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Inhaltsangabe

In der vorliegenden Diplomarbeit wird im nahen Plane-wave Limes ein detaillierter Test der
Quantenintegrabilität des AdS5 × S5−Superstrings in uniformer Lichtkegeleichung durchge-
führt. Einleitend wird die perturbative Herleitung des Superstringhamiltonians zusammenge-
fasst. Auf dieser Grundlage wird eine Methode zur systematischen Berechnung des Energie-
spektrums einer allgemeinen Stringkonfiguration entwickelt, die ich in der sogenannten Abakus
-Software implementiert habe.
Der zweite Teil der Diplomarbeit behandelt den Betheansatz und die Ableitung der psu(2, 2|4)
Bethegleichungen. Die Lösungen dieser Gleichungen liefern die Skalendimensionen eichinva-
rianter zusammengesetzter Operatoren der N = 4 Super-Yang-Mills-Theorie, die gemäß der
AdS/CFT-Korrespondenz dem Stringenergiespektrum entsprechen.
Die durch Diagonalisierung des Lichtkegelhamiltonians berechneten Energiespektren werden
mit den Lösungen der Bethegleichungen verglichen, wobei die Untersuchung sowohl analyti-
sche als auch numerische Ergebnisse von Zuständen mit maximal sechs Anregungen umfasst. In
allen untersuchten Fällen wurde exakte Übereinstimmung der Spektren gefunden, was die ver-
mutete Eigenschaft der Quantenintegrabilität des AdS5× S5−Superstrings stark untermauert.

Abstract

In the present diploma thesis a detailed test of the quantum integrability of the AdS5× S5 su-
perstring in uniform light cone-gauge is performed in the near plane-wave limit. Preliminary
the perturbative derivation of the superstring Hamiltonian in AdS5 × S5 is reviewed. Based
thereon a method is developed to systematically compute the energy spectrum of generic string
configurations, which I have implemented in a software system called Abakus.
In the second part the Bethe ansatz is introduced and the derivation of the psu(2, 2|4) Bethe
equations is reviewed, yielding the scaling dimension of composite gauge invariant operators
of N = 4 super Yang-Mills theory, which is according to the AdS/CFT correspondence equal
to the string energy spectrum.
The energy spectra obtained by diagonalization of the light-cone Hamiltonian are thereupon
confronted with the solutions of the Bethe equations. The analysis is performed both analyti-
cally and numerically up to the level of six impurity states, where perfect agreement is found
lending strong support to the quantum integrability of the AdS5 × S5 superstring.
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Chapter 1: Introduction

1 Introduction

In nature one observes four fundamental forces, which are strong, weak and electromagnetic
interaction as well as gravity. At energy scales accessible nowadays the first three interactions
are preeminently described by quantum field theories and are combined to a uniform theory by
the Standard Model of particle physics. All quantum field theories of the Standard Model are
gauge field theories, wherein spin-1 particles are responsible for transmitting the interaction.
Gauge theories contain more degrees of freedom than the original physical system. The gauge
transformations relate physically equivalent field configurations and form a group. In contrast
to the gauge group U(1) of quantum electrodynamics, the gauge group SU(3) of quantum
chromodynamics (QCD) and SU(2) of weak interaction are non-Abelian. This property reflects
the fact that the gauge particles are self-interacting. At energy scales accessible nowadays the
electroweak coupling is small so perturbation theory is applicable. In QCD the situation is
quite different: at low energy the coupling constant for the interaction is large, which leads
to confinement, while it is small for high energies, resulting in asymptotic freedom of quarks.
In the latter perturbation theoretical methods are not applicable, since a power series in the
coupling constant does not converge. So far quantum field theories work well in the regime of
small couplings, while the strong coupling behavior is understood less well, accessible today
only via numerical computations on a discretized spacetime lattice.

For the remaining force of gravity there is currently only a classical theory available,
which is the theory of General Relativity. It works well at large length scales corresponding to
low energies. Yet a microscopical description of spacetime at lengths near the Planck scale or
energies near the Planck energy requires a quantum theory of gravity. The attempt to quantize
gravity according to the known procedures leads to a non-renormalizable field theory. Despite
non-renormalizability it is nevertheless useful as an effective quantum theory [1] in the low
energy limit, including the massless spin-2 graviton as exchange particle of gravitation. But a
fully consistent theory of quantum gravity has still not been constructed.
Also a unified quantum theory of gravitation and the Standard Model is needed to describe
physics in highly curved backgrounds, like near the horizons of black holes. In such an envi-
ronment one needs a generalization of the Standard Model including a microscopic theory of
gravity. One of the most promising candidates for such a theory is string theory. While in
the Standard Model elementary particles are considered to be pointlike and to interact locally,
string theory drops this notion and assumes that the fundamental objects are one-dimensional
strings.

Even though the motivation for string theory given nowadays is quite different, it was
originally developed in an attempt to describe the large number of mesons and hadrons that
were experimentally discovered. One surprising issue of the hadronic spectrum is, the hadrons
can be sorted into groups in such way that, within every group, mass m and Spin J obey a
relation like m2 ∼ α0 + TJ , where only the intercept α0 differs for each group. This prop-
erty is well explained by assuming the particles to be different oscillation modes of a rotating,
relativistic string with tension T . Unfortunately string theory in this context leads to some
properties which drastically disagree with experimental findings. Due to the use of extended
objects, string theory predicts an exponential falloff of scattering amplitudes but only pow-
erlike behaviors (possibly deformed by structure functions) have been observed. Later it was
discovered that hadrons and mesons are actually built of quarks and the appropriate theoreti-
cal description is a non-Abelian SU(3) gauge field theory.
But replacing the picture of pointlike particles by using one-dimensional extended objects of
a very small size is actually a quite natural generalization, because by viewing the system on
much larger scales, the strings reduce to an almost pointlike structure and therefore string
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theory is expected to reproduce many features of conventional gauge theories on larger scales.
To the best of our knowledge the only consistent interaction for massless spin-2 particles is
that of gravity and since all string theories include such a particle, which is identified with the
desired graviton, string theories could represent a unified description of quantized gravity as
well as quantum field theories.
One fascinating aspect of string theory is that quantum consistency demands that the theory
occupies ten spacetime dimensions1. However, we observe only four spacetime dimensions, so
theorists are charged with the task of understanding the role of the six extra spatial dimen-
sions, but since it is not known how spacetime looks like at short distances comparable to
Planck length, the extra dimensions could simply be highly curved and thus so tiny that it is
impossible to detect them at energy scales accessible today.

