
i2−λ(i+1)βλ(i+1)γ − i−i+λ(i−1)βλ(i+1)γ + i2+λ(i−1)βλ(i−1)γ

)
F βγ

12c4
0i

3
−i

3
+

εAA1A2A3
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Moreover

(2) =
λ(i+1)α

4c0i+

(√
2 gi±

c2
0i−i+

φA1A2

)(
2
√

2 gλαi−1

c0i−
φAA3

)

=
g2i2±
c4

0i
2
−i

2
+

φA1A2
φAA3

We calculate (using {CD} = {A1A2} in the second equation):

φA1A2
φAA3

ηAi η
A1
i ηA2

i ηA
3

i

=
1

2
εAA3CDφA1A2

φCDηAi η
A1
i ηA2

i ηA
3

i

=
1

2
(εAA3A1A2φA1A2

φA1A2 + εAA3A2A1φA1A2
φA2A1)ηAi η

A1
i ηA2

i ηA
3

i

= (φA1A2
φA1A2)(εAA3A1A2η

A
i η

A1
i ηA2

i ηA
3

i )

Here, the sum runs over all AA1A2A3. For A1A2 fixed, the epsilon tensor allows for one
of the two permutation of the remaining indices AA3 in 1 . . . 4, and the second factor in
parentheses is always the same. Therefore

φA1A2
φAA3

ηAi η
A1
i ηA2

i ηA
3

i = 2φCDφ
CDη1

i η
2
i η

3
i η

4
i

=
1

12
φCDφ

CDεAA1A2A3η
A
i η

A1
i ηA2

i ηA
3

i

such that

(2) =
g2i2±φCDφ

CD

12c4
0i

2
−i

2
+

εAA1A2A3

thus determining VAA1A2A3 .

Fourth Order (d = 3, k = 2 and l = 1)

VAA1A2B1 =
λ(i+1)α

3c0i+

(
−qαA(VA1A2B1) + iX

α(1)
(i+1)AB1

VA1A2 + iVA1B1X
α(1)
iAA2

)
=
λ(i+1)α

3c0i+

(
−

2igλ(i+1)γq
α
A(ψγC)

c3
0i

2
+

εA1A2B1C

+i

(
−2i
√

2 gλαi
c0i+

φAB1

)(
−
√

2 gi±
c2

0i−i+
φA1A2

)

+i

(
2
√

2 g

c2
0i+

φA1B1

)(
−

2i
√

2 gλαi−1

c0i−
φAA2

))
=: (1) + (2) + (3)

We calculate (1). As before, the term corresponding to the second summand in the
supersymmetry variation qαA(ψγC) vanishes, but now because

λ(i+1)αλ(i+1)γq
α
A(ψγC)|2 ∼ λ(i+1)αλ(i+1)γε

γα = 0
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and we are left with

(1) = −
λ(i+1)α

3c0i+

2igλ(i+1)γ

c3
0i

2
+

i

2
F γαδCAεA1A2B1C

= −
gλ(i+1)αλ(i+1)γF

γα

3c4
0i

3
+

εAA1A2B1

Moreover

(2) + (3) =
λ(i+1)α

3c0i+

(
−4g2i±λ

α
i

c3
0i−i

2
+

φAB1
φA1A2

+
8g2λαi−1

c3
0i−i+

φA1B1
φAA2

)
= − 4g2i±

3c4
0i−i

2
+

φAB1
φA1A2

+
8g2i±

3c4
0i−i

2
+

φA1B1
φAA2

=
4g2i±

3c4
0i−i

2
+

(
−φAB1

φA1A2
+ 2φA1B1

φAA2

)
∼= −

4g2i±
c4

0i−i
2
+

φAB1
φA1A2

where, as before, ”∼=” denotes equality upon pairing with the corresponding η terms.

Fourth Order (d = 3, k = 1 and l = 2)

VAA1B1B2

=
λ(i+1)α

2c0i+

(
−qαA(VA1B1B2) + iX

α(1)
(i+1)AB2

VA1B1

)
=
λ(i+1)α

2c0i+

(
2igλiγq

α
A(ψγC)

c3
0i

2
+

εA1B1B2C + i

(
−2i
√

2 gλαi
c0i+

φAB2

)(
2
√

2 g

c2
0i+

φA1B1

))
=: (1) + (2)

To calculate (1), we make the following side calculation.[
φAD, φ

CD
]
εCA1B1B2η

A
i η

A1
i ηB1

i+1η
B2
i+1 = . . .

= (δA1B1B2
DEF + δB1B2A1

DEF + δB2A1B1
DEF )

[
φAD, φEF

]
ηAi η

A1
i ηB1

i+1η
B2
i+1

=
([
φAA1

, φB1B2

]
+
[
φAB1

, φB2A1

]
+
[
φAB2

, φA1B1

])
ηAi η

A1
i ηB1

i+1η
B2
i+1

=
[
φAA1

, φB1B2

]
ηAi η

A1
i ηB1

i+1η
B2
i+1

since the second and third terms vanish by symmetry considerations: For example, for
the third term:[

φAB2
, φA1B1

]
ηAi η

A1
i ηB1

i+1η
B2
i+1 =

[
φAB2

, φA1B1

]
ηA1
i ηAi η

B2
i+1η

B1
i+1

=
[
φA1B1

, φAB2

]
ηAi η

A1
i ηB1

i+1η
B2
i+1

= −
[
φAB2

, φA1B1

]
ηAi η

A1
i ηB1

i+1η
B2
i+1
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where the second equality follows from renaming the summation indices. Therefore

(1) =
igλiγλ(i+1)α

c4
0i

3
+

qαA(ψγC)εA1B1B2C

= −
igλiγλ(i+1)α

c4
0i

3
+

(
i

2
F γαδCA + iεγαg

[
φAD, φ

CD
])

εCA1B1B2

∼=
gλiγλ(i+1)αF

γα

2c4
0i

3
+

εAA1B1B2 −
g2

c4
0i

2
+

[
φAA1

, φB1B2

]
For the second term, we calculate

(2) =
λ(i+1)α

2c0i+

8g2λαi
c3

0i
2
+

φAB2
φA1B1

=
4g2

c4
0i

2
+

φAB2
φA1B1

∼= −
4g2

c4
0i

2
+

φAB1
φA1B2

Fourth Order (d = 3, k = 0 and l = 3)

VAB1B2B3 =
λ(i+1)α

c0i+
iX

α(3)
(i+1)AB1B2B3

= −
gλiβλiγF

βγ

3c4
0i

3
+

εAB1B2B3

2.3.2 Fifth Order

Fifth Order (d = 4, k = 4 and l = 0)

It is clear that VAA1A2A3A4 ∼ η5
i = 0.

Fifth Order (d = 4, k = 3 and l = 1)

Now, consider k = 3 and l = 1.

VAA1A2A3B1

= −
λ(i+1)α

4c0i+

(
−qαA(VA1A2A3B1) + iX

α(1)
(i+1)AB1

VA1A2A3

+iVA1A2B1X
α(1)
iAA3

− iVA1B1X
α(2)
iAA2A3

)
= −

λ(i+1)α

4c0i+

(
gλ(i+1)βλ(i+1)γq

α
A(F γβ)

3c4
0i

3
+

εA1A2A3B1 +
4g2i±
c4

0i−i
2
+

qαA(φA1B1
φA2A3

)

+i

(
−2i
√

2 gλαi
c0i+

φAB1

)(
2ig

3c3
0

i±
(
−i−λ(i+1)γ + i+λ(i−1)γ

)
ψγC

i2−i
2
+

εA1A2A3C

)

+i

(
2igλ(i+1)βψ

βC

c3
0i

2
+

εA1A2B1C

)(
−

2i
√

2 gλαi−1

c0i−
φAA3

)

−i

(
2
√

2 g

c2
0i+

φA1B1

)(
εAA2A3C

2gλαi−1λ(i−1)γψ
γC

c2
0i

2
−

))
=: (1) + (2) + (3) + (4) + (5)

Using Cor. 1.3.5, we calculate

λ(i+1)αλ(i+1)βλ(i+1)γq
α
A(F γβ) ∼ λ(i+1)αλ(i+1)βλ(i+1)γ(εαβ + εαγ) = 0
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and, therefore, (1) = 0. Moreover, by Lem. 1.3.4,

(2) = −
g2i±λ(i+1)α

c5
0i−i

3
+

(
qαA(φA1B1

)φA2A3
+ φA1B1

qαA(φA2A3
)
)

= −
i
√

2 g2i±λ(i+1)α

c5
0i−i

3
+

(
εAA1B1Cψ

αCφA2A3
+ εAA2A3CφA1B1

ψαC
)

Moreover

(3) =
1

4c0
i

(
2i
√

2 g

c0i+
φAB1

)(
2ig

3c3
0

i±
(
−i−λ(i+1)γ + i+λ(i−1)γ

)
ψγC

i2−i
2
+

εA1A2A3C

)

=
i
√

2 g2

3c5
0

i±
(
i−λ(i+1)γ − i+λ(i−1)γ

)
i2−i

3
+

εA1A2A3CφAB1
ψγC

and

(4) =
i±

4c0i+
i

(
2igλ(i+1)βψ

βC

c3
0i

2
+

εA1A2B1C

)(
2i
√

2 g

c0i−
φAA3

)

= −
i
√

2 g2i±λ(i+1)β

c5
0i−i

3
+

εA1A2B1Cψ
βCφAA3

and

(5) =
i±

4c0i+
i

(
2
√

2 g

c2
0i+

φA1B1

)(
εAA2A3C

2gλ(i−1)γψ
γC

c2
0i

2
−

)

=
i
√

2 g2i±λ(i−1)γ

c5
0i

2
−i

2
+

εAA2A3CφA1B1
ψγC

Now, combining (2) to (5), we find

VAA1A2A3B1 = (2) + (3) + (4) + (5)

=
i
√

2 g2i±
3c5

0i
2
−i

3
+

(
−3i−λ(i+1)αεAA1B1Cψ

αCφA2A3
− 3i−λ(i+1)αεAA2A3CφA1B1

ψαC

+ i−λ(i+1)αεA1A2A3CφAB1
ψαC − i+λ(i−1)αεA1A2A3CφAB1

ψαC

−3i−λ(i+1)αεA1A2B1Cψ
αCφAA3

+ 3i+λ(i−1)αεAA2A3CφA1B1
ψαC

)
=
i
√

2 g2i±
3c5

0i
2
−i

3
+

(
i+λ(i−1)α(−εA1A2A3CφAB1

+ 3εAA2A3CφA1B1
)ψαC

+ i−λ(i+1)α(−3εAA2A3CφA1B1
+ εA1A2A3CφAB1

)ψαC

−3i−λ(i+1)αψ
αC(εAA1B1CφA2A3

+ εA1A2B1CφAA3
)
)

∼=
i
√

2 g2i±
3c5

0i
2
−i

3
+

(
−4i+λ(i−1)αεA1A2A3CφAB1

ψαC

+ 4i−λ(i+1)αεA1A2A3CφAB1
ψαC

−6i−λ(i+1)αψ
αCεAA1B1CφA2A3

)
=
i
√

2 g2i±
3c5

0i
2
−i

3
+

(
4(i−λ(i+1)γ − i+λ(i−1)γ)εA1A2A3CφAB1

ψγC

−6i−λ(i+1)γψ
γCεAA1B1CφA2A3

)
where the fourth equation holds upon contracting with the η terms.
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Fifth Order (d = 4, k = 2 and l = 2)

VAA1A2B1B2 = −
λ(i+1)α

3c0i+

(
−qαA(VA1A2B1B2) + iX

α(1)
(i+1)AB2

VA1A2B1

+iX
α(2)
(i+1)AB1B2

VA1A2 − iVA1B1B2X
α(1)
iAA2

)
= −

λ(i+1)α

3c0i+

(
−
gλiγλ(i+1)βq

α
A(F γβ)

2c4
0i

3
+

εA1A2B1B2 +
g2

c4
0i

2
+

qαA
[
φA1A2

, φB1B2

]
+

4g2

c4
0i

2
+

qαA(φA1B1
φA2B2

)

+ i

(
−2i
√

2 gλαi
c0i+

φAB2

)(
2igλ(i+1)βψ

βC

c3
0i

2
+

εA1A2B1C

)

+ i

(
εAB1B2C

2gλαi λiγψ
γC

c2
0i

2
+

)(
−
√

2 gi±
c2

0i−i+
φA1A2

)

−i
(
−2igλiγψ

γC

c3
0i

2
+

εA1B1B2C

)(
−

2i
√

2 gλαi−1

c0i−
φAA2

))
=: (1) + (2) + (3) + (4) + (5) + (6)

Using Cor. 1.3.5 and the last Euler-Lagrange equation in Lem. 1.4.1, we calculate

(1) = −
λ(i+1)α

3c0i+

gλiγλ(i+1)β2εαγDβ
γ̇ψ̃

γ̇
A

2c4
0i

3
+

εA1A2B1B2

= −
gλ(i+1)βD

β
γ̇ψ̃

γ̇
A

3c5
0i

3
+

εA1A2B1B2

=
i
√

2 g2λ(i+1)β

3c5
0i

3
+

[
φAC , ψ

βC
]
εA1A2B1B2

Moreover

(2) = −
g2λ(i+1)α

3c5
0i

3
+

([
qαA(φA1A2

), φB1B2

]
+
[
φA1A2

, qαA(φB1B2
)
])

