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Abstract Zusammenfassung

Abstract

This thesis deals with different aspects of the Wilson loop operator in the
AdS/CFT correspondence.

In the context of the recently proposed duality between light-like polygonal
Wilson loops and planar MHV gluon scattering amplitudes in N = 4 super
Yang-Mills theory, we propose a regularisation of the Wilson loop in order
to match off-shell scattering amplitudes. The thus regularised Wilson loop is
explicitly shown to match the dual off-shell 4-gluon amplitude to 1-loop order
in Feynman gauge. The leading divergent terms, related to the cusp anomalous
dimension, are shown to be gauge invariant.

In a second part, the properties of Wilson loops along several specific con-
tours in Minkowski space are examined. Light-like tangents along the contour
can lead to divergences. We show that while smooth curves remain finite, curves
with a discontinuity in the second derivative in a point with light-like tangent
are divergent. We compute these divergences and define a corresponding anoma-
lous dimension, in analogy to the cusp anomalous dimension. Furthermore, we
point out that Wilson loops with straight extended light-like segments are diver-
gent and construct a coupling of the locally supersymmetric Wilson loop to the
scalars, that makes it finite. Finally, we compute the Minkowskian rectangular
Wilson loop and compare it to the Euclidean one.

Zusammenfassung

Diese Arbeit setzt sich mit verschiedenen Aspekten des Wilson-Schleifen-Opera-
tors in der AdS/CFT-Korrespondenz auseinander.

Im Kontext der kürzlich vorgeschlagenen Dualität zwischen Wilson-Schleifen
und MHV Gluonstreuamplituden in der N = 4 Super-Yang-Mills-Theorie,
schlagen wir eine Regularisierung der Wilson Schleifen vor, die dual zu den
nicht auf der Massenschale liegenden Streuamplituden ist. Diese wird explizit
für den Fall der 4-Gluonstreuamplitude zu 1. Ordnung und in Feynman-Eichung
geprüft. Die Eichinvarianz des führenden divergenten Terms, der mit der cusp
anomalen Dimension zusammenhängt, wird gezeigt.

In einem zweiten Teil werden Eigenschaften von Wilson-Schleifen entlang
unterschiedlicher spezifischer Kurven im Minkowski-Raum untersucht. Lichtar-
tige Tangenten an der Kurve können zu Divergenzen führen. Während glatte
Kurven endlich bleiben, zeigen wir, dass Kurven mit Unstetigkeiten in der 2.
Ableitung in Punkten mit lichtartiger Tangente divergent sind. Wir berechnen
diese Divergenzen und definieren eine zugehörige anomale Dimension, in Ana-
logie zu der cusp anomalen Dimension. Des Weiteren, halten wir die Divergenz
von Wilson-Schleifen mit geraden ausgedehnten lichtartigen Stücken fest und
konstruieren eine Kopplung der lokal supersymmetrischen Wilson-Schleife an
die Skalare, so dass diese endlich wird. Schließlich berechnen wir die rechtecki-
ge Wilson Schleife im Minkowski-Raum und vergleichen das Ergebnis mit dem
euklidischen.
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Introduction

The standard model of elementary particle physics offers a very successful
description of nature on the microscopic level and has been verified to high
precision. However, despite its predictive power, it suffers from several deficits.
Depending on a large number of parameters, it in particular lacks a deep ex-
planation of the mass spectrum of the fundamental particles. Furthermore, the
construction of a consistent quantum theory of gravity remains one of the main
problems of fundamental physics. String theory is a promising candidate for
this concern. It gives up the notion of point-like particles as the fundamental
objects of nature, replacing them by one-dimensional strings. Consistent string
theories cannot live in an arbitrary number of dimensions. While pure bosonic
string theory is constrained to 26 dimensions, additionally admitting fermionic
excitations gives rise to 10-dimensional superstring theories. At currently ac-
cessible energy scales, the different vibrational modes of a string would look
like different point-like particle states. All string theories automatically include
a massless spin two particle as oscillation mode of a closed string. The only
consistent interaction of such an oscillation mode describes gravity.

Originally though, string theory was not developed as a theory of quantum
gravity, but as a theory of strong interactions, in the 1960s. It is only later, that
quantum chromodynamics (QCD) was discovered. QCD is a non-Abelian gauge
theory with gauge group SU(3), expressing the fact that it has three colours.
The running of the coupling constant leads to the asymptotic freedom of QCD
at high energies, whereas at low energies, particles are confined. In the weakly
coupled high energy regime, perturbation theory can be applied, whereas the
strongly coupled regime is hard to access. The best tool to perform calculations
in this regime so far, are numerical simulations on the lattice. It was proposed
by ’t Hooft in the 1970s, that one should consider SU(N) gauge theory for
large number of colours N [1], in the hope that the theory may simplify and
that an expansion in orders of 1

N may lead to a better understanding of QCD.
This expansion resembles a topological expansion in string theory, in which for
N →∞, only planar diagrams contribute. In this sense, in the limit of large N ,
gauge theories are connected with string theories. However, even in the limit
of large N , QCD is far from being solved and it thus seems natural to consider
simpler supersymmetric Yang-Mills gauge theories. The maximally supersym-
metric N = 4 super Yang-Mills (SYM) theory, in particular, has vanishing
β-function and its superconformal invariance therefore extends to the quantum
theory.

It is from these considerations that the Anti-de Sitter/conformal field theory
(AdS/CFT) correspondence arose. Originally proposed by Maldacena in 1997
[2], the correspondence states an equivalence between superconformal N = 4
SYM theory in four-dimensional Minkowski space on one side, and type IIB
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Introduction

superstring theory in ten-dimensional curved AdS5 × S5 background on the
other side. As we will explain in more detail below, the four-dimensional theory
is said to live on the conformal boundary of the string theory background. The
fact that all ten-dimensional degrees of freedom of the string theory are in
a sense contained in the four-dimensional gauge theory on the boundary, is
often expressed by referring to the AdS/CFT correspondence as holographic.
Thus relating a theory that contains gravity, namely string theory, with a four-
dimensional field theory with no gravity at all, the AdS/CFT correspondence
is very remarkable.

In its strongest version, the AdS/CFT correspondence holds for all values
of the rank N of the gauge group, and for all values of the coupling. It then is a
correspondence between full interacting superstring theory and gauge theory in
all regimes of the coupling. In weaker versions, taking N →∞, the conjecture
only holds for free superstring theory, or even weaker only for its low energy
limit, supergravity. In this limit, low energy dynamics of string theory are
mapped onto strongly coupled SYM theory. On the other side, considering the
perturbatively accessible regime of finite effective coupling in the gauge theory,
implies having free superstring theory or even full interacting superstring theory
in AdS5 × S5, which has not been solved, as yet. In case the correspondence
is true, it would thus be a powerful tool in order to perform strong coupling
calculations of both theories through the respective weakly coupled dual theory.
On the other hand, the fact that in either of the regimes, one of the partners
remains unsolved, makes it very hard to be proved.

Yet, in its weakest form, concerning supergravity, the problem offers a rea-
sonable chance of solution and the connection between a strongly coupled gauge
theory in four-dimensional Minkowski space and a weakly coupled string theory
seems very appealing. One might hope to learn more about strongly coupled
QCD from it some time. However, as mentioned above, N = 4 SYM has many
special properties, which QCD has not, first of all, being a superconformal
quantum field theory. Furthermore, this limit of the correspondence concerns
N →∞, while for QCD N = 3.

Nevertheless, being the first concrete realisation of a correspondence be-
tween a large N gauge theory and a string theory as proposed by ’t Hooft, the
AdS/CFT correspondence remains of outstanding interest.

A true duality of the two theories implies that all observable objects, includ-
ing gauge invariant operators, states and correlation functions of both theories
be equivalent. An important non-local gauge invariant operator in gauge theo-
ries is the Wilson loop operator, whose significance was pointed out by Wilson
in the 1970s [3]. Therein, the Wilson loop in QCD was shown to be related to
the potential of confined quarks.

Right from the beginnings of the correspondence, it was suggested that the
Wilson loop operator in the gauge theory be related to open strings in the AdS
space, ending on the contour of the Wilson loop on the boundary of AdS [4].
The validity of this duality would signify that one could perform strong coupling
calculations of gauge theory quantities described by the Wilson loop, such as
the quark-antiquark potential, through the weakly coupled string theory dual.
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Next to the long known significance of a rectangular Wilson loop as being
related to the quark-antiquark potential, another striking duality within the
gauge theory was recently found, motivated through the AdS/CFT correspon-
dence at strong coupling [5, 6]. It suggests that gluon scattering amplitudes
in N = 4 SYM be associated with polygonal Wilson loops, whose sides are
determined by the gluon momenta. Though motivated at strong coupling, the
duality also seems to hold at weak coupling [7, 8].

Already in the 1980s an intimate relationship between the infrared (IR)
divergences of the scattering of massless particles and the ultraviolet (UV) di-
vergences of a Wilson loop with cusps was found in QCD [9, 10, 11]. The leading
IR divergent term of the scattering amplitudes was shown to be governed by
the cusp anomalous dimension resulting from the UV divergences of the Wilson
loop with cusps. This relationship led to the applicability of renormalisation
group methods for the IR divergences of the scattering amplitudes.

Another interesting aspect in the context of the duality between Wilson
loops and scattering amplitudes concerns their finite part. The two objects
seem to possess a broken dual conformal symmetry. It was found in [12] that
in certain dual coordinates four-gluon scattering amplitudes unveil a dual con-
formal invariance, broken by their IR divergences. On the other side, for light-
like polygonal Wilson loops, a conformal Ward identity was found [13], which
severely restricts the form of its finite part. If the duality is valid at all or-
ders in the coupling, the dual conformal symmetry of the scattering amplitudes
would be a direct consequence of this conformal Ward identity for the Wilson
loop. The coupling dependence of the amplitudes’ finite part would then fully
be determined by the cusp anomalous dimension of the Wilson loop.

Although scattering amplitudes in N = 4 SYM theory are much simpler
than in QCD, one might hope that these new insights could shed some light
on the all-order form of QCD amplitudes. However, an important ingredient
for the duality between Wilson loops and scattering amplitudes and for their
dual conformal symmetries, is the conformal invariance of N = 4 SYM. In this
light, a direct transfer of such a duality to the non-conformal QCD seems out
of reach. Nevertheless, with an explicit formula for all tree-level amplitudes in
N = 4 SYM found in [14], the tree-level gluon amplitudes, which are valid for
any gauge theory, could already be computed.

As mentioned above, the two objects of the scattering amplitude/Wilson
loop duality in N = 4 SYM are divergent. Therefore, for a full comparison
of the two objects, including their infinite parts, a regularisation needs to be
specified on both sides. This has usually been done in dimensional regulari-
sation [7, 8]. It seems interesting to ask, though, how robust the duality is
regarding the choice of regularisation. Another natural regularisation of the
gluon scattering amplitudes is to take their momenta off-shell. The question
then arises, how the Wilson loop needs to be regularised in order to match the
off-shell amplitudes. A proposal for such a regularisation of the Wilson loop
will be presented in this thesis.

The significance of the Wilson loop and its renormalisation properties in
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Introduction

gauge theory motivate an investigation of its divergences for different contours.
In Minkowski space, Wilson loops have many special features, specific to their
embedding in space-time, that do not find an equivalent in Euclidean space. We
will examine some of these features in the present thesis, focusing on the locally
supersymmetric Wilson loop considered in the AdS/CFT correspondence. We
have mentioned above, that the fact thatN = 4 SYM is supersymmetric leads to
important simplifications. For certain quantities the supersymmetry constraints
are so strong that all quantum corrections cancel and that they do not need to be
renormalised. This is for instance the case for the expectation value of a straight
Wilson line. The construction of Wilson loops, that preserve a certain amount
of global supersymmetry, has been discussed in [15, 16, 17, 18] with view to
such non-renormalisation theorems. In this context, we will construct a form of
the locally supersymmetric Wilson loop, such that it becomes finite for certain
contours, that elsewise give rise to divergences in Minkowskian background.

Outline

We will review the basics and main statements of the AdS/CFT-correspondence
in chapter 1 and focus on the role of the Wilson loop in the correspondence
in chapter 2. There, we further review the recently proposed duality between
scattering amplitudes inN = 4 SYM and Wilson loops. A full comparison of the
two objects including the infinite parts, requires a regularisation on both sides of
the duality. This comparison is usually performed in dimensional regularisation,
as will be summarised in section 3.1.

In section 3.2, we then propose a regularisation of the Wilson loop in order
to match off-shell scattering amplitudes, as an alternative to the matching of
Wilson loops and on-shell amplitudes in dimensional regularisation. In chapter
4, the properties of Wilson loops along different specific contours in Minkowski
space are examined. Special embedding in space-time, such as light-like tan-
gents and extended light-like segments along the contour of the Wilson loop
can lead to divergences. We will examine these properties of Wilson loops in
Minkowski space, also treating the aspect of the coupling of the locally super-
symmetric Wilson loop to the scalars.

A short discussion of the results and an outlook will be given in the last
chapter.
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I

The AdS/CFT Correspondence

The Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence,
as originally conjectured by Maldacena, relates type IIB superstring theory in
10-dimensional AdS5×S5 background with the 4-dimensional conformal N = 4
super Yang-Mills (SYM) theory. An essential feature of the correspondence is
that the symmetries of the background space-time, in which the string theory
lives, are reflected by the symmetries of the superconformal gauge theory. The
isometries of AdS5 correspond to the conformal symmetries of the gauge theory,
as will be explained in more detail in section 1.1. As mentioned in the intro-
duction, the 4-dimensional conformal gauge theory is often referred to as living
on the conformal boundary of the 10-dimensional string theory. In section 1.2,
we will explain how this statement can be understood from the point of view of
the background geometries. We will then briefly resume a few basics of N = 4
SYM theory and conclude this chapter by presenting the main statements of
the correspondence and making it more explicit by indicating some objects of
the two theories, which are matched.
An extensive introduction to the AdS/CFT correspondence can be found in
[19]. For a more detailed introduction the reader is referred to [20] or as a first
approach, the more pedagogical introduction [21] can be recommended.

1.1 Symmetries of Minkowski and AdS Space

1.1.1 Conformal Group of Minkowski Space

Yang-Mills theories in 4 dimensions classically are conformal field theories. Con-
formal invariance is a generalisation of Poincaré invariance, adding to it scale
invariance and invariance under special conformal transformations. In general,
this conformal invariance does not extend to the quantum theory, since renor-
malisation requires introducing a scale, which explicitly breaks scale invariance.
This is for instance the reason why QCD is not conformal. However, in the case
of N = 4 super Yang-Mills theory (SYM) in 4 dimensions, scale invariance does
extend to the quantum theory. In the AdS/CFT correspondence, we are thus
dealing with a conformal quantum field theory.

The theory thus is invariant under conformal transformations, i.e. trans-
formations x → x′ that keep the metric invariant up to a scale factor, which
depends on the coordinates:

∂x′µ

∂xα

∂x′ν

∂xβ
gµν(x′) = λ(x)gαβ(x) (1.1)

These are precisely the transformations that preserve angles.
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Chapter 1: The AdS/CFT Correspondence

Solving the conformal Killing equation for infinitesimal conformal transfor-
mations, we find that for d-dimensional flat Minkowski space the continuous
conformal group contains the Poincaré transformations, including the Lorentz
transformations generated by Mµν and the translations generated by Pµ. Ad-
ditionally, there is a rigid scale transformation with generator D:

xµ → x′µ = λxµ (1.2)

and furthermore, there are the special conformal transformations, consisting of
the composition of an inversion with respect to the unit hyperboloid (xµ →
x′µ = xµ

x2 ), a translation and again an inversion. The special conformal trans-
formations are generated by Kµ:

xµ → x′µ =
xµ + cµx2

1 + 2c · x+ c2x2
(1.3)

From their infinitesimal forms, we find that the generators suffice the following
conformal algebra: the usual Poincaré algebra

[Mµν ,Mρσ] = i(ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ) , (1.4)
[Mµν , Pρ] = i(ηµρPν − ηνρPµ) , [Pµ, Pν ] = 0 (1.5)

and additionally

[D,Pµ] = −iPµ , [D,Kµ] = iKµ , [D,Mµν ] = 0 , [Kµ,Kν ] = 0 , (1.6)
[Kµ, Pν ] = 2i(ηµνD −Mµν) , [Kρ,Mµν ] = i(ηρνKµ − ηρµKν) .

Defining the antisymmetric operator Jab (with a, b = 0, ..., d+ 1) by

Jµν := Mµν , J(d+1)d := D , (1.7)

Jµd :=
1
2
(Kµ − Pµ) , Jµ(d+1) :=

1
2
(Kµ + Pµ) ,

the conformal algebra takes the form

[Jab, Jcd] = i(gadJbc + gbcJad − gacJbd − gbdJac) (1.8)

with the metric

gab =


+

−
...

−
+

 .

This is the standard form of the SO(2,d) algebra, as one can easily recall by
comparing with the Lorentz algebra SO(1,d-1) in (1.4).

We thus see that the conformal group of d-dimensional Minkowski space is
SO(2,d).
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1.2 Geometry of AdS and Minkowski Space

1.1.2 Isometries of AdS Space

(d+ 1)-dimensional Anti-de Sitter space (AdSd+1) with radius R can be repre-
sented as a hyperboloid

−X2
0 −X2

d+1 +
d∑

i=1

X2
i = R2 (1.9)

in (d+ 2)-dimensional flat space R2,d with metric

ds2 = dX2
0 + dX2

d+1 −
d∑

i=1

dX2
i . (1.10)

By construction this submanifold of R2,d preserves the symmetry-group SO(2,d)
of the embedding space, just as the sphere preserves the rotation invariance of
Euclidean space. The isometry-group of AdSd+1 thus is SO(2,d).

The conformal group of d-dimensional Minkowski space therefore equals the
symmetry group of AdSd+1. This is an important feature of the AdS/CFT cor-
respondence, relating the symmetries of the string theory background, AdS5

with the conformal symmetries of R1,3.

We will see below, that the symmetry group of the S5, SO(6), is reflected
by the R-symmetry group of N = 4 SYM, SU(4)R

∼= SO(6)R.

1.2 Geometry of AdS and Minkowski Space

In the AdS/CFT correspondence, it is often stated that the 4-dimensional gauge
theory lives on the boundary of the string theory. To see this, it is essential to
understand why the boundary of the AdS5 can conformally be mapped onto 4-
dimensional Minkowski space. In this section we will explain how this statement
is to be understood. A detailed description of AdS geometry can be found in
[20].

1.2.1 Conformal Compactification of Minkowski Space

Let us first have a look at 2-dimensional Minkowski space, R1,1, with metric

ds2 = dt2 − dx2 . (1.11)

With a series of coordinate transformations

tanu± := t± x , −π
2
< u± <

π

2
(1.12)

u± =:
τ ±Θ

2

the metric becomes

ds2 =
1

4 cos2 u+ cos2 u−
(dτ2 − dΘ2) . (1.13)

7



Chapter 1: The AdS/CFT Correspondence

Figure 1.1: 2-dimensional Minkowski space can conformally be mapped into
the interior of this compact rectangle. In the diagram, lines of constant time
and lines of constant x are denoted. Light ray trajectories are invariant under
conformal rescaling and thus stay the lines of slope 1 and -1, parallel to the
boundaries.1

This metric can conformally be rescaled to

ds′2 = dτ2 − dΘ2 (1.14)

and taking into account the area to which u± is restricted, we see that Minkowski
space is conformally mapped into the compact rectangle shown in fig. 1.1. By
identifying the two corners of the rectangle at (τ,Θ) = (0,±π), corresponding
to the spatial infinities x = ±∞, it can be embedded in the cylinder, which is
the 2-dimensional Einstein static universe (ESU), as shown in fig. 1.2. Mack
and Lüscher have shown in [22] that correlation functions of conformal field
theories can analytically be continued to the whole Einstein static universe.

The situation for general dimensions d is analogous. the metric then is

ds2 = dt2 − dr2 − r2dΩ2
d−1 (1.15)

where dΩd−1 is the line element on the Sd−1 unit sphere. We can define the
same coordinate transformations as in (1.12), taking into account that now
r ≥ 0, and by conformal rescaling we find

ds′2 = dτ2 − dΘ2 − sin2 Θ dΩ2
d−1 . (1.16)

The (t, r)-half-plane now is conformally mapped into the triangular region
shown in figure 1.3.