The course of studying gauge theories and string theories has led to the discovery of a
dramatically new class of fundamental symmetries known as dualities. These symmetries stand
apart from traditional ones in the sense that dualities connect physical theories which, at least
superficially, appear to be entirely distinct in their formulation. In particular two seemingly
different theories are considered to be dual, if both models describe equivalent physical sys-
tems.
A well known example is T-duality: type IIA string theory with one spatial dimension compact-
ified on a circle of radius R can be translated to type IIB string theory with compactification
radius R−1. The usefulness of duality derives in part from the fact that dual descriptions are
typically complementary, insofar as information that is inaccessible in one physical theory may
often be extracted from a straightforward calculation in the theory’s dual description.

In this work we will primarily be concerned with an other famous duality, which is the
so called AdS/CFT correspondence. One specific property of the AdS/CFT correspondence
is that it claims a strongly coupled super Yang-Mills theory to be dual to a weakly coupled
string theory. Provided this duality holds, string theory allows us to access the non-pertubative
regime of strongly interacting non-Abelian gauge theories without being restricted to numerical
computations on a discrete space-time lattice. It is therefore promising to study string theory,
irrespective of whether it will succeed to provide a unified quantum theory of all fundamental
forces.
Another very important question to address is, how string theory behaves in a highly curved
background, where the extension of single strings is of magnitude of the curvature radius of
spacetime. In respect thereof very little is known, since perturbative string theory is not
applicable anymore. But using the AdS/CFT correspondence the other way around it gives
rise to this regime by working in the dual weakly coupled super Yang-Mills theory.

Altogether the AdS/CFT correspondence could provides us with a powerful tool to ex-
plore previously almost unaccessible regimes of different theories. Even though AdS/CFT
correspondence has passed several nontrivial test it has not been proven yet.

1 M-theory is provided with an extra 11th dimension. By different compactifications of this extra dimension
M-theory can be reduced to every type of 10-dimensional string theory.
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Chapter 2: AdS/CFT correspondence and integrability

2 AdS/CFT correspondence and integrability

The duality of compactifications of M/sting theory on various Anti-deSitter (AdS) space-
times and various conformal field theories was conjectured by Maldacena 1998 [2], known as
AdS/CFT correspondence. Maldacena’s conjecture is based on an idea by ’t Hooft [3]: starting
with an SU(N) Yang-Mills theory with coupling gY M and N colours one can classify Feyn-
mann graphs according to the their genus H, i.e. the minimum number of handles that must
be added to a plane to embed the graph without any crossings of lines. The crucial fact ob-
served by ’t Hooft is, that each Feynmann diagram is associated with a factor r = λlN2−2H−L,
depending on its number of loops l and genus H. The quantity L enumerates the number of
fermionic loops2 and the ’t Hooft coupling is defined as λ = g2

Y MN . In the ’t Hooft limit
N →∞, gY M → 0 with λ fixed, the free energy F of SU(N) gauge theory takes the pictorial
form:

F = N2 + 1 +
1
N2

+ . . . = N2
∞∑

H=0

1
N2H

∞∑
l=0

cg,l λ
l (2.1)

Obviously this genus expansion resembles the pertubative expansion of a string theory in the
string couplin constant gs ∝ N−1. For large N the string theory becomes free and thus only
planar diagramms contribute in the corresponding gauge theory.

The presented argument suggests that different kinds of gauge theories will correspond
to differents sting theories but according to experience it is extremely difficult to prove such
equivalences. In its purest form, the conjectured AdS/CFT correspondece identifies the type
IIB supersting in a ten dimensional anti-de-Sitter cross sphere (AdS5×S5) background with
the maximally supersymmetric Yang-Mills theory3 with gauge group SU(N) and N = 4 spinor
supercharges in four dimensions (N = 4 SYM). The gauge theory’s Langrangian is completely
determined by supersymmetry which has a global SU(4)R R-symmetry that rotates the six
scalar fields and four fermions. Furthermore it is invariant with respect to the conformal group
SO(4, 2) in four dimensions, including the usual Poincaré transformations as well as scale
transformations and special conformal transformations.
These symmetries have to be reflected by the dual string theory description. In fact the five
dimensional Anti-de-Sitter space is the only space with local SO(4, 2) isometry. It is the
maximally symmetric solution of Einstein’s euations with negative cosmological constant. At
the border of the AdS5 the remaining five dimensions of the 10 dimensional target space, the
type IIB superstring is moving in, are compactified on a five sphere S5. Thus the SU(4)
symmetry of the SYM theory is reproduced by the locally isomorphic SO(6) symmetry of S5

on the string side.
To establish a connection between the two theories, one has to relate the free parameters

of the different models to each other. N = 4 SYM theory is controlled by the rank N of the
gauge group and the coupling constant gY M or eqivalently λ = g2

Y MN while string theory is
paremetrized by the effective string tension R2/α′ and the string coupling gs, where R is the
common radius of the AdS5 and S5 geometries and 1/α′ denotes the string tension. According
to the AdS/CFT proposal, these two sets of parameters are identified as

gs =
4πλ
N

,
√
λ =

R2

α′
. (2.2)

2 In an SU(N) gauge theory there are fermionic particles and gauge bosons transmitting the interaction. To
use a uniform notation for differen values of N , we denote the fermions as “quarks” and the SU(N) charge as
“colour” (in this convention we also refer to the weak isospin as SU(2) colour). In this notation l is associated
with the number of closed colour loops, while L counts only closed quark loops.