= −
i
√

2 g2λ(i+1)α

3c5
0i

3
+

(
εAA1A2C

[
ψαC , φB1B2

]
+ εAB1B2C

[
φA1A2

, ψαC
])

and

(3) = −
4g2λ(i+1)α

3c5
0i

3
+

(
qαA(φA1B1

)φA2B2
+ φA1B1

qαA(φA2B2
)
)

= −
4i
√

2 g2λ(i+1)α

3c5
0i

3
+

(
εAA1B1Cψ

αCφA2B2
+ εAA2B2CφA1B1

ψαC
)

and

(4) =
1

3c0
i

(
2i
√

2 g

c0i+
φAB2

)(
2igλ(i+1)βψ

βC

c3
0i

2
+

εA1A2B1C

)

= −
4i
√

2 g2λ(i+1)β

3c5
0i

3
+

εA1A2B1CφAB2
ψβC
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and

(5) =
1

3c0
i

(
εAB1B2C

2gλiγψ
γC

c2
0i

2
+

)(√
2 gi±

c2
0i−i+

φA1A2

)

=
2i
√

2 g2i±λiγ
3c5

0i−i
3
+

εAB1B2Cψ
γCφA1A2

and

(6) =
i±

3c0i+
i

(
2igλiγψ

γC

c3
0i

2
+

εA1B1B2C

)(
2i
√

2 g

c0i−
φAA2

)

= −4i
√

2 g2i±λiγ
3c5

0i−i
3
+

εA1B1B2Cψ
γCφAA2

We further calculate

(3) + (4) = −
4i
√

2 g2λ(i+1)β

3c5
0i

3
+

(
εAA1B1Cψ

βCφA2B2
+ εAA2B2CφA1B1

ψβC

+εA1A2B1CφAB2
ψβC

)
∼= −

4i
√

2 g2λ(i+1)β

3c5
0i

3
+

(
εAA1B1Cψ

βCφA2B2
+ 2εA1A2B1CφAB2

ψβC
)

and

(5) + (6) =
2i
√

2 g2i±λiγ
3c5

0i−i
3
+

(
εAB1B2Cψ

γCφA1A2
− 2εA1B1B2Cψ

γCφAA2

)
∼=

2i
√

2 g2i±λiγ
c5

0i−i
3
+

εAB1B2Cψ
γCφA1A2

and, together,

VAA1A2B1B2 =
i
√

2 g2λ(i+1)β

3c5
0i

3
+

([
φAC , ψ

βC
]
εA1A2B1B2 + εAA1A2C

[
φB1B2

, ψβC
]

−εAB1B2C

[
φA1A2

, ψβC
]
− 4εAA1B1Cψ

βCφA2B2
− 8εA1A2B1CφAB2

ψβC
)

+
2i
√

2 g2i±λiγ
c5

0i−i
3
+

εAB1B2Cψ
γCφA1A2
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Fifth Order (d = 4, k = 1 and l = 3)

Now consider d = 4 and k = 1 and l = 3.

VAA1B1B2B3 = −
λ(i+1)α

2c0i+

(
−qαA(VA1B1B2B3) + iX

α(1)
(i+1)AB3

VA1B1B2 + iX
α(2)
(i+1)AB2B3

VA1B1

)
= −

λ(i+1)α

2c0i+

(
gλiγλiβq

α
A(F γβ)

3c4
0i

3
+

εA1B1B2B3

+ i

(
−2i
√

2 gλαi
c0i+

φAB3

)(
−2igλiγψ

γC

c3
0i

2
+

εA1B1B2C

)

+i

(
εAB2B3C

2gλαi λiγψ
γC

c2
0i

2
+

)(
2
√

2 g

c2
0i+

φA1B1

))
=: (1) + (2) + (3)

We calculate, using Cor. 1.3.5 and Lem. 1.4.1,

(1) = −
gλ(i+1)αλiγλiβ

6c5
0i

4
+

qαA(F γβ)εA1B1B2B3

=
gλ(i+1)αλiγλiβ

3c5
0i

4
+

(
εαβDγ

γ̇ψ̃
γ̇
A + εαγDβ

γ̇ψ̃
γ̇
A

)
εA1B1B2B3

=
g

3c5
0i

3
+

(
λiγD

γ
γ̇ψ̃

γ̇
A + λiβD

β
γ̇ψ̃

γ
A

)
εA1B1B2B3

=
2gλiγD

γ
γ̇ψ̃

γ̇
A

3c5
0i

3
+

εA1B1B2B3

= −
2i
√

2 g2λiγ
[
φAC , ψ

γC
]

3c5
0i

3
+

εA1B1B2B3

Moreover

(2) = − 1

2c0
i

(
2i
√

2 g

c0i+
φAB3

)(
2igλiγψ

γC

c3
0i

2
+

εA1B1B2C

)
=

2i
√

2 g2λiγ
c5

0i
3
+

φAB3
ψγCεA1B1B2C

and

(3) = − i

2c0

(
εAB2B3C

2gλiγψ
γC

c2
0i

2
+

)(
2
√

2 g

c2
0i+

φA1B1

)

= −2i
√

2 g2λiγ
c5

0i
3
+

ψγCφA1B1
εAB2B3C

such that

(2) + (3) ∼=
2i
√

2 g2λiγ
c5

0i
3
+

[
φAB1

, ψγC
]
+
εA1B2B3C

and

VAA1B1B2B3 =
2i
√

2 g2λiγ
3c5

0i
3
+

(
−
[
φAC , ψ

γC
]
εA1B1B2B3 + 3

[
φAB1

, ψγC
]
+
εA1B2B3C

)
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Fifth Order (d = 4, k = 0 and l = 4)

It is easy to see that VAB1B2B3B4 = 0.

2.3.3 Sixth Order

Sixth Order (d = 5, k = 5 and l = 0)

Obviously VAA1A2A3A4A5 = 0.

Sixth Order (d = 5, k = 4 and l = 1)

Obviously VAA1A2A3A4B1 = 0.

Sixth Order (d = 5, k = 3 and l = 2)

Now consider d = 5 and k = 3 and l = 2.

VAA1A2A3B1B2 =
λ(i+1)α

4c0i+

(
−qαA(VA1A2A3B1B2) + iX

α(1)
(i+1)AB2

VA1A2A3B1

+ iX
α(2)
(i+1)AB1B2

VA1A2A3 − iVA1A2B1B2X
α(1)
iAA3

+iVA1B1B2X
α(2)
iAA2A3

)
=: (1) + (2) + (3) + (4) + (5)

We denote the terms of (1) corresponding to the six terms of VA1A2A3B1B2 by

(1) =: (1a) + (1b) + (1c) + (1d) + (1e) + (1f)

We calculate (1a). It consists of three terms, one corresponding to the variation of
φA1C and two correponding to the variation of ψβC . The first term vanishes since it is
proportional to

(1a1) ∼ λ(i+1)αλ(i+1)β

[
qαA(φA1C), ψβC

]
∼ λ(i+1)αλ(i+1)βεAA1CD

[
ψαD, ψβC

]
+

= 0

and vanishes since it is symmetric αβ but antisymmetric in CD. The third term is
propertional to

(1a3) ∼ λ(i+1)αλ(i+1)β

[
φA1C , ε

βα . . .
]

= 0

and obviously also vanishes. Therefore

(1a) = −
λ(i+1)α

4c0i+

i
√

2 g2λ(i+1)β

3c5
0i

3
+

εA2A3B1B2

[
φA1C ,

i

2
F βαδCA

]
=

√
2g2λ(i+1)αλ(i+1)β

24c6
0i

4
+

εA2A3B1B2

[
φA1A, F

βα
]
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Now consider (1bc) := (1b) + (1c).

(1bc1) = −
λ(i+1)α

4c0i+

i
√

2 g2λ(i+1)β

3c5
0i

3
+

(
εA1A2A3C

[
qαA(φB1B2

), ψβC
]

−εA1B1B2C

[
qαA(φA2A3

), ψβC
])

=
λ(i+1)α

2c0i+

g2λ(i+1)β

3c5
0i

3
+

(εA1A2A3CεAB1B2D − εAA2A3DεA1B1B2C)
[
ψαD, ψβC

]
+

=
g2λ(i+1)αλ(i+1)β

6c6
0i

4
+

(εA1A2A3CεAB1B2D − εAA2A3CεA1B1B2D)
[
ψαD, ψβC

]
+

∼=
g2λ(i+1)αλ(i+1)β

3c6
0i

4
+

εA1A2A3CεAB1B2D

[
ψαD, ψβC

]
+

As before, (1bc3) ∼ λ(i+1)αλ(i+1)βε
βα = 0 and

(1bc2) = −
λ(i+1)α

4c0i+

i
√

2 g2λ(i+1)β

3c5
0i

3
+

(
εA1A2A3C

[
φB1B2

,
i

2
F βαδCA

]
−εA1B1B2C

[
φA2A3

,
i

2
F βαδCA

])
=

√
2g2λ(i+1)αλ(i+1)β

24c6
0i

4
+

(
εA1A2A3A

[
φB1B2

, F βα
]
− εA1B1B2A

[
φA2A3

, F βα
])

We calculate (1de) := (1d) + (1e).

(1de)

= −
λ(i+1)α

4c0i+

i
√

2 g2λ(i+1)β

3c5
0i

3
+

(
−4εA1A2B1Cq

α
A(ψβCφA3B2

)− 8εA2A3B1Cq
α
A(φA1B2

ψβC)
)

=
i
√

2g2λ(i+1)αλ(i+1)β

3c6
0i

4
+

(
εA1A2B1C

i

2
F βαδCAφA3B2

− εA1A2B1Cψ
βCi
√

2εAA3B2Dψ
αD

+2εA2A3B1Ci
√

2εAA1B2Dψ
αDψβC + 2εA2A3B1C

i

2
φA1B2

F βαδCA

)
= −
√

2g2λ(i+1)αλ(i+1)β

6c6
0i

4
+

(
εA1A2B1AF

βαφA3B2
+ 2εA2A3B1AφA1B2

F βα
)

+
2g2λ(i+1)αλ(i+1)β

3c6
0i

4
+

(
εA1A2B1CεAA3B2Dψ

βCψαD − 2εA2A3B1CεAA1B2Dψ
αDψβC

)
∼= −
√

2g2λ(i+1)αλ(i+1)β

6c6
0i

4
+

εA1A2B1A

(
F βαφA3B2

+ 2φA3B2
F βα

)
+

2g2λ(i+1)αλ(i+1)β

3c6
0i

4
+

(εA1A2B1CεAA3B2D − 2εAA1B2CεA2A3B1D)ψβCψαD

∼= −
√

2g2λ(i+1)αλ(i+1)β

6c6
0i

4
+

εA1A2B1A

(
F βαφA3B2

+ 2φA3B2
F βα

)
+

2g2λ(i+1)αλ(i+1)β

c6
0i

4
+

εA1A2B1CεAA3B2Dψ
βCψαD
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We calculate (1f).

(1f) = −
λ(i+1)α

4c0i+

2i
√

2 g2i±λiγ
c5

0i−i
3
+

εA1B1B2Cq
α
A(ψγCφA2A3

)

= −
2i
√

2 g2i±λ(i+1)αλiγ

4c6
0i−i

4
+

εA1B1B2C

(
i

2
F γαδCAφA2A3

+ iεγαg
[
φAD, φ

CD
]
φA2A3

−ψγCi
√

2εAA2A3Dψ
αD
)

=: (1f1) + (1f2) + (1f3)

with

(1f1) =

√
2 g2i±λ(i+1)αλiγ

4c6
0i−i

4
+

εA1B1B2AF
γαφA2A3

(1f3) = −
g2i±λ(i+1)αλiγ

c6
0i−i

4
+

εA1B1B2CεAA2A3Dψ
γCψαD

and

(1f2) =
2
√

2 g3i±
4c6

0i−i
3
+

εCA1B1B2

[
φAD, φ

CD
]
φA2A3

=

√
2 g3i±

4c6
0i−i

3
+

εCA1B1B2εCDEF
[
φAD, φEF

]
φA2A3

=

√
2 g3i±

2c6
0i−i

3
+

(δDEFA1B1B2
+ cyclic)

[
φAD, φEF

]
φA2A3

=

√
2 g3i±

2c6
0i−i

3
+

(
[
φAA1

, φB1B2

]
+
[
φAB1

, φB2A1

]
+
[
φAB2

, φA1B1

]
)φA2A3

∼=
√

2 g3i±
2c6

0i−i
3
+

([
φAA1

, φB1B2

]
+ 2

[
φAB1

, φB2A1

])
φA2A3

Moreover

(2) =
λ(i+1)α

4c0i+
i

(
−2i
√

2 gλαi
c0i+

φAB2

)

·

(
−
gλ(i+1)βλ(i+1)γF

βγ

3c4
0i

3
+

εA1A2A3B1 −
4g2i±
c4

0i−i
2
+

φA1B1
φA2A3

)

=

( √
2g

2c2
0i+

φAB2

)(
−
gλ(i+1)βλ(i+1)γF

βγ

3c4
0i

3
+

εA1A2A3B1 −
4g2i±
c4

0i−i
2
+

φA1B1
φA2A3

)

= −
√

2g2

6c6
0

λ(i+1)βλ(i+1)γφAB2
F βγ

i4+
εA1A2A3B1 −

2
√

2g3i±
c6

0i−i
3
+

φAB2
φA1B1

φA2A3
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and

(3) =
λ(i+1)α

4c0i+
i

(
εAB1B2D

2gλαi λiβψ
βD

c2
0i

2
+

)
·

(
2ig

3c3
0

i±
(
−i−λ(i+1)γ + i+λ(i−1)γ

)
ψγC

i2−i
2
+

εA1A2A3C

)