8



1.2 Geometry of AdS and Minkowski Space

Figure 1.2: The conformal compactification of 2D Minkowski space can be
embedded in the cylindric 2D ESU by identifying two points at spatial infinity.1

Figure 1.3: d-dim. Minkowski space can conformally be mapped into this com-
pact triangular region.1

9



Chapter 1: The AdS/CFT Correspondence

Figure 1.4: Global coordinates of AdSd+1, realized as a hyperboloid in R2,d.
For the case of AdS2 the unit sphere described by the additional coordinates Ωi

becomes a S0, consisting of only two points, attributed to the two halves of the
hyperboloid. The hyperboloid has closed timelike curves along the τ -direction:
0 ≤ τ < 2π.1

Taking
0 ≤ Θ ≤ π , −∞ < τ <∞ (1.17)

this triangle can again be embedded into the Einstein static universe.

1.2.2 Conformal Boundary of AdS Space

The defining equation for (d+1)-dimensional AdS space (1.9) can be solved by
the following choice of coordinates:

X0 = R cosh ρ cos τ (1.18)
Xd+1 = R cosh ρ sin τ
Xi = R sinh ρ Ωi i = 1, ...d

where
∑

Ω2
i = 1 describes a Sd−1 unit sphere. With 0 ≤ τ < 2π and ρ ≥ 0,

these coordinates cover the entire hyperboloid and are therefore called global co-
ordinates of AdS (see fig. 1.4). Inserting these into the metric of the embedding
space (1.10), we obtain the metric of AdSd+1:

ds2 = R2(cosh2 ρ dτ2 − dρ2 − sinh2 ρ dΩ2
d−1) (1.19)

with dΩ2
d−1 =

∑
dΩ2

i .
In τ -direction, the hyperboloid has closed timelike curves. For causal spacetime,
we therefore need to unwrap the τ -direction, i.e. take −∞ < τ < ∞ without

1The pictures were taken from [20].
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1.2 Geometry of AdS and Minkowski Space

(a) One half of ESU3 (b) boundary: ESU2

Figure 1.5: Half of the (d + 1)-dimensional Einstein static universe R × Sd

(ESUd+1). The boundary of half of Sd is the whole sphere in one dimension
less, Sd−1. Thus the boundary of half of ESUd+1 is the whole ESUd. In the
case of d = 2, this is the cylinder represented in (b).

identifications, and thus get the universal covering of AdS.

Introducing the coordinate

tanΘ := sinh ρ with ρ ≥ 0 ⇒ 0 ≤ Θ <
π

2
(1.20)

the metric takes the form

ds2 =
R2

cos2 Θ
(dτ2 − dΘ2 − sin2 Ω dΩ2

d−1) . (1.21)

We can now conformally rescale the metric to

ds′2 = dτ2 − dΘ2 − sin2 Ω dΩ2
d−1 . (1.22)

This is the metric of the (d + 1)-dimensional Einstein static universe, R × Sd.
Here however, the coordinate Θ only takes values 0 ≤ Θ < π

2 , i.e. only covers
half of the Sd; the metric therefore only covers half of the ESU . AdSd+1 can
thus conformally be mapped onto half of ESUd+1.
The boundary of half of the ESU in (d+ 1) dimensions is the entire ESUd in

one dimension less (see fig. 1.5). This means that the boundary of AdSd+1 is
conformally mapped to the d-dimensional Einstein static universe.

We can finally conclude that the conformal boundary of AdSd+1 has the
same structure as the conformally compactified R1,d−1. This is what is meant
by the statement that the conformal boundary of AdSd+1 is d-dimensional
Minkowski space.

11



Chapter 1: The AdS/CFT Correspondence

1.2.3 Poincaré Coordinates

Another frequently used set of coordinates on AdSd+1 are the Poincaré coordi-
nates (u, x), defined by

X0 =
1
2u

(1 + u2(R2 + x2
0 − ~x2))

Xd =
1
2u

(1− u2(R2 − x2
0 + ~x2))

Xi = Ruxi i = 1, ..., d− 1
Xd+1 = Rux0 (1.23)

where ~x2 =
d−1∑
i=1

x2
i . With u > 0, these coordinates cover half of AdSd+1 and the

metric becomes

ds2 = R2

(
du2

u2
+ u2dx2

)
(1.24)

where dx2 = dx2
0 − d~x2. Performing another substitution u = 1

z , the metric
becomes

ds2 = R2 dz
2 + dx2

z2
. (1.25)

The metric is singular for z → 0, reflecting the fact that this is the boundary
of AdS and that z plays the role of a radial coordinate.

1.3 Aspects of N = 4 Super Yang-Mills Theory

Super Yang-Mills theory with maximal number of supersymmetries N = 4 con-
tains a gauge field Aµ, four Weyl spinors and six scalars φI (I = 1, ..., 6), all
in the adjoint representation of the gauge algebra. It is convenient to put the
fermions into a single 10-dimensional 16-component Weyl spinor χα. The form
of the Lagrangian then is uniquely determined by supersymmetry:

L =
2
g2

YM

Tr

(
1
4
FµνF

µν +
1
2

∑
I

Dµφ
IDµφI − 1

4
([φI , φJ ])2 +

+
1
2
χ̄αΓµDµχα −

i

2

∑
I

χ̄αΓI [φI , χα]

)
(1.26)

where gYM is the Yang-Mills coupling constant, Fµν is the field strength to the
gauge field Aµ and Dµ the covariant derivative. (Γµ,ΓI) are 10-dimensional
Dirac matrices, entering in the Lagrangian through its construction by dimen-
sional reduction of N = 1 SYM in 10 dimensions [23].

It can be seen by consideration of the mass dimensions of the terms in the
Lagrangian, that the theory is scale invariant, which together with the usual
Poincaré invariance gives the conformal symmetry group SO(2, 4) ' SU(2, 2).
Additionally, the Lagrangian is invariant under N = 4 Poincaré supersymmetry

12



1.4 The AdS/CFT Correspondence

by construction. The supercharges may be rotated into one another under the
R-symmetry group SU(N )R. The combination of conformal invariance with the
N = 4 Poincaré supersymmetry then produces an even larger superconformal
symmetry, forming the supergroup SU(2, 2|N ). Its maximal bosonic subgroup
SU(2, 2) × SU(4)R ' SO(2, 4) × SO(6) exactly reflects the isometries of the
AdS5 × S5 background of the dual string theory.

A special property of N = 4 SYM is that its conformal invariance is not
broken by quantum corrections, since its coupling constant does not depend on
any renormalisation scale. Its β-function was shown to vanish to three loop or-
der and is believed to vanish identically [24], which implies that superconformal
symmetry survives quantisation.

1.3.1 Correlation Functions of Conformal Primary Operators

Conformal invariance is remarkably restrictive on the form of the correlation
functions of conformal operators. Under conformal transformation x → x′,
scalar operators O(x) transform as

O′(x′) =
∣∣∣∣det

∂x′β

∂xα

∣∣∣∣−
∆
d

O(x) , (1.27)

where d is the space-time dimension of the CFT. Then ∆ defines the scaling
dimension of the operator O, which we denote by O∆. Such operators are
conformal primary operators and the dilation operator introduced in (1.2) acts
on them as follows:

[D,O∆(x)] = (xµ∂µ + ∆)O∆ . (1.28)

Conformal symmetry severely restricts the form of the n-point-functions of pri-
mary operators. The 2-point-function, for example, is constrained to the form〈

O∆1(x1)O∆2(x2)
〉

= c
δ∆1,∆2

|x1 − x2|2∆1
. (1.29)

It is thus fixed except for the normalisation factor c and the dynamically deter-
mined scaling dimensions ∆1 and ∆2.

Classically, the scaling dimension simply is the sum of the dimensions of
the fields the operator is composed of. Upon quantisation, however, the scaling
dimension receives corrections and the operator acquires an anomalous dimen-
sion.

1.4 The AdS/CFT Correspondence

The AdS/CFT correspondence conjectures a duality between the following two
theories:

• Type IIB superstring theory in 10-dimensional AdS5 × S5 with string
coupling gs and where both, AdS and the sphere, have radius R.

13



Chapter 1: The AdS/CFT Correspondence

• Maximally supersymmetric conformal N = 4 super Yang-Mills theory in
4 dimensions with coupling constant gYM and gauge group SU(N).

The above parameters of the two theories are matched as follows

gs = g2
YM R4 = 4πg2

YMNα
′2 (1.30)

where α′ is the inverse string tension.

A duality of the above theories implies, that they are equivalent to one
another, including all observable operators, states and correlation functions.
Besides the identification of the parameters, we therefore need a precise map
between the observable objects on both sides of the correspondence, i.e. be-
tween states and fields on the string theory side and gauge invariant operators
on the gauge theory side, as well as between the correlators of both theories.
In section 1.4.2, we will specify this identification for some important objects
of the two theories.

The validity of this duality for all values of the above parameters would
yield the strongest form of the AdS/CFT conjecture, which, however, is highly
non-trivial. We will thus present certain limits of the theories, that offer a
better chance of solution below.

1.4.1 The ’t Hooft and the Large λ Limit

The ’t Hooft limit consists in letting N go to infinity, while keeping the ’t Hooft
coupling, λ ≡ g2

YMN fixed. In Yang-Mills theory, this limit corresponds to
a topological expansion of the field theories Feynman diagrams [25]. On the
string theory side, the string coupling constant can be expressed by the ’t Hooft
coupling: gs = λ

N and, as λ is kept fixed, here the ’t Hooft limit corresponds
to weakly coupled perturbative string theory. The validity of the AdS/CFT
conjecture in the ’t Hooft limit, would thus be a correspondence between free
string theory (no loops) and the large N limit of N = 4 SYM theory.

After having taken the ’t Hooft limit, a further limit λ→∞ can be taken.
While small λ would correspond to weak coupled gauge theory, large λ corre-
sponds to small inverse string tensions α′, on the string theory side and the
above limit reduces classical string theory to classical supergravity with action

SSUGRA =
1

16πG10

∫
d10x

√
−ge−2φD(R+ 4∂µφD∂µφD + ...) (1.31)

where G10 is the 10-dimensional Newton constant, R is the Ricci-scalar and φD

is the dilaton field. The dots denote contributions from other fields.
Thus, if the correspondence is valid in the large λ limit, strongly coupled SYM
theory is mapped onto classical low energy supergravity, which offers a reason-
able chance for solution. The correspondence would therefore be a powerful
tool for the calculation of gauge theory results at strong coupling.
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1.4 The AdS/CFT Correspondence

1.4.2 Mapping String Theory Fields and CFT Operators

As mentioned above, the duality should imply a precise map between the ob-
servable objects on both sides of the correspondence. On the string theory side,
the dynamics depends on fields φ in AdS5, while in the conformal field theory
the observable objects are gauge invariant operators O∆ characterised by their
scaling dimension ∆, as described in section 1.3.1.

The generating functional of such an operator O in terms of the source fields
φ0 is

ZO,CFT [φ0] =
〈
e

R
d4xφ0(x)O(x)

〉
CFT

. (1.32)

From this we get the correlation functions by differentiating with respect to the
sources φ0(x).

On the other side, the dynamics of the string theory is described by the
string partition function

Zstring[φ(z, x)] =
∫
DX(σ, τ) e−S[ X(σ,τ), φ(z,x) ]

= e−Seff[ φ(z,x) ] (1.33)

where the integration over the space-time embedding X(τ, σ) of the string has
been performed, leading to an effective action depending on the fields φ(z, x) of
the string excitations. (z, x) denote the Poincaré coordinates defined in section
1.2.3, i.e. z is the radial direction of AdS and the boundary is characterised
by z = 0. In the limit of supergravity, the effective action becomes the super-
gravity action of (1.31). In free supergravity, a field of mass m then satisfies
(�+m2)φ(z, x) = 0. On the boundary of AdS, for z → 0, the field then behaves
as

φ(z, x) z→0−→

{
z∆ φ0(x)

z4−∆ φ0(x)
(1.34)

where
∆ := 2 +

√
4 +m2 (1.35)

defines the dimension of the field, we denote by φ∆. The solutions of the
interacting theory will have the same boundary behaviour as in the free case.
∆ being ≥ 4, the first boundary solution is normalisable and is interpreted to
determine the vacuum expectation value of operators of associated dimension,
whereas the second one is non-normalisable and defines an associated field on
the boundary:

φ0(x) = lim
z→0

z∆−4 φ∆(z, x) (1.36)

Assuming that these boundary fields are in a one-to-one correspondence with
the bulk fields, i.e. uniquely define a solution φ∆(z, x) of the string theory, the
mapping prescription, proposed by Witten in [26], is to identify the generating
functional of an operator O∆(x) with scaling dimension ∆ and source field φ0(x)
in the conformal boundary theory with the string partition function of the field
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Chapter 1: The AdS/CFT Correspondence

Figure 1.6: Witten diagrams for the 2-point function in (b) and the 3-point
functions in (c). A perturbative expansion of supergravity leads to Feynman-
like rules for the computation of these diagrams.

φ∆(z, x) of equal dimension ∆, uniquely determined by the source fields φ0(x)
as the corresponding boundary field:

ZO∆,CFT[φ0(x)] = Zstring

[
φ∆(z, x)

∣∣∣
φ0(x)

]
(1.37)

Thus, identifying the dimension of the string field φ∆, defined by its mass
through (1.35) in the limit of supergravity, with the scaling dimension of the
associated conformal operator O∆, (1.37) also defines a map between masses of
fields in supergravity and scaling dimensions of conformal operators.

As mentioned above, correlation functions of the gauge theory can be com-
puted by differentiating the generating function (1.32) with respect to the
sources φ0. In the large λ limit, the string theory action can be approximated
by the supergravity action (1.31) and one can perform a perturbative expan-
sion, leading to Feynman-like rules. In the supergravity limit only tree-level
diagrams contribute, summarised as Witten diagrams [26], exemplarily shown
for the 2- and 3-point function in fig. 1.6. The Witten-prescription thus allows
computing correlation functions of gauge theory operators by calculating the
corresponding tree level Witten diagrams.

From the identification of the correlators through (1.37) and their special
form for conformal operators presented in section 1.3, the conjecture arises that
the energy eigenvalues of string states equal the scaling dimensions of the dual
conformal operators:

Hstring|ψ >= Estring|ψ > ⇔ Estring = ∆ (1.38)

Finally, another interesting observable in gauge theory is the gauge invari-
ant Wilson loop operator. As will be explained in more detail in chapter 2,
the Wilson loop operator, as defined in the boundary theory, is going to be
associated with string worldsheets in the AdS-bulk, ending on the loop contour
on the 4-dimensional boundary of AdS.
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II

Wilson Loops in the AdS/CFT
Correspondence

In gauge theory, an important non-local gauge invariant object is the Wil-
son loop. As the Wilson loop is going to be the main object of this thesis, we
dedicate the following chapter to it and its significance in the AdS/CFT corre-
spondence. We will first motivate its origin in gauge theory in section 2.1. Then,
in section 2.2, we will explain its role in the AdS/CFT correspondence and fi-
nally, we will present the recently proposed duality conjecture between Wilson
loops and gluon scattering amplitudes in N = 4 SYM, motivated through the
AdS/CFT correspondence in section 2.3.

2.1 The Wilson Loop Operator

In gauge theory, the Wilson loop can be constructed as a parallel transporter
along a closed curve in the fibre bundle.

The parallel transport of some field φ(z) in the fibre bundle along a curve
γ from z to y in the basis of the bundle is

Uγ [y, z]φ(z) = φ(y) . (2.1)

Constructing this parallel transport by a horizontal lift in the fibre bundle leads
to a differential equation, which can be solved by

Uγ [y, z] = P exp

ig ∫
γ

Aµ(x)dxµ

 (2.2)

where P is the path-ordering, g is the coupling constant of the gauge theory
and Aµ the gauge field. Under gauge transformations σ′(z) = h(z)σ(z), where
σ and σ′ are local sections of the fibre bundle, it transforms as

Uγ [y, z] = h−1(y)Uγ [y, z]h(z) . (2.3)

From this transformation behaviour and from the cyclic invariance of the trace,
it follows that the trace of the parallel transporter along a closed curve C is
gauge invariant. This gauge invariant operator defines the Wilson loop:

W (C) :=
1
N

Tr U [C]

=
1
N

Tr P exp

ig ∮
C

Aµ(x(t))ẋµ(t) dt

 (2.4)
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Chapter 2: Wilson Loops in the AdS/CFT Correspondence

Figure 2.1: The static quark-antiquark potential corresponds to a rectangular
Wilson loop with infinite time-like edges T → ∞ and space-like edges corre-
sponding to the distance of the quarks R.

where the factor of 1
N is introduced for convenience.1 Since it depends on the

path C, the Wilson loop is a non-local operator.
Its significance lies in the fact, that all gauge invariant functions of the gauge

field Aµ can be constructed from combinations of Wilson loops along different
contours C and that they thus form a complete basis of gauge invariant operators
in Yang-Mills theory [27].

2.1.1 The Wilson Loop and the Quark-Antiquark Potential

The most prominent physical significance of the Wilson loop was found by
Wilson [3]. He showed that the static quark-antiquark potential Vqq̄(R) in
QCD equals the expectation value of a rectangular Wilson loop, as shown in
fig. 2.1, with infinite timelike edges, and space-like edges corresponding to the
distance of the quarks R (see also [28]):

Vqq̄(R) = − lim
T→∞

1
T

lnW (CR,T ) (2.5)

If the QCD string tension

α := lim
R→∞

1
R
Vqq̄(R) (2.6)

is small, the potential rises linearly with the distance

Vqq̄(R) ∼ αR (2.7)

which leads to confinement [3]. It then follows from (2.5) that the Wilson loop
obeys the area law

lim
R,T→∞

W (CR,T ) = c e−αRT = c e−αA , (2.8)

1The conventional factor of 1
N

makes sure that the zeroth order term of the Wilson loop
in an expansion in the coupling constant gives one.
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2.2 The Wilson Loop in the AdS/CFT Correspondence

Figure 2.2: In the AdS/CFT correspondence, the Wilson loop operator in gauge
theory is identified with string worldsheets, ending on the contour of the loop
on the boundary of AdS.

where A is the area covered by the rectangle.

Another important application of the Wilson loop was the relation between
the IR divergences of on-shell scattering amplitudes and the UV divergences
of a Wilson loop with cusps found in [9, 10, 11], which led to the applicabil-
ity of renormalisation group methods for the IR divergences of the scattering
amplitudes. We will come back to this in section 2.3.2.

Lately, another interpretation of a certain type of Wilson loops was pro-
posed: polygonal Wilson loops with light-like sides are conjectured to equal
gluon scattering amplitudes in N = 4 SYM, whose gluon momenta correspond
to the sides of the Wilson loop. The argument for this correspondence comes
from the AdS/CFT correspondence [5] and will be presented in more detail in
section 2.3.

2.2 The Wilson Loop in the AdS/CFT Correspon-
dence

It was proposed in [4] that in the AdS/CFT correspondence, the Wilson loop
on the gauge theory side be identified with open strings in AdS, ending on the
contour of the Wilson loop on the boundary. In the classical limit of string
theory, the strings are described by minimal surfaces. Due to the curvature
of the background space, these minimal surfaces do not lie on the boundary,
but extend deeply into the bulk of AdS, as visualised in fig. 2.2. N = 4 SYM
being a supersymmetric gauge theory, we would want the Wilson loop to be a
supersymmetric object. Suppressing the fermion fields, the appropriate Wilson
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Chapter 2: Wilson Loops in the AdS/CFT Correspondence

loop to consider has the form:

W =
1
N

Tr P exp
(
ig

∫
dt
(
ẋµ(t)Aµ(x(t)) + ẏI(t)φI(x(t))

))
, (2.9)

where the φI are the six scalars in the adjoint representation of the gauge
group, xµ(t) are the actual contour coordinates in 4 dimensions as for the pure
gauge theory Wilson loop and yI(t) can be understood as six extra coordinates,
coming from the dimensional reduction of 10-dimensional N = 1 SYM to 4-
dimensional N = 4 SYM. Usually, in a gauge theory containing a matter field
in the fundamental representation, the coupling of the Wilson loop to the gauge
field, can be found by consideration of the phase factor in the path integral
over the trajectories of the corresponding particle. However, N = 4 SYM
does not contain such a field. It was therefore argued by Maldacena in [4],
that one can introduce a massive W-boson by breaking of the gauge group
SU(N + 1) → SU(N)× U(1) through the Higgs mechanism which determines
the coupling of the Wilson loop to the gauge field and to the scalars:

W =
1
N

Tr P exp
(
ig

∫
dt
(
ẋµ(t)Aµ(x(t)) +

√
ẋ2(t) ΘI φI(x(t))

))
(2.10)

where ΘI is a constant unit vector: (ΘI)2 = 1. It can depend on the contour
parameter t, though, and can be interpreted as position on the S5, in the dual
string theory. For further details of the derivation of the coupling see [29].