3 Due to it’s vanishing β-function, N = 4 SYM is a conformal field theory (CFT).
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Low-energy gravitational description in terms of classical type IIB supergravity is perturba-
tively valid in weakly curved geometries (compared to string units), i.e. for

√
λ � 1, while

perturbative field theory is applicable only in the domain of gY M � 1, viz small λ. Hence one
is facing a strong/weak coupling duality, as stated in chapter 1.

By the physical equivalence of both theories it is required, that for each field Ô(x) on
the boundary Minkowski theory there is a field φ(x, z) in the bulk string theory with the
property that at least the corresponding correlators of both theories agree on the boundary.
It is conjectured that the partition function of string theory on AdS5×S5 coincides with the
generating function of N = 4 super Yang-Mills on the boundary of AdS5×S5 [4]:

〈e
∫
d4x φ0(~x) Ô(~x)〉CFT = ZString

[
φ0(~x, z)

∣∣
z=0

]
(2.3)

where the left hand side is the generating function of correlation functions in the field theory,
i.e. φ0 is an arbitrary function and we can calculate correlation functions of Ô by taking
functional derivatives with respect to φ0 and than setting φ0 = 0. The right hand side denotes
the full partition function of string theory with the boundary condition that the field φ(x, z)
has the value φ(x, z)

∣∣
z=0

= φ0(x) on the boundary of AdS. Thus each field propagating on AdS
space is in a one-to-one correspondence with an operator of SYM. For the D = 10 supergravity
multiplet the explicit mapping is given in [5].

Based on (2.3), the energy eigenvalue E of a string state |φA〉 has been identified with the
scaling dimension ∆ of the dual gauge theory operator ÔA(x) [4], which in turn is determined
from the two point function of the conformal field theory by

〈ÔA(x)ÔB(y)〉 =
δ∆

ÔA
,∆

ÔB

(x− y)2∆
ÔA

. (2.4)

The Ô denote composite gauge invariant operators of the form Ô(x) = Tr(φi1(x) . . . φin(x)),
where the φj are elementary fields of N = 4 SYM and their covariant derivatives in the adjoint
representation of SU(N).
This remarkable result

∆(λ,
1
N

) ≡ E(
R2

α′
, gs) (2.5)

allows for determination of the all loop scaling dimension in planar gauge theory by calculating
the Energy in free string theory in the large N limit. Nevertheless string quantization and
determination of its quantum spectrum in curved backgrounds, even in the highly symmetric
AdS5×S5 space, remains unknown. 2002 Berenstein, Maldacena and Nastase considered a
novel limit of a degenerated pointlike string configuration, corresponding to a particle rotating
with large angular momentum J on a great circle of the S5 space [6]. In this so called ‘BMN
limit’ of J →∞ with λ/J2 fix, from the fastly moving particles point of view, the geometry of
AdS5×S5 limits to a gravitational plane wave background

In ‘uniform light-cone gauge’ an exact world-sheet Hamiltonian has been established in
[7] and pertubatively quantized in the near-plane wave limit using J → ∞. We are going to
review this derivation in section 3. Thus the spectrum of total arbitrary string states can in
principle be computed in order 1/J and this in turn leads to various predictions for the anomal
scaling dimensions of corresponding gauge theory operators.
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Chapter 2: AdS/CFT correspondence and integrability

2.1 Integrability in Gauge Theory and String Theory

In testing the conjectured AdS/CFT correspondece very important progress has been made
during recent years building on the concept on integrability [8]. In classical mechanics there is
a well-known definition of integrability due to Liouville: a finite-dimensional system is called
integrable if it possesses a set of independently conserved charges Qi commuting with respect
to the Poisson bracket {

Qi,Qj

}
= 0

and the total number of conserved charges including the Hamiltonian is half of the dimension
of the phase space. For quantum theories there is no such strict definition of integrability
known, however, it is expected that a quantum system is integrable if the number of conserved
charges equals the number of degrees of freedom in the system.
From the most pragmatical point of view one might call a system quantum integrable [9] if
provides the opportunity to “exactly” determine the quantities of physical interest. In the
given context “exact” means that one can state a fixed set of equations which determine these
quantities exactly, however, about the solvability of these equations one does not care at this
point.

It has emerged that in planar gauge theory the dilaton operator, whose spectrum yields
the desired scaling dimension of composite, gauge invariant operators, is isomorphic to the
Hamiltonian of an integrable quantum spin chain [10],[11]. The property of integrability guar-
antees the existence of a Bethe ansatz which in principle allows for reformulating the quantum
spectral problem into the solution of a set of non-linear algebraic equations, the Bethe equa-
tions. In other words, the Bethe equations diagonalize the planar gauge theory dilatation
operator in the sense that its solutions, the Bethe roots, are eigenvalues of the dilatation
operator.

With the AdS/CFT conjecture in mind, immediately a question arises: is the type IIB
superstring, propagating in AdS5×S5, a quantum integrable model and is its energy spectrum
indeed described by this set of Bethe equations?
Addressing these questions is important, since it will lead to a highly nontrivial test of the
AdS/CFT duality conjecture. Moreover the Bethe equations are all -loop equations4 and there-
fore yield all loop predictions of the quantum string spectrum or the dual scaling dimension of
composite, gauge invariant operators, if we manage to solve them non-perturbatively.

In order to investigate the integrability of the AdS5 × S5 superstring the perturbative deriva-
tion the Hamiltonian is reviewed in section 3. Based thereon in chapter 4 a computer algebraic
method is described, which makes it possible to systematically compute the energy spectrum of
generic string configurations. In section 5 the superstring spectra are derived analytically and
numerically in all closed subsectors for up to six string excitations. Since the light-cone energy
is only determined implicitly by the derived string spectra of section 5 the explicit solution for
the energy is presented in chapter 6.
The Bethe ansatz leading to psu(2, 2|4) Bethe equations is reviewed in chapter 7 followed by a
detailed discussion in section 8 how to solve these equations in the various sectors. The results
are compared to the string results obtaied in section 4.