=

(
igλiβψ

βD

2c3
0i

2
+

εAB1B2D

)(
2ig

3c3
0

i±
(
−i−λ(i+1)γ + i+λ(i−1)γ

)
ψγC

i2−i
2
+

εA1A2A3C

)

=
g2

3c6
0

i±λiβ
(
i−λ(i+1)γ − i+λ(i−1)γ

)
ψβDψγC

i2−i
4
+

εAB1B2DεA1A2A3C

and

(4) =
λ(i+1)α

4c0i+
(−i)

(
gλiβλ(i+1)γF

βγ

2c4
0i

3
+

εA1A2B1B2 −
g2

c4
0i

2
+

[
φA1A2

, φB1B2

]
− 4g2

c4
0i

2
+

φA1B1
φA2B2

)
·

(
−

2i
√

2 gλαi−1

c0i−
φAA3

)

= −

(
gλiβλ(i+1)γF

βγ

2c4
0i

3
+

εA1A2B1B2 −
g2

c4
0i

2
+

[
φA1A2

, φB1B2

]
− 4g2

c4
0i

2
+

φA1B1
φA2B2

)
·

( √
2gi±

2c2
0i−i+

φAA3

)

= −
√

2g2i±
4c6

0i−i
4
+

λiβλ(i+1)γF
βγφAA3

εA1A2B1B2 +

√
2g3i±

2c6
0i−i

3
+

[
φA1A2

, φB1B2

]
φAA3

+
2
√

2g3i±
c6

0i−i
3
+

φA1B1
φA2B2

φAA3

and

(5) =
λ(i+1)α

4c0i+
i

(
−

2igλiβψ
βD

c3
0i

2
+

εA1B1B2D

)(
εAA2A3C

2gλαi−1λ(i−1)γψ
γC

c2
0i

2
−

)

=

(
2gλiβψ

βD

c3
0i

2
+

εA1B1B2D

)(
εAA2A3C

gi±λ(i−1)γψ
γC

2c3
0i

2
−i+

)

=
g2i±λiβλ(i−1)γψ

βDψγC

c6
0i

2
−i

3
+

εA1B1B2DεAA2A3C

Collecting terms, we thus obtain

VAA1A2A3B1B2 = VAA1A2A3B1B2 |φF + VAA1A2A3B1B2 |φ3 + VAA1A2A3B1B2 |ψ2
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where

VAA1A2A3B1B2 |φF

=

√
2g2λ(i+1)αλ(i+1)β

24c6
0i

4
+

εA2A3B1B2

[
φA1A, F

βα
]

+

√
2g2λ(i+1)αλ(i+1)β

24c6
0i

4
+

(
εA1A2A3A

[
φB1B2

, F βα
]
− εA1B1B2A

[
φA2A3

, F βα
])

−
√

2g2λ(i+1)αλ(i+1)β

6c6
0i

4
+

εA1A2B1A

(
F βαφA3B2

+ 2φA3B2
F βα

)
+

√
2 g2i±λ(i+1)αλiγ

4c6
0i−i

4
+

εA1B1B2AF
γαφA2A3

−
√

2g2

6c6
0

λ(i+1)βλ(i+1)γφAB2
F βγ

i4+
εA1A2A3B1

−
√

2g2i±
4c6

0i−i
4
+

λiβλ(i+1)γF
βγφAA3

εA1A2B1B2

Here, we see that the first and third terms cancel upon contraction with the η terms.
Moreover, the last and third-to-last terms are equal. Moreover, the fifth term equals
(up to factor 2) the second-to-last. Therefore

VAA1A2A3B1B2 |φF =

√
2g2λ(i+1)αλ(i+1)β

24c6
0i

4
+

εA1A2A3A

[
φB1B2

, F βα
]

−
√

2g2λ(i+1)αλ(i+1)β

6c6
0i

4
+

εA1A2B1A

(
F βαφA3B2

+ 3φA3B2
F βα

)
−
√

2g2i±
2c6

0i−i
4
+

λiβλ(i+1)γF
βγφAA3

εA1A2B1B2

Moreover

VAA1A2A3B1B2 |φ3

=

√
2 g3i±

2c6
0i−i

3
+

([
φAA1

, φB1B2

]
+ 2

[
φAB1

, φB2A1

])
φA2A3

− 2
√

2g3i±
c6

0i−i
3
+

φAB2
φA1B1

φA2A3
+

√
2g3i±

2c6
0i−i

3
+

[
φA1A2

, φB1B2

]
φAA3

+
2
√

2g3i±
c6

0i−i
3
+

φA1B1
φA2B2

φAA3

=

√
2 g3i±

2c6
0i−i

3
+

([
φAA1

, φB1B2

]
φA2A3

+ 2
[
φAB1

, φB2A1

]
φA2A3

−4φAB2
φA1B1

φA2A3
+
[
φA1A2

, φB1B2

]
φAA3

+ 4φA1B1
φA2B2

φAA3

)
∼=
√

2 g3i±
2c6

0i−i
3
+

(
2
[
φAA1

, φB1B2

]
φA2A3

+ 2
[
φAB1

, φB2A1

]
φA2A3

+ 8φA1B1
φA2B2

φAA3

)
∼=
√

2 g3i±
2c6

0i−i
3
+

(
2
[
φAA1

, φB1B2

]
φA2A3

+ 8φA1B1
φA2B2

φAA3

)
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and

VAA1A2A3B1B2 |ψ2 =
g2λ(i+1)αλ(i+1)β

3c6
0i

4
+

εA1A2A3CεAB1B2D

[
ψαD, ψβC

]
+

+
2g2λ(i+1)αλ(i+1)β

c6
0i

4
+

εA1A2B1CεAA3B2Dψ
βCψαD

−
g2i±λ(i+1)αλiγ

c6
0i−i

4
+

εA1B1B2CεAA2A3Dψ
γCψαD

+
g2

3c6
0

i±λiβ
(
i−λ(i+1)γ − i+λ(i−1)γ

)
ψβDψγC

i2−i
4
+

εAB1B2DεA1A2A3C

+
g2i±λiβλ(i−1)γψ

βDψγC

c6
0i

2
−i

3
+

εA1B1B2DεAA2A3C

=
g2

3c6
0i

2
−i

4
+

(
i2−λ(i+1)γλ(i+1)δεA1A2A3DεAB1B2C

+ i2−λ(i+1)γλ(i+1)δεA1A2A3CεAB1B2D

+ 6i2−λ(i+1)γλ(i+1)δεA1A2B1CεAA3B2D

− 3i−i±λiγλ(i+1)δεA1B1B2CεAA2A3D

+ i±λiγ
(
i−λ(i+1)δ − i+λ(i−1)δ

)
εAB1B2CεA1A2A3D

+ 3i+i±λiγλ(i−1)δεA1B1B2CεAA2A3D

)
ψγCψδD

Therefore

VAA1A2A3B1B2 |ψ2

∼=
g2

3c6
0i

2
−i

4
+

(
εA1A2A3CεAB1B2D(i2−λ(i+1)γλ(i+1)δ)

+ εAB1B2CεA1A2A3D(i2−λ(i+1)γλ(i+1)δ + 3i−i±λiγλ(i+1)δ

+ i±λiγ
(
i−λ(i+1)δ − i+λ(i−1)δ

)
− 3i+i±λiγλ(i−1)δ)

+ εA1A2B1CεAA3B2D(6i2−λ(i+1)γλ(i+1)δ)
)
ψγCψδD

=
g2

3c6
0i

2
−i

4
+

(
εA1A2A3CεAB1B2D(i2−λ(i+1)γλ(i+1)δ)

+ εAB1B2CεA1A2A3D(i2−λ(i+1)γλ(i+1)δ + 4i−i±λiγλ(i+1)δ − 4i+i±λiγλ(i−1)δ)

+ εA1A2B1CεAA3B2D(6i2−λ(i+1)γλ(i+1)δ)
)
ψγCψδD

This finishes the calculation.

Sixth Order (d = 5, k = 2 and l = 3)

Now consider d = 5 and k = 2 and l = 3.

VAA1A2B1B2B3 =
λ(i+1)α

3c0i+

(
−qαA(VA1A2B1B2B3) + iX

α(1)
(i+1)AB3

VA1A2B1B2

+ iX
α(2)
(i+1)AB2B3

VA1A2B1 + iX
α(3)
(i+1)AB1B2B3

VA1A2

+iVA1B1B2B3X
α(1)
iAA2

)
=: (1) + (2) + (3) + (4) + (5)
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We calculate

(1) = −
λ(i+1)α

3c0i+
qαA(VA1A2B1B2B3)

= −
2i
√

2 g2λiγλ(i+1)α

9c6
0i

4
+

(
−qαA

[
φA1C , ψ

γC
]
εA2B1B2B3

+3qαA
[
φA1B1

, ψγC
]
+
εA2B2B3C

)
= −

2i
√

2 g2λiγλ(i+1)α

9c6
0i

4
+

(
−i
√

2 εAA1CD

[
ψαD, ψγC

]
+
εA2B1B2B3

+ 3i
√

2 εAA1B1D

[
ψαD, ψγC

]
εA2B2B3C

−
[
φA1C ,

i

2
F γαδCA + iεγαg

[
φAD, φ

CD
]]
εA2B1B2B3

+3

[
φA1B1

,
i

2
F γαδCA + iεγαg

[
φAD, φ

CD
]]

+

εA2B2B3C

)
and

(2) =
λ(i+1)α

3c0i+
i

(
−2i
√

2 gλαi
c0i+

φAB3

)
VA1A2B1B2

=
2
√

2 g

3c2
0i+

φAB3
VA1A2B1B2

= (2a) + (2b) + (2c)

corresponding to the three terms of VA1A2B1B2 . Now

(2a) =
2
√

2 g

3c2
0i+

φAB3

(
gλiγλ(i+1)αF

γα

2c4
0i

3
+

εA1A2B1B2

)
=

√
2 g2λiγλ(i+1)αφAB3

F γα

3c6
0i

4
+

εA1A2B1B2

and

(2b) =
2
√

2 g

3c2
0i+

φAB3

(
− g2

c4
0i

2
+

[
φA1A2

, φB1B2

])
= −2

√
2 g3

3c6
0i

3
+

φAB3

[
φA1A2

, φB1B2

]
and

(2c) =
2
√

2 g

3c2
0i+

φAB3

(
− 4g2

c4
0i

2
+

φA1B1
φA2B2

)
= −8

√
2 g3

3c6
0i

3
+

φAB3
φA1B1

φA2B2
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Moreover

(3) =
λ(i+1)α

3c0i+
i

(
εAB2B3C

2gλαi λiγψ
γC

c2
0i

2
+

)(
2igλ(i+1)βψ

βD

c3
0i

2
+

εA1A2B1D

)

= − 1

3c0

(
εAB2B3C

2gλiγψ
γC

c2
0i

2
+

)(
2gλ(i+1)βψ

βD

c3
0i

2
+

εA1A2B1D

)

= −
4g2λiγλ(i+1)βψ

γCψβD

3c6
0i

4
+

εAB2B3CεA1A2B1D

and

(4) =
λ(i+1)α

3c0i+
i

(
εAB1B2B3

igλαi λiγλiβF
γβ

3c3
0i

3
+

)(
−
√

2 gi±
c2

0i−i+
φA1A2

)

=
1

3c0

(
εAB1B2B3

gλiγλiβF
γβ

3c3
0i

3
+

)(√
2 gi±

c2
0i−i+

φA1A2

)

=

√
2 g2i±λiγλiβF

γβφA1A2

9c6
0i−i

4
+

εAB1B2B3

and

(5) =
λ(i+1)α

3c0i+
i

(
−
gλiγλiβF

γβ

3c4
0i

3
+

εA1B1B2B3

)(
−

2i
√

2 gλαi−1

c0i−
φAA2

)

= − i±
3c0i+

(
gλiγλiβF

γβ

3c4
0i

3
+

εA1B1B2B3

)(
2
√

2 g

c0i−
φAA2

)

= −
2
√

2 g2i±λiγλiβF
γβφAA2

9c6
0i−i

4
+

εA1B1B2B3

such that

(4) + (5) ∼=
√

2 g2i±λiγλiβF
γβφAA1

3c6
0i−i

4
+

εA2B1B2B3

Collecting terms, we thus obtain

VAA1A2B1B2B3 = VAA1A2B1B2B3 |φF + VAA1A2B1B2B3 |φ3 + VAA1A2B1B2B3 |ψ2
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where

VAA1A2B1B2B3 |φF = −
2i
√

2 g2λiγλ(i+1)α

9c6
0i

4
+

(
−
[
φA1C ,

i

2
F γαδCA

]
εA2B1B2B3

+3

[
φA1B1

,
i

2
F γαδCA

]
+

εA2B2B3C

)
+

√
2 g2λiγλ(i+1)αφAB3

F γα

3c6
0i

4
+

εA1A2B1B2

+

√
2 g2i±λiγλiβF

γβφAA1

3c6
0i−i

4
+

εA2B1B2B3

=

√
2 g2λiγλ(i+1)α

9c6
0i

4
+

([
φAA1

, F γα
]
εA2B1B2B3

+3
[
φA1B1

, F γα
]
+
εA2B2B3A + 3φAB3

F γαεA1A2B1B2

)
+

√
2 g2i±λiγλiβF

γβφAA1

3c6
0i−i

4
+

εA2B1B2B3

and

VAA1A2B1B2B3 |φ3 = −
2i
√

2 g2λiγλ(i+1)α

9c6
0i

4
+

(
−
[
φA1C , iε

γαg
[
φAD, φ

CD
]]
εA2B1B2B3

+3
[
φA1B1

, iεγαg
[
φAD, φ

CD
]]

+
εA2B2B3C

)
− 2
√

2 g3

3c6
0i

3
+

φAB3

[
φA1A2

, φB1B2

]
− 8
√

2 g3

3c6
0i

3
+

φAB3
φA1B1

φA2B2

=
2
√

2 g3

9c6
0i

3
+

([
φA1C ,

[
φAD, φ

CD
]]
εA2B1B2B3

− 3
[
φA1B1

,
[
φAD, φ

CD
]]

+
εA2B2B3C

−3φAB3

[
φA1A2

, φB1B2

]
− 12φAB3

φA1B1
φA2B2

)
=

2
√

2 g3

18c6
0i

3
+

([
φA1C ,

[
φAD, φEF

]]
εCDEF εA2B1B2B3

+ 3
[
φA1B1

,
[
φAD, φEF

]]
+
εCDEF εCA2B2B3

−6φAB3

[
φA1A2

, φB1B2

]
− 24φAB3

φA1B1
φA2B2

)
In the last expression, we calculate the second term as follows.