Another interpretation of the above coupling results from supersymmetry
and will be discussed below, as well as special choices of the coupling ΘI(t) to
the scalars.

2.2.1 The Supersymmetric Wilson Loop and its Coupling to
the Scalars

It was argued above, that the appropriate Wilson loop to be considered in
the AdS/CFT correspondence should have the form (2.10), where the coupling
to the scalars obeys the constraint ẋ2 = ẏ2. There is another interpretation
of this constraint resulting from supersymmetry [29]. Above, we have only
considered the coupling to the gauge field Aµ and the scalars φI . For the
full supersymmetric Wilson loop, one would also have to allow coupling to the
fermionic fields χα. Under bosonic supersymmetry variation

δζAµ = χ̄αΓµζα

δζφI = χ̄αΓIζα (2.11)

with the fermionic loop variables ζα(t) and the 10-dimensional Dirac matrices
(Γµ,ΓI), the Wilson loop picks a fermionic term:

δζW =
1
N

Tr P
∫
dt χ̄α(t)

(
Γµẋ

µ(t) + ΓI ẏ
I(t)
)
ζα(t)

exp
(
ig

∫ (
ẋµ(t′)Aµ(x(t′)) +

√
ẋ2(t′) ΘI φI(x(t′))

)
dt′
)
. (2.12)
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2.3 Wilson Loops and Gluon Scattering Amplitudes Duality

The variation will vanish and the supersymmetry will be preserved, if(
Γµẋ

µ(t) + ΓI ẏ
I(t)
)
ζα(t) = 0 . (2.13)

With the constraint ẋ2 = ẏ2 this becomes(
Γµẋ

µ(t) + ΓIΘI(t)|ẋ(t)|
)
ζα(t) = 0 . (2.14)

This combination of the gamma matrices squares to zero and consequently,
(2.14) has 8 independent solutions for the fermionic loop coordinates ζα(t) for
a given t. A Wilson loop, coupling to the scalars as in (2.10), thus is locally
supersymmetric.

However, local supersymmetry is not a symmetry of the action. Global
supersymmetry would require that ζ be t-independent. The number of linearly
independent solutions then determines the amount of supersymmetry preserved.
For constant ΘI , one finds ẍµ = 0. So there is no solution, except for a straight
line. We have mentioned above, though, that generally ΘI(t) can depend on t.

An interesting ansatz for the coupling was proposed by Zarembo in [15].
There, the t-dependence of the coupling is exclusively put into the constraint,
that it follow the direction of the tangent vector ẋµ of the space-time contour:

ΘI(t) = M I
µ

ẋµ(t)
|ẋ(t)|

(2.15)

Due to the unit-vector condition of ΘI(t) for equal t, the matrices M I
µ have to

satisfy
M I

µM
I
ν = ηµν . (2.16)

Inserting this choice into (2.14), the t-dependence factors out and one obtains

(Γµ −M I
µΓI) ζ = 0 . (2.17)

There is only one Weyl spinor that satisfies this equation (see [15]) and hence,
one of the sixteen supercharges is preserved.

An operator that commutes with all supercharges is called BPS2. A Wilson
loop operator that couples to the scalars as in (2.15):

W =
1
N

Tr P exp
(
ig

∫ (
Aµ(x(t)) +M I

µ φI(x(t))
)
ẋµ(t) dt

)
(2.18)

thus is 1/16 BPS. The amount of supersymmetry can be augmented by choosing
Wilson loops for certain contour types. A Wilson loop restricted to 3 dimen-
sions conserves 1/8 of the total supersymmetry, if the contour is restricted to a
2-dimensional plane, the loop is 1/4 BPS and the one-dimensional Wilson line
with constant ΘI is 1/2 BPS [15].

In a similar way, in [17] and [18] it was shown, that for Wilson loops, whose
contours lie on certain submanifolds, such as the S3, one can choose special
couplings to the scalars, such that it preserves at least 1/8 of the total super-
symmetry.

2BPS stands for Bogomolnyi-Prasad-Sommerfield.
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2.3 Wilson Loops and Gluon Scattering Amplitudes
Duality

Recently, a duality between planar maximally helicity violating (MHV) scat-
tering amplitudes in N = 4 SYM and light-like polygonal Wilson loops, whose
sides correspond to the gluon momenta, was proposed. The argument for this
duality presented by Alday and Maldacena [5, 6] comes from the AdS/CFT cor-
respondence at strong coupling and will be reviewed in section 2.3.1. Later, the
duality was also shown to hold at weak coupling [7, 8], as will be explained in
more detail in chapter 3. An important feature of the duality is that the leading
IR divergent part of the scattering amplitudes were long known to be governed
by the cusp anomalous dimension, originally defined for the UV singularities of
a Wilson loop with cusps [9, 10, 11], as will briefly be explained in section 2.3.2.
Another motivation for the duality proposal was a conjecture for the all-loop
order form of n-gluon MHV scattering amplitudes by Bern, Dixon and Smirnov
(BDS) [30], which is going to be summarised in section 2.3.3. Furthermore, it
was discussed in [7, 8, 13] that the duality between scattering amplitudes and
Wilson loops may be a reflection of an underlying dual conformal symmetry of
the two objects. This will be commented in section 2.3.4.

2.3.1 Motivation for the Duality at Strong Coupling

The duality between planar MHV gluon scattering amplitudes and light-like
polygonal Wilson loops spanned by the momenta of the gluons, was proposed
at strong coupling by Alday and Maldacena in [5] (see also [6, 31]). Their argu-
ment for this duality of two objects in N = 4 SYM comes from the AdS/CFT
correspondence.

On the string theory side of the correspondence, at leading order, planar am-
plitudes at strong coupling correspond to scattering amplitudes of open strings
ending on the boundary of AdS at radial coordinate z = 0. These are IR-
divergent and hence, a D-brane at small z = zIR is introduced as an IR-cutoff.
On the boundary of AdS, their momenta are fixed by the gluon momenta, but
from the point of view of the deep interior of AdS, the ‘proper momenta’ [5] of
the strings scale with a factor, depending on the metric and blow up as we take
zIR → 0. It was shown in [32], that in flat space, for large string momenta, one
can consider classical string theory. Now, in the limit of classical string the-
ory, the string scattering amplitudes may be considered as worldsheets with the
topology of a disc with vertex operator insertions corresponding to the external
gluon states (see fig. 2.3). Each colour ordering of the amplitude corresponds
to a fixed order of vertex operators on the disc.
The momenta of the gluons pµ fix the boundary conditions at the correspond-

ing vertex operator. T-dual coordinates, yµ (µ = 0, ..., 3), on the boundary are
introduced:

∂αy
µ = iw2(z)εαβ∂βx

µ (2.19)

where ∂α ≡ ∂
∂σα with (α, β) = (0, 1), i.e. the role of the worldsheet coordinates

(σ0, σ1) ≡ (σ, τ) is exchanged. w(z) is a factor that determines the metric on
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Figure 2.3: In the limit of classical string theory, the scattering of 4 open
strings corresponds to a string worldsheet with the topology of a disc with
vertex insertions corresponding to the external states.2

the brane at some ‘depth’ z of AdS:

ds2 = w2(z)dxµdxµ . (2.20)

In these coordinates, the boundary conditions on the brane translate into:

∆yµ = 2πpµ (2.21)

i.e. the distances between the coordinates of the vertex operator insertions ∆yµ,
interpreted as ‘winding’, are associated with the gluon momenta. This is what
is meant by calling the coordinates T-dual.

On the boundary, at z = zIR, we thus have segments of length 2πpµ, which
we can concatenate to a light-like polygon, according to the colour ordering
of the scattering amplitude. The contour will be closed due to momentum
conservation of the scattering process. A string worldsheet in AdS, ending on
such a closed contour on the boundary, according to Maldacena’s string-Wilson
loop duality presented in section 2.2, now corresponds to the Wilson loop along
the said contour (see fig. 2.4).

Hence, through the AdS/CFT correspondence, at strong coupling, a dual-
ity between gluon scattering amplitudes and light-like polygonal Wilson loops
spanned by the gluon momenta, both on the N = 4 SYM theory side of the
correspondence, has been established.

This duality has also been observed at weak coupling, as will be explained
in more detail in chapter 3. If it is valid, it would yield a very helpful tool for
the calculation of planar MHV scattering amplitudes in N = 4 SYM.

2.3.2 The Cusp Anomalous Dimension of the Wilson Loop

From the cusps of a polygonal Wilson loop as in the duality presented above,
UV-divergences arise. Hence, such a Wilson loop satisfies an evolution equation

2The picture was taken from [31].
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Chapter 2: Wilson Loops in the AdS/CFT Correspondence

Figure 2.4: In ‘T-dual’ coordinates defined in (2.19), the string worldsheet for
the scattering of open strings, dual to a gluon scattering amplitude of certain
colour ordering, ends on a light-like polygon, whose sides are determined by the
gluon momenta. Following the duality prescription of AdS/CFT for the Wilson
loop, this exactly corresponds to the string dual of a Wilson loop along the
polygon on the boundary.

with an anomalous dimension Γcusp, depending on the angle Θi formed by the
respective cusp [9]:(

µ
∂

∂µ
+ β(g)

∂

∂g
+
∑

i

Γcusp(Θi, g)

)
W = 0 , (2.22)

where µ is the renormalisation group parameter, β(g) is the β-function and g
the coupling constant. The cusp anomalous dimension was first calculated to
one-loop order in [9]:

Γcusp(Θ, g) =
g2N

8π2
(Θ cotΘ− 1) . (2.23)

It was shown in [10], that the IR asymptotics of scattering processes in
perturbative QCD can be factorised into vacuum averages of path ordered ex-
ponentials of the form of the Wilson loop, whose contour specific UV divergences
are in a one-to-one correspondence with the IR divergences of the original am-
plitude. This led to understanding that the leading IR divergent terms of the
gluon scattering amplitudes are determined by the cusp anomalous dimension of
a Wilson loop, whose integration contour is uniquely determined by the particle
momenta.

Defining the angle Θp1,p2 between two momenta in Minkowski space as

coshΘp1,p2 :=
p1p2√
p2
1p

2
2

, (2.24)

in the case where the momenta become light-like, p2 → 0, the angle gets very
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2.3 Wilson Loops and Gluon Scattering Amplitudes Duality

large: Θ →∞. It was shown in [11], that in this limit, the cusp anomalous di-
mension scales linearly with the cusp angle to all orders in perturbation theory:

Γcusp(Θ, g) =: ΘΓcusp(g) + O(Θ0) . (2.25)

In the following, the term ‘cusp anomalous dimension’ will be used in the sense
of this definition, referring to Γcusp(g).

Similar to QCD, the dependence of scattering amplitudes in N = 4 SYM on
the IR cutoff is determined by the cusp anomalous dimension. Due to the fact,
that the β-function of N = 4 SYM vanishes, the structure of their divergent
part is much simpler, though.

This relationship between the singularities of both objects is an important
feature in the correspondence between Wilson loops and gluon scattering am-
plitudes, presented above.

Another reason, why the cusp anomalous dimension has gained attention in
the AdS/CFT correspondence in the past years is, that its value was predicted
from conjectured integrable models, which describe the spectrum of anomalous
dimensions in N = 4 SYM [33]. Its computation could thus serve to test these
models.

2.3.3 The BDS Conjecture for MHV Scattering Amplitudes

Some inspiration for the duality between scattering amplitudes and Wilson
loops came from a conjecture for the form of the finite part of n-gluon MHV
scattering amplitudes proposed in [34] and generalised to all-loop order by Bern,
Dixon and Smirnov (BDS) in [30]. Scattering amplitudes are IR-divergent and
can be split into a finite part Fn and an IR-divergent part Dn. For a colour
ordered n-gluon MHV amplitude An, we then obtain:

ln
An

Atree
n

:= lnMn = Dn(a, pi) + Fn(a, pi) (2.26)

where pi are the gluon momenta and

a :=
g2

YMN

8π2
(2.27)

is the coupling. The structure of the divergent part is well-understood in gauge
theory and, as we have seen in the previous section, is related to the cusp
anomalous dimension. The BDS conjecture is a conjecture about the form of
the finite part of the amplitude:

FBDS
n (a, pipj ) =

1
2
Γcusp(a)F (1)

n ( pipj ) (2.28)

where F
(1)
n is the one-loop contribution to the finite part and pipj are the

generalised Mandelstam variables of the n-particle scattering process. This
means that the only coupling dependence enters through the cusp anomalous
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Chapter 2: Wilson Loops in the AdS/CFT Correspondence

dimension, Γcusp(a). Following the BDS ansatz, the functional dependence of
the finite part on the momenta is independent of the coupling and could hence
be determined through a one-loop calculation. As an example, the one-loop
finite part of the 4-gluon scattering amplitude takes the form:

F
(1)
4 =

1
2

ln2 s

t
+ const. (2.29)

where s and t are the usual Mandelstam variables of the 4-particle scattering
problem. For n = 4 gluons, the conjecture has been confirmed up to 3 loops, for
n = 5 gluons, up to 2 loops. It seems very surprising that the loop corrections to
the finite term should take such a simple form and the validity of the conjecture
would thus be a hint for a hidden symmetry.

Indeed, in the past years, such a new ‘dual’ symmetry of the scattering
amplitudes has been discussed and the arguments will be presented in brief in
the next section.

2.3.4 Dual Conformal Symmetry of Wilson Loops and Scatter-
ing Amplitudes

At one and two loops, planar 4-gluon scattering amplitudes are expressed in
terms of so-called scalar box integrals [34], which, expressed in dual coordinates

pi = xi − xi+1 ≡ xi,i+1 , (2.30)

unveil a dual conformal symmetry [12]. In 4 dimensions, this symmetry is
broken by the fact that the integrals are IR divergent and their regularisation
requires introducing a scale. The conformal invariance of the integrals deter-
mining the 4-gluon scattering amplitude in dual coordinates, was shown to hold
at least up to 4 loops [35].

Remarkably, the dual coordinates that unveil these conformal properties of
the gluon scattering amplitudes correspond to the dual coordinates introduced
by Alday and Maldacena in order to set up the duality between scattering am-
plitudes and Wilson loops, explained in section 2.3.1. There the xi describe
the position of the Wilson loop’s cusps. In order to get a better understanding
of the amplitudes’ dual conformal symmetry, we will have a look at the dual
Wilson loop, which naturally has a dual conformal symmetry, also broken by
its UV divergence.

Since conformal transformations map a straight light-like segment into an-
other straight light-like segment, an n-sided light-like polygonal Wilson loop
contour is mapped onto another n-sided light-like polygon. Since, furthermore,
Aµ has conformal weight one, it follows that such a Wilson loop is conformally
invariant but for the change of the contour. From this, a conformal Ward iden-
tity can be derived. However, such a polygonal Wilson loop with cusps is UV
divergent and thus a regularisation scale needs to be introduced, which breaks
conformal invariance. As a consequence, the conformal Ward identity will re-
ceive an anomalous contribution [13]. If we split the Wilson loop into a UV
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divergent part DWL
n and a finite part FWL

n , the conformal Ward identity takes
the form:

n∑
i=1

(
2xµ

i (xi ·
∂

∂xi
)− x2

i

∂

∂xiµ

)
FWL

n =
1
2
Γcusp(a)

n∑
i=1

xµ
i,i+1 ln

x2
i,i+2

x2
i−1,i+1

. (2.31)

The only coupling dependence of the anomalous term enters through the cusp
anomalous dimension. For the case of n = 4 and 5 gluons this implies, that
the finite part only depends on the coupling through Γcusp(a) and is uniquely
fixed to the form predicted by the BDS conjecture for the gluon scattering am-
plitudes. The anomalous conformal Ward identity further leads to a prediction
of the finite term’s form for arbitrary number of gluons. For n > 6 gluons,
the form thus predicted, contains some freedom, which can be captured by a
non-trivial function of conformal invariants, which can only be built for n > 6.

The computation of the 6-gluon scattering amplitude, numerically performed
to 2 loops in [36], and its comparison to the BDS ansatz on the one hand, and
to the hexagonal Wilson loop on the other hand, therefore yielded a non-trivial
test of the two conjectures. The comparison shows, that for 6 gluons at 2 loops
the BDS ansatz needs to be modified, whereas a computation of the hexagonal
Wilson loop at 2 loops performed in [37, 38] shows, that the duality with the
Wilson loops holds. The fact that the Wilson loop calculation yields the same
non-trivial function of conformal invariants as the scattering amplitude, seems
to indicate, that there is more to the duality than dual conformal symmetry
and gives further evidence, that it should hold at all orders in the coupling.

If indeed the duality between Wilson loops and scattering amplitudes is
valid in general, the dual conformal symmetry of the amplitudes would sim-
ply follow from the ordinary conformal symmetry of the light-like Wilson loop.
This, however, would not explain the origin of the duality itself. A validity
of the duality to all orders would suggest an even larger symmetry of the two
objects. Very recently, the dual conformal symmetry was extended to a dual
superconformal symmetry [39] and its relation to the AdS/CFT correspondence
and the scattering amplitude/Wilson loop duality was discussed in [40].

A good summary of the discussion on the subject of dual conformal sym-
metry can be found in [41], for a detailed account see [42].
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III

Regularisation of Scattering
Amplitudes and Wilson Loops

In section 2.3, we have presented the recently proposed duality between
gluon scattering amplitudes and Wilson Loops spanned by the gluon momenta
in N = 4 SYM and have explained its motivation at strong coupling through
the AdS/CFT correspondence. In this chapter, we will now see that the duality
also seems to be valid at weak coupling. The quantities to be compared are
divergent. While gluon scattering amplitudes are known to be IR divergent, a
Wilson loop with cusps is UV divergent, as we have seen in section 2.3.2. For a
full comparison of the two objects, including the infinite parts, we therefore need
to regularise both objects and define a matching of the regularisation parameters
on both sides. The comparison has been done for dimensional regularisation
in [7], which will be summarised briefly in section 3.1. Another regularisation
for the gluon scattering amplitudes, for instance discussed in [7], is to take
their external momenta being slightly off-shell: p2 = −m2. In section 3.2, we
will thus propose a regularisation of the corresponding polygonal Wilson Loop,
whose sides equal the off-shell gluon momenta, in order to match the off-shell
gluon scattering amplitudes, as also presented in [43].

3.1 Duality at Weak Coupling in Dimensional Regu-
larisation

The dimensionally regularised 4-gluon scattering amplitude, divided by the tree-
level amplitude, has been calculated at one-loop order in [30]:

M4 = 1 + aM(1) +O(a2) (3.1)

where the coupling is given by

a :=
g2N

8π2
. (3.2)

As mentioned before, gluon scattering amplitudes in N = 4 SYM are IR diver-
gent and regularising dimensionally, one thus needs to increase the dimensions
to D = 4− 2εIR, where εIR is negative. The change of dimensionality leads to a
change of the dimension of the coupling constant g(D). One therefore customar-
ily introduces a scale µIR in order to recover a dimensionless coupling constant
g:

g(D) = (µIR)εIR g (3.3)

Redefining

µ2 := 4πe−γµ2
IR (3.4)
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with the Euler constant γ, the colour ordered one-loop gluon scattering ampli-
tude takes the form:

M(1)
onshell = − 1

ε2IR

((
µ2

−s

)εIR

+
(
µ2

−t

)εIR)
+

1
2

ln2 s

t
+

2π2

3
(3.5)

= − 2
ε2IR

− 1
εIR

(
ln
µ2

−s
+ ln

µ2

−s

)
− 1

2

(
ln2 µ

2

−s
+ ln2 µ

2

−t

)
+

+
1
2

ln2 s

t
+

2π2

3
(3.6)

where s and t are the usual Mandelstam variables of the 4-particle scattering
problem.1

The dependence of the scattering amplitude on the IR regularisation scale µ
is governed by an evolution equation related to the cusp anomalous dimension
of the Wilson loop, as explained in section 2.3.2 [44]:(

∂

∂ lnµ2

)2

lnM4 = −Γcusp(a) +O(εIR) (3.7)

Substituting the upper one-loop result (3.5) into this equation, we obtain

Γcusp(a) = 2a+O(a2) (3.8)

for the cusp anomalous dimension, defined in the sense of (2.25).