4 For a spin chain of length L, by construction [12] the Bethe equations are exact only up to order ` < L with
respect to the expansion in g ∼

√
λ � 1 for gauge theory and 1/J � 1 in string theory. Consequently the

Bethe roots yield all-loop predictions only in the case of an infinite long chain.
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Chapter 3: The Superstring on AdS5 × S5

3 The Superstring on AdS5 × S5

This section will start with some general remarks on the AdS5×S5 space. The derivation of the
string Hamiltonian is exemplified for the bosonic case in paragraph 3.2 followed by a discussion
of the full Hamiltonian including fermions. Subsequently a notation for generic string states is
introduced and some general remarks on the Hamiltonian eigenvalues are presented. Section
3 is concluded with the derivation of the spectrum for a generic su(2) string states.

3.1 The AdS5 × S5 space

Embedding the five-dimensional anti-de-Sitter space and the five sphere in R6 the S5 is de-
scribed by s21 + s22 + . . .+ s26 = R and AdS5 by −a2

−1−a2
0 +a2

1 +a2
2 + . . .+a2

4 = −R. R denotes
the common radius of AdS5 and S5. By parametrization through

s1 + i s2 = sin ξ cosψ ei φ1 , s3 + i s4 = sin ξ sinψ ei φ2 , s5 + i s6 = cos ξ ei φ ,
a1 + i a2 = sinh ρ cos ψ̄ ei ϕ1 , a3 + i a4 = sinh ρ sin ψ̄ ei ϕ2 , a−1 + i a0 = cosh ρ ei t

one obtains the metric

ds2AdS5
= dρ2 − cosh2 ρ dt2 + sinh2 ρ ( dψ̄2 + cos2 ψ̄ dϕ1

2 + sin2 ψ̄ dϕ2
2 )

ds2S5 = dξ2 + cos2 ξ dφ2 + sin2 ξ ( dψ2 + cos2 ψ dφ1
2 + sin2 ψ dφ2

2 ) .
(3.1)

Performing a suitable reparametrization {t, ρ, ψ̄, ϕ1, ϕ2} → {t, z1, . . . , z4}, {φ, ξ, ψ, φ1, φ2} →
{φ, y1, . . . , y4} of the form

cosh ρ =
(1 + z2/4)
(1− z2/4)

, cos ξ =
(1− y2/4)
(1 + y2/4)

with z2 = zkzk, y
2 = ykyk, k = 1, . . . , 4

one can cast the metric for the AdS5 × S5 product space into

ds2
AdS5×S5 = −

(
1 + z2/4
1− z2/4

)2

dt2 +
dzkdzk

(1− z2/4)2︸ ︷︷ ︸
metric of AdS5

+
(

1− y2/4
1 + y2/4

)2

dφ2 +
dykdyk

(1 + y2/4)2︸ ︷︷ ︸
metric of S5

. (3.2)

By construction, the AdS5×S5 space has the symmetry SO(2, 4)×SO(6), but only translation
invariance in t and φ and the SO(4)×SO(4) symmetry of the coordiantes zk, yk remain manifest
in this form.

• Introduction to AdS5 × S5: picture, time winding, Metric

For the sake of simplicity the following notations are used in the next chapter
t =: z0 time on AdS5 {t, za} ≡ zµ, a = 1, ..., 4, µ = 0, ..., 4 coordinates on AdS5

φ =: y0 angle on S5 {t, ys} ≡ yν , s = 1, ..., 4, ν = 0, ..., 4 coordinates on S5

xµ ≡ {t, z1, . . . , z4, φ, y1, . . . , z4} coordinates on AdS5 × S5

xM ≡ {za, ys}, a, s = 1, ..., 4 remaining coordinates on AdS5 × S5 excluding t, φ

3.2 The bosonic Superstring on AdS5 × S5

In this chapter the bosonic part of the superstring Hamiltonian will be derived in order to
demonstrate the basic procedure to quantize the AdS5 × S5 Superstring perturbatively. We
start with the well known Polyakov action where the fermionic contribution is omitted

I =
∫
dτdσ L with L = −

√
λ

4π
γαβ

(
G(AdS5)

µν ∂α z
µ ∂β z

ν +G(S5)
µν ∂α y

µ ∂β y
ν
)
. (3.3)

11



3.2 The bosonic Superstring on AdS5 × S5

Here we use the normalized string world-sheet metric γαβ with det γ = −1 (α, β ∈ {τ, σ}) and
G

(AdS5)
µν , G(S5)

µν denote the target space metrics of AdS5 and S5 according to (3.2).
√

λ
2π is the

effective string tension and the coordinates σ and τ parametrize the string world-sheet.
A closer look at equation (3.1) and (3.3) reveals that the cyclic coordinates of the action I are
(t, ϕ1, ϕ2;φ1, φ2, φ3) leading to the conserved charges

(E,S1, S2;J, J1, J2) , (3.4)

where E is the space-time energy, (S1, S2) are corresponding to two spins on AdS5 and
(J, J1, J2) to three angular momenta on the five sphere respectively.

Using the canonical conjugated momenta pµ

pµ =
δL
δẋµ

= −
√
λ γττ ẋµ −

√
λ γτσx′µ with ẋµ ≡ ∂τx

µ, x′µ ≡ ∂σx
µ (3.5)

one can cast the Lagrangian into the form

L = pµ ẋ
µ +

1√
2

1
γττ

[
pµ p

µ + λx′µ x
′µ
]

+
γτσ

γττ

[
pµ x

′µ
]

. (3.6)

This is easily checked by plugging (3.5) into (3.6) and using the property −1 = det γ of the
world sheet metric. The last two terms in (3.6) yield the Virasoro constraints, which arise as
equations of motion for the world sheet metric:

0 = pµ x
′µ , 0 = pµ p

µ + λx′µ x
′µ . (3.7)

3.2.1 The uniform light-cone gauge

To impose the uniform light-cone gauge we make use of the AdS time t and the angle φ on S5.
They parametrize two U(1) isometries of the AdS5×S5 space and the corresponding conserved
charges, the space-time energy E and the angular momentum J , are related to the momenta
conjugated to t and φ by

E = −
∫ 2π

0

dσ

2π
pt and J =

∫ 2π

0

dσ

2π
pφ . (3.8)

We introduce light cone coordinates x± and the corresponding canonical momenta5 p∓

x± = φ± t , p+ = pφ − pt , p− = pφ + pt . (3.9)

For light-cone coordinates x± the metric G takes the form

G++ = G−− =
1
4

(Gφφ +Gtt) =
1
4

(
1−y2/4
1+y2/4

)2
− 1

4

(
1+z2/4
1−z2/4

)2
,

G−+ = G+− =
1
4

(Gφφ −Gtt) =
1
4

(
1−y2/4
1+y2/4

)2
+

1
4

(
1+z2/4
1−z2/4

)2
.