3
[
φA1B1

,
[
φAD, φEF

]]
+
εCDEF εCA2B2B3

= 6
[
φA1B1

,
[
φAA2

, φB2B3

]
+
[
φAB2

, φB3A2

]
+
[
φAB3

, φA2B2

]]
+

= 6
[
φA1B1

,
[
φAA2

, φB2B3

]]
+
− 6φA1B1

[
φAB2

, φA2B3

]
− 6

[
φAB2

, φA2B3

]
φA1B1

+ 6φA1B1

[
φAB3

, φA2B2

]
+ 6

[
φAB3

, φA2B2

]
φA1B1

= 6
[
φA1B1

,
[
φAA2

, φB2B3

]]
+
− 12φA1B1

[
φAB2

, φA2B3

]
− 12

[
φAB2

, φA2B3

]
φA1B1

= 6
[
φA1B1

,
[
φAA2

, φB2B3

]]
+
− 12φA1B1

φAB2
φA2B3 + 12φA1B1

φA2B3φAB2

− 12φAB2
φA2B3φA1B1

+ 12φA2B3φAB2
φA1B1

∼= 6
[
φA1B1

,
[
φAA2

, φB2B3

]]
+
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such that

VAA1A2B1B2B3 |φ3 =
2
√

2 g3

18c6
0i

3
+

([
φA1C ,

[
φAD, φEF

]]
εCDEF εA2B1B2B3

+ 6
[
φA1B1

,
[
φAA2

, φB2B3

]]
+

−6φAB3

[
φA1A2

, φB1B2

]
− 24φAB3

φA1B1
φA2B2

)
Moreover

VAA1A2B1B2B3 |ψ2 = −
2i
√

2 g2λiγλ(i+1)α

9c6
0i

4
+

(
−i
√

2 εAA1CD

[
ψαD, ψγC

]
+
εA2B1B2B3

+3i
√

2 εAA1B1D

[
ψαD, ψγC

]
εA2B2B3C

)
−

4g2λiγλ(i+1)βψ
γCψβD

3c6
0i

4
+

εAB2B3CεA1A2B1D

=
4g2λiγλ(i+1)α

9c6
0i

4
+

(
−εAA1CDεA2B1B2B3

[
ψαD, ψγC

]
+

+ 3εA2B2B3CεAA1B1D

[
ψαD, ψγC

]
−3εAB2B3CεA1A2B1Dψ

γCψαD
)

This finishes the calculation.

Sixth Order (d = 5, k = 1 and l = 4)

Now consider d = 5 and k = 1 and l = 4.

VAA1B1B2B3B4 =
λ(i+1)α

2c0i+

(
iX

α(1)
i+1AB4

VA1B1B2B3 + iX
α(2)
(i+1)AB3B4

VA1B1B2

+iX
α(3)
(i+1)AB2B3B4

VA1B1

)
=: (1) + (2) + (3)

We calculate

(1) =
λ(i+1)α

2c0i+
i

(
−2i
√

2 gλαi
c0i+

φAB4

)(
−
gλiγλiβF

γβ

3c4
0i

3
+

εA1B1B2B3

)
= −
√

2 g2λiγλiβφAB4
F γβεA1B1B2B3

3c6
0i

4
+

and

(2) =
λ(i+1)α

2c0i+
i

(
εAB3B4C

2gλαi λiγψ
γC

c2
0i

2
+

)(
−2igλiγψ

γD

c3
0i

2
+

εA1B1B2D

)
=

2g2λiγλiδψ
γCψδD

c6
0i

4
+

εAB3B4CεA1B1B2D

and

(3) =
λ(i+1)α

2c0i+
i

(
εAB2B3B4

igλαi λiγλiβF
γβ

3c3
0i

3
+

)(
2
√

2 g

c2
0i+

φA1B1

)

= −
√

2 g2λiγλiβF
γβφA1B1

εAB2B3B4

3c6
0i

4
+
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such that

(1) + (3) ∼= −
√

2 g2λiγλiβ
[
F γβ, φA1B1

]
+
εAB2B3B4

3c6
0i

4
+

and thus

VAA1B1B2B3B4 =

√
2 g2λiγλiβ

[
F γβ, φAB1

]
+
εA1B2B3B4

3c6
0i

4
+

+
2g2λiγλiδψ

γCψδD

c6
0i

4
+

εAB3B4CεA1B1B2D

Sixth Order (d = 5, k = 0 and l = 5)

Obviously VAB1B2B3B4B5 = 0.

2.3.4 Seventh and Eighth Order

In order 7, there are only two nonvanishing coefficients corresponding to ∼ η3
i η

4
i+1 and

∼ η4
i η

3
i+1.

Seventh Order (d = 6, k = 2 and l = 4)

We consider d = 6 and k = 2 and l = 4.

VAA1A2B1B2B3B4 = −
λ(i+1)α

3c0i+

(
−qαA(VA1A2B1B2B3B4) + iX

α(1)
(i+1)AB4

VA1A2B1B2B3

+iX
α(2)
(i+1)AB3B4

VA1A2B1B2 + iX
α(3)
(i+1)AB2B3B4

VA1A2B1

)
=: (1) + (2) + (3) + (4)

where, using q(F ) ∼ Dγ̇ψ̃
γ̇ ∼ gφψ,

(1) ∼ g2

c7
0

(q(Fφ) + q(ψψ)) ∼ g2

c7
0

(Dγ̇ψ̃
γ̇φ+ Fψ + gφφψ) ∼ g2

c7
0

(Fψ + gφφψ)

and

(2) ∼ 1

c0

gφ

c0

g2

c5
0

φψ ∼ g3

c7
0

φφψ

(3) ∼ 1

c0

gψ

c2
0

(
gF

c4
0

+
g2φφ

c4
0

) ∼ g2

c7
0

ψF +
g3

c7
0

ψφφ

(4) ∼ 1

c0

gF

c3
0

gψ

c3
0

∼ g2

c7
0

Fψ

such that

VAA1A2B1B2B3B4 ∼
g2

c7
0

Fψ +
g3

c7
0

φφψ
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Seventh Order (d = 6, k = 3 and l = 3)

We consider d = 6 and k = 3 and l = 3.

VAA1A2A3B1B2B3 = −
λ(i+1)α

4c0i+

(
−qαA(VA1A2A3B1B2B3) + iX

α(1)
(i+1)AB3

VA1A2A3B1B2

+ iX
α(2)
(i+1)AB2B3

VA1A2A3B1 + iX
α(3)
(i+1)AB1B2B3

VA1A2A3

+iVA1A2B1B2B3X
α(1)
iAA3

− iVA1B1B2B3X
α(2)
AA2A3

)
=: (1) + (2) + (3) + (4) + (5) + (6)

where

(1) ∼ 1

c0
q

(
g2

c6
0

Fφ+
g3

c6
0

φφφ+
g2

c6
0

ψψ

)
∼ g3

c7
0

φφψ +
g2

c7
0

Fψ +
g3

c7
0

φφψ +
g2

c7
0

Fψ +
g3

c7
0

φφψ

∼ g3

c7
0

φφψ +
g2

c7
0

Fψ

and

(2) ∼ 1

c0

gφ

c0

g2φψ

c5
0

∼ g3

c7
0

φφψ

(3) ∼ 1

c0

gψ

c2
0

(
gF

c4
0

+
g2φφ

c4
0

) ∼ g2

c7
0

Fψ +
g3

c7
0

φφψ

(4) ∼ 1

c0

gF

c3
0

gψ

c3
0

∼ g2

c7
0

Fψ

(5) ∼ 1

c0

g2φψ

c5
0

gφ

c0
∼ g3

c7
0

φφψ

(6) ∼ 1

c0

gF

c4
0

gψ

c2
0

∼ g2

c7
0

Fψ

such that

VAA1A2A3B1B2B3 ∼
g3

c7
0

φφψ +
g2

c7
0

Fψ

Eighth Order (d = 7, k = 3 and l = 4)

In order 8, there is only one nonvanishing coefficient corresponding to ∼ η4
i η

4
i+1. There-

fore, we consider d = 7 and k = 3 and l = 4.

VAA1A2A3B1B2B3B4 =
λ(i+1)α

4c0i+

(
−qαA(VA1A2A3B1B2B3B4) + iX

α(1)
(i+1)AB4

VA1A2A3B1B2B3

+ iX
α(2)
(i+1)AB3B4

VA1A2A3B1B2 + iX
α(3)
(i+1)AB2B3B4

VA1A2A3B1

−iVA1A2B1B2B3B4X
α(1)
iAA3

)
=: (1) + (2) + (3) + (4) + (5)
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where

(1) ∼ 1

c0
q

(
g2

c7
0

Fψ +
g3

c7
0

φφψ

)
∼ g3

c8
0

φψψ +
g2

c8
0

FF +
g3

c8
0

Fφφ+
g4

c8
0

φ
4

(2) ∼ 1

c0

gφ

c0

(
g2φF

c6
0

+
g3φφφ

c6
0

+
g2ψψ

c6
0

)
∼ g3

c8
0

φψψ +
g3

c8
0

Fφφ+
g4

c8
0

φ
4

(3) ∼ 1

c0

gψ

c2
0

g2φψ

c5
0

∼ g3

c8
0

φψψ

(4) ∼ 1

c0

gF

c3
0

(
gF

c4
0

+
g2φφ

c4
0

)
∼ g2

c8
0

FF +
g3

c8
0

Fφφ

(5) ∼ 1

c0

(
g2φF

c6
0

+
g2ψψ

c6
0

)
gφ

c0
∼ g3

c8
0

Fφφ+
g3

c8
0

φψψ

such that

VAA1A2A3B1B2B3B4 ∼
g3

c8
0

φψψ +
g2

c8
0

FF +
g3

c8
0

Fφφ+
g4

c8
0

φ
4
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Chapter 3

Wilson Loops and Scattering
Amplitudes

In this chapter, we study the quantum theory field theory of the supersymmetric Wilson
loops established in Chp. 2. In particular, we compare components of the expectation
value with scattering amplitudes. This matching will provide us with the yet undeter-
mined constant c0, which then depends on the coupling constant g. We will explicitly
see that Wilson loops are not dual to scattering amplitudes at tree level.

3.1 The Quantum Theory of Super Wilson Loops

Consider a super Wilson loop Wn as in (2.4). We are interested in the expectation value

〈Wn〉 =

∫
DΦ exp

(
i
∫
d4xL

)
Wn∫

DΦ exp
(
i
∫
d4xL

)(3.1)

where by
∫
DΦ we denote the path integral over all fields Φ ∈ {φ, ψ̃, ψ,A} of N = 4

SYM theory. Up to a certain order gk in the coupling constant, Wn is the sum over
finitely many integrals over products of fields multiplied with Grassmann monomials.
Exchanging these integrals with the path integral, we can thus apply the machinery
developped in Sec. 1.5.

A typical diagram that contributes to (3.1) is e.g. given by connecting two edges
with a gluon propagator (and integrating over the edges):

i i+1

...

jj+1

...

This diagram, in turn, has several contributions according to the different gluon terms
in the edge operators Ei and Ej . Similarly, a propagator coming from an edge may end
in a vertex or an inner vertex. This can be depicted by a new set of Feynman rules in
addition to the usual ones derived in Sec. 1.5.
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3.1.1 Feynman Rules

We summarise, schematically, the edge and vertex terms igEi and Vi,i+1 which enter the
Wilson loop Wn according to (2.4). From Thm. 2.2.1 we obtain

igEi ∼ gA · 1 +
g

c0
ψ̃ · ηi +

g

c2
0

φ · (ηi)2 +
g3

c2
0

Aφ · (ηi)2

+
g

c3
0

ψ · (ηi)3 +
g2

c3
0

Aψ · (ηi)3 +
g

c4
0

· F (ηi)
4 +

g2

c4
0

AF · (ηi)4

where F ∼ A+ gAA. Similarly, Thm. 2.3.2 yields

Vi,i+1 ∼ 1 +
g

c2
0

φ · η2 +
g

c3
0

ψ · η3 +
g

c4
0

F · η4 +
g2

c4
0

φ
2 · η4 +

g2

c5
0

φψ · η5

+
g2

c6
0

φF · η6 +
g3

c6
0

· φ3 · η6 +
g2

c6
0

ψ2 · η6 +
g2

c7
0

Fψ · η7 +
g3

c7
0

φφψ · η7

+
g3

c8
0

φψψ · η8 +
g2

c8
0

FF · η8 +
g3

c8
0

Fφφ · η8 +
g4

c8
0

φ
4 · η8

where the k-fold product of generators ηAi is denoted ηk. Here, the constant c0 is yet
undetermined. It would seem natural to have it independent of the coupling constant,
i.e. c0 ∼ g0 = 1, resulting in 〈Wn〉 = 1 +O(g2) as for the usual Wilson loop. However,
since we want to compare Wilson loops with scattering amplitudes, for which tree level
expectation values do exist, we must choose a different dependence. It turns out (cf.
Sec. 3.2 below) that

c2
0 ∼ g(3.2)

is a good choice, that we shall consider from now on.