The Wilson loop dual to the 4-gluon scattering amplitude is a tetragon
spanned by the external gluon momenta. Such a light-like Wilson loop with
cusps is UV-divergent in 4 dimensions. The origin of these divergences can be
visualised by expanding the Wilson loop to one-loop order:

〈W 〉 =
1
N

〈
Tr P exp

(
ig

∫
Aµẋ

µ dt

)〉
(3.9)

= 1 +
(ig)2

2N
Tr T aT b

∫
dt1dt2 ẋ

µ(t1)ẋν(t2)
〈
Aa

µ(x(t1))Ab
ν(x(t2))

〉
+O(g4)

= 1 − a

2

∫
dt1dt2

ẋ(t1)ẋ(t2)
(x(t1)− x(t2))2

+ O(a2) , (3.10)

where a is the coupling as in (3.2), T a are the generators of SU(N) in the fun-
damental representation for large N (see appendix A.1) and the propagator in
Feynman gauge has been inserted (see appendix A.2). If the distance between
the propagator endpoints becomes light-like or if the endpoints come together,
(x(t1)− x(t2))2 = 0 and the integrand in (3.10) becomes singular. Hence, from
this situation, UV-divergences can arise.

For a full comparison with the gluon scattering amplitude, including the
infinite parts, the Wilson loop thus also needs to be regularised and the regu-
larisation parameters of both sides of the duality have to be identified. This has

1It is convenient to choose s and t negative, which corresponds to the kinematical u-channel,
to avoid an imaginary part of the considered colour ordered part of the scattering amplitude.
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been done at one loop for dimensional regularisation in [7]. With the propaga-
tor in D = 4− 2εUV dimensions (see appendix A.3), where this time εUV needs
to be positive, since the Wilson loop is UV-divergent, and with

µ2 :=
1

πeγµ2
UV

(3.11)

where µUV is the regularisation scale, in analogy to the IR-case in (3.3), the
Wilson loop to one-loop order becomes:

〈W 〉 = 1 + a W (1) + O(a2) (3.12)

with

W (1) = − 1
ε2UV

((
µ2

−s

)−εUV

+
(
µ2

−t

)−εUV
)

+
1
2

ln2 s

t
+

π2

3
(3.13)

Comparing this result to the dimensionally regularised one-loop gluon scat-
tering amplitude (3.5), we see that the divergent parts of the two expressions
coincide if we formally identify

εUV = −εIR (3.14)

where the minus sign is due to the fact that εIR is negative, while εUV is positive
as explained above, and if we identify the regularisation scales µ as defined in
(3.4) for the scattering amplitude and in (3.11) for the Wilson loop. The finite
parts of the two expressions match up to a constant additive term independent
of the kinematics.

This result was a first indication that the duality of section 2.3 proposed
by [5] at strong coupling, is also valid at weak coupling. Further checks of this
statement were performed by explicitly calculating the two objects in dimen-
sional regularisation for 4 and 5 gluons up to 2-loops [8, 13] and for n gluons
to one-loop [45]. For n = 4 and 5 gluons the functional form of the finite part
indeed reduces to the BDS prediction, which is a consequence of the dual con-
formal symmetry, as discussed in section 2.3.4. As we have mentioned therein,
for the case of n = 6 gluons, however, the BDS ansatz needs to be modified,
whereas a computation of the hexagonal Wilson loop at 2-loops [37, 38] shows
that the Wilson loop scattering amplitude duality holds. This gives evidence,
that the duality might be valid at all orders in perturbation theory.

In the references mentioned above, the comparison of the divergent parts
has always been performed in dimensional regularisation as described above. It
thus seems interesting to examine, whether the duality is regularisation scheme
dependent or not and to check whether it holds for an alternative regularisation
of the two objects.

3.2 Amplitudes and Wilson Loops in Off-Shell Regu-
larisation

An alternative regularisation of the gluon scattering amplitudes can be achieved
by keeping the integrals in 4 dimensions, but instead introducing a small virtu-
ality to the external legs as an IR cutoff:
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p2
i = −m2

where we have taken all the momenta off-shell in the same way and have chosen
them to be negative (m2 > 0) as in [7] for simplicity.2 The resulting off-shell
gluon scattering amplitudes in N = 4 SYM have been calculated in [46]:

M(1)
off-shell = −

(
ln2

(
m2

−s

)
+ ln2

(
m2

−t

))
+

1
2

ln2
(s
t

)
− π2

6
(3.15)

where the first two terms diverge as we take m2 → 0 and the last two terms
constitute the finite part. Comparing this to (3.5), we see that the double pole
singularity of the dimensionally regularised amplitude has been replaced by a
double logarithmic singularity in the cutoff m. If for comparison, in (3.6), we
in a natural way identify the IR regularisation parameter µ of dimensional reg-
ularisation with the IR-cutoff m and suppress terms that diverge for ε→ 0, we
see that there is a difference of a factor of 2 in front of the squared logarith-
mic terms in m2 in the off-shell case compared to the on-shell case. The finite
part being independent of the regularisation parameters, remains the same, ex-
cept for an additive scheme-dependent constant, independent of the kinematics.

The additional factor of 2 in front of the leading divergent log2-term also
appears in the evolution equation for the scattering amplitude, which, as we
have mentioned before, is related to the cusp anomalous dimension of the Wilson
loop. In the off-shell case, the evolution equation takes the form [44]:(

∂

∂ lnm2

)2

lnMoff-shell
4 = −2 Γcusp(a) + O(m) (3.16)

where we have an additional factor of 2 in front of the cusp anomalous dimen-
sion compared to (3.7). In order to get the same cusp anomalous dimension
Γcusp = 2a+O(a2), we therefore indeed need the additional factor of 2 in front
of the log2-term. The question therefore arises, whether we can define a reg-
ularisation for the Wilson loop corresponding to the off-shell gluon scattering
amplitude that makes it finite and reproduces the said factor of 2. We have in-
vestigated this question in [43] and the details will be presented in the following.

For this, let us have a look at the Wilson Loop dual to the off-shell gluon
scattering amplitude. Following the duality prescription of section 2.3.1, it is
the Wilson loop along a polygon whose sides are determined by the off-shell
gluon momenta p2

i = −m2.
As long as the sides of the polygon were light-like, the scalar part of the Wil-
son loop, being proportional to |ẋ|, vanished. It therefore made no difference
whether we took the Wilson loop for the gauge field Aµ only, as in (2.4), or the
locally supersymmetric Wilson loop of (2.10). However, as soon as the sides are
no longer light-like, the scalar part contributes and the question arises, which
one has to be taken. Out of the formal construction of the duality according to

2The choice of negative p2 leads to the finiteness of the integrals to be solved for the
computation of the Wilson Loop in the kinematical u-channel, i.e. for negative s and t.
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AdS/CFT in [5], which we described in section 2.3.1, the locally supersymmet-
ric version seems to be the natural partner, being the Wilson loop identified
with the string-worldsheets in [4], as explained in section 2.2. Further support
arises from the treatment of divergences: Choosing the locally supersymmetric
loop with constant coupling ΘI to the scalars, the linear divergences, arising
from the limit of coincident propagator endpoints on one and the same side of
the polygon, cancel each other.
This can easily be seen by computing the Wilson loop to one loop order:

〈W 〉 =
1
N

〈
Tr P exp

ig ∫
C

(
Aµẋ

µ +
√
ẋ2θIΦI

)
dt

〉 (3.17)

= 1 +
(ig)2

2N
Tr T aT b

∫
dt1dt2

(
ẋµ(t1)ẋν(t2)

〈
Aa

µ(x(t1))Ab
ν(x(t2))

〉
+

+
√
ẋ2(t1)

√
ẋ2(t2)ΘIΘJ

〈
φa

I (x(t1))φ
b
J(x(t2))

〉)
+ O(g4)

(3.18)

= 1 − a

2

∫
dt1dt2

ẋ(t1)ẋ(t2)−
√
ẋ2(t1)

√
ẋ2(t2)

(x(t1)− x(t2))2
+ O(a2) (3.19)

where a is the coupling as in (3.2) and the T a are the generators of SU(N)
in the fundamental representation, where we have assumed N to be large to
obtain

Tr(T aT a) =
N2

2
(3.20)

(see appendix A.1). Furthermore, in (3.19), we have inserted the gauge field
and the scalar propagators in Feynman gauge〈

Aa
µ(x(t1))Ab

ν(x(t2))
〉

=
1

4π2

δab ηµν

(x(t1)− x(t2))2
(3.21)

and 〈
φa

I (x(t1))φ
b
J(x(t2))

〉
= − 1

4π2

δab δIJ

(x(t1)− x(t2))2
. (3.22)

One can directly see from (3.19), that there is a singularity for x(t1) = x(t2),
i.e. when both propagator endpoints come together.3

To one-loop order, we have to take into account the following contributions:
The gauge field and the scalar contributions for the case, where both propagator
endpoints lie on the same side of the polygon, have to be considered 4 times, once
for every side of the tetragon (fig. 3.1). Since for this case ẋ(t1) = ẋ(t2) ≡ ẋ0,

3For the case where both propagator ends lie on the same side of the tetragon the distance
now does not become light-like anymore and possible divergences from light-like distances
between other points can be shown to cancel.
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+ = 0

Figure 3.1: The vector and the scalar contribution with both propagator end-
points on the same edge of the tetragon cancel each other.

Figure 3.2: The one-loop vector contributions, where the propagator connects
opposite sides of the tetragon, are finite. The corresponding scalar contributions
are of order m2 and can thus be neglected for small off-shellness m.

the vector and the scalar part indeed cancel and the integral in (3.19) vanishes:

W
(1)
one side = −1

2

∫
dt1dt2

ẋ2
0 − |ẋ0|2

(x(t1)− x(t2))2
= 0 (3.23)

Then, there are the contributions from propagator ends on opposite sides
of the tetragon, shown in fig. 3.2. Here, the scalar contributions, being pro-
portional to ẋ2, are of order m2 and can be neglected for small off-shellness.
In this case, the propagator endpoints do not come together and the integrals
thus remain finite.4 These contributions have for instance been calculated to
one-loop order in [7]. Their sum is:

W
(1)
opposite =

1
2

ln2 s

t
+

π2

2
(3.24)

Finally, the contributions coming from propagator endpoints on adjacent
sides remain (see fig. 3.3). There are two types of such cusp contributions,
respectively characterised by the Mandelstam variable describing the kinematics
of the corner in question

s = (p1 + p2)2 = (p3 + p4)2 and

t = (p2 + p3)2 = (p1 + p4)2 . (3.25)

We have to consider twice each, once for every corner of the tetragon (fig.
3.3). Here again, the scalar contributions are of order m2 and can be neglected
for small off-shellness, as will be seen explicitly below. The remaining gauge

4The divergent contributions coming from potential crossing points or points with light-like
distance in the case of polygons with n > 4 sides cancel.
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s

(a)

t

(b)

Figure 3.3: Cusp contributions to the one-loop tetragonal Wilson loop. Two
corners of the tetragon are characterised by the Mandelstam variable s, fig. (a),
and two corners by the Mandelstam variable t, fig. (b).

field cusp integral has a UV-divergence stemming from coincident propagator
endpoints, which exactly happens at the cusp formed by the adjacent sides.

This cusp divergence exists, even though our sides are no longer light-like
and the off-shell polygonal Wilson loop thus still is UV-divergent. We therefore
need an additional regularisation in order to make the off-shell Wilson loop
finite.

3.2.1 Dimensional Regularisation of the Cusp Divergences

Our first attempt is to regularise the cusp divergences by going to D = 4− 2ε
dimensions. In (3.18), we then have to insert the (4 − 2ε)-dimensional propa-
gators. In Feynman gauge, the gauge field propagator takes the form:〈

Aa
µ(x(t1))Ab

ν(x(t2))
〉

= − πε

4π2
Γ(1− ε)

δabηµν

(−(x(t1)− x(t2))2)1−ε
(3.26)

and the scalar propagator becomes〈
φa

I (x(t1))φ
b
J(x(t2))

〉
=

πε

4π2
Γ(1− ε)

δabδIJ

(−(x(t1)− x(t2))2)1−ε
, (3.27)

where Γ(z) is the Euler gamma function. Introducing a dimensionless coupling
g and a UV regularisation scale µUV in analogy to (3.3), the expectation value
of the Wilson loop to one-loop order becomes:

〈W 〉 = 1 + (g µε
UV)2N

πε

16π2
Γ(1− ε)

∫
dt1dt2

ẋ(t1)ẋ(t2) +m2

(−(x(t1)− x(t2))2)1−ε
(3.28)

The scalar part is of order m2 and will be neglected in the following, assuming
small off-shellness of the dual amplitude.

In order to compute the remaining gauge field cusp integrals, we choose the
following parametrisation for the parameters t1 along pi and t2 along pj , as
visualised in fig 3.4:

x(t1) = −(1− t1) pi , x(t2) = t2 pj where t1, t2 ∈ [0, 1] (3.29)

The one-loop contributions from the cusp diagrams then becomes
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Figure 3.4: Parametrisation, exemplarily for the cusp formed by p1 and p2.

aW
(1)
cusp,(ij) = (g µε

UV)2N
πε

16π2
Γ(1− ε) × (3.30)

× 2

1∫
0

dt1

1∫
0

dt2
pipj

(−((1− t1)pi + t2pj)2)1−ε
+ O(m2)

where the factor of 2 is due to the fact that we also have to take into account
the situation where the parameters are exchanged, i.e. t1 runs along pj and t2
along pi. Inserting p2 = −m2 and substituting (1− t1) → t1 we obtain

aW
(1)
cusp,(ij) =

g2N

8π2
(µ2

UVπm
2)ε Γ(1− ε) × (3.31)

× pipj

(m2)

1∫
0

dt1dt2
1

(t21 + t22 − 2pipj

m2 t1t2)1−ε︸ ︷︷ ︸
=:Icusp,(ij)

+ O(m2)

= a

(
1 + ε ln

m2

µ2

)
Icusp,(ij) (3.32)

where µ is defined in (3.11).5 Changing to polar coordinates:

t1 = r cosφ t2 = r sinφ (3.33)

and taking into account that the integrand is symmetric in t1 and t2, the integral
becomes

Icusp,(ij) = 2Bij

π
4∫

0

dφ
1

(1−Bij sin(2φ))(1−ε)

1
cos(φ)∫
0

dr r(2ε−1) (3.34)

where we have defined
Bij :=

pipj

m2
. (3.35)

5The expansion of the prefactor can be found in appendix A.3.

36



3.2 Amplitudes and Wilson Loops in Off-Shell Regularisation

Solving the r-integral leads to a 1
ε -pole:

Icusp,(ij) = Bij
1
ε

π
4∫

0

dφ
1

(1−Bij sin(2φ))

(
1−Bij sin(2φ)

cos2(φ)

)ε

. (3.36)

We can now expand in powers of ε,6 and the one-loop contribution from the
cusp formed by pi and pj becomes

W
(1)
cusp,(ij) =

(
1 + ε ln

m2

µ2

)
1
ε

(
1
4

π∫
0

dφ
1

(1−Bij sinφ)
+

+ ε
1
4

π∫
0

dφ
ln(1−Bij sinφ)
(1−Bij sinφ)

− ε
1
2

π
2∫

0

dφ
ln(cos2 φ

2 )
(1−Bij sinφ)

)
+ O(ε)

=
Bij

4

(
1
ε
I

(1)
ij + ln

m2

µ2
I

(1)
ij + I

(2)
ij

)
− 1

2
Aij + O(m2) + O(ε)

(3.37)

where we have defined the following integrals:

I
(1)
ij :=

π∫
0

dφ
1

(1−Bij sinφ)
(3.38)

=
2√

B2
ij − 1

(
ln(−Bij)− ln

(√
1− 1

B2
ij

+ 1

))
(3.39)

I
(2)
ij :=

π∫
0

dφ
ln(1−Bij sinφ)

1−Bij sinφ
(3.40)

= − 1
Bij

(
ln(−Bij) + ln(2)

)2
+

1
Bij

π2

12
+ O

( 1
B2

ij

)
(3.41)

Aij := Bij

π
2∫

0

dφ
ln(cos2 φ

2 )
1−Bij sinφ

=
π2

24
+ O

( 1
Bij

)
, (3.42)

where, taking into account that |Bij | is large for m2 → 0, we have expanded
(3.40) and (3.42) in orders of B−1

ij (see appendix B.1). For later continuation
to positive pipj , we need to specify the issue of the phase in ln(−Bij) in (3.39)
and (3.41). From the iε-prescription of the propagator, we find that it has to
be understood as ln(eiπBij).

For the cusps formed by p1 and p2, resp. p3 and p4, we have

B12 = B34 =
s

2m2
+ 1 (3.43)

6thereby assuming though, that ε is small compared to m2
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and find the following one-loop contribution to the Wilson loop:

W
(1)
cusp,(s) =

1
2

(
1
ε

ln
(
−m

2

s

)
+ ln

(
m2

µ2

)
ln
(
−m

2

s

)
− 1

2
ln2

(
m2

−s

))
+

+ O(m2 lnm2) + O(ε) (3.44)

For the other two cusps, we have

B23 = B14 =
t

2m2
+ 1 (3.45)

and receive the same contribution but substituting s by t:

W
(1)
cusp,(t) =

1
2

(
1
ε

ln
(
−m

2

t

)
+ ln

(
m2

µ2

)
ln
(
−m

2

t

)
− 1

2
ln2

(
m2

−t

))
+

+ O(m2 lnm2) + O(ε) (3.46)

To obtain the entire Wilson loop to one-loop order, we now have to add up all
contributions (3.24), (3.44) and (3.46), remembering that the scalar and the
vector contribution from diagram 3.1 cancel and obtain

〈W 〉 = 1 + a
(
2 W (1)

cusp,(s) + 2 W (1)
cusp,(t) +W

(1)
opposite

)
+ O(a2) (3.47)

= 1 + a

(
1
ε

(
ln
(
−m

2

t

)
+ ln

(
−m

2

s

))
+ ln2

(
m2

µ2

)
−

− 1
2

(
ln2

(
µ2

−s

)
+ ln2

(
−µ

2

−t

))
+

1
2

ln2
(s
t

)
+
π2

2

)
+ O(m2 lnm2) + O(ε) + O(a2) . (3.48)

Suppressing the pole term in ε yields the renormalised one-loop space-like Wil-
son Loop, which still depends on m2 and µ2. Of course, µ2 is no parameter of
the off-shell gluon scattering amplitude. For our purpose, it thus seems natural
to identify µ2 with m2, which results in

W (1)
ren = −1

2

(
ln2

(
m2

−t

)
+ ln2

(
m2

−s

))
+

1
2

ln2 s

t
+
π2

2
+ O(m2 lnm2) (3.49)

The fact that the renormalised expression diverges for m2 → 0 is a reflection of
the divergence of the cusp anomalous dimension as soon as the sides approach
the light-cone.

We can now compare our result to the expression for the off-shell amplitude
(3.15).
The deviation of the finite part by an additive constant does not pose any
problem and could even be removed by a purely numerical factor in the relation
between µ2 and m2.
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Figure 3.5: Cutoff at the cusps of the tetragonal Wilson loop.

Obviously though, the additional factor of 2 in front of the log2-terms in
the off-shell amplitude compared to the on-shell case, stressed in the opening
of section 3.2 is not reproduced this way. This also remains true if one keeps
µ2 fixed and looks at the limit of m2 → 0. Then, the second term in (3.48)
yields another ln2(m2)-term and in total, we still have a factor of 1

2 in front of
the log2.

This discrepancy cannot be avoided either by, instead of considering the
renormalised Wilson loop without ε-pole terms, mapping dimensional regulari-
sation to a cutoff-regularisation with dimensionful parameter in the usual way:
1
ε ∼ − log(m2

µ2 ).7

We are thus still in the need of an alternative regularisation of the non-light-
like Wilson loop matching the dual off-shell gluon scattering amplitude.

3.2.2 Regularisation of the Cusp Divergences by Cutoff

After this first unsuccessful attempt, our second idea for the regularisation of
the non-light-like Wilson loop dual to the off-shell amplitude is to introduce a
cutoff σ on the contour parameter t at the cusps (fig. 3.5), since this is where
the divergences come from.

Such a cutoff on the contour of the Wilson loop breaks its gauge invari-
ance, since the integration path is no longer closed. This should be no obstacle
though, since the dual off-shell scattering amplitudes are not gauge invariant
either. We will thus compare the objects in Feynman gauge and add some com-
ments on their gauge variance below.

As mentioned before, the contributions from the graphs, where the propa-
gator endpoints are on opposite sides of the tetragonal Wilson loop (fig 3.2) are
finite and thus do not need to be regularised. The sum of the vector and the

7which of course in our case is problematic anyway, since by expanding in ε, we have
assumed ε ln m2 to be small.
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scalar graph with both propagator endpoints on the same side (fig. 3.1) van-
ishes. We therefore only need to regularise the cusp-contributions, as before.