(3.10)

and one defines x± := G±n x
n, p± := G±n pn, n = +,− .

The uniform light-cone gauge is imposed by setting

x+ = τ +
m

2
σ , p+ = P+ = J + E = const, (3.11)

5 Please note that the canonical conjugated momentum corresponding to x+ is pφ + pt = p−.
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Chapter 3: The Superstring on AdS5 × S5

The string winding number m appears because φ is an angle variable. But in what follows we
will use the decompactifying plane-wave limit with P+ →∞ and, therefore, we set m = 0.

The advantage of this particular gauge choice is that combined with an appropriate
κ-symmetry gauge the Poisson structure of fermions simplifies drastically, which is of great
advantage for calculating the global symmetry charges and quantization of the theory.

Omitting the Virasoro constraints (3.7) in the Lagrangian (3.6) it acquires in uniform light-cone
gauge the form

L = pM ẋM + p+ẋ
− + p− .

The second term is a total derivative and thus may be dropped. The upshot is a gauge fixed
Lagrangian Lgf which can be written in the standard form as the difference of a kinetic term
Lkin = pM ẋM and the Hamiltonian density H

Lgf = Lkin −H with Lkin = pM ẋM , H = −p− . (3.12)

In light-cone gauge the first Virasoro constraint (3.7) takes the form

0 = pM x′M + p+∂σx
− , (3.13)

which yields the level matching condition by integration over the closed string

0 =
∫ 2π

0
dσ
(
pMx

′M) M = 1, . . . , 8 . (3.14)

The second Virasoro constraint determines the Hamiltonian H = −p− as a solution of

0 = pM pM + p+ p
+ + p− p

− + λx′M x′M + λx′− x
′− , M = 1, . . . , 8 (3.15)

Up to this point the gauge fixed Lagrangian Lgf is an exact function of the light-cone momentum
P+ and the string tension

√
λ.

3.2.2 Near plane-wave expansion

In order to solve equation (3.15) one needs to consider a simplifying limit.

BNM-limit:
A key idea of Berenstein, Maldacena and Nastase for perturbative quantization of the AdS5×
S5 superstring was to consider a string circling on S5 with an infinite large angular momentum
J [6]. Reducing the string to a point particle, the energy is classically given by E = J . In
the so called BMN limit with J → ∞ and λ′ := λ/J2 held fix, all higher string corrections
O(1/

√
λ) to the Energy E = J + E2(λ′) + O(1/

√
λ) are suppressed, so the approximation of

the finite energy contribution E− J = E2(λ′) becomes exact. From the perspective of the fast
moving string, the space transforms to a plane wave geometry in the BMN limit.

Plane-wave limit:
In the case of the uniform light cone gauge the BMN equivalent choice is

P+ →∞ with λ̃ :=
4λ
P 2

+

fix . (3.16)

Denoting P± = J ± E, we have the identity E = J − P− and as we will see P− represents the
finite correction to the space-time energy E. The BMN effective coupling λ′ := λ/J2 is not
equal to the coupling constant λ̃ but reduces to it in the strict J →∞ limit, since

λ̃ =
4λ
P 2

+

= λ′
1(

1− P−
2J

)2 . (3.17)
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3.2 The bosonic Superstring on AdS5 × S5

3.2.3 The bosonic AdS5 × S5 string Hamiltonian

In the near plane-wave limit it is now possible to perturbatively solve equation (3.15) for the
Hamiltonian H = −p−. In order to acquire a canonical Poisson structure and a standard
Hamiltonian of the form 1

2(pM pM +xM xM ) we perform a rescaling of the fields and momenta

xM →
√

2
P+

xM , pM →
√

P+

2 pM . (3.18)

Furthermore it is convenient to perform a canonical transformation which simplifies the Hamil-
tonian again. For details consult the appendix A.1.
One finally obtains the Hamiltonian density in terms of the remaining four bosonic coordinates
za (a = 1, . . . , 4) of AdS5, its canonical conjugated Momenta p

(z)
a and the four coordinates

ys (s = 1, . . . , 4) with momenta p(y)
s , respectively

H =
1
2

(
p(z)

a p(z)
a + p(y)

s p(y)
s + za za + ys ys + λ̃(z′a z

′
a + y′s y

′
s)
)

+
λ̃

P+

(
y′s y

′
s za za − z′a z′a ys ys + z′a z

′
a zb zb − y′s y′s yu yu

)
.

(3.19)

Please note that due to the expansion process, the AdS5×S5 metric is not present anymore in
equation (3.19), but the indices are contraced using the Kronecker delta. In order to obtain well
defined charges {S1, S2, J1, J2} of the bosonic fields it is convenient to express the Hamiltonian
density in terms of complex bosonic fields

Z1 = z2 + i z1 , Z2 = z4 + i z3 , Z3 = Z †
2 = z4 − i z3 , Z4 = Z †

1 = z2 − i z1 ,
Y1 = y2 + i y1 , Y2 = y4 + i y3 , Y3 = Y †

2 = y4 − i y3 , Y4 = Y †
1 = y2 − i y1 ,

(3.20)

and their canonical P z
a , P y

s momenta associated to Za, Ys depending on either p(z) or p(y)

P1 = 1
2(p2 + i p1) , P2 = 1

2(p4 + i p3) , P3 = P †
2 = 1

2(p4 − i p3) , P4 = P †
1 = 1

2(p2 − i p1) .