Edge Contributions

From the above formula, we immediately find

igEi ∼ gA · 1 +
√
gψ̃ · ηi + φ · (ηi)2 + gAφ · (ηi)2

+
1
√
g
ψ · (ηi)3 +

√
gAψ · (ηi)3 +

1

g
·A(ηi)

4 +AA(ηi)
4 + gAAA · (ηi)4

We illustrate the possible edge contributions by the following additional Feynman rules,
where each diagram corresponds to one term of igEi.

∼ g

A

∼ √g · ηi

ψ̃

∼ 1 · (ηi)2

φ

∼ g · (ηi)2

Aφ

∼ 1√
g · (ηi)

3

ψ

∼ √g · (ηi)3

Aψ

∼ 1
g · (ηi)

4

A

∼ (ηi)
4

AA

∼ (ηi)
4

AAA
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Vertex Contributions

From the above formula for Vi i+1, we see that higher order terms factor into terms with
the structure of lower order terms as follows.

Vi,i+1 ∼ 1 + φ · η2 +
1
√
g
ψ · η3 +

1

g
F · η4 +

(
φη2
)2

+
(
φη2
)( 1
√
g
ψη3

)
+
(
φη2
)(1

g
Fη4

)
+
(
φη2
)3

+

(
1
√
g
ψη3

)2

+

(
1
√
g
ψη3

)(
1

g
Fη4

)
+
(
φη2
)2( 1
√
g
ψη3

)
+
(
φη2
)( 1
√
g
ψη3

)2

+

(
1

g
Fη4

)2

+
(
φη2
)2(1

g
Fη4

)
+
(
φη2
)4

such that

Vi,i+1 ∼
∑∏(

1 + φ · η2 +
1
√
g
ψ · η3 +

1

g
F · η4

)
∼
∑∏(

1 + φ · η2 +
1
√
g
ψ · η3 +

1

g
A · η4 +AA · η4

)
It is understood that this is not an equation but only a similarity to memorise the types
of terms occurring. We depict the relevant contributions as additional Feynman rules

∼ 1 · η2

φ

∼ 1√
g · η

3

ψ

∼ 1
g · η

4

A

∼ 1 · η4

AA

which are ”multiplied” according to

∼ 1 · η4

φφ

∼

 ∼ 1 · η2

φ  ·
 ∼ 1 · η2

φ 
and analogous for the other contributions. We summarise these Feynman rules up to
order 4 in the generators ηAi more precisely as follows.

∼ 1 ·
{
ηiηi
ηiηi+1

φ

∼ 1√
g ·


ηiηiηi
ηiηiηi+1

ηiηi+1ηi+1

ψ

∼ 1
g ·


ηiηiηiηi
ηiηiηiηi+1

ηiηiηi+1ηi+1

ηiηi+1ηi+1ηi+1

A

∼ 1 ·


ηiηiηiηi
ηiηiηiηi+1

ηiηiηi+1ηi+1

φφ
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3.1.2 Discussion

Having derived the Feynman rules for the super Wilson loop with (3.2), let us draw
some consequences.

As our first observation, note that 〈Wn〉 is the sum over Grassmann monomials
whose degree is a multiple of 4. Indeed the structure is such that, connecting any two
edges/vertices with a propagator, we pick up a factor η4, and the reasoning remains
analogous if inner vertices are present (cf. the Feynman rules derived in Sec. 1.5).

Secondly, we run into divergences due to the vanishing of denominators of the prop-
agators. Consider e.g. the following diagram.

y(t)x(t)

As x(t) and y(t) approach the vertex in between the respective edges, the gluon prop-
agator (1.45) becomes infinite. This problem, which is already present for the case of
classical Wilson loops, requires regularisation as explained in Sec. 1.5.2. In particular,
one has to take the regularised gluon propagator (1.44). Regularisation splits a single
diagram into a finite plus a diverging part. However, the sum of all diagrams contribut-
ing to (3.1) should add up to a finite expression without divergences. It remains unclear
whether this is indeed the case here.

There is another possible problem due to (3.2): Our Feynman rules allow diagrams
which are ∼ gk for k < 1. However, perturbative quantum field theory (weak coupling)
makes sense only if these diagrams, if not vanishing individually, at least add up to
zero. To make an example, consider the term ∼ 1

g2
· (ηi)4(ηj)

4 where i and j are not
neighbours. According to the Feynman rules, this contribution comes from the following
four diagrams.

i i+1

...

jj+1

... +

i i+1

...

jj+1

... +

i i+1

...

jj+1

... +

i i+1

...

jj+1

...

In formulas, we have

〈Wn〉 | 1
g2
·(ηi)4(ηj)4

=

(
(ig)2

∫ ∫ 〈
Ei|(ηi)4 Ej |(ηj)4

〉
+ ig

∫ 〈
Vi i+1|(ηi)4 Ej |(ηj)4

〉
+ig

∫ 〈
Ei|(ηi)4 Vj j+1|(ηj)4

〉
+
〈
Vi i+1|(ηi)4 Vj j+1|(ηj)4

〉)
| 1
g2

where the integrals refer to the edge integrations. By the explicit formulas for the
edge and vertex operators stated in Thms. 2.2.1 and 2.3.2, each of the four brackets
is proportional to

〈
F aαβ|g0(x) F bγδ|g0(y)

〉
or some derivatives thereof. By Lem. 1.2.2,
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this bracket consists of four terms, each of which has the following form.〈
i∂α

β̇
Aaββ̇(x) i∂γ

δ̇
Abδδ̇(y)

〉
= −σµα

β̇
σνγ

δ̇
σκββ̇σλδδ̇∂(x)µ∂(y)ν

〈
Aaκ(x) Abλ(y)

〉
=

Γ(1− ε)
4π2−ε σµα

β̇
σνγ

δ̇
σκββ̇σλδδ̇∂(x)µ∂(y)ν

ηκλδ
ab

((x− y)2)1−ε

=
Γ(1− ε)
2π2−ε σµα

β̇
σνγβ̇εβδ∂(x)µ∂(y)ν

δab

((x− y)2)1−ε

=
Γ(1− ε)
2π2−ε ηµνεαγεβδδab∂(x)µ∂(y)ν

1

((x− y)2)1−ε

In this calculation, we used the regularised gluon propagator (1.44), Lem. 1.1.7 and
(1.6) together with the fact that the derivative term is symmetric in µ and ν. By
Lem. 1.5.5, the last expression goes to zero as ε → 0 and, therefore, we arrive at
〈Wn〉 | 1

g2
·(ηi)4(ηj)4

= 0. We also managed to show that problematic terms involving the

three-gluon inner vertex vanish. It remains unclear, however, whether all problematic
terms vanish.

3.1.3 Tree-Level Calculations

Having established the Feynman rules, we calculate some tree-level (∼ g0 = 1) contri-
butions. The prescription (3.2) is such that ”tree-level” diagrams may contain inner
vertices. Consider the following example. F (xi)

F (xk)

F (xj)
It contains (vanishing) problematic as well as both tree-level and one-loop (∼ g1) con-
tributions.

To make life simple, we restrict our study to tree-level components proportional to
the product of four Grassmann generators, where the contributing diagrams contain
propagators but no inner vertices. For the rest of this section, we calculate some of such
contributions. As explained above, we actually need to consider regularised propagators
due to divergences. However, it is also possible to start with un-regularised calculations
and only later argue at which places in the calculation regularisation plays a role. We
will encounter integrals as in the next lemma.

Lemma 3.1.1. Setting xi j := xi − xj and assuming that pi = xi i−1 is lightlike, the
following formula holds. ∫ 1

0
dt

1

(xj − xi−1 − tpi)4
=

1

x2
j i−1x

2
j i

Proof. With t := (1− t), we transform

xj − xi−1 − tpi = xj − xi−1 − txi + txi−1

= (xj − xi−1)(1− t) + (xj − xi)t
= (xj − xi−1)t+ (xj − xi)t
= xj i−1t+ xj it
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For computing the square thereof, we need the following side calculation.

−(x2
ij − x2

ik − x2
jk) = −(x2

i + x2
j − 2xixj − x2

i − x2
k + 2xixk − x2

j − x2
k + 2xjxk)

= 2xixj + 2x2
k − 2xixk − 2xjxk

= 2(xi(xj − xk)− xk(xj − xk))
= 2(xi − xk)(xj − xk)
= 2xikxjk

We thus find

(xj − xi−1 − tpi)2 = x2
j i−1t

2
+ x2

j it
2 + 2ttxj i−1xj i

= x2
j i−1t

2
+ x2

j it
2 − tt(x2

i−1 i − x2
j i−1 − x2

j i)

= x2
j i−1(t

2
+ tt) + x2

j i(t
2 + tt)

= x2
j i−1t+ x2

j it

Now, by the substitution rule with s(t) = x2
j i−1t + x2

j it and s
′
(t) = −x2

j i−1 + x2
j i, we

yield

∫ 1

0
dt

1

(xj − xi−1 − tpi)4
=

∫ 1

0
dt

1

(x2
j i−1t+ x2

j it)
2

=
1

−x2
j i−1 + x2

j i

∫ x2j i

x2j i−1

ds
1

s2

=
1

−x2
j i−1 + x2

j i

(
1

x2
j i−1

− 1

x2
j i

)
=

1

x2
j i−1x

2
j i

Lemma 3.1.2. The following expressions hold for tree-level contributions with two
vertices being connected by a scalar propagator.

〈
Vi,i+1(xi)|ηiηi+1 Vj,j+1(xj)|ηjηj+1

〉
= C0 · ηAi ηBi+1η

C
j η

D
j+1

εABCD
〈i i+ 1〉 〈j j + 1〉 (xi − xj)2

, C0 :=

(
g2(N2 − 1)

Nπ2c4
0

)
〈
Vi,i+1(xi)|ηiηi Vj,j+1(xj)|ηjηj+1

〉
= C0 · ηAi ηBi ηCj ηDj+1

εABCD 〈i+ 1 i− 1〉
2 〈i− 1 i〉 〈i i+ 1〉 〈j j + 1〉 (xi − xj)2

The constant C0 is independent of the coupling constant g through (3.2).
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Proof. We calculate the first bracket, using δabδab = δaa = dim(su(N)) = N2 − 1.〈
Vi,i+1(xi)|ηiηi+1 Vj,j+1(xj)|ηjηj+1

〉
=

1

N
tr

〈
2
√

2 g

c2
0 〈i+ 1 i〉

φAB(xi)η
A
i η

B
i+1

2
√

2 g

c2
0 〈j + 1 j〉

φCD(xj)η
C
j η

D
j+1

〉

= ηAi η
B
i+1η

C
j η

D
j+1

8g2

Nc4
0 〈i i+ 1〉 〈j j + 1〉

tr
〈
φ
a
AB(xi)T

a φ
b
CD(xj)T

b
〉

= ηAi η
B
i+1η

C
j η

D
j+1

8g2tr(T aT b)

Nc4
0 〈i i+ 1〉 〈j j + 1〉

〈
φ
a
AB(xi) φ

b
CD(xj)

〉
= ηAi η

B
i+1η

C
j η

D
j+1

4g2δab

Nc4
0 〈i i+ 1〉 〈j j + 1〉

(
1

4π2

εABCDδ
ab

(xi − xj)2

)
=

(
g2(N2 − 1)

Nπ2c4
0

)
ηAi η

B
i+1η

C
j η

D
j+1

εABCD
〈i i+ 1〉 〈j j + 1〉 (xi − xj)2

Similarly, we obtain the second equality as follows.〈
Vi,i+1(xi)|ηiηi Vj,j+1(xj)|ηjηj+1

〉
=

1

N
tr

〈
−
√

2 g 〈i+ 1 i− 1〉
c2

0 〈i i− 1〉 〈i+ 1 i〉
φAB(xi)η

A
i η

B
i

2
√

2 g

c2
0 〈j + 1 j〉

φCD(xj)η
C
j η

D
j+1

〉

= −〈i+ 1 i− 1〉
2 〈i i− 1〉

1

N
tr

〈
2
√

2 g

c2
0 〈i+ 1 i〉

φAB(xi)η
A
i η

B
i

2
√

2 g

c2
0 〈j + 1 j〉

φCD(xj)η
C
j η

D
j+1

〉

= −〈i+ 1 i− 1〉
2 〈i i− 1〉

C0η
A
i η

B
i η

C
j η

D
j+1

εABCD
〈i i+ 1〉 〈j j + 1〉 (xi − xj)2

= C0 · ηAi ηBi ηCj ηDj+1

εABCD 〈i+ 1 i− 1〉
2 〈i− 1 i〉 〈i i+ 1〉 〈j j + 1〉 (xi − xj)2

Lemma 3.1.3. The following expressions hold for tree-level contributions with a vertex
being connected with an edge (and integrated over) by a scalar propagator, where C0 is
the constant as defined in the previous lemma.