With the parametrisation as in the last section, (3.29), the one-loop contri-
bution to the Wilson loop (3.19) from the cusp formed by pi and pj , cut out
with a cusp-dependent parameter σij , becomes

Icusp,σij := 2

1∫
σij

dt2

1−σij∫
0

dt1
pipj

(t2pj + (1− t1)pi)2
(3.50)

= 2

1∫
σij

dt2

1∫
σij

dt1
pipj

(t1pi + t2pj)2
(3.51)

Inserting our off-shell condition p2
i = −m2 we obtain

Icusp,σij = 2
pipj

−m2

1∫
σij

dt1

1∫
σij

dt2
1

(t21 + t22 − 2pipj

m2 t1t2)
. (3.52)

In polar coordinates as in (3.33) and with Bij defined in (3.35) we get

Icusp,σij = −4Bij

π
4∫

0

dφ
1

(1−Bij sin(2φ))

1
cos φ∫

σij
cos φ

dr

r
(3.53)

= Bij ln(σij)

π∫
0

dφ
1

(1−Bij sinφ)︸ ︷︷ ︸
=:I

(1)
ij

. (3.54)

With I
(1)
ij from (3.39) and expressing Bij by the Mandelstam variables s, re-

spectively t, as in (3.43) and (3.45) we obtain

Icusp,σs = 2 ln(σs) ln(
m2

−s
) + O(m2 ln(m2)) (3.55)

for the cusps characterised by s with cutoff σ12 = σ34 ≡ σs, and

Icusp,σt = 2 ln(σt) ln(
m2

−t
) + O(m2 ln(m2)) (3.56)

for the cusps characterised by t with cutoff σ23 = σ14 ≡ σt.

Adding up all contributions, taking the finite part from (3.24), the whole
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Figure 3.6: Relating the cutoff on the contour parameter to the IR regulator
m2 by claiming that the propagator be no shorter than m2.

Wilson Loop to one-loop order becomes

W = 1− a

2

(
2 Icusp,σs + 2 Icusp,σt − 2 ·W (1)

opposite

)
+ O(a2) (3.57)

= 1 − a

(
2
(

ln(σt) ln(
m2

−t
) + ln(σs) ln(

m2

−s
)
)
− 1

2
ln2 s

t
− π2

2

)
+ (3.58)

+ O(m2 ln(m2)) + O(a2)

Now, the cutoffs σs and σt remain to be specified. In order to compare our
result to the gluon off-shell amplitude, we would like the cutoff to be related to
the IR regulator m2. A first idea is to claim that the propagator length be no
smaller than m2, as visualised in fig. 3.6:

|(x(t1)− x(t2))2| ≥ m2 (3.59)

For the above parametrisation (3.29), where here we have already taken
(1− t1) → t1, this condition translates into

|(pit1 + pjt2)2| ≥ m2 (3.60)

t21 + t22 − 2
pipj

m2
t1t2 ≥ 1 (3.61)

where we have made use of our off-shell condition p2 = −m2 and of the fact
that, being space-like, the squared distance of the propagator is negative.

The inequality (3.61) describes the region cut out of the (t1, t2)-plane as
visualised in fig. 3.7. Since divergences only arise when both propagator end-
points approach the cusp, i.e. when t1 and t2 are both small, condition (3.61)
cuts out too much. Instead of cutting out the whole region delimited by the
hyperbola that saturates (3.61), we therefore only cut out the squared region
defined by the nearest point of the hyperbola to the origin at

t1 = t2 =
1√

2− 2pipj

m2

(3.62)
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Figure 3.7: The curves visualise the region cut out of the (t1,t2)-plane by con-
dition (3.61) for different values of s/m2, t/m2 = {−10,−25,−100}. This con-
dition cuts out too much; we therefore instead only cut out the squared region,
which leads to (3.63).

as shown in fig. 3.7.
For the cusps formed by the respective pairs of momenta, we then get

σ12 = σ34 =

√
m2

−s
≡ σs

σ23 = σ14 =

√
m2

−t
≡ σt (3.63)

for our cutoff on the contour parameter.
This result seems to be a very plausible choice for the cutoff, motivated ad-

ditionally by the following natural arguments: We wanted our parameter-cutoff
to be related to the given IR regulator m2. A cutoff on the contour parameter
needs to be dimensionless though. We are thus in the need of another dimen-
sionful quantity in order to form a quotient with m2. For the cusp formed by
the momenta pi and pj , the respective Mandelstam variable characterising the
kinematics of the two momenta seems to be a natural choice to build the dimen-
sionless quotients m2

s , m2

t . The cutoff being a cutoff on a momentum contour,
it seems more natural though, to relate the cutoff with

√
m2 instead of m2.

Finally, taking into account that in the kinematical u-channel, the Mandelstam
variables s and t are negative, we need to take −s and −t to build the quotient
in order to avoid an imaginary cutoff.8 We thus arrive at our cutoff σs and σt

found in (3.63).

Inserting our cutoff into equation (3.58), we obtain for the one-loop cut

8We later continue the cutoff to the other kinematical channels analytically.
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Wilson loop:

W = 1 + a

(
−
(

ln2(
m2

−t
) + ln2(

m2

−s
)
)

+
1
2

ln2(
s

t
) +

π2

2

)
+ (3.64)

+ O(m2 lnm2) + O(a2) .

Up to a constant independent of the kinematics, this agrees with the result for
the off-shell scattering amplitude (3.15). Note in particular, that we were able
to reproduce the additional factor of 2 in front of the squared logarithmic terms
related to the cusp anomalous dimension.

If one had alternatively used our first unmodified cutoff (3.61), we would
again have had an unwanted factor of 1

2 in front of the log2-terms, reflecting
the fact that we would have cut out a bigger region than necessary. It would
be interesting to analyse, whether this is related to the exclusion of certain soft
regions contributing to the off-shell amplitude as described in [7].

The result (3.64) can be continued to positive s and t. From the iε-
prescription in the integral I(1)

(ij) defined in (3.38), we found that in this case,

the phase in ln(m2

−s ) then has to be understood as ln(m2

s e−iπ) and in the same
way for positive t.

Comments on Gauge Dependence

As mentioned before, the cut Wilson loop as well as the off-shell gluon scattering
amplitudes are not gauge invariant and the above matching of the two objects
concerns Feynman gauge. However, due to the relation of the factor in front of
the leading divergent log2-term to the cusp anomalous dimension, one should
expect this term to be gauge invariant. We therefore check this explicitly by
calculating the cut Wilson loop with the generally gauge dependent propagator〈
Aa

µ(x)Ab
ν(y)

〉
α

=
δabηµν

4π2((x− y)2 − iε)
+ δab α− 1

16π2
∂µ∂ν log(Λ2(x− y)2 − iε)

(3.65)
with gauge parameter α (α = 1 in Feynman gauge) and an auxiliary scale
parameter Λ2, which drops out after performing the differentiation. The scalar
propagator remains independent of the gauge parameter. Thus calculating the
gauge dependent one-loop contribution W

(1)
α to the cut Wilson loop, we can

check whether the log2-terms are independent of the gauge parameter α.

W = 1 + a W
(1)
α=1︸ ︷︷ ︸

as before

+ a (α− 1) W (1)
α (3.66)

with

W (1)
α =

1
16π2

∫
t1>t2

dt1dt2
d

dt1

d

dt2
log(Λ2(x(t1)− x(t2))2 − iε) (3.67)
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For a Wilson loop with generic closed contour, the iε-prescription of the propa-
gator prevents the expression from diverging and in this case being the integral
over a total derivative with the same starting- and endpoint of the integration,
the term vanishes identically before ε is sent to zero.

This situation changes however, as soon as the integration path is no longer
closed, as for our cut Wilson loop of fig. 3.5. We then again have to consider
the different contributions from the diagrams 3.1 to 3.3, but this time of course,
there are no scalar contributions. Therefore, now also the diagram of fig. 3.1,
where both propagators lie on the same side, contributes. This diagram now has
a divergence, when t1 and t2 coincide, as soon as we send ε to zero following the
integration prescription. We therefore need to introduce an additional cutoff
preventing such a coincidence of t1 and t2 on the same side of the tetragon.
Equivalently to claiming that x(t1) and x(t2) should come no closer than some
cutoff-parameter σ, we can simply add σ in the argument of the logarithm:

log(Λ2(x(t1)− x(t2))2 − iε) −→ log(Λ2((x(t1)− x(t2))2 − σ)− iε) . (3.68)

|x(t1) − x(t2)| being expressed in dual coordinates (2.21), has the dimension
of a momentum, i.e. positive mass dimension. In order to relate the cutoff σ
to our former momentum cutoff, it therefore seems natural to choose σ = m2.
After taking ε→ 0, we are thus left with an additional term: ln(Λ2m2).
But in any case, due to the total derivative structure of (3.67), all other con-
tributions will also have the form of single logarithms of functions of the cutoff
σs and σt, which according to (3.63) are also proportional to m2. Thus, there
will only be single logarithmic terms of m2 and no α-dependent log2-terms will
come in. The leading divergent squared logarithmic term in our one-loop result
(3.64) will thus remain gauge independent, as requested due to its relation to
the gauge invariant cusp anomalous dimension.
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IV

Special Properties of Wilson Loops
in Minkowski Space

We have seen in the previous chapter that divergences arise from a Wilson
loop with cusps, i.e. with discontinuities in the first derivative of the curve
with respect to the curve-parameter. This is also true in the Euclidean case.
A smooth Euclidean supersymmetric Wilson loop though, is finite. In the
Minkowski case, the tangent to a curve can become light-like, i.e. ẋ2 = 0,
and we potentially have further divergences stemming from such points. As
long as the curve is smooth in these points, however, the Wilson loop remains
finite, as will be examined for the example of a circle in Minkowskian space
in section 4.1 and as will be shown in a more general manner in section 4.2.
If the second derivative of a curve in such a light-like point is discontinuous,
however, divergences will arise depending on the saltus in ẍ, as will be exam-
ined in section 4.2. In analogy to the cusp anomalous dimension as described
in section 2.3.2, one can thus define an anomalous dimension for such a ‘higher
order cusp’ in the second derivative.

In the same way, curves with straight finite light-like segments have di-
vergences stemming from the transition between the light-like segments and
the time- or space-like continuation of the curve. The question arises whether
one can make these Wilson loops finite by choosing a special coupling to the
scalars, in a similar but more general manner than Zarembo’s ansatz explained
in section 2.2.1. This is going to be examined in section 4.3.

The Wilson loops for various simple geometrical objects, such as the circle
and the rectangle, have been calculated in Euclidean space. Having seen how
different the local properties of Wilson loops in Minkowskian background can
be due to their embedding in space-time, it seems interesting to calculate the
Wilson loop for such objects in Minkowski space and to compare the two results.
With view to the Minkowskian circle, whose divergences due to points with
light-like tangent are examined in section 4.1, we will, as a preliminary study,
perform the calculation for the case of the rectangular Wilson loop in Minkowski
space. We will explicitly show that in this case, the Minkowskian result simply
arises from the Euclidean one by Wick rotation.

4.1 Minkowskian Circle with Light-Like Tangents

As mentioned above, Wilson loops in Minkowski space might have special prop-
erties depending on their embedding in space-time. Additional divergences
might arise from some point x0 with light-like tangent, i.e. ẋ2

0 = 0, as can
easily be seen by expanding around the concerned point. To one-loop order,
the locally supersymmetric Wilson loop with constant coupling to the scalars
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as in (2.10) takes the form:

〈W 〉 = 1 − a

2
I(1) + O(a2) (4.1)

with I(1) :=
∫
dt1

∫
dt2

ẋ(t1)ẋ(t2)−
√
ẋ2(t1)

√
ẋ2(t2)

(x(t1)− x(t2))2 − iε
, (4.2)

where t1 and t2 run along the whole contour of the loop. In (4.2), we see that
in Minkowski space, the coupling to the scalars picks a sign indeterminacy for
space-like curves, i.e. ẋ2 < 0, due to

√
−1 = ±i. We will specify this sign

indeterminacy in the following by demanding that the Wilson loop along a
smooth curve be finite.

For the one-loop contributions, stemming from the vicinity of the point with
light-like tangent, say at x(t = 0) ≡ x0, we need to consider the case of having
both propagator endpoints on the same side of x0, (+), and the case where the
propagator connects the different sides of x0, (−). Throughout the chapter, we
will maintain the convention, that on the side of negative contour parameters,
we perform a shift t → −t, i.e. the parameter is always positive. Expanding
around x0, these two contributions become:

I
(1)
± =

...∫
0

dt1

...∫
0

dt2
ẋ(t1)ẋ(±t2)−

√
ẋ2(t1)

√
ẋ2(±t2)

(x(t1)− x(±t2))2
(4.3)

=

...∫
0

dt1dt2
ẋ2

0 + (t1 ± t2)ẋ0ẍ0 −
√
ẋ2

0 + 2t1ẋ0ẍ0

√
ẋ2

0 ± 2t2ẋ0ẍ0

(t1 ∓ t2)2ẋ2
0 + (t1 ∓ t2)(t21 − t22)ẋ0ẍ0

(4.4)

=

...∫
0

dt1dt2
(t1 ± t2)ẋ0ẍ0 − 2|ẋ0ẍ0|

√
t1
√
±t2

(t1 ∓ t2)(t21 − t22)ẋ0ẍ0
(4.5)

where we have dropped finite terms and have left the upper integration limit
unspecified, since here, we are only interested in potential divergences at the
point with light-like tangent at t1 = t2 = 0. In the Euclidean case, for potential
divergences from this point, one only has to consider respectively the first term
in the numerator and in the denominator of (4.4), since the next terms give
finite contributions. For the supersymmetric Wilson loop, the vector and the
scalar part then exactly cancel. Now, however, ẋ2

0 = 0 and the contributions
I+ and I− individually become divergent for t1 = t2 = 0. This disagrees with
our expectations for a smooth curve, which we would expect to be finite, also
in Minkowski space. Considering the example of the circle, we will show that
the sign indeterminacy in the coupling to the scalars mentioned above, can be
fixed such that the divergent contributions cancel each other and we recover a
finite Wilson loop.

We will therefore have a closer look at these potential divergences for the
case of a circle in the (x0, x1)-plane as represented in fig. 4.1. This circle has
four points with light-like tangents. If we parametrise it by the angle Θ

x(Θ) = R

(
cos Θ
sinΘ

)
⇒ ẋ(Θ) = R

(
− sinΘ
cos Θ

)
(4.6)
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x
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Figure 4.1: Circular Wilson loop in the (x0, x1)-plane. The points with Θ =
±π

4 ,±
3
4π have light-like tangents.

these points are at Θ = ±π
4 , ±

3
4π and the integral in the one-loop order Wilson

loop becomes

I(1) =

2π∫
0

dΘ1dΘ2
ẋ(Θ1)ẋ(Θ2)−

√
ẋ2(Θ1)

√
ẋ2(Θ2)

(x(Θ1)− x(Θ2))2 − iε
(4.7)

=

2π∫
0

dΘ1dΘ2
sinΘ1 sinΘ2 − cos Θ1 cos Θ2

(cos Θ1 − cos Θ2)2 − (sinΘ1 − sinΘ2)2 − iε
−

−
√

sin2 Θ1 − cos2 Θ1

√
sin2 Θ2 − cos2 Θ2

(cos Θ1 − cos Θ2)2 − (sinΘ1 − sinΘ2)2 − iε
(4.8)

=

2π∫
0

dΘ1dΘ2
− cos(Θ1 + Θ2) +

√
cos 2Θ1

√
cos 2Θ2

cos 2Θ1 + cos 2Θ2 − 2 cos(Θ1 + Θ2) − iε
. (4.9)

Note, that the circular Wilson loop is independent of the radius R of the circle.
Let us now examine the divergences coming from the point at Θ = π/4. For
this we need to consider the vector diagrams shown in figure 4.2 and the corre-
sponding scalar diagrams.

Let us first compute the divergent terms of diagram 4.2b. For this purpose,
we choose the following parameters

Θ1 =
π

4
− ψ1 Θ2 =

π

4
+ ψ2 (4.10)

and expand around Θ = π/4, i.e. for small ψ1, ψ2. The divergent contribution
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(a) (b)

Figure 4.2: Divergent one-loop vector contributions to the circular Wilson loop
from the point Θ = π/4 with light-like tangent. Additionally, we have to
consider the corresponding scalar contributions.

from the vicinity of the singular point then becomes

I
(1)
(b) = −

...∫
0

dψ1

...∫
0

dψ2
sin(ψ1 − ψ2)∓ i

√
sin 2ψ1 sin 2ψ2

sin 2ψ1 − sin 2ψ2 − 2 sin(ψ1 − ψ2) − iε
(4.11)

= −
...∫

0

dψ1

...∫
0

dψ2
ψ1 − ψ2 ∓ 2i

√
ψ1ψ2 + O(ψ3)

ψ3
2 − ψ3

1 − ψ2
1ψ2 + ψ1ψ2

2 + O(ψ4) − iε
, (4.12)

where again, we have not written the upper integration limit explicitly, since,
making only finite contributions, it is irrelevant to the discussion of the diver-
gences. We will maintain this convention throughout the chapter. The ∓ comes
from the indeterminacy of

√
−1 = ±i in the coupling to the scalars, mentioned

above. The sign will be determined later, fixing the coupling in such a way that
the divergences, coming from the coincidence of the propagator endpoints at
some other point along the curve in diagram 4.2a, vanishes. Changing to polar
coordinates as in (3.33) we obtain

I
(1)
(b) = −

π
2∫

0

dφ
cosφ− sinφ ∓ 2i

√
cosφ sinφ

(sinφ+ cosφ)2(sinφ− cosφ) − iε

1∫
0

dr

r
+ finite (4.13)

and have thus split off the logarithmic divergence. The vector part of the
remaining φ-integral obviously is finite and can easily be computed:

π
2∫

0

dφ
1

(sinφ+ cosφ)2
= 1 . (4.14)

The scalar integrand has a singularity at φ = π
4 which corresponds to ψ1 = ψ2,

i.e the case when the distance between the propagator endpoints becomes light-
like. By substituting φ = π

4 + α, we see that the pole is a simple pole and we
can compute the integral with the help of the iε-prescription of the propagator
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(see appendix B.2):

∓ 2i

π
2∫

0

dφ

√
cosφ sinφ

(sinφ+ cosφ)2(sinφ− cosφ) − iε
= ±π

2
. (4.15)

The divergent contribution from diagram 4.2b thus is

I
(1)
(b) = −(1∓ π

2
) ln(δ) + finite , (4.16)

where we have introduced a cutoff δ on r around the singular point.

Now, the divergent contributions from the diagrams in 4.2a still need to be
computed. This time, we choose the substitution

Θ1 =
π

4
+ ψ1 Θ2 =

π

4
+ ψ2 (4.17)

in (4.8) and again expand for small ψ1, ψ2:

I
(1)
(a) =

...∫
0

dψ1

...∫
0

dψ2
sin(ψ1 + ψ2)±

√
sin 2ψ1 sin 2ψ2

− sin 2ψ1 − sin 2ψ2 + 2 sin(ψ1 + ψ2) − iε
(4.18)

=

...∫
0

dψ1

...∫
0

dψ2
ψ1 + ψ2 ± 2

√
ψ1ψ2 + O(ψ3)

ψ3
1 + ψ3

2 − ψ2
1ψ2 − ψ1ψ2

2 + O(ψ4) − iε
(4.19)

=

...∫
0

dψ1

...∫
0

dψ2
(
√
ψ1 ±

√
ψ2)2 + O(ψ3)

(ψ1 − ψ2)(ψ2
1 − ψ2

2) + O(ψ4) − iε
. (4.20)

Performing another substitution
√
ψi = αi this becomes

I
(1)
(a) = 4

...∫
0

dα1dα2 α1α2
(α1 ± α2)2 + O(α6)

(α1 − α2)2(α1 + α2)2(α2
1 + α2

2) + O(α8) − iε
.

(4.21)

We are now able to determine the sign between the vector and the scalar part.
In order to avoid a divergence for α1 = α2 all along the curve, we have to
choose the minus-sign. Switching to polar coordinates in order to split off the
remaining logarithmic divergence at α1 = α2 = 0, we obtain

I
(1)
(a) =

π
2∫

0

dφ
cosφ sinφ

(sinφ+ cosφ)2

1∫
0

dr

r
+ finite . (4.22)

The φ-integral can easily be solved to

π
2∫

0

dφ
cosφ sinφ

(sinφ+ cosφ)2
=

1
2

(π
2
− 1
)
. (4.23)
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If we again introduce a cutoff for small r, relating it to the cutoff in (4.16), while
taking into account the performed substitution α =

√
ψ, we will now have

√
δ.