The advantage of the new coordinates is a simple mode expansion (3.31) and standard com-
mutation relation in quantum theory. In terms of the complex fields the kinetic Lagrangian
takes the form

Lkin = P z
5−aŻa + P y

5−sẎs with a, s = 1, . . . , 4 (3.21)

and the bosonic Hamiltonian density in uniform light-cone gauge acquires the from

H = H2 +
1
P+
H4 +O( 1

P 2
+

) (3.22)

H2 = P z
5−aP

z
a + P y

5−sP
y
s +

1
4

(Z5−aZa + Y5−sYs) +
λ̃

4
(
Z ′5−aZ

′
a + Y ′

5−sY
′
s

)
H4 =

λ̃

4
(
Y ′

5−sY
′
s Z5−aZa − Y5−sYs Z

′
5−aZ

′
a + Z ′5−aZ

′
a Z5−bZb − Y ′

5−sY
′
s Y5−uYu

)
.

(3.23)

14



Chapter 3: The Superstring on AdS5 × S5

3.2.4 Quantization

From (3.21) one reads off the commutator relations[
Za, P

z
5−b

]
= i δa,b and

[
Ys, P

y
5−u

]
= i δs,u . (3.24)

Now one establishs a mode decomposition of the bosonic fields which renders the quadratic
terms of the Hamiltonian H2 in a diagonal form. Here we state only the decomposition for the
fields Za, P

z
a

Za(τ, σ) =
∑

n

einσ 1
i
√
ωn

(β+
a,n − β−5−a,−n) , P z

a (τ, σ) =
∑

n

einσ

√
ωn

2
(β+

a,n + β−5−a,−n) ,

where the frequency ωn is defined as ωn :=
√

1 + λ̃ n. The mode decompositions of all fields,
including also fermions, are stated together with the full AdS5 × S5 Hamiltonian in chapter
3.3.1. The creation operators α+

a,n and corresponding annihilation operators α−a,n carry two
indices. The first index a = 1, . . . , 4 denotes the flavor, while the second index n represents
a vibrational mode number on the string. Requiring (3.24) to hold, one finds commutation
relations for the bosonic creations and annihilation operators

[α−a,n, α
+
b,m] = δa,b δn,m .

In terms of creation and annihilation operators the bosonic Hamiltonian H2 takes the form

H2 =
∑

n

ωn(β+
a,nβ

−
a,n + α+

a,nα
−
a,n) . (3.25)

The expression for the next to leading order Hamiltonian H4 is much longer so we do not write
it out explicitly in terms of the creation and annihilation operastors.

3.3 The full superstring Hamiltonian on AdS5 × S5

The AdS5 space can also be defined as quotient of SO(4, 2)/SO(4, 1) while the S5 mani-
fold is given by SO(6)/SO(5). Furthermore there exits the isomorphism su(2, 2) ⊕ su(4) ∼=
so(4, 2)⊕ so(6) and the bosonic subalgebra of the superalgebra su(2, 2|4) admits the following
decomposition

su(2, 2|4) ∼= su(2, 2)⊕ su(4)⊕ u(1) .

The superalgebra psu(2, 2|4) is defined as the quotient algebra of su(2, 2|4) over the u(1) factor.
Thus the AdS5 × S5 target space of the superstring is given by the coset manifold

PSU(2, 2|4)
SO(4, 1)× SO(5)

(3.26)

There exists a representation of su(2, 2|4) in terms of 8 × 8 matrices but psu(2, 2|4) has no
realization in terms of supermatrices. The construction of the superstring action including
fermions uses the Z4−grading of the superalgebra su(2, 2|4). Any matrix M from su(2, 2|4)
can then be decomposed into elements M (i) of the four additive groups of the Z4−grading

M = M (0) +M (1) +M (2) +M (3) .

Using a representative g of the coset space (3.26) and constructing the following current

A = −g−1dg = A(0) +A(1) +A(2) +A(3) . (3.27)
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3.3 The full superstring Hamiltonian on AdS5 × S5

the Langrangian density [13] for the superstring in AdS5 × S5 is given by the sum of kinetic
term and the topological Wess-Zumino term:

L = Lkin + LWZ = −
√
λ

2
Str
(
γαβA(2)

α A
(2)
β + κεαβA(1)

α A
(3)
β

)
, (3.28)

where we use ε01 ≡ ετσ = 1 and γαβ = hαβ
√
−h denotes the Weyl-invariant world-sheet metric

with det γ = −1. The parameter κ is determined by κ-symmetry to κ = ±1.
Unfortunately the Lagrangian (3.28) suffers from the presence of non-physical degrees of free-
dom, related to reparametrization invariance and κ-symmetry, which are removed by fixing a
gauge for the κ-symmetry and imposing the uniform light-cone gauge (3.11).

In priciple the derivation of the quantized Hamiltonian [7] for the full AdS5 × S5 super-
string including fermions follows the basic steps performed in capter 3.2 even though it is much
more involved. Nevertheless one finds the same relations

−p = H and E − J = −P− = −
∫ 2π

0
dσp− .

as in the bosonic case. From now on we will absorb the integration over σ into the Hamiltonian
H even though we will omit writig out the integral explicitly in most of the formulas, i.e. we
have the relation −P− = H where the integraion over σ is implicit.

Based on the underlying symmetry structure of SO(4, 2)× SO(6) any state operator of
the quantized theory can be labeled by the eigenvalues of the six Cartan generators

(E,S1, S2;J, J1, J2) , (3.29)

where E is corresponding to the energy, (S1, S2) correspond to two spins on AdS5 and (J, J1, J2)
to the three angular momenta on the five sphere respectively.