ig

∫ 〈
Ei|ηiηi Vj,j+1(xj)|ηjηj+1

〉
= C0 ·

λ̃iβ̇λ(i−1)γx
β̇γ
j i−1 εABCD

2 〈i i− 1〉 〈j + 1 j〉x2
j i−1x

2
j i

ηAi η
B
i η

C
j η

D
j+1

ig

∫ 〈
Vj j+1(xj)|ηjηj+1ηj+1 Ei|ηi

〉
= C0 ·

λjγ λ̃iβ̇x
γβ̇
j i−1εABCD

2 〈j + 1 j〉2 x2
j i−1x

2
j i

ηAi η
B
j η

C
j+1η

D
j+1

ig

∫ 〈
Vj j+1(xj)|ηjηjηj+1 Ei|ηi

〉
= −C0 ·

λ(j+1)γ λ̃iβ̇x
γβ̇
j i−1εABCD

2 〈j + 1 j〉2 x2
j i−1x

2
j i

ηAi η
B
j η

C
j η

D
j+1

Here, and in the following, it is implicitly understood that the respective left hand side
is restricted to the tree-level (∼ g0 = 1) part.
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Proof. We calculate the first term.

ig

∫ 〈
Ei|ηiηi Vj,j+1(xj)|ηjηj+1

〉
=
ig

N

∫
x=xi−1+tpi

tr

〈
− i
√

2

2c2
0

λ̃iβ̇λ(i−1)γ∂
β̇γφAB(x)

〈i i− 1〉
ηAi η

B
i

2
√

2 g

c2
0 〈j + 1 j〉

φCD(xj) η
C
j η

D
j+1

〉

=
2g2λ̃iβ̇λ(i−1)γ

Nc4
0 〈i i− 1〉 〈j + 1 j〉

ηAi η
B
i η

C
j η

D
j+1

∫
x=xi−1+tpi

1

2
δab
〈
∂β̇γφ

a
AB(x) φ

b
CD(xj)

〉
=
g2λ̃iβ̇λ(i−1)γεABCDδ

abδab

4π2Nc4
0 〈i i− 1〉 〈j + 1 j〉

ηAi η
B
i η

C
j η

D
j+1

∫
x=xi−1+tpi

∂β̇γ
1

(x− xj)2

=

(
g2(N2 − 1)

c4
0π

2N

)
·
λ̃iβ̇λ(i−1)γεABCD

2 〈i i− 1〉 〈j + 1 j〉
ηAi η

B
i η

C
j η

D
j+1

∫
x=xi−1+tpi

(xj − x)β̇γ

(xj − x)4

The numerator is independent of t,

λ̃iβ̇λ(i−1)γ(xj − x)β̇γ = λ̃iβ̇λ(i−1)γ(xj − xi−1 − tpi)β̇γ = λ̃iβ̇λ(i−1)γx
β̇γ
j i−1

and the first equality follows by Lem. 3.1.1.

ig

∫ 〈
Ei|ηiηi Vj,j+1(xj)|ηjηj+1

〉
= C0 ·

λ̃iβ̇λ(i−1)γx
β̇γ
j i−1 εABCD

2 〈i i− 1〉 〈j + 1 j〉
ηAi η

B
i η

C
j η

D
j+1

∫ 1

0
dt

1

(xj − xi−1 − tpi)4

= C0 ·
λ̃iβ̇λ(i−1)γx

β̇γ
j i−1 εABCD

2 〈i i− 1〉 〈j + 1 j〉x2
j i−1x

2
j i

ηAi η
B
i η

C
j η

D
j+1

Similarly, we obtain the second equality as follows.

ig

∫ 〈
Vj j+1(xj)|ηjηj+1ηj+1 Ei|ηi

〉
=
ig

N

∫
x=xi−1+tpi

tr

〈
−2igλjγψ

γC(xj)

c3
0 〈j + 1 j〉2

εAB1B2C η
A
j η

B1
j+1η

B2
j+1

i

c0
λ̃iβ̇ψ̃

β̇
F (x)ηFi

〉

=
ig2λjγ λ̃iβ̇εAB1B2Cδ

ab

Nc4
0 〈j + 1 j〉2

ηFi η
A
j η

B1
j+1η

B2
j+1

∫
x=xi−1+tpi

〈
ψγCa(xj) ψ̃

β̇b
F (x)

〉
=

(
g2(N2 − 1)

c4
0π

2N

)
λjγ λ̃iβ̇εAB1B2C

2 〈j + 1 j〉2
ηCi η

A
j η

B1
j+1η

B2
j+1

∫
x=xi−1+tpi

(xj − x)γβ̇

(xj − x)4

= C0 ·
λjγ λ̃iβ̇x

γβ̇
j i−1εABCD

2 〈j + 1 j〉2
ηAi η

B
j η

C
j+1η

D
j+1

∫ 1

0
dt

1

(xj − xi−1 − tpi)4

= C0 ·
λjγ λ̃iβ̇x

γβ̇
j i−1εABCD

2 〈j + 1 j〉2 x2
j i−1x

2
j i

ηAi η
B
j η

C
j+1η

D
j+1
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Similarly, we obtain the third equality as follows.

ig

∫ 〈
Vj j+1(xj)|ηjηjηj+1 Ei|ηi

〉
=
ig

N

∫
x=xi−1+tpi

tr

〈
2igλ(j+1)γψ

γC(xj)

c3
0 〈j + 1 j〉2

εA1A2BC η
A1
j ηA2

j ηBj+1

i

c0
λ̃iβ̇ψ̃

β̇
F (x)ηFi

〉

= −
ig2λ(j+1)γ λ̃iβ̇εA1A2BCδ

ab

Nc4
0 〈j + 1 j〉2

ηFi η
A1
j ηA2

j ηBj+1

∫
x=xi−1+tpi

〈
ψγCa(xj) ψ̃

β̇b
F (x)

〉
= −C0 ·

λ(j+1)γ λ̃iβ̇εABCD

2 〈j + 1 j〉2
ηAi η

B
j η

C
j η

D
j+1

∫
x=xi−1+tpi

(xj − x)γβ̇

(xj − x)4

= −C0 ·
λ(j+1)γ λ̃iβ̇x

γβ̇
j i−1εABCD

2 〈j + 1 j〉2 x2
j i−1x

2
j i

ηAi η
B
j η

C
j η

D
j+1

Having calculated some building blocks of tree-level components in Lem. 3.1.2 and
Lem. 3.1.3, we now study some examples. Consider 〈Wn〉 |ηaηbηcηd , which is the sum of
all components of 〈Wn〉 proportional to ηAa η

B
b η

C
c η

D
d for any values of A,B,C,D.

Example 1 (n > 4 and (a, b, c, d) = (1, 2, k, k + 1) with k > 2)

Consider the component ∼ η1η2ηkηk+1 of 〈Wn〉 with k > 2 and n > 4. It comes from
only one diagram involving two vertex terms.

1 2

...

kk+1

...

By Lem. 3.1.2, we immediately find

〈Wn〉 |η1η2ηkηk+1
=
〈
V1,2(x1)|η1η2 Vk,k+1(xk)|ηkηk+1

〉
= C0 · ηA1 ηB2 ηCk ηDk+1

εABCD
〈1 2〉 〈k k + 1〉 (x1 − xk)2

Example 2 (n = 4 and (a, b, c, d) = (1, 2, 3, 4))

Consider the component ∼ η1η2η3η4 of 〈W4〉. This time, there are two graphs involved.

14

3 2

+

14

3 2



96 3 Wilson Loops and Scattering Amplitudes

By Lem. 3.1.2, we calculate

〈W4〉 |η1η2η3η4
= 〈V12(x1)|η1η2 V34(x3)|η3η4〉+ 〈V23(x2)|η2η3 V41(x4)|η4η1〉

= C0 · ηA1 ηB2 ηC3 ηD4
εABCD

〈1 2〉 〈3 4〉 (x1 − x3)2
+ C0 · ηB2 ηC3 ηD4 ηA1

εBCDA
〈2 3〉 〈4 1〉 (x2 − x4)2

= C0 · ηA1 ηB2 ηC3 ηD4 εABCD
(

1

〈1 2〉 〈3 4〉 (x1 − x3)2
+

1

〈2 3〉 〈4 1〉 (x2 − x4)2

)
= C0 · ηA1 ηB2 ηC3 ηD4 εABCD

(
1

〈1 2〉 〈3 4〉 〈2 3〉 [2 3]
+

1

〈2 3〉 〈4 1〉 〈3 4〉 [3 4]

)
= C0 · ηA1 ηB2 ηC3 ηD4 εABCD

〈1 4〉 [3 4]− 〈1 2〉 [2 3]

〈2 3〉 〈3 4〉 〈1 2〉 〈1 4〉 [2 3] [3 4]

= 0

using (2.10) and momentum conservation (2.2) in the form

〈1 4〉 [3 4] = λ1αλ̃3α̇p
αα̇
4 = −λ1αλ̃3α̇(pαα̇1 + pαα̇2 + pαα̇3 ) = 〈1 2〉 [2 3]

Example 3 (n ≥ 4 and (a, b, c, d) = (1, 1, n− 1, n))

Consider the component ∼ η1η1ηn−1ηn of 〈Wn〉 with n ≥ 4, which is the sum of three
graphs.

...

2

1

n

n−1

+ ...

2

1

n

n−1

+ ...

2

1

n

n−1

In formulas, we yield

〈Wn〉 |η1η1ηn−1ηn = ig

∫ 〈
Vn1(xn)|ηnη1η1 En−1|ηn−1

〉
+
〈
V12(x1)|η1η1 Vn−1,n(xn−1)|ηn−1ηn

〉
+ ig

∫ 〈
E1|η1η1 Vn−1,n(xn−1)|ηn−1ηn

〉
=: (1) + (2) + (3)

Consider the terms (1) and (2). In each case, the numerator in the expression stated in
Lem. 3.1.3 vanishes due to

(1) ∼ λnγ λ̃(n−1)β̇(xn − xn−2)β̇γ = λnγ λ̃(n−1)β̇(pn + pn−1)β̇γ = 0

(3) ∼ λ̃1β̇λnγ(xn − xn−1)β̇γ = λ̃1β̇λnγp
β̇γ
n = 0

However, the denominators also vanish, and we conclude that we should have performed
regularisation. Going back to the proof of Lem. 3.1.3, we observe that regularisation
replaces the integrands by terms depending on ε which, for ε → 0, go to the original
integrands, leading to a finite plus a diverging contribution. Yet the numerator outside
the integral remains unchanged and, therefore, our original reasoning remains valid
such that both the finite and the diverging part (for both graphs individually) vanish.
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Therefore, only (2) remains which, by Lem. 3.1.2 reads

〈Wn〉 |η1η1ηn−1ηn = (2) = C0 · ηA1 ηB1 ηCn−1η
D
n

εABCD 〈2n〉
2 〈n 1〉 〈1 2〉 〈n− 1n〉 (x1 − xn−1)2

= C0 · ηA1 ηB1 ηCn−1η
D
n

εABCD 〈2n〉
2 〈n 1〉2 〈1 2〉 〈n− 1n〉 [n 1]

For the cases n = 4 and n = 5, we thus obtain

〈W4〉 |η1η1η3η4 = C0 · ηA1 ηB1 ηC3 ηD4
εABCD 〈2 4〉

2 〈1 4〉2 〈1 2〉 〈3 4〉 [4 1]

〈W5〉 |η1η1η4η5 = C0 · ηA1 ηB1 ηC4 ηD5
εABCD 〈2 5〉

2 〈1 5〉2 〈1 2〉 〈4 5〉 [5 1]

Example 4 (n = 5 and (a, b, c, d) = (1, 1, 3, 4))

Consider the component ∼ η1η1η3η4 of 〈Wn〉 with n > 4.

...

4

3

2

1

+ ...

4

3

2

1
Compared to the previous example, there are two simplifications: Here, there are only
two diagrams contributing and, as we will see in a minute, there is no need for regular-
isation. Moreover, it is an easy exercise to generalise this example towards n ≥ 5 and
(a, b, c, d) = (1, 1, k, k + 1) with 2 < k < n − 1. Using Lem. 3.1.2 and Lem. 3.1.3, we
calculate

〈W5〉 |η1η1η3η4 = 〈V12(x1)|η1η1 V3,4(x3)|η3η4〉+ ig

∫
〈E1|η1η1 V3,4(x3)|η3η4〉

= C0 · ηA1 ηB1 ηC3 ηD4
εABCD 〈2 5〉

2 〈5 1〉 〈1 2〉 〈3 4〉 (x1 − x3)2

+ C0 ·
λ̃1β̇λ5γx

β̇γ
3 5 εABCD

2 〈1 5〉 〈4 3〉x2
3 5x

2
3 1

ηA1 η
B
1 η

C
3 η

D
4

= C0 · ηA1 ηB1 ηC3 ηD4 εABCD
〈2 5〉 (x5 − x3)2 + 〈1 2〉 λ̃1β̇λ5γ(x3 − x5)β̇γ

2 〈5 1〉 〈1 2〉 〈3 4〉 (x1 − x3)2(x5 − x3)2

= C0 · ηA1 ηB1 ηC3 ηD4 εABCD
〈2 5〉 〈5 4〉 [5 4]− 〈1 2〉 [1 4] 〈5 4〉

2 〈5 1〉 〈1 2〉 〈3 4〉 〈2 3〉 [2 3] 〈5 4〉 [5 4]

= −C0 · ηA1 ηB1 ηC3 ηD4 εABCD
〈2 5〉 [4 5] + 〈2 1〉 [4 1]

2 〈5 1〉 〈1 2〉 〈3 4〉 〈2 3〉 [2 3] [5 4]

By momentum conservation (2.2), we further transform

〈2 5〉 [4 5] + 〈2 1〉 [4 1] = λ2λ̃4(p5 + p1) = −λ2λ̃4(p2 + p3 + p4) = −〈2 3〉 [4 3]

such that we arrive at

〈W5〉 |η1η1η3η4 = C0 · ηA1 ηB1 ηC3 ηD4
εABCD 〈2 3〉 [3 4]

2 〈5 1〉 〈1 2〉 〈3 4〉 〈2 3〉 [2 3] [4 5]
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3.2 Scattering Amplitudes in N = 4 SYM

Supersymmetric Wilson loops as studied so far have been introduced in [CH11] with
the aim of obtaining a duality with scattering amplitudes. After summarising the rel-
evant background we will, in this section, explicitly compare components of the two
observables.