We thus get

I
(1)
(a) = (1− π

2
) ln(δ) + finite (4.24)

for the divergent contribution from each of the diagrams of fig. 4.2a.

The above fixing of the indeterminacy in the coupling to the scalars also
determines the sign in (4.16) to be a minus. We also need to count this con-
tribution twice, considering the case of exchanged parameters. Thus, summing
up all divergent contributions coming from the singular point with light-like
tangent at Θ = π

4 , gives zero. We can therefore conclude that, fixing the sign
indeterminacy of the coupling to the scalars as proposed above, the Wilson loop
of a Minkowskian circle with light-like tangents indeed remains finite, fulfilling
our expectations for a smooth curve. Note, that with a different iε-prescription,
the sign would have been fixed the other way round.

4.2 Wilson Loops with Discontinuities in Higher Deriva-
tives

As we have seen in section 4.1, Wilson loops with points with light-like tangent
have potential divergences. In the case of the smooth circular contour discussed
above, the different divergent contributions exactly cancel each other and the
Wilson loop is finite. However, if in these singular light-like points, we have a
discontinuity in a higher derivative, the situation might change. As we will see
in the following, for a discontinuity in the second derivative, divergences arise.
In analogy to the cusp anomalous dimension for the case of a discontinuity in
the first derivative, we can define a new anomalous dimension attributed to the
divergences coming from the singular light-like points with discontinuity in ẍ.

In order to compute these divergences, at one-loop order, we need to exam-
ine the vector contributions shown in figure 4.3 and the corresponding scalar
diagrams. For this, we expand the coordinates around the singular point at
t1 = t2 = 0 just as in the case of a cusp. The divergent one-loop contribution
from the case of propagator endpoints on the same side of the singular point
(fig. 4.3a), give:

Ivec
(a),± + Iscal

(a),±

=

...∫
0

dt1

...∫
0

dt2
ẋ(t1)ẋ(t2)−

√
ẋ2(t1)

√
ẋ2(t2)

(x(t1)− x(t2))2 − iε

=

...∫
0

dt1dt2
ẋ2

0 + t2ẋ0ẍ± + t1ẋ0ẍ± −
√
ẋ2

0 + 2t1ẋ0ẍ±
√
ẋ2

0 + 2t2ẋ0ẍ± + O(t2)
(t1 − t2)2ẋ2

0 + (t1 − t2)t21ẋ0ẍ± − (t1 − t2)t22ẋ0ẍ± + O(t4) − iε

=

...∫
0

dt1dt2
t2 + t1 −

√
2t1
√

2t2 + O(t2)
(t1 − t2)(t21 − t22) + O(t4) − iε

. (4.25)

50



4.2 Wilson Loops with Discontinuities in Higher Derivatives

(a) (b)

Figure 4.3: Divergent one-loop vector contributions to a Wilson loop with a
contour point with light-like tangent and discontinuity in ẍ. Additionally, one
has to consider the corresponding scalar diagrams.

In the last line, we have used that the tangent in the point x(t = 0) ≡ x0 is
light-like, i.e. ẋ2

0 = 0. Note, that the contribution is independent of the left and
right second derivatives ẍ± of x(t). Changing to polar coordinates as in (3.33),
we get

Ivec
(a) + Iscal

(a) =

π/2∫
0

dφ
cosφ+ sinφ− 2

√
cosφ sinφ

(cosφ− sinφ)2(cosφ+ sinφ) − iε

1∫
0

dr

r
+ finite .

(4.26)

In the above expression, one can see the logarithmic divergence coming from the
singular point at r = 0, i.e. t1 = t2 = 0, and at first site, the φ-integral seems
to have a pole in φ = π/4 (t1 = t2), i.e. when the propagator ends coincide at
some other point along the loop. As we have seen before, for smooth curves,
there should not be any divergence from the latter situation, since the coupling
to the scalars is such that the vector and scalar part exactly cancel each other
in this case. Indeed, the pole is cancelled and the φ-integral turns out to be
finite. Introducing a cutoff δ around the singular point, we finally obtain

Ivec
(a) + Iscal

(a) = (1− π

2
) ln δ + finite (4.27)

=:
1
2

Γ(1)
a ln δ + finite

for the one-loop contribution to the ‘2nd order cusp anomalous dimension’ from
diagrams 4.3a. Being independent of ẍ±, the result is the same for both sides;
for the complete one-loop Wilson loop, we thus have to consider it twice.

Comparing (4.27) to (4.24), we see that we get the same result as for the
circle contribution of fig. 4.2a. This makes sense, since the result is independent

51



Chapter 4: Special Properties of Wilson Loops in Minkowski Space

of the second derivative of the curve and is completely determined through the
fact that the tangent in the considered point is light-like.

Let us now examine the divergent one-loop contribution stemming from the
vector and the scalar diagram of fig. 4.3b. For the sum of the scalar and the
vector contribution we find:

Ivec
(b) + Iscal

(b) =

...∫
0

dt1

...∫
0

dt2
ẋ(t1)ẋ(−t2)−

√
ẋ2(t1)

√
ẋ2(−t2)

(x(t1)− x(−t2))2
(4.28)

=

...∫
0

dt1dt2
t1ẋ0ẍ+ − t2ẋ0ẍ− −

√
2t1ẋ0ẍ+

√
−2t2ẋ0ẍ− + O(t2)

(t1 + t2)(t21ẋ0ẍ+ − t22ẋ0ẍ−) + O(t4) − iε

(4.29)

With the following parameter choice

t1 = ry t2 = r(1− y) (4.30)

we can split off the logarithmic divergence coming from the situation when the
propagator endpoints come together in the singular point, i.e. t1 = t2 = 0 or
equivalently r = 0 and obtain

Ivec
(b) + Iscal

(b) =

1∫
0

dy
ẋ0ẍ+y − ẋ0ẍ−(1− y)− 2

√
ẋ0ẍ+

√
−ẋ0ẍ−

√
y(1− y)

(ẋ0ẍ+y2 − ẋ0ẍ−(1− y)2) − iε

1∫
0

dr

r

+ finite . (4.31)

The integral is a function of the quotient

c :=
ẋ0 ẍ−
ẋ0 ẍ+

(4.32)

which due to ẋ2
0 = 0 is reparametrisation invariant and thus is a characteristic

property of the curve in x0. With this definition we obtain

Ivec
(b) + Iscal

(b) =

1∫
0

dy
(1 + c)y − c − 2

√
−c
√
y(1− y)

((1− c)y2 + 2cy − c) − iε

1∫
δ

dr

r
+ finite ,

(4.33)

where we have introduced a cutoff δ as above. The integrand has singularities
for the roots of the denominator:

X1 : = −c−
√
c

1− c
,

X2 : = −c+
√
c

1− c
. (4.34)
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If c < 0, i.e. ẋ0ẍ− and ẋ0ẍ+ have different signs, which means that the curve
stays space-like or stays time-like on both sides of x0, the roots are complex
and do not affect the integration and the vector integral becomes

Ivec
(b),c<0 =

(
−1 + c

1− c
ln
√
−c +

√
−c

1− c
π

)
ln

1
δ

+ finite . (4.35)

Let us now examine the case of positive c, i.e. when ẋ0ẍ− and ẋ0ẍ+ have the
same sign, which means that the curve changes from space-like to time-like in
x0. X2 does not lie within the domain of integration (0, 1) for any real value of
c, whereas for c > 0, X1 lies within the domain of integration. We then have to
respect the iε-prescription from the propagator when surrounding the pole and
the vector integral becomes

Ivec
(b),c>0 =

(
−1 + c

1− c
ln
√
c +

∣∣∣∣1−√c1 +
√
c

∣∣∣∣ i π2
)

ln
1
δ

+ finite . (4.36)

The discussion of the poles is the same for the scalar part of the integral (4.33)
and for c < 0, we obtain

Iscal
(b),c<0 =

(
2
√
−c−

√
2(−c)

1
4 −

√
2(−c)

3
4

1− c
π

)
ln

1
δ

+ finite (4.37)

and for c > 0:

Iscal
(b),c>0 =

(
−
√

2
c

1
4

1 +
√
c
π +

√
2

∣∣∣∣∣ c
1
4 (1− c

1
4 )

(1 +
√
c)(1 + c

1
4 )

∣∣∣∣∣ iπ
)

ln
1
δ

+ finite . (4.38)

The above results now define the one-loop contribution to our new ‘2nd order
cusp anomalous dimension’ arising from this ‘cusp’ in the second derivative by

2 (Ivec
(b) + Iscal

(b) ) =: Γ(1)
b (c) ln δ + finite . (4.39)

For the whole ‘2nd order cusp anomalous dimension’, we need to sum up the
above contributions: twice Γa from (4.27), for each side of the singular point,
and twice Γb(c) from (4.35) and (4.37), respectively (4.36) and (4.38), taking
into account the case where t1 and t2 are exchanged. In the case where c < 0,
we thus finally obtain

Γ(1)
(cusp in ẍ)(c) = 2 Γ(1)

a + 2 Γ(1)
b (c)

= 4− 2π + 4
1 + c

1− c
ln
√
−c − 4

3
√
−c−

√
2
(
(−c)1/4 + (−c)3/4

)
1− c

π (4.40)

for the anomalous dimension due to a jump in the second derivative in a point
with light-like tangent. For c > 0, we get the analytic continuation:

Γ(1)
(cusp in ẍ)(c) = 4− 2π + 4

1 + c

1− c
ln
√
c + 4

√
2
(
c1/4 − c3/4

)
1− c

π +

− 2

∣∣∣∣∣1 + c− 6
√
c+ 2

√
2
(
c1/4 + c3/4

)
1− c

∣∣∣∣∣ iπ . (4.41)
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Note, that the expressions of course are symmetric under the exchange of c and
1
c .

For c → ∞, or equivalently c → 0, which for instance corresponds to the
case of a straight light-like segment at one side of the ‘2nd order cusp’, the ‘2nd

order cusp anomalous dimension’ behaves as:

Γ(1)
(cusp in ẍ)(c) = 2 ln(c) − 2π + 4 . (4.42)

Recall, that for the usual cusp anomalous dimension, in the limit of large
Minkowskian cusp angles θ:

cosh θ :=
ẋ+ẋ−
|ẋ+||ẋ−|

≈ eθ

2
, (4.43)

which corresponds to an angle between light-like sides, the cusp anomalous
dimension was linear in the angle and the factor of the one-loop result was
given by (3.8), i.e.:

Γ(1)
cusp(θ) = Γ(1)

cusp · θ = 2 θ

= 2 ln(cosh θ) + const . (4.44)

Comparing this to our result (4.42), we see that at one loop, the defined ‘2nd

order cusp anomalous dimension’ behaves in the same way as the usual cusp
anomalous dimension. This gives rise to the question, whether this relation is
also true at higher loop order and whether perhaps, identifying c with cosh θ,
for c → ∞ or 0, the ‘2nd order cusp anomalous dimension’ defines the same
universal function of the coupling then the usual cusp anomalous dimension for
θ →∞.

Let us finally have a look at the special case of a smooth curve with a light-
like tangent in some point, but ẍ− = ẍ+ (i.e. c = 1), as for instance the circle
of section 4.1, the above integral becomes

(Ivec
(b) + Iscal

(b) )c=1 =

...∫
0

dt1dt2
t1 − t2 − 2i

√
t1t2 + O(t2)

(t1 + t2)(t21 − t22) + O(t4) − iε
, (4.45)

where we have fixed the sign indeterminacy of the coupling to the scalars as
proposed in section 4.1. Performing the substitution (4.30) and taking into
consideration the iε-prescription from the propagator this can be solved to

(Ivec
(b) + Iscal

(b) )c=1 =

1 − 2i

1∫
0

dy

√
y(1− y)

(2y − 1) − iε

 1∫
δ

dr

r
+ finite

= −
(
1− π

2

)
ln(δ) + finite , (4.46)

where again a cut-off δ around the point with light-like tangent was introduced.
The integral from the diagram with both propagator endpoints on the same
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side of the singular point (4.25) does not depend on the second derivative ẍ±
of the respective side and thus remains as in (4.27). This contribution has to
be counted twice, once for every side, and the above contribution (4.46) also
needs to be counted twice, considering the case where t1 and t2 are exchanged.
We hence find that the divergent contributions exactly cancel each other and
can reproduce our result found for the special case of the circle, that a smooth
curve with isolated points with light-like tangent is finite. By generally fixing
the sign indeterminacy in the coupling to the scalars in the way suggested in
section 4.1, i.e.

√
ẋ2 = +i

√
|ẋ2| for space-like curves, we can thus achieve, that

a generic smooth curve remains finite.

In the above computation, we have assumed a constant coupling to the
scalars. Analogously to [29], one could have assumed an additional discontinu-
ity in the coupling to the scalars ΘI(t) in the supersymmetric Wilson loop of
(2.10) and could have computed the corresponding anomalous dimension. In
(4.40), we would then have an additional factor depending on the saltus in ΘI

in front of the scalar part of Γb(c). Possibly, for a special choice of the coupling
the anomalous dimension might vanish and the Wilson loop with discontinuity
in the second derivative in a point with light-like tangent might become finite.

Now, the question remains whether a discontinuity in a higher than the
second derivative in such a point also leads to divergences and thus to a corre-
sponding ‘higher order cusp anomalous dimension’. Let us therefore have a look
at a curve with a light-like tangent and a discontinuity in the third derivative
in some point. For the diagrams where both propagator endpoints lie on the
same side of the singular point, we get the same result as for a discontinuity in
the second derivative in (4.27), since this contribution is independent of ẋ0ẍ±.
For the divergent part of the diagram where the propagator connects the two
different sides of the higher order cusp, we obtain:

Ivec
(b),

...
x + Iscal

(b),
...
x =

...∫
0

dt1

...∫
0

dt2
ẋ(t1)ẋ(−t2)−

√
ẋ2(t1)

√
ẋ2(−t2)

(x(t1)− x(−t2))2
(4.47)

=

...∫
0

dt1dt2
t1 − t2 − 2i ẋ0ẍ0

|ẋ0ẍ0|
√
t1
√
t2 + O(t2)

(t1 + t2)(t21 − t22) + O(t4) − iε
. (4.48)

This is the same as in (4.29) with c = 1, i.e. as for a smooth curve. As examined
in (4.46) the sum of all contributions in this case are finite. The part depending
on the saltus in

...
x is of higher order in t and therefore is finite. Thus, no

divergences arise from a discontinuity in a higher than second derivative of x
in some point with light-like tangent and this situation does not define a new
anomalous dimension.
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x
0

x
1

Figure 4.4: A Wilson loop with finite light-like segments is divergent.

4.3 Wilson Loops with Straight Finite Light-Like Seg-
ments

Instead of a curve with isolated points with light-like tangent, let us now have
a look at a Wilson loop with finite light-like segments, as exemplarily shown in
fig. 4.4. Such a Wilson loop will have divergences stemming from the point of
transition between the light-like segment and the non-light-like continuation of
the curve. As soon as one propagator endpoint approaches the transition point
and the other endpoint lies somewhere along the light-like segment, the distance
becomes light-like and the integral diverges. Such a divergence therefore is
non-local. Thus, if we consider the supersymmetric Wilson loop with general
parameter dependent coupling to the scalars

< W > = 1− a

2

∫
dt1dt2

ẋ(t1)ẋ(t2)−ΘI(t1)ΘI(t2)|ẋ(t1)||ẋ(t2)|
(x(t1)− x(t2))2

+ O(a2)

(4.49)

with the unit six-vector
ΘI(t)ΘI(t) = 1 (4.50)

characterising the position of the loop on the S5, the question arises whether we
can choose the coupling Θ(t) to the scalars such that the Wilson loop becomes
finite, similar to the procedure used by [15, 17], as presented in section 2.2.1.

In order to examine the divergences coming from the light-like segment, we
have to consider the diagrams represented in fig. 4.5 including the correspond-
ing scalar diagrams. The first two diagrams are similar to diagrams considered
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(a) (b) (c)

Figure 4.5: One-loop vector contributions to a Wilson loop with finite light-like
segment.

before. Individually, the vector diagram 4.5a and the corresponding scalar dia-
gram have linear divergences if the propagator endpoints come together some-
where along the light-like segment. As we have seen in section 3.2 in equation
(3.23), these divergences exactly cancel each other for a constant coupling to
the scalars. The same is true for the divergences from coincident propagator
endpoints somewhere along the curve in diagram 4.5b, as long as the tangent
to the curve is not light-like. This divergence is the same as for 4.3a and has
already been computed for a constant coupling to the scalars in section 4.2.
From (4.25), we see that for a general t-dependent coupling to the scalars we
obtain

I
(1)
(b) =

...∫
0

dt1dt2
t2 + t1 −ΘI(t1)ΘI(t2)

√
2t1
√

2t2 + O(t2)
(t1 − t2)2(t1 + t2) + O(t4)

. (4.51)

The essentially new divergent contribution for a Wilson loop with finite
light-like segment comes from diagram 4.5c. This contribution is divergent, as
soon as the parameter t2 on the non-light-like part of the curve approaches
the transition point, independently of where on the light-like segment the other
parameter t1 is, since then the distance between the propagator endpoints be-
comes light-like. This is reflected in a divergence of the integrand for t2 = 0,
when expanding around the transition point x(t2 = 0) ≡ x0:

I
(1)
(c) =

...∫
0

dt1dt2
t2ẋ0ẍ2 −ΘI(−t1)ΘI(t2)

√
ẋ2

0

√
ẋ2

0 + 2t2ẋ0ẍ2 + O(t2)
(t1 + t2)t22ẋ0ẍ2 + O(t4)

, (4.52)

where ẍ2 ≡ ẍ(t2 → 0) is the left second derivative in x0. The parametrisa-
tion was at first chosen to be negative on the light-like segment and we then
performed the usual shift t1 → −t1 in the integration. In the case of constant
coupling to the scalars, the scalar term, being proportional to |ẋ0|2, vanishes
and we find

I
(1)
(c) =

...∫
0

dt1dt2
1 + O(t2)

(t1 + t2)t2 + O(t3)
. (4.53)
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We can then explicitly see the logarithmic divergence for t2 = 0 from the situa-
tion described above. The question now is, whether we can cure this non-local
divergence by choosing an appropriate coupling to the scalars.

Zarembo’s ansatz for the coupling to the scalars is, to only include the t-
dependence into a unit vector in the direction of the tangent to the curve and
thus letting the position of the loop on the S5 follow the tangent of the space-
time contour, as described in section 2.2.1. Having a look at the one-loop order
of the resulting Wilson loop (2.18):

I(1) =
∫
dt1dt2

ẋ(t1)ẋ(t2)−M I
µM

I
ν

ẋµ(t1)
|ẋ(t1)|

ẋν(t2)
|ẋ(t2)| |ẋ(t1)||ẋ(t2)|

(x(t1)− x(t2))2
(4.54)

=
∫
dt1dt2

ẋ(t1)ẋ(t2)− ηµν ẋ
µ(t1)ẋν(t2)

(x(t1)− x(t2))2
= 0 , (4.55)

we see that with this ansatz, it trivially becomes finite for an arbitrary curve.
We now want to find a coupling to the scalars, that makes the above Wilson
loop finite but non-trivial. For this our first attempt is, to generalise Zarembo’s
ansatz (2.15) by letting the matrices M I

µ depend on the contour parameter t:

ΘI(t) = M I
µ(t)

ẋµ(t)
|ẋ(t)|

. (4.56)

Due to the condition (4.50) our ansatz for the matrices has to fulfil

M I
µ(t)M I

ν (t) = ηµν (4.57)

for same parameters t.
Due to a ẋ2

0 = 0 in the denominator, the integrand of the one-loop contri-
bution from diagram 4.5a is ill-defined, unless we choose the simple Zarembo
ansatz with constant matrices M I

µ,0, since then ẋ2
0 cancels out. With this ansatz

the vector and the scalar part cancel and the contribution vanishes identically:

I
(1)
(a) =

...∫
0

dt1dt2
1 − 1

(t1 − t2)2
= 0 . (4.58)

Along the light-like piece, we therefore need to choose the Zarembo coupling.
Let us now have a look at the contribution from fig. 4.5b. With the gener-

alised Zarembo ansatz of (4.56), we obtain

I
(1)
(b) =

...∫
0

dt1dt2
ẋ(t1)ẋ(t2)−M I

µ(t1)M I
ν (t2)ẋµ(t1)ẋν(t2)

ẋ0ẍ2(t1 − t2)2(t1 + t2) + O(t4)
. (4.59)

In order to make this contribution finite, the M I
µ(t)-matrices need to behave as

M I
µ(t1)M I

ν (t2) = ηµν(1− (t1 − t2)2g̃(t1, t2)) (4.60)

where g̃(t1, t2) can be some function of the parameters which is finite or zero
for t1 = t2.
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Finally, with our generalised Zarembo ansatz the contribution from fig. 4.5c
becomes

I
(1)
(c) =

...∫
0

dt1dt2
ẋ0ẋ(t2)−M I

µ,0M
I
ν (t2)ẋ

µ
0 ẋ

ν(t2)
ẋ0ẍ2(t1 + t2) t22 + O(t4)

. (4.61)

In order to make this contribution finite, we need a coupling

M I
µ,0M

I
ν (t2) = ηµν(1 + t22 g(t2)) , (4.62)

where g(t2) has to be finite for t2 = 0. An obvious attempt would be to try
the following ansatz for the coupling on the non-light-like piece of the curve:
M I

µ(t) = M I
µ,0(1+f(t)), entirely putting the t-dependence into a scalar function

f(t). This of course does not work since due to condition (4.57), the function
would trivially have to be zero. Furthermore, it does not seem possible to find a
coupling M I

µ(t) on the non-light-like curve piece, that satisfies (4.60) and (4.62)
at the same time. The generalised Zarembo ansatz of (4.56) therefore fails in
making the considered Wilson loop finite.