3.3.1 Hamiltonian in uniform light-cone gauge

In an impressive computation [7] the quantized Hamiltonian has perturbatively been computed
up to next-to-leading order in a 1/P+ expansion

H =H2 +
1
P+
H4 +O(P−2

+ ) (3.30)

in the near plane wave limit and uniform light-cone gauge. The dynamical fields are given by
the transverse eight fermionic and eight bosonic fields. We will use the following decomposition
of the eight complex bosonic fields Za, Ya and their corresponding canonical momenta P z

a , P
y
a

following the conventions in [7]

Za(τ, σ) =
∑

n

einσZa,n(τ) P z
a (τ, σ) =

∑
n

einσP z
a,n(τ)

Za,n =
1

i
√
ωn

(β+
a,n − β−5−a,−n) P z

a,n =
√
ωn

2
(β+

a,n + β−5−a,−n)

Ya(τ, σ) =
∑

n

einσYa,n(τ) P y
a (τ, σ) =

∑
n

einσP y
a,n(τ) (3.31)

Ya,n =
1

i
√
ωn

(α+
a,n − α−5−a,−n) P y

a,n =
√
ωn

2
(α+

a,n + α−5−a,−n) ,
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Chapter 3: The Superstring on AdS5 × S5

where the frequency ωn is defined as

ωn =
√

1 + λ̃ n2 . (3.32)

The decomposition has been chosen in such a way that the creation and annihilation operators
obey canonical commutation relations

[α−a,n, α
+
b,m] = δa,b δn,m = [β−a,n, β

+
b,m] . (3.33)

The index a ∈ {1, 2, 3, 4} denotes the flavor and n,m are the mode numbers which are subject
to the level matching condition

K4∑
j=1

mj = 0 . (3.34)

To use a notation compatible to the Bethe equations of chapter 7.3, the number of string
excitations, also called impurities, is denoted by K4. The index is of no special meaning in the
context of string theory.
The mode decompositions for the fermions6 are:

η(τ, σ) =
∑

n

einσηn(τ) θ(τ, σ) =
∑

n

einσθn(τ) (3.35)

ηn =fnη
−
−n + ignη

+
n θn =fnθ

−
−n + ignθ

+
n

with η−n = η−a,nΓ5−a , η+
n = η+

a,nΓa , θ−n = θ−a,nΓ5−a , θ+
n = θ+

a,nΓa . (3.36)

The functions fm and gm above are defined as

fm =
√

1
2

(
1 +

1
ωm

)
, gm =

κ
√
λ̃m

1 + ωm
fm . (3.37)

Here κ = ±1 is the arbitrary relative sign between kinetic and Wess-Zumino term in the
worldsheet action. The explicit representation of the Dirac matrices Γa is given in the Appendix
A.2.
The anti-commutators between the fermionic mode operators are then

{η−a,n, η
+
b,m} = δa,b δn,m = {θ−a,n, θ

+
b,m} . (3.38)

Using this oscillator representation, the leading order Hamiltonian becomes

H2 =
∑

n

ωn(θ+
a,nθ

−
a,n + η+

a,nη
−
a,n + β+

a,nβ
−
a,n + α+

a,nα
−
a,n) . (3.39)

6 In the present context η denotes a fermionic excitation living on the string. It is not to be confused with the
grading η1, η2, which are used in section 7 to describe different choices of Dynkin diagrams for psu(2, 2|4)
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3.3 The full superstring Hamiltonian on AdS5 × S5

The first order correction to this Hamiltonian is given by [7]

H4 = Hbb +Hbf +Hff (θ)−Hff (η) (3.40)

with Hbb =
λ̃

4
(Y ′

5−aY
′
aZ5−bZb − Y5−aYaZ

′
5−bZ

′
b + Z ′5−aZ

′
aZ5−bZb − Y ′

5−aY
′
aY5−bYb) (3.41)

Hbf =
λ̃

4
tr
[

(Z5−aZa − Y5−aYa)(η′†η′ + θ′†θ′)

−Z ′aZb[Γa,Γb]
(
P+(ηη′† − η′η†)− P−(θ†θ′ − θ′†θ)

)
+Y ′

aY
′
b [Γa,Γb]

(
−P−(η†η′ − η′†η)− P+(θθ′† − θ′θ†)

)
− iκ√

λ̃
(ZaP

z
b )′[Γa,Γb]

(
P+(η†η† + ηη) + P−(θ†θ† + θθ)

)
(3.42)

+
iκ√
λ̃

(YaP
y
b )′[Γa,Γb]

(
P−(η†η† + ηη) + P+(θ†θ† + θθ)

)
+8iZaYb

(
−P−Γaη

′Γbθ
′ + P+Γaθ

′†Γbη
′†
) ]

Hff (η) =
λ̃

4
tr
[
Γ5

(
η′†ηη′†η + η†η′η†η′ + η′†η†η′†η† + η′ηη′η

) ]
. (3.43)

The Hamiltonian (3.40) will serve as input for the Abakus software, which will compute its
eigenvalues −δP−.

3.3.2 U(1) Field Charges

As stated in the beginning of this chapter string excitations are characterized by the values
of four U(1) charges: two spins {S1, S2} on AdS5 and two angular momenta {J1, J2} on S5.
In this work the charges (S+, S−, J+, J−) introduced in [7, 14] are used, which are related to
the former quantities via S± = S1 ± S2 and J± = J1 ± J2. Since the string excitations are
represented by creation operators in quantum theory the operators carry the definite charges
spelled out in table 1.
The charge pattern of a string state is just the sum of the charges of all creation operators
assembling the state. It will turn out to be the appropriate quantity to classify the Hamiltonian
eigenvalues.