Consider n particles {|i〉}ni=1, each of which with a fixed momentum pi (such that
|i〉 = |i(pi)〉) and of one of the following types corresponding to the field content of
N = 4 SYM theory: A gluon |i〉 =

∣∣g+
i

〉
of positive helicity, a fermion |i〉 =

∣∣ψAi 〉, a

scalar |i〉 =
∣∣φiAB〉, an anti-fermion |i〉 =

∣∣∣ψ̃iA〉 or a gluon |i〉 =
∣∣g−i 〉 of negative helicity.

The scattering amplitude An(a1, |1〉 , . . . , an, |n〉) further depends on the colours ai and,
as in any quantum field theory, is calculated as a sum over graphs resulting from the
Feynman rules as derived in Sec. 1.5, however Fourier transformed to momentum space.

While in principle possible, actual calculations, even at lowest order ∼ g0 (tree level),
turn out to be nearly impossible, containing too many and complicated diagrams and
variables. In the last two decades, there has been much progress in the calculation of
scattering amplitudes by means of more sophisticated methods, whose proof of validity,
of course, still relies on Feynman rules (cf. [Dix96] and [Dru10]). As a first step, it
is possible to separate the colour structure from the rest by eliminating the structure
constants fabc in favour of generators T a (Lem. 1.1.3) and then using the identity of
Lem. 1.1.4. At tree level, one arrives at the colour decomposition

A(0)
n (a1, |i〉 , . . . , an, |n〉) =

∑
σ∈Sn/Zn

tr (T aσ(1) · · ·T aσ(n))A(0)
n (|σ(1)〉 , . . . , |σ(n)〉)

where A
(0)
n is referred to as the colour ordered (tree-level) amplitude. At higher orders

in g, one obtains a similar formula, however containing multi-trace terms which vanish
only in the planar limit (N → ∞). A convenient way to calculate the colour-ordered
amplitudes is to use BCFW recursion (cf. [BCFW05]).

Following [Nai88] and using the notation of [CH11] we introduce, for each i ∈
{1, . . . , n}, four Grassmann generators η̃Ai and put the different on-shell state into a
single on-shell superstate as follows.

|Φi〉 =
∣∣g+
i

〉
+ η̃Ai

∣∣ψAi 〉+
1

2
η̃Ai η̃

B
i

∣∣φiAB〉+
1

3!
εABCDη̃

A
i η̃

B
i η̃

C
i

∣∣∣ψ̃iD〉+
1

4!
(η̃i)

4
∣∣g−i 〉

where we set (η̃i)
4 := εABCDη̃

A
i η̃

B
i η̃

C
i η̃

D
i . Extending the colour ordered amplitudes A

(0)
n

by (super-)linearity over the generators η̃Ai , one can thus define the super-amplitude

A
(0)
n (|Φ1〉 , . . . , |Φn〉) which, in turn, by definition contains the original amplitudes as the

coefficients of the products of generators in the Grassmann expansion. It turns out (cf.
[DHKS10]) that the super amplitude can be factorised

A(0)
n (|Φ1〉 , . . . , |Φn〉) = A

(0)
nMHV ·

(
1 +M

(0)
nNMHV +M

(0)
nNNMHV + . . .+M

(0)

nMHV

)
where the subscripts MHV=”maximally helicity violating” etc. correspond to the type
of amplitudes and, as a consequence, the terms in parantheses on the right hand side
have respective Grassmann degrees 0, 4, 8, . . . , (4n − 16). Moreover, all terms on the
right hand side now depend only on the momenta λi and λ̃i (the theory is massless such
that pi = λiλ̃i as in (1.11)) and the generators η̃Ai .
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In the following, we shall focus on the next-to-MHV subamplitudeM
(0)
nNMHV of Grass-

mann degree 4, which can be written as a compact and explicit expression in terms of
momentum super-twistors as summarised next. Consult [Hod09] and [MS09] for mo-
memtum twistors as well as [WW90] for a general introduction to twistor theory. Let
ηAi (untilded) denote the Grassmann odd coordinates of the momentum super-twistor
associated to the i-th particle, which turns out to be a linear combination of the tilded
generators with coefficients depending on the (half-)momenta λi. In terms of these
momentum super-twistors, the next-to-MHV subamplitude can be written as follows
([DDH12], cf. also [MS09] and [BMS10]).

M
(0)
nNMHV =

∑
1<i<j<n

[1 i i+ 1 j j + 1](3.3a)

[a b c d e] : =
δ0|4 (ηa 〈b c d e〉+ cyclic)

〈a b c d〉 〈b c d e〉 〈c d e a〉 〈d e a b〉 〈e a b c〉
(3.3b)

where 〈a b c d〉 is the totally antisymmetric contraction of the momentum twistor coor-
dinates, which satisfies

〈i i+ 1 k k + 1〉 = (xi − xk)2 · 〈i, i+ 1〉 〈k, k + 1〉(3.4)

The Grassmann delta function is defined as

δ0|4 (ηa 〈b c d e〉+ cyclic) :=
∏4

A=1

(
ηAa 〈b c d e〉+ cyclic

)
(3.5)

In the following lemma, we calculate some examples using (3.3a).

Lemma 3.2.1. For brevity, we set Mn := M
(0)
nNMHV. The four-point amplitude M4 = 0

vanishes. For n > 4, we obtain

Mn|η1η2ηkηk+1
= ηA1 η

B
2 η

C
k η

D
k+1

εABCD
〈1 2〉 〈k k + 1〉 (x1 − xk)2

, k > 2

Mn|η1η2η3η4 = ηA1 η
B
2 η

C
3 η

D
4

εABCD
〈1 2〉 〈3 4〉 〈2 3〉 [2 3]

while the five-point amplitude M5 has components

M5|η1η1η2η3 = ηA1 η
B
1 η

C
2 η

D
3

εABCD
2

〈4 5〉 [3 4]

〈1 2〉2 [1 2] 〈2 3〉 [2 3] 〈5 1〉

M5|η1η1η3η4 = ηA1 η
B
1 η

C
3 η

D
4

εABCD
2

〈2 3〉 [3 4]

〈5 1〉 〈1 2〉 〈2 3〉 〈3 4〉 [2 3] [4 5]

M5|η1η1η4η5 = ηA1 η
B
1 η

C
4 η

D
5

εABCD
2

〈2 3〉 [3 4]

〈5 1〉2 [4 5] 〈4 5〉 〈1 2〉 [5 1]

Proof. It is well-known that, for n = 4, the only non-vanishing amplitudes are MHV

such that, in particular, M4 = M
(0)
4 NMHV = 0. This can also be seen directly from (3.3a)

as follows. The only summand is [1 2 3 3 4]. However, the five-bracket vanishes if two
entries are the same: For simplicity, assume a = b. Then, in each of the 4 factors on the
right hand side of (3.5), antisymmetry of the four-bracket is survived only by the sum
ηAa 〈a c d e〉+ ηAa 〈c d e a〉, which vanishes for the same reason.

For the calculation of the amplitudes with n > 4, observe the following remark. The
delta function (3.5) is a sum of terms of Grassmann order 4. Consider, in the corre-
sponding such term, the coefficient of η1

aη
2
bη

3
cη

4
d. By construction, it remains unchanged
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under any permutation of the indices abcd. The coefficient in front of ηAa η
B
b η

C
c η

D
d thus

equals the coefficient of η1
aη

2
bη

3
cη

4
d multiplied by εABCD, which arises from permuting

the η variables such that the upper indices ABCD are translated into 1234. As usual,
the product εABCD η

A
a η

B
b η

C
c η

D
d must be multiplied by a symmetry factor S if any of the

lower indices abcd are equal. If only a = b, we obtain S = 1/2. It is clear that the same

remarks apply to M
(0)
nNMHV.

Consider the component ∼ η1η2ηkηk+1 with k > 2 of the n-point NMHV subampli-
tude. Only one term contributes to the sum (3.3a), and we calculate

Mn|η1η2ηkηk+1
= [1 2 3 k k + 1] |η1η2ηkηk+1

= εABCD
ηA1 〈2 3 k k + 1〉 ηB2 〈3 k k + 1 1〉 ηCk 〈k + 1 1 2 3〉 ηDk+1 〈1 2 3 k〉
〈1 2 3 k〉 〈2 3 k k + 1〉 〈3 k k + 1 1〉 〈k k + 1 1 2〉 〈k + 1 1 2 3〉

= ηA1 η
B
2 η

C
k η

D
k+1

εABCD
〈k k + 1 1 2〉

The first formula stated now follows immediately from (3.4), and the second is the case
k = 3, using x1 − x3 = x1 − x2 + x2 − x3 = −p2 − p3.

Now consider the amplitude M5. In this case, (3.3a) has only one summand such
that M5 = [1 2 3 4 5]. For the component ∼ η1η1η2η3 of M5, we thus obtain

M5|η1η1η2η3 = [1 2 3 4 5] |η1η1η2η3

= ηA1 η
B
1 η

C
2 η

D
3

εABCD
2

〈2 3 4 5〉
〈1 2 3 4〉 〈5 1 2 3〉

= ηA1 η
B
1 η

C
2 η

D
3

εABCD
2

〈2 3〉 〈4 5〉 (x2 − x4)2

〈1 2〉 〈3 4〉 (x1 − x3)2 〈5 1〉 〈2 3〉 (x5 − x2)2

= ηA1 η
B
1 η

C
2 η

D
3

εABCD
2

〈2 3〉 〈4 5〉 〈4 3〉 [4 3]

〈1 2〉 〈3 4〉 〈3 2〉 [3 2] 〈5 1〉 〈2 3〉 〈2 1〉 [2 1]

which equals the expression stated. Similarly, the component ∼ η1η1η3η4 reads

M5|η1η1η3η4 = ηA1 η
B
1 η

C
3 η

D
4

εABCD
2

〈2 3 4 5〉
〈1 2 3 4〉 〈3 4 5 1〉

= ηA1 η
B
1 η

C
3 η

D
4

εABCD
2

〈2 3〉 〈4 5〉 (x2 − x4)2

〈1 2〉 〈3 4〉 (x1 − x3)2 〈3 4〉 〈5 1〉 (x3 − x5)2

= ηA1 η
B
1 η

C
3 η

D
4

εABCD
2

〈2 3〉 〈4 5〉 〈3 4〉 [3 4]

〈1 2〉 〈3 4〉 〈2 3〉 [2 3] 〈3 4〉 〈5 1〉 〈4 5〉 [4 5]

while the component ∼ η1η1η4η5 evaluates to

M5|η1η1η4η5 = ηA1 η
B
1 η

C
4 η

D
5

εABCD
2

〈2 3 4 5〉
〈3 4 5 1〉 〈4 5 1 2〉

= ηA1 η
B
1 η

C
4 η

D
5

εABCD
2

〈2 3〉 〈4 5〉 (x2 − x4)2

〈3 4〉 〈5 1〉 (x3 − x5)2 〈4 5〉 〈1 2〉 (x4 − x1)2

= ηA1 η
B
1 η

C
4 η

D
5

εABCD
2

〈2 3〉 〈4 5〉 〈3 4〉 [3 4]

〈3 4〉 〈5 1〉 〈4 5〉 [4 5] 〈4 5〉 〈1 2〉 〈5 1〉 [5 1]

This finishes the calculation.
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3.2.1 Comparison with Supersymmetric Wilson Loops

Gluon scattering amplitudes have been known to be dual to Wilson loops along lightlike
polygons. In [CH11], a similar duality (at weak coupling) between the full (super)
scattering amplitudes of N = 4 SYM theory and super Wilson loops has been claimed
with the following identification of parameters. The number n of particles corresponds
to the number n of polygon vertices while the particle momenta pi are translated into
the differences xi−xi−1. By construction, the latter are lightlike which matches with the
massless theory. Moreover, the (odd) momemtum supertwistors ηAi are identified with
the Grassmann generators (2.3) which occur in the construction of the super Wilson
loop.

We will now check this proposal at tree-level through the examples worked out in
this and in the previous section. First, observe that both observables are the sum
over monomials of Grassmann degree 0, 4, 8, . . .. As our first test, we try to match the
components ∼ η1η2ηkηk+1 (with n > 4 and k > 2) with the result

〈Wn〉 |η1η2ηkηk+1
= C0 ·Mn|η1η2ηkηk+1

which perfectly agrees upon setting C0
!

= 1 which fixes the so far undetermined constant
c0 in (2.8) to be

c4
0 =

g2(N2 − 1)

Nπ2
(3.6)

In particular, we see that c2
0 ∼ g in agreement with (3.2). Similarly, we obtain an

agreement for the components ∼ η1η2η3η4 in the case n = 4, where both vanish.