As a second attempt, we therefore choose a more general ansatz for the
coupling, allowing other directions for the position of the loop on the S5 by
additionally adding a term normal to the tangent vector. For the non-light-like
curve piece, we can choose the curve length s as a parameter for a space-like
curve, or equivalently the proper time for a time-like curve. Then

(
dx
ds

)2 ≡ x′2 =
±1 and we have x′x′′ = 0, i.e x′′ is normal to the tangent vector. Taking the
thus defined principal normal to the tangent vector, our coupling takes the form

ΘI(t) = M I
µ,0

1
N(t)

(
a(t)

ẋµ(t)
|ẋ(t)|

+ b(t)
x′′µ(t)
|x′′(t)|

)
, (4.63)

where M I
µ,0 are the constant matrices of the Zarembo ansatz, N(t) is a nor-

malisation factor in order secure that ΘI is a unit vector and a(t) and b(t) are
functions of the contour parameter t, which should be chosen such that the
singularities of the denominator are cancelled.
For diagram 4.5c, this can be achieved by choosing a(t) = 1 − t2ã(t) and
b(t) = t2b̃(t), where ã(t) and b̃(t) should be finite or zero for t = 0. This
ansatz determines the normalisation factor through (4.50) to be

N(t) =

√
(1− t2ã(t))2

ẋ2

|ẋ|2
+ t4b̃(t)2

x′′2

|x′′|2
(4.64)

=
√

(±)(1− 2t2ã(t) + t4ã(t)2) + (±)′′t4b̃(t)2 , (4.65)

where (±) is determined by the sign of ẋ2 and (±)′′ by the sign of x′′2. We then
obtain the following coupling

ΘI(t) = M I
µ,0

1
N(t)

(
(1− t2ã(t))

ẋµ(t)
|ẋ(t)|

+ t2b̃(t)
x′′µ(−t)
|x′′(−t)|

)
. (4.66)
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By choosing ã(t) and b̃(t) in such a way, that they decline for large t, e.g.

ã(t) = b̃(t) = e−t , (4.67)

we can make sure that our ansatz only is explicitly t-dependent near the critical
transition point generating the divergence, and that we reobtain Zarembo’s
ansatz at large distances of it. Keeping in mind that along the light-like segment,
we need to keep the simple Zarembo ansatz, diagram 4.5c becomes

I
(1)
(c) =

...∫
0

dt̃dt

(
ẋ0 ẋ(t)

t2 (t̃+ t) ẋ0ẍ2 + O(t4)
− (4.68)

1
N(t) ηµν

ẋµ
0

|ẋ0|

(
(1− t2e−t) ẋν(t)

|ẋ(t)| + t2e−t x′′ν(t)
|x′′(t)|

)
|ẋ0||ẋ(t)|

t2 (t̃+ t) ẋ0ẍ2 + O(t4)

)
,

where the parameter t̃ runs along the light-like segment and t along the non-
light-like curve piece. For small t, i.e. if the propagator endpoint approaches
the light-like segment, this behaves as

I
(1)
(c) =

...∫
0

dt̃dt

(
ẋ0ẋ(t)

t2 (t̃+ t) ẋ0ẍ2 + O(t4)
− (4.69)

−
(1 + t2) ηµν

ẋµ
0

|ẋ0|

(
ẋν(t)
|ẋ(t)| + t2

(
ẋν(t)
|ẋ(t)| +

x′′ν(t)
|x′′(t)|

))
|ẋ0||ẋ(t)| + O(t3)

t2 (t̃+ t) ẋ0ẍ2 + O(t4)

)

= −
...∫

0

dt̃dt
t2
(
2ẋ0ẋ(t) + ẋ0x

′′(t) |ẋ(t)|
|x′′(t)|

)
+ O(t3)

t2 (t̃+ t) ẋ0ẍ2 + O(t4)
. (4.70)

As intended, with our ansatz (4.66), the factor of t2 in the denominator is
cancelled and the contribution becomes finite.

It now remains to be checked whether our ansatz also cancels the divergences
of diagram 4.5b when the propagator ends come together. For this we insert
our ansatz for the coupling (4.66) into the contribution I

(1)
(b) and expand x(t̃)

around t = t̃ in the denominator:

I
(1)
(b) =

1∫
0

dt̃dt
ẋ(t)ẋ(t̃)−ΘI(t)ΘI(t̃)|ẋ(t)||ẋ(t̃)|

(t− t̃)2ẋ2(t) + O((t− t̃)3)
. (4.71)

Writing t̃ ≡ t+ ε the denominator then is of order ε2. To zeroth order in ε, the
scalar part and the vector part in the numerator cancel due to the normalisation
of the ansatz for equal parameters. It thus remains to be shown that the linear
order of ε in the numerator vanishes. This can indeed be seen by explicitly
calculating it (see appendix C).
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4.4 Rectangular Wilson Loop in Minkowskian Space

Figure 4.6: Rectangular Wilson loop in the (x0, x1)-plane of Minkowski space.

Generalising Zarembo’s ansatz as in (4.63), we have thus found a coupling
to the scalars, such that a Wilson loop with light-like segments becomes fi-
nite. Following the discussion of [15], one could now examine whether a Wilson
loop with the proposed coupling globally preserves supersymmetry and if one
can thus construct BPS operators for contours of special shape. However, an
embedding of a curve with straight extended light-like segment in a simple
submanifold as in [17], [18] seems difficult.

4.4 Rectangular Wilson Loop in Minkowskian Space

Various simple geometrical objects, such as the circle, whose divergences were
examined in section 4.1 for the Minkowski case, and the rectangle have been
calculated in Euclidean space. Having realised how different the behaviour of
Wilson loops in a Minkowskian space-time structure can be, it therefore seems
interesting to calculate these objects in Minkowski space and to compare the
results to the Euclidean case. In this section, we will thus calculate the Wilson
loop for a rectangle with two time-like and two space-like sides as represented
in fig. 4.6 in the (x0, x1)-plane. For large time lengths, this Wilson loop has
the physical significance of the static quark-antiquark-potential as was briefly
explained in chapter 2.

The renormalised rectangular Wilson loop in Euclidean space with sides x
and y to one-loop order, can for instance be found in [47]:

W (x, y) = 1 + 2a
(

2 + ln
x2y2µ2

x2 + y2
+
x

y
arctan

x

y
+
y

x
arctan

y

x

)
, (4.72)

where µ is the renormalisation group parameter. The 2-loop expression can
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R

(a)

T

(b)

R

(c)

T

(d) (e) (f)

Figure 4.7: One-loop gauge field contributions to the rectangular Wilson loop.

for instance be found in [48]. This is the pure gauge field Wilson loop without
scalars. In order to compare it to the Minkowski result, we therefore only need
to consider the gauge field part.

In Minkowski space, the rectangular Wilson loop in the (x0, x1)-plane, as
represented in figure 4.6, can be parametrised as follows: For the parameter
running along the upper space-like edge (R), we get

x(t1) =
(

T
2

−R
2 +Rt1

)
⇒ ẋ(t1) =

(
0
R

)
(4.73)

If the parameter runs along the right time-like edge (T ), we get

x(t2) =
(

T
2 − Tt2

R
2

)
⇒ ẋ(t2) =

(
−T
0

)
(4.74)

and analogously for the other two sides of the rectangle.
In order to calculate the pure gauge field Wilson loop to one-loop order, we

need to take into account the graphs shown in figure 4.7. The diagrams with
a propagator which has both ends on one and the same edge of the rectangle,
4.7a and 4.7b are divergent due to the situation when the propagator ends come
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4.4 Rectangular Wilson Loop in Minkowskian Space

together, somewhere along the edge of the rectangle. For 4.7a we get

I(a) =

1∫
0

dt2

1∫
0

dt1
ẋ(t1)ẋ(t2)

(x(t1)− x(t2))2
(4.75)

=

1∫
0

dt2

1∫
0

dt1
−R2

−R2(t1 − t2)2
. (4.76)

The integral is divergent due to the singularity of the integrand at t1 = t2.
We can regularise it by introducing a cutoff, preventing the propagator end-
points from coming closer than some ∆, or equivalently, we can add ∆ to the
denominator:

I(a) =

1∫
0

dt2

1∫
0

dt1
1

(t1 − t2)2 + ∆2

R2

(4.77)

= 2 ln
(

∆
R

)
− 2 . (4.78)

This is divergent as we send ∆ to zero. We can therefore introduce a scale µ,
drop infinite terms and obtain

I(a) = −2 ln(Rµ)− 2 . (4.79)

µ then is the renormalisation group parameter.
If the propagator endpoints both run along one of the time-like edges T (fig.

4.7b), we obtain the same contribution but substituting R by T .

We then have the contributions from the diagrams where the propagator
connects the opposite sides of the rectangle, shown in fig. 4.7c and 4.7d. For
the case where the propagator connects the two space-like edges (R) we get

I(c) =

1∫
0

dt1

1∫
0

dt2
ẋ(t1)ẋ(t2)

(x(t1)− x(t2))2
(4.80)

=

1∫
0

dt1

1∫
0

dt2
R2

T 2 −R2(1− t1 − t2)2
(4.81)

=
R2

T 2

1∫
0

dt1

1∫
0

dt2
1

1− R2

T 2 (t1 − t2)2
, (4.82)

where we have substituted 1− t1 by t1. If we now assume that T be larger than
R, we see that the integrand has no singularity within the integration limits
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t1, t2 ∈ [0, 1] and we can directly solve the integral:

IT>R

(c) =
R2

2T 2

1∫
0

dt1

1∫
0

dt2

(
1

1− R
T (t1 − t2)

+
1

1 + R
T (t1 − t2)

)
(4.83)

=
1
2
R

T

1∫
0

dt1

(
ln
(

1− R

T
(t1 − t2)

)
− ln

(
1 +

R

T
(t1 − t2)

))∣∣∣∣∣
t2=1

t2=0

(4.84)

=
R

T
ln

(
1 + R

T

1− R
T

)
+ ln

(
1− R2

T 2

)
. (4.85)

The diagram with the propagator that connects the two opposite time-like edges
(T ) of the rectangle is the same but with exchanged R and T :

I(d) =
T 2

R2

1∫
0

dt1

1∫
0

dt2
1

1− T 2

R2 (t1 − t2)2 − iε
. (4.86)

However, still assuming T to be larger than R, we now have to be more care-
ful about the integration, since we now have a singularity at (t1 − t2) = ±R

T
which is the case where the distance between the propagator endpoints becomes
light-like. However, for the singularities that lie somewhere along the side of
the rectangle, the result is finite and real due to the iε-prescription of the prop-
agator, since treating the integral as a principal value yields a finite result and
the additional terms from compassing the poles cancel each other. This holds
as long as the singularity is not exactly at the boundary of the integration.
When one of the parameters lies on the integration boundary at the corner of
the rectangle, the iε-prescription does not help making the result finite. How-
ever, since the divergence is a logarithmic one, as can be seen in (4.84), and the
logarithm is integrable, this does not lead to any additional divergences. With
these considerations we get the following contribution from diagram 4.7d for
T > R:

IT>R

(d) =
T

R
ln

(
−

1 + T
R

1− T
R

)
+ ln

(
T 2

R2
− 1
)
. (4.87)

The case where R is larger than T is analogous. The singularities now appear
in diagram 4.7c, but again they do not lead to additional divergences and in
total, we get the same result as before, but with exchanged R and T . For both
cases, the total result for the sum of fig. 4.7c and 4.7d can hence be formulated
as follows:

I(c) + I(d) =
R

T
ln

(
1 + R

T

|1− R
T |

)
+
T

R
ln

(
1 + T

R

|1− T
R |

)
− ln

(
R2T 2

(R2 − T 2)2

)
. (4.88)

The discussion of the singularities however, only holds as long as R 6= T . The
case of the square would have to be considered apart.
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Finally, the diagrams 4.7e and 4.7f remain. Here, ẋ(t1) and ẋ(t2) are or-
thogonal and the contribution vanishes.

For the complete gauge field Wilson loop to one-loop order, we now need to
sum over the above contributions: Diagrams 4.7a and 4.7b have to be considered
twice each, for every side of the rectangle. The contributions with propagators
connecting opposite sides, (4.88), also need to be counted twice each, since one
has to take into account the case where t1 and t2 are exchanged. In total, we
get

W (R, T ) = 1 − a

2

(
2 I(a) + 2 I(b) + 2

(
I(c) + I(d)

) )
+ O(a2)

W = 1 + a

(
− R

T
ln

(
1 + R

T

|1− R
T |

)
− T

R
ln

(
1 + T

R

|1− T
R |

)
+

+ ln
(

R4T 4µ4

(R2 − T 2)2

)
+ 4

)
+ O(a2) (4.89)

for the rectangular gauge field Wilson loop in Minkowski space to one loop
order.
We can now compare our result to the Euclidean result (4.72), which we can
rewrite as follows

W = 1 + a

(
i
x

y
ln

(
1 + ixy
1− ixy

)
+ i

y

x
ln
(

1 + i y
x

1− i y
x

)
+

+ ln
(

x4y4µ4

(x2 + y2)2

)
+ 4

)
+ O(a2) . (4.90)

Comparing the two expressions, we see that we have exact correspondence if we
identify the sides (x, y) with (R, T ) and perform a Wick rotation T → iT . This
is the result one might already have expected, for a rectangle that has clearly
distinct time-like and space-like sides, which are orthogonal to each other. We
can thus directly see that we only get T 2-terms and no mixed term RT in the
integrand, which would become imaginary after Wick rotation.

This is not so obvious in the case of the circle though, where a Wick rota-
tion of the radius R→ iR transforms the circle into a hyperboloid rather than
again into a circle. It thus seems worth computing the one-loop Wilson loop
for the Minkowski circle with points with light-like tangents, which was shown
to be finite in section 4.1, and to compare it with the Euclidean result, which
was for instance calculated in [16]. There, an anomaly for the conformal inver-
sion, that maps the Euclidean circle to the Wilson line, which simply equals
one, was stated, which determines the circular Wilson loop to all orders in the
coupling. It would thus be interesting to examine, whether this also holds for
the Minkowski case.

Comparing the results for the Euclidean circular Wilson loop to the string
worldsheet associated to it through the AdS/CFT correspondence as described
in 2.2, in [16] the full supersymmetric Wilson loop including the scalars was
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calculated. For a similar check of the correspondence for the Minkowski rectan-
gular Wilson loop, we would of course also need the supersymmetric rectangular
Wilson loop, including the scalars.

Supersymmetric Rectangular Wilson Loop

In order to compute the supersymmetric rectangular Wilson loop including the
scalars, additionally to the diagrams considered above, we need to compute the
corresponding scalar diagrams.

As for a generic smooth curve, the vector and the scalar contributions from
the propagators that have both ends on one and the same edge of the rectangle
(fig. 4.7a and 4.7b) cancel each other

Ivector

(a) + Iscalar

(a) =

1∫
0

dt1

1∫
0

dt2
ẋ(t1)ẋ(t2)−

√
ẋ2(t1)

√
ẋ2(t2)

(x(t1)− x(t2))2
(4.91)

=

1∫
0

dt1

1∫
0

dt2
−R2 −

√
−R2

√
−R2

−R2(t2 − t1)2
= 0 (4.92)

and the divergences from the vector part (4.79) fall away.

We then have the contributions from the diagrams where the propagator
connects the opposite sides of the rectangle. Here, the scalar part equals the
vector part and for the supersymmetric Wilson loop, we simply need to consider
the above contributions (4.88) twice.

Since the vector-diagrams of 4.7e and 4.7f vanish as seen above, finally, only
its scalar version remains to be computed:

Iscalar

(e) = −
1∫

0

dt1

1∫
0

dt2

√
ẋ2(t1)

√
ẋ2(t2)

(x(t1)− x(t2))2
(4.93)

= −
√
−R2

√
T 2

1∫
0

dt1

1∫
0

dt2
1

(T 2t22 −R2t21)
(4.94)

where in the integration, we have shifted (1− t1) to t1. Here, we again fix the
sign indeterminacy as proposed in section 4.1:

√
−R2 = +i

√
R2. Changing to
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polar coordinates as in (3.33), this becomes

Iscalar

(e) = −i
√
R2
√
T 2

( π
4∫

0

dφ

1
cos φ∫
0

dr r
1

r2(T 2 sin2 φ−R2 cos2 φ)
+ (4.95)

+

π
2∫

π
4

dφ

1
sin φ∫
0

dr r
1

r2(T 2 sin2 φ−R2 cos2 φ)

)

= −i
√
R2
√
T 2


π
2∫

0

dφ
1

(T 2 sin2 φ−R2 cos2 φ)

1∫
0

dr

r
− F (T,R)

 , (4.96)

where we expect the integrals defined by

F (T,R) :=

π
4∫

0

dφ
ln(cosφ)

(T 2 sin2 φ−R2 cos2 φ)
+

π
2∫

π
4

dφ
ln(sinφ)

(T 2 sin2 φ−R2 cos2 φ)

(4.97)

to be finite as we do not expect any divergences coming from the boundary at
t1 = t2 = 1.
In polar coordinates, the logarithmic divergence at r = 0, corresponding to
t1 = t2 = 0, i.e. to the case where the propagator ends come together at the
corner, becomes manifest. The factor in front of this logarithmic divergence is
determined by the φ-integral:

π
2∫

0

dφ
1

(T 2 sin2 φ−R2 cos2 φ) − iε
=

π
2∫

0

dφ

cos2 φ
1

T 2 tan2 φ−R2 − iε

=
1
2

∞∫
−∞

dz

T 2z2 −R2 − iε

=
1

2TR

∞∫
−∞

dy

y2 − 1 − iε

=
iπ

2TR
. (4.98)

Introducing a cutoff δ for the r-integral in (4.96), the first term simplifies to

− i
√
R2
√
T 2

iπ

2TR

1∫
δ

dr

r
=
π

2
ln

1
δ
. (4.99)
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For the boundary terms (4.97), we obtain:

F (T,R) = −i
√
R2
√
T 2

π
2∫

0

dφ
ln
(

1
2(1 + | cos(2φ)|)

)
T 2 cos2 φ−R2 sin2 φ − iε

= −i
√
R2
√
T 2

1
2T 2

π
2∫

0

dφ

cos2 φ

ln
(

1
2(1 +

∣∣∣ 1−tan2φ
1+tan2 φ

∣∣∣))
1− R2

T 2 tan2 φ − iε

= − i
4

∞∫
−∞

dy

ln
(

1
2(1 +

∣∣∣∣1−R2

T2 y2

1+R2

T2 y2

∣∣∣∣))
y2 − 1 − iε︸ ︷︷ ︸

=:f(y)

= − i
4

2πi Res (f(y), 1)

=
π

4
ln

(
1
2

(
1 +

∣∣∣∣∣1− R2

T 2

1 + R2

T 2

∣∣∣∣∣
))

. (4.100)

In total, for the contribution from the scalar propagator ending on adjacent
sides as in fig 4.7e, we thus find

Iscalar

(e) =
π

2

(
ln

1
δ

+
1
2

ln

(
1 +

∣∣∣∣∣1− R2

T 2

1 + R2

T 2

∣∣∣∣∣
)
− ln 2

)
. (4.101)

If we again assume that T > R, this becomes

Iscalar

(e) = −π
4

(
2 ln δ + ln(1 +

R2

T 2
) + ln 2

)
. (4.102)

In the case where R > T , we get the same result but with exchanged T and R.
The contribution from the opposite corner is the same and the one from the
two other corners, 4.7f, has the same form but with T and R exchanged:

Iscalar

(f) = −π
4

(
2 ln δ + ln(1 +

T 2

R2
) + ln 2

)
. (4.103)

The total result is symmetric inR and T and therefore is the same independently
of which side of the rectangle is larger. In total, for the one-loop supersymmet-
ric rectangular Wilson loop in Minkowski space, we thus have to consider twice
the contribution from every corner (4.102) and (4.103) and four times the con-
tributions from the opposite sides (4.88), twice for the scalar and the vector
part and twice for exchanged t1 and t2:

W (R, T ) = 1 − a

2

(
4
(
I(c) + I(d)

)
+ 4 Iscalar

(e) + 4 Iscalar

(f)

)
+ O(a2)

= 1− 2a

(
R

T
ln

(
1 + R

T

|1− R
T |

)
+
T

R
ln

(
1 + T

R

|1− T
R |

)
− ln

(
R2T 2

(R2 − T 2)2

)
−

− π ln δ − π

2
ln 2 +

π

4
ln
(

R2T 2

(R2 + T 2)2

))
+ O(a2) ,

(4.104)
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4.4 Rectangular Wilson Loop in Minkowskian Space

where the first line is the contribution from the diagrams where the propagator
connects the opposite sides of the rectangle and the second line comes from the
diagrams where the propagator connects adjacent sides.