S+ S− J+ J−
Y1, P y

1 , α+
1,m, α−4,m 0 0 1 1

Y2, P y
2 , α+

2,m, α−3,m 0 0 1 -1
Y3, P y

3 , α+
3,m, α−2,m 0 0 -1 1

Y4, P y
4 , α+

4,m, α−1,m 0 0 -1 -1

S+ S− J+ J−
Z1, P z

1 , β+
1,m, β−4,m 1 1 0 0

Z2, P z
2 , β+

2,m, β−3,m 1 -1 0 0
Z3, P z

3 , β+
3,m, β−2,m -1 1 0 0

Z4, P z
4 , β+

4,m, β−1,m -1 -1 0 0

S+ S− J+ J−
θ1, θ†4, θ+

1,m, θ−4,m 0 1 1 0

θ2, θ†3, θ+
2,m, θ−3,m 0 -1 1 0

θ3, θ†2, θ+
3,m, θ−2,m 0 1 -1 0

θ4, θ†1, θ+
4,m, θ−1,m 0 -1 -1 0

S+ S− J+ J−
η1, η†4, η+

1,m, η−4,m 1 0 0 1

η2, η†3, η+
2,m, η−3,m 1 0 0 -1

η3, η†2, η+
3,m, η−2,m -1 0 0 1

η4, η†1, η+
4,m, η−1,m -1 0 0 -1

Table 1: Charges of annihilation and creation operators of the AdS5 × S5 string in uniform light-cone
gauge.
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Chapter 3: The Superstring on AdS5 × S5

3.4 notation of generic string states

In this section a convenient notation for a generic string eigenstate of the leading Hamiltonian
H2 is introduced, generalizing the discussion of [7]. We start with a generic su(2) string
|ψ〉α1 state with K4 excitations which is composed of creation operators α+

1 generating modes
nK4 , nK4−1, . . . , n1.
Note that in general coinciding mode numbers are possible. In the following we distinguish
between states where all modes are pairwise unequal, referred to as states with non-confluent
mode numbers, and states with some coinciding mode numbers, denominated as states with
confluent mode numbers.
Introducing the multiplicity νnk

of a mode nk with respect to a given state |ψ〉α1 , we denote the
number of different modes in |ψ〉α1 by K ′

4. Since the subscript already indicates whether we
are working with the set of only distinct mode numbers or the set of all excited string modes,
we allow for a slight abuse of notation by defining

the list of all K4 excited string modes, the set of all K ′
4 pairwise unequal string modes.

{nK4 , nK4−1, . . . , n1} {nK′
4
, nK′

4−1, . . . , n1} (3.44)

It is important to point out that for a certain i the ni’s in both notations do not necessarily
refer to the same mode number.
A generic su(2) state |ψα1〉 is encoded as

|ψ〉α1 = c α+
1,nK4

α+
1,nK4−1

. . . α+
1,n1
|0〉 = c (α+

1,nK′
4

)νK′
4 (α+

1,nK′
4−1

)νK′
4−1 . . . (α+

1,n1
)ν1 |0〉 , (3.45)

where c is the normalization constant. Finally we introduce the notation for a normalized su(2)
state

|ψ〉α1 = |Gα1 ; n
νK′

4

K′
4
, n

νK′
4−1

K′
4−1

, . . . , nν1
1 〉α1 :=

(α+
1,nK′

4

)νK′
4√

νK′
4
!

(α+
1,nK′

4−1
)νK′

4−1√
νK′

4−1!
. . .

(α+
1,n1

)ν1

√
ν1!

|0〉. (3.46)

The quantity GO represents a counter for the number of fermionic creation operators in the
particular substate, so in the bosonic case it is simply zero. Having a computer software in
mind which is dealing with a large set of states, all carrying the same modes, it is convenient
to save the mode numbers separately and to omit the mode numbers in the states:

|ψ〉α1 = |Gα1 ; νK′
4
, νK′

4−1, . . . , ν1〉α1 . (3.47)

Notation (3.47) has been chosen in such a way, it reflects the internal representation of a
generic string state in the Abakus-software explained in chapter 4. For the sake of simplicity
the internal representation should be unique at the software level. That is why for fermionic
states the same notation is chosen

|ψ〉θ,η = |Gθ,η; νK′
4
, νK′

4−1, . . . , ν1〉θ,η , (3.48)

but now the order of the single operators is of course important and in general Gθ,η 6= 0.
Therefore we require operators of the same substate to form a decreasing series with respect
to the mode numbers, i.e.

nK′
4
> nK′

4−1 > . . . > n1 . (3.49)

We now define a uniform notation for a generic string state using:
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3.5 Eigenvalues of the Hamiltonian

{ nK′
4
, . . . , n1 } set of different modes excited on the string

{ νK′
4

, . . . , ν1 } multiplicities, counting the number of excitations
of the corresponding modes {nK′

4
, . . . , n1}

{ ν(O)
K′

4
, . . . , ν(O)

1 } multiplicities, counting the number of excitations
with flavor O

A defining property of the mode specific multiplicities ν(O)
k is, that the sum over all operators

yields νk ∑
flavor

c=1,...,4

∑
O∈

{θc,ηc,βc,αc}

ν
(O)
k = νk for all k = K ′

4, . . . , 1 .

A generic string eigenstate |Ψ〉 of the quadratic Hamiltonian H2 can now be written in the
form

|Ψ〉 =
4∏

c=1

|ψ〉θc

4∏
c=1

|ψ〉ηc

4∏
c=1

|ψ〉βc

4∏
c=1

|ψ〉αc

with |ψ〉O = |GO; ν(O)
K′

4
, ν

(O)
K′

4−1
, . . . , ν

(O)
1 〉O ,

(3.50)

where we assume the products to be in decreasing order
∏4

c=1 fc ≡ f4f3f2f1. Here also multi-
plicities ν(O)

k = 0 are allowed, which is important for a software in order to save all substates
|ψ〉O of |Ψ〉 in a structural identical representation. In this notation the level matching condi-
tion (3.34) becomes

0 =
K4∑
i=1

ni =
K′

4∑
i=1

νini . (3.51)

3.5 Eigenvalues of the Hamiltonian

Obviously θ+
c,ni

θ−c,ni
, η+

c,ni
η−c,ni

, β+
c,ni

β−c,ni
, α+

c,ni
α−c,ni

act as mode number operators. Thus the
eigenvalues of the leading order Hamiltonian H2, given in (3.39), are

H2|ψ〉 = E2|ψ〉 with E2 =
∞