〈W4〉 |η1η2η3η4 = M4|η1η2η3η4 = 0

For n = 5 and the components ∼ η1η1η3η4, we yield

〈W5〉 |η1η1η3η4 = M5|η1η1η3η4

with the implicit use of the normalisation (3.6).
There exist, however, components for which the agreement is explicitly broken. Con-

sider, for example, the components ∼ η1η1η3η4 with n = 4. While the scatting amplitude
vanishes, the super Wilson loop does not.

〈W4〉 |η1η1η3η4 6= M4|η1η1η3η4 = 0

The mismatch is also obtained for the components ∼ η1η1η4η5 with n = 5. We calculate

M5|η1η1η4η5 − 〈W5〉 |η1η1η4η5

= ηA1 η
B
1 η

C
4 η

D
5

εABCD
2

(
〈2 5〉

〈1 5〉2 〈1 2〉 〈4 5〉 [5 1]
− 〈2 3〉 [3 4]

〈5 1〉2 [4 5] 〈4 5〉 〈1 2〉 [5 1]

)
= ηA1 η

B
1 η

C
4 η

D
5

εABCD
2

〈2 5〉 [4 5] + 〈2 3〉 [4 3]

〈5 1〉2 [4 5] 〈4 5〉 〈1 2〉 [5 1]

By momentum conservation (2.2), we further transform

〈2 5〉 [4 5] + 〈2 3〉 [4 3] = λ2λ̃4(p3 + p5) = −λ2λ̃4(p1 + p2 + p4) = −〈2 1〉 [4 1]
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and thus

M5|η1η1η4η5 − 〈W5〉 |η1η1η4η5 = ηA1 η
B
1 η

C
4 η

D
5

εABCD
2

[4 1]

〈5 1〉2 [4 5] 〈4 5〉 [5 1]
6= 0

We expect an analogous behaviour for the components ∼ η1η1ηn−1ηn with arbitrary
n ≥ 4.

To summarise, we have shown that scattering amplitudes are not dual to super
Wilson loops. On the other hand, the remaining partial duality is still striking. We
wonder whether there is a way to repair the mismatching problem. We have seen that the
problematic terms are connected with diverging diagrams which require regularisation.
We have also seen that, then, both the finite and the diverging parts of these diagrams
vanish individually. Therefore, the use of a different regularisation method should not
make a difference. In the next section, we consider a natural variant of the super Wilson
loop which, however, turns out not to solve the problem.

3.3 A Natural Variant

The solution for the edge and vertex operators found in Thm. 2.2.1 and Thm. 2.3.2
is not uniquely determined by the supersymmetry conditions (2.9a) and (2.9b). More
precisely, the edge operators are not unique while the vertex operators are determined
by the edge operators, as we have seen.

By construction, Ei and Xα
iA depend on pi and pi−1. By using the Schouten identity

in the proof of Thm. 2.2.1 with 1 =
λiγλ

γ
i+1

〈i i+1〉 instead, one obtains a different solution

depending on pi and pi+1. The proof goes through verbatim with λi−1 and 〈i i− 1〉
replaced by λi+1 and 〈i i+ 1〉, respectively. For future reference, we state the first terms
next. In fact, there are many more solutions which, however, seem unnatural.

Proposition 3.3.1. The following edge operator satisfies the ansatz Ei = pi ·A+O(η)
as well as (2.9a):

Ei =
1

2
λiβλ̃iβ̇A

ββ̇ +
i

c0
λ̃iβ̇ψ̃

β̇
Aη

A
i −

i
√

2

2c2
0

λ̃iβ̇λ(i+1)γD
β̇γφAB

〈i i+ 1〉
ηAi η

B
i +O((ηi)

3)

with

Xα
iA = −

2i
√

2 gλαi+1

c0 〈i i+ 1〉
φABη

B
i + εABCD

2gλαi+1λ(i+1)γψ
γB

c2
0 〈i i+ 1〉2

ηCi η
D
i +O((ηi)

3)

As for the vertex terms, it would be no difficulty to establish a recursion formula
along the lines of Prp. 2.3.1. For the few terms needed below, we provide a direct proof
instead.

Proposition 3.3.2. The following vertex operator satisfies the ansatz Vi,i+1 = 1+O(η),
only depends on the generators ηi and ηi+1 and satisfies (2.9b) with Xα

iA as in Prp. 3.3.1.

Vi,i+1 = 1− 2
√

2g

c2
0 〈i i+ 1〉

φABη
A
i η

B
i+1 +

√
2g 〈i i+ 2〉

c2
0 〈i i+ 1〉 〈i+ 1 i+ 2〉

φABη
B1
i+1η

B2
i+1

+
2ig

c3
0

(
〈i i+ 1〉λ(i+2)γ − 〈i i+ 2〉λ(i+1)γ

)
ψγC

〈i i+ 1〉2 〈i+ 1 i+ 2〉
εAB1B2Cη

A
i η

B1
i+1η

B2
i+1

+
2ig

c3
0

λ(i+1)γψ
γC

〈i i+ 1〉2
εA1A2BCη

A1
i ηA2

i ηBi+1 +O((ηi+1)3) +O(η4)
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Proof. It is clear that the first order terms vanish. As in the proof of Prp. 2.3.1, we find

QαA(Vi,i+1)|η1 = 2c0λ
α
kC

kj
ABη

B
j(

iXα
(i+1)AVi,i+1 − iVi,i+1X

α
iA

)
|(ηi)1 = −iXα

iA|(ηi)1

such that (2.9b) implies

2c0λ
α
kC

ki
AB = −

2
√

2gλαi+1

c0 〈i i+ 1〉
φAB

Multiplying both sides with, respectively, λ(i+1)α and λiα, we obtain

CiiAB = 0 , Ci,i+1
AB = −

√
2g

c2
0 〈i i+ 1〉

φAB

Similarly, we find

2c0λ
α
kC

k,i+1
AB = iXα

(i+1)iA|(ηi+1)1 =
2
√

2gλαi+2

c0 〈i+ 1 i+ 2〉
φAB

such that

Ci+1,i+1
AB =

√
2g 〈i i+ 2〉

c2
0 〈i i+ 1〉 〈i+ 1 i+ 2〉

φAB

thus determining the terms of second order. As for the third order, we find

QαA(Vi,i+1)|(ηi+1)2 =
(
qαA(Ci+1,i+1

B1B2
)− 3c0λ

α
kC

k,i+1,i+1
AB1B2

)
ηB1
i+1η

B2
i+1(

iXα
(i+1)AVi,i+1 − iVi,i+1X

α
iA

)
|(ηi+1)2 = iXα

(i+1)A|(ηi+1)2

such that (2.9b) implies

3c0λ
α
kC

k,i+1,i+1
AB1B2

= qαA(Ci+1,i+1
B1B2

)− iXα
(i+1)A|(ηi+1)2

Therefore

Ci,i+1,i+1
AB1B2

=
λ(i+1)α

3c0 〈i+ 1 i〉

(
qαA(Ci+1,i+1

B1B2
)− iXα

(i+1)A|(ηi+1)2

)
=

2ig

3c3
0

(
〈i i+ 1〉λ(i+2)γ − 〈i i+ 2〉λ(i+1)γ

)
ψγC

〈i i+ 1〉2 〈i+ 1 i+ 2〉
εAB1B2C

Similarly, we find

QαA(Vi,i+1)|ηiηi+1 = 2
(
qαA(Ci,i+1

B1B2
)− 3c0λ

α
kC

k,i,i+1
AB1B2

)
ηB1
i ηB2

i+1(
iXα

(i+1)AVi,i+1 − iVi,i+1X
α
iA

)
|ηiηi+1 = 0

such that (2.9b) implies

Ci,i,i+1
AB1B2

=
λ(i+1)α

3c0 〈i+ 1 i〉
qαA(Ci,i+1

B1B2
) =

2ig

3c3
0

λ(i+1)γψ
γC

〈i i+ 1〉2
εAB1B2C

Moreover, we find CiiiABC = 0, thus determining the terms of order three stated.



104 3 Wilson Loops and Scattering Amplitudes

Tree-Level Calculations

We shall now calculate some tree-level components of the expectation value (3.1) with
respect to the variant Wilson loop with edges and vertices as in Prp. 3.3.1 and Prp.
3.3.2. Comparison with scattering amplitudes will then give a result analogous to the
original case in the previous section.

The ∼ ηiηi+1 component of Vi,i+1 remains unchanged. Therefore, the connector〈
Vi,i+1(xi)|ηiηi+1 Vj,j+1(xj)|ηjηj+1

〉
= C0 · ηAi ηBi+1η

C
j η

D
j+1

εABCD
〈i i+ 1〉 〈j j + 1〉 (xi − xj)2

between two vertices remains as in Lem. 3.1.2. Moreover, Vi,i+1|ηi+1ηi+1 of the variant
equals the original Vi,i+1|ηiηi upon changing the index i to i+ 1 and, therefore,〈

Vi,i+1(xi)|ηi+1ηi+1 Vj,j+1(xj)|ηjηj+1

〉
= C0 · ηAi+1η

B
i+1η

C
j η

D
j+1

εABCD 〈i+ 2 i〉
2 〈i i+ 1〉 〈i+ 1 i+ 2〉 〈j j + 1〉 (xi − xj)2

Similarly, Ei|ηiηi is changed by i− 1→ i+ 1, while Vj,j+1|ηjηjηj+1 and Ei|ηi both remain
unchanged. As in Lem. 3.1.3, we thus find

ig

∫ 〈
Ei|ηiηi Vj,j+1(xj)|ηjηj+1

〉
= C0 ·

λ̃iβ̇λ(i+1)γx
β̇γ
j i−1 εABCD

2 〈i i+ 1〉 〈j + 1 j〉x2
j i−1x

2
j i

ηAi η
B
i η

C
j η

D
j+1

ig

∫ 〈
Vj j+1(xj)|ηjηjηj+1 Ei|ηi

〉
= −C0 ·

λ(j+1)γ λ̃iβ̇x
γβ̇
j i−1εABCD

2 〈j + 1 j〉2 x2
j i−1x

2
j i

ηAi η
B
j η

C
j η

D
j+1

Having derived the expressions for some connectors, we are now in a position to
calculate tree-level components and compare them with scattering amplitudes. The
first observation is that 〈Wn〉 |η1η2ηkηk+1

(with n > 4 and k > 2) remains unchanged and
continues to match with the amplitude

〈Wn〉 |η1η2ηkηk+1
= C0 ·Mn|η1η2ηkηk+1

thus leading to the same constant fixing (3.6) as before. The component ∼ η1η1η3η4

with n = 5 is the sum of two diagrams

〈W5〉 |η1η1η3η4

= 〈V51(x5)|η1η1 V3,4(x3)|η3η4〉+ ig

∫
〈E1|η1η1 V3,4(x3)|η3η4〉

=

 〈2 5〉
2 〈5 1〉 〈1 2〉 〈3 4〉 (x5 − x3)2

+
λ̃1β̇λ2γx

β̇γ
3 5

2 〈1 2〉 〈4 3〉x2
3 5x

2
3 1

 εABCDη
A
1 η

B
1 η

C
3 η

D
4

= − 〈2 5〉 [2 3] + 〈1 5〉 [1 3]

2 〈1 2〉 〈3 4〉 〈5 1〉 〈4 5〉 [4 5] [3 2]
εABCDη

A
1 η

B
1 η

C
3 η

D
4

=
〈4 5〉 [4 3]

2 〈1 2〉 〈3 4〉 〈5 1〉 〈4 5〉 [4 5] [3 2]
εABCDη

A
1 η

B
1 η

C
3 η

D
4

= M5|η1η1η3η4

and, therefore, also continues to match with the amplitude.
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Consider next the component ∼ η1η1η2η3 with n ≥ 4. It consists of three diagrams

〈Wn〉 |η1η1η2η3 = 〈Vn,1(xn)|η1η1 V2,3(x2)|η2η3〉+ 〈E1|η1η1 V2,3(x2)|η2η3〉
+ 〈V1 2(x1)|η1η1η2 E3|η3〉

=: (1) + (2) + (3)

of which the second and third

(2) ∼ λ̃1β̇λ2γx
β̇γ
2n = 0 , (3) ∼ λ2γ λ̃3β̇x

γβ̇
1 2 = 0

vanish. Here, the denominators also vanish, but the regularisation argument of Exp. 3
in Sec. 3.1.3 above goes through verbatim. We thus arrive at

〈Wn〉 |η1η1η2η3 = (1) = εABCD η
A
1 η

B
1 η

C
2 η

D
3

〈2n〉
2 〈n 1〉 〈1 2〉2 [1 2] 〈2 3〉

For n = 4, this expression does not vanish, and we conclude that

〈W4〉 |η1η1η2η3 6= M4|η1η1η2η3 = 0

Similarly, for n = 5, we obtain

M5|η1η1η2η3 − 〈W5〉 |η1η1η2η3

= ηA1 η
B
1 η

C
2 η

D
3

εABCD
2

(
〈4 5〉 [3 4]

〈1 2〉2 [1 2] 〈2 3〉 [2 3] 〈5 1〉
− 〈2 5〉
〈5 1〉 〈1 2〉2 [1 2] 〈2 3〉

)
= ηA1 η

B
1 η

C
2 η

D
3

εABCD
2

[3 1]

〈1 2〉2 [1 2] 〈2 3〉 [2 3]

6= 0

We expect an analogous result for arbitrary n ≥ 4.
To summarise, the variant of the super Wilson loop considered has an analogous

behaviour as the original. In particular, it is partially, but not completely, dual to
scattering amplitudes.
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