A comparison of this result to the area of the string worldsheet associated
to the rectangular Wilson loop through the AdS/CFT correspondence, would
yield a non-trivial test of the correspondence.
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Chapter 4: Special Properties of Wilson Loops in Minkowski Space
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V

Conclusion and Outlook

We reviewed the basics of the AdS/CFT correspondence in chapter 1 and put
a special emphasis on the role of the Wilson loop operator, its construction in
the supersymmetric gauge theory and the recently proposed duality between
light-like polygonal Wilson loops and gluon scattering amplitudes in N = 4
SYM in chapter 2.

Scattering amplitudes, as well as light-like Wilson loops with cusps are di-
vergent. Hence, a full comparison of the two objects requires regularisation on
both sides of the duality. This has been done for dimensional regularisation up
to 2-loop order in perturbation theory, for different numbers of gluons, as is
briefly reviewed in section 3.1 of chapter 3.

In section 3.2, we proposed an alternative regularisation of the Wilson loop,
matching off-shell gluon scattering amplitudes with momenta p2 = −m2. The
regularisation, performed for the supersymmetric Wilson loop, consists in intro-
ducing a position dependent cutoff near the cusps of the non-light-like polygon.
The thus regularised Wilson loop was explicitly shown to match the off-shell
4-gluon scattering amplitudes to one-loop order, up to a finite term independent
of the kinematics and up to terms vanishing for m2 → 0. While the full off-shell
gluon scattering amplitudes and cut Wilson loop are gauge dependent, we have
shown that the leading divergent squared logarithmic term, which is related to
the cusp anomalous dimension, is gauge invariant.

An obvious continuation would be to check, whether the regularised Wilson
loop still matches the gluon scattering amplitudes to higher loop order in per-
turbation theory and to generalise to arbitrary number of gluons. Moreover, it
also seems interesting to consider finite off-shellness of the amplitudes and to
compare, whether the terms that appear in the space-like Wilson loop for finite
m coincide.

On the string theory side of the AdS/CFT correspondence, one could con-
struct a regularisation of the string worldsheets ending on the off-light-cone
polygonal contour on the boundary of AdS in the limit of classical string the-
ory, yielding a strong coupling result for the Wilson loop. For the light-like
case, an alternative to dimensional regularisation, likewise introducing a posi-
tion dependent cutoff in the radial direction of AdS, has already been discussed
in [31].

Furthermore, our regularisation could be of interest in the discussion of the
dual conformal symmetry of Wilson loops and scattering amplitudes [7, 8, 13],
briefly reviewed in section 2.3.4. However, the construction of a conformal Ward
identity, as found for the light-like polygonal Wilson loop in [13], seems difficult
for the non-light-like Wilson loop with cut contour in question.
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Chapter 5: Conclusion and Outlook

In chapter 4, we have examined special properties of Wilson loops in Minkow-
ski space with light-like tangents and straight extended light-like segments.

From the claim that the Wilson loop for a smooth curve be finite, we fixed
an indeterminacy in the sign of the coupling of the locally supersymmetric
Wilson loop to the scalars, specific to the Minkowski case. We showed, that a
contour point with light-like tangent and a discontinuity in the second derivative
leads to a divergence, which defines an anomalous dimension, similarly to the
cusp anomalous dimension for a discontinuity in the first derivative. We have
computed this ‘second order cusp anomalous dimension’ to one loop in section
4.2. Identifying the quotient characterising the jump in the second derivative
c := ẋ0 ẍ−/ẋ0 ẍ+ with the cusp angle cosh θ of a usual cusp, we showed that
for large c the defined ‘second order cusp anomalous dimension’ behaves in the
same way as the usual cusp anomalous dimension at large angles. This gives
rise to the question, whether this relationship also holds at higher loop order
and whether the ‘second order cusp anomalous dimension’ perhaps even defines
the same universal function of the coupling constant.

In 4.3, we pointed out that a Wilson loop with a straight extended light-
like segment is divergent. We constructed a coupling of the supersymmetric
Wilson loop to the scalars such that this non-local divergence cancels and the
Wilson loop becomes finite. It would be interesting to examine, whether Wilson
loops with the proposed coupling to the scalars preserve a certain amount of
supersymmetry for special contour shapes, following the discussion in [15, 17,
18]. An embedding of a curve with straight light-like segments in a simple
submanifold as in [17, 18] seems difficult, though.

It seems natural to assume an additional jump in the coupling to the scalars,
also in the case of the curve with light-like tangent and a discontinuity in the
second derivative discussed above, as was done for the common cusp anomalous
dimension in [29]. We would then obtain the corresponding anomalous dimen-
sion, as a function of the saltus in ẍ of the usual loop-variables and of the saltus
in the coupling. It would then again be interesting to examine whether the
discontinuity in the coupling can be chosen such that the anomalous dimension
vanishes and the Wilson loop becomes finite, similar to the discussion for ex-
tended light-like segments in section 4.3.

Having investigated special local features of Wilson loops in Minkowski space
related to their embedding in space-time, we then examined the Wilson loops
for simple geometrical contours in Minkowski space, such as the circle and
the rectangle, in order to compare the results to their Euclidean versions. In
4.4, we computed the full rectangular Wilson loop in Minkowski space and
explicitly showed that the Minkowskian result arises from the Euclidean one
by Wick rotation of the time-like side T → iT . This result corresponds to our
expectations for the case of the rectangle with neatly separated and orthogonal
time-like and space-like edges.

This is not so obvious in the case of the circle, however, since there, a Wick
rotation of the radius R → iR transforms a circle into a hyperboloid. It thus
seems interesting to compute the Wilson loop for a circle in Minkowski space
and to compare it to the Euclidean result. In the Euclidean case, the circle
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is the conformal inversion of a straight line, whose Wilson loop simply equals
one. Though N = 4 SYM is conformal, the circular Wilson loop acquires an
anomalous contribution and is a non-trivial function of the coupling constant,
which may be calculated exactly to all orders in the coupling [16]. Hence,
it would be interesting to compute the Wilson loop for such a circle and its
conformal inversion in Minkowski space in order to check whether the situation
is analogous.
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Appendix A

Aspects of SU(N) Gauge Theory

A.1 Generators of SU(N)

Throughout this thesis, T a denote the generators of the SU(N) Lie algebra:

[T a, T b] = ifabc T c

where fabc are the structure constants of the gauge group. In the fundamental
representation of SU(N), we can choose

Tr(T aT b) =
1
2
δab

⇒ Tr(T aT a) =
1
2

(N2 − 1) . (A.1)

With
Tr(T aT a) = CFN (A.2)

the Casimir CF then is

CF =
N2 − 1

2N
N→∞−−−−→ N

2
(A.3)

for large N.

A.2 Propagators

In SU(N) gauge theory, the gauge field propagator in four space-time dimensions
in generalised Feynman gauge takes the form〈
Aa

µ(x)Ab
ν(y)

〉
α

=
ηµν

4π2((x− y)2 − iε)
+
α− 1
16π2

∂µ∂ν log(Λ2(x−y)2−iε) (A.4)

as for instance can be found in [47].
In Feynman gauge α = 1 and the four dimensional gauge field propagator

becomes 〈
Aa

µ(x)Ab
ν(y)

〉
=

1
4π2

δab ηµν

(x− y)2
. (A.5)

The scalar propagator is gauge independent:〈
φa

I (x)φ
b
J(y)

〉
= − 1

4π2

δab δIJ

(x− y)2
. (A.6)
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Appendix A: Aspects of SU(N) Gauge Theory

A.3 Propagators in Dimensional Regularisation

For dimensional regularisation, we need the propagator in D = 4 − 2ε dimen-
sions. In Feynman Gauge, the gauge field propagator then takes the form〈

Aa
µ(x)Ab

ν(y)
〉

= − πε

4π2
Γ(1− ε)

δabηµν

(−(x− y)2)1−ε
(A.7)

and the scalar propagator becomes〈
φa

I (x)φ
b
J(y)

〉
=

πε

4π2
Γ(1− ε)

δabδIJ

(−(x− y)2)1−ε
, (A.8)

where Γ(z) is the Euler gamma function (see also [47]).

If we have a UV divergence, regularisation demands lowering the dimension,
i.e. ε > 0. We can extract a dimensional factor of m2ε from the fraction in the
propagator and multiply with the coupling, while extracting its dimension into
a UV scale µUV, as in (3.3), and obtain the prefactor of the one-loop order of
the Wilson loop (3.31). It can then be expanded in orders of the regularisation
parameter ε:

(g · µε
UV)2N
4

πε

4π2
Γ(1− ε)m2ε =

g2N

16π2
(µ2

UVπm
2)εΓ(1− ε)

=
a

2
(1 + ε ln(µ2

UVπm
2))(1 + εΓ′(1)) + O(ε2)

=
a

2
(1 + ε ln(m2µ2

UVπe
γ)) + O(ε2)

=
a

2
(1 + ε ln(

m2

µ2
)) + O(ε2) (A.9)

where γ is the Euler constant and µ was defined in (3.11).
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Appendix B

Integrals

B.1 Wilson Loops and Scattering Amplitudes in Off-
Shell Regularisation

Integral I(2)
ij :

Remembering that Bij , as defined in (3.35), is negative and its absolute value
gets large for m2 → 0, the integral I(2)

ij , defined in (3.40) can be evaluated as
follows:

1
2
I

(2)
ij :=

π
2∫

0

dφ
ln(1 + |Bij | sinφ)

1 + |Bij | sinφ
(B.1)

=

1√
|Bij |∫

0

dφ
ln(1 + |Bij | sinφ)

1 + |Bij | sinφ
+

π
2∫

1√
|Bij |

dφ
ln(|Bij | sinφ)
|Bij | sinφ

+ O
(

1
|Bij |2

)

=
1

|Bij |

1+
√
|Bij |∫

1

dy
ln y
y

+
ln |Bij |
|Bij |

π
2∫

1√
|Bij |

dφ
1

sinφ
+

+
1

|Bij |

π
2∫

1√
|Bij |

dφ
ln(sinφ)

sinφ
+ O

(
1

|Bij |2

)

=
1

|Bij |

(
1
2

ln2(1 +
√
|Bij |)− ln |Bij | ln

(
tan

1
2
√
|Bij |

)
+

+

π
2∫

1√
|Bij |

dφ
ln(sinφ)

sinφ

)
+ O

(
1

|Bij |2

)

Expanded in orders of 1
|Bij | , the integral in the last line becomes

π
2∫

1√
|Bij |

dφ
ln(sinφ)

sinφ
= −π

2

24
+

1
2
(ln 2)2 − 1

8
(ln |Bij |)2 + O

(
1

|Bij |

)
. (B.2)
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Appendix B: Integrals

Additionally approximating

ln2(1 +
√
|Bij |) =

1
4

ln2(|Bij |) + O
(

1
|Bij |

)
(B.3)

and

ln

(
tan

1
2
√
|Bij |

)
= − ln

(
2
√
|Bij |

)
+ O

(
1

|Bij |

)
= − ln(2)− 1

2
ln(|Bij |) + O

(
1

|Bij |

)
, (B.4)

we finally find:

I
(2)
ij = 2 ln(2)

ln |Bij |
|Bij |

+
ln2(|Bij |)
|Bij |

+
1

|Bij |

(
−π

2

12
+ ln2(2)

)
+ O

(
1

|Bij |2

)
= − 1

Bij

(
ln(−Bij) + ln(2)

)2
+

1
Bij

π2

12
+ O

(
1
B2

ij

)
. (B.5)

Integral Aij:

The integral Aij defined in (3.42) can be evaluated for large −Bij by expanding
in orders of 1

Bij
:

Aij := Bij

π
2∫

0

dφ
ln(cos2 φ

2 )
1−Bij sinφ

=

π
2∫

0

dφ
ln
(
cos2 φ

2

)
1

Bij
− sinφ

= −

π
2∫

0

dφ
ln
(
cos2 φ

2

)
sinφ

+ O
(

1
Bij

)

= −

π
2∫

0

dφ
ln
(

1
2 + 1

2 cosφ
)

sinφ
+ O

(
1
Bij

)

= −
1∫

0

dφ
ln (1 + x)− ln 2

1− x2
+ O

(
1
Bij

)

=
π2

24
+ O(

1
Bij

) . (B.6)
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B.2 Circular Wilson Loop

B.2 Circular Wilson Loop

The scalar part (4.15) of the φ-integral, of the diagram of fig. 4.2b can be
solved with the help of the Sokhatsky-Weierstrass theorem for an integral with
a simple pole. Be a < 0 < b, then:

b∫
a

dα
f(α)
α± iε

= �
b∫

a

dα
f(α)
α

∓ iπf(0) (B.7)

where �
∫

denotes the principal value. The integral (4.15) has a pole at φ = π
4 .

We thus substitute φ = π
4 + α:

π
2∫

0

dφ
∓ 2i

√
cosφ sinφ

(sinφ+ cosφ)2(sinφ− cosφ) − iε

= ∓ i

2

π
4∫

−π
4

dα

√
cos2 α− sin2 α

cos2 α sinα − iε

= ∓ i

2

π
4∫

−π
4

dα

√
cos2 α− sin2 α

cos2 α
α

sinα︸ ︷︷ ︸
=:f(α)

1
α − iε

= ∓ i

2
�

π
4∫

−π
4

dα
f(α)
α

± π

2
f(0) = ±π

2

where in the last step, we have used that the principal value vanishes due to
the symmetry of f(α).
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Appendix C

Coupling to the Scalars for Wilson
Loop with Straight Light-Like

Segment

For the contribution of diagram 4.5b to a Wilson loop with light-like segment
as considered in 4.3, with the ansatz for the coupling proposed in (4.66) with
ã(t) and b̃(t) as in (4.67), we get:

I(b) =

1∫
0

dt̃ dt
ẋ(t)ẋ(t̃) − ΘI(t)ΘI(t̃) |ẋ(t)||ẋ(t̃)|

(x(t)− x(t̃))2
(C.1)

=

1∫
0

dt̃ dt
ẋ(t)ẋ(t̃)

(t− t̃)2ẋ2(t) + O((t− t̃)3)
− 1
N(t̃)N(t)

|ẋ(t)||ẋ(t̃)| ηµν ×

×

(
(1− t2e−t) ẋµ(t)

|ẋ(t)| + t2e−t x′′µ(t)
|x′′(t)|

)(
(1− t̃2e−t̃) ẋν(t̃)

|ẋ(t̃)| + t̃2e−t̃ x′′ν(t̃)

|x′′(t̃)|

)
(t− t̃)2ẋ2(t) + O((t− t̃)3)

(C.2)

where we have chosen the parameters to run from 0 to 1 along the non-light
-like curve piece. In (C.2), we have expanded x(t̃) around t̃ = t in the denomi-
nator. The denominator of the integrand has a second order root for coinciding
propagator endpoints, t = t̃. In order to examine, whether this leads to a diver-
gence, we choose t̃ = t+ ε and expand the coupling for small deviations ε of the
two parameters. The denominator then is of order ε2. Due to the unit-vector
condition of the coupling, the zeroth order in ε exactly cancels the vector part
of the integral. It thus remains to be shown, that the linear order in ε vanishes.
For this, we compute the scalar part of the numerator of (C.2) to first order in
ε.
The normalisation factor was

N(t) =
√
± 1 ∓ 2t2e−t ± t4e−2t ±′′ t4e−2t , (C.3)

where ± is determined by the sign of ẋ2 and ±′′ by the sign of the principal
normal to the tangent x′′2. Assuming that ẋ2 and x′′2 have opposite signs,
which for instance is true if we assume that the continuation of the light-like
segment can be approximated as a circle, the expansion of the product of the
normalisation factor becomes

1
N(t)

1
N(t+ ε)

=
1

N(t)2

(
1 + ε

±2te−t ∓ t2e−t

N(t)2

)
. (C.4)
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Appendix C: Wilson Loop with Straight Light-Like Segment

For the term proportional to ẋ(t)ẋ(t̃), we obtain

(1− t2e−t)(1− t̃2e−t̃)ηµν
ẋµ(t)
|ẋ(t)|

ẋν(t̃)
|ẋ(t̃)|

=

(1− t2e−t)2
(

1 + ε
−2te−t + t2e−t

1− t2e−t

)
ẋ2(t)
|ẋ(t)|2

+ O(ε2) (C.5)

and for the term proportional to x′′(t)x′′(t̃), we get

t2e−tt̃2e−t̃ηµν
x′′µ(t)
|x′′(t)|

x′′ν(t̃)
|x′′(t̃)|

= (t2e−t)2
(

1 + ε

(
2
t
− 1
))

x′′2(t)
|x′′(t)|2

+ O(ε2) .

(C.6)

For the mixed terms proportional to ẋ(t)x′′(t̃) and x′′(t)ẋ(t̃), the order zero
terms in ε vanish due to the orthogonality of ẋ and x′′ and for the linear con-
tributions, we get

(1− t2e−t)t̃2e−t̃ηµν
ẋµ(t)
|ẋ(t)|

x′′ν(t̃)
|x′′(t̃)|

+ t2e−t(1− t̃2e−t̃)ηµν
x′′µ(t)
|x′′(t)|

ẋν(t̃)
|ẋ(t̃)|

= ε (1− t2e−t) t2e−t ẋ(t)ẋ
′′(t) + ẍ(t)x′′(t)
|ẋ(t)||x′′(t)|

+ O(ε2) . (C.7)

Due to the orthogonality of ẋ and x′′:

d

dt
(ẋ x′′) = ẋ ẋ′′ + ẍ x′′ = 0 (C.8)

and the linear contribution from the mixed terms vanishes.
Summing up the above terms, the zeroth order in ε of course is one due to the
unit-vector condition of Θ and one sees that the linear order of the coupling
vanishes:

ΘI(t)ΘI(t+ ε) = 1 ± ε
1

N(t)2
(
2te−t − t2e−t − 2te−t + t2e−t + 2t3e−2t−

− t4e−2t + t4e−2t − 2t3e−2t
)

+ O(ε2)

= 1 + O(ε2) . (C.9)

Inserting this result into the considered Wilson loop contribution (4.71), the
order zero of the coupling cancels the vector part by construction and we are
left with a part quadratic in (t− t̃) in the scalar numerator, which exactly can-
cels the singularity. We have thus shown, that coupling to the scalars as in our
ansatz (4.66) makes a Wilson loop with light-like segments finite.

Note, that the cancellation of the linear terms in ε works anyway, even for
the case where ẋ and x′′ have same signs. In this case, for the expansion of the
coupling, we find

1
N(t)

1
N(t+ ε)

=
1

N(t)2

(
1 ± ε

2te−t − 4t3e−2t − t2e−t + 2t4e−2t

N(t)2

)
. (C.10)
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The expansion of one of the terms (C.5) and (C.6) takes opposite sign and the
mixed term in (C.7) remains the same. Thus, in total we obtain

ΘI(t)ΘI(t+ ε) = 1 ± ε
1

N(t)2
(
2te−t − 4t3e−2t − t2e−t + 2t4e−2t −

− 2te−t + 2t3e−2t + t2e−t − t4e−2t +

+ 2t3e−2t − t4e−2t
)

+ O(ε2)

= 1 + O(ε2) . (C.11)

We therefore do not need to assume any relative signs of the tangent vector and
its principal normal such that our ansatz makes the considered Wilson loop
with light-like contour piece finite.
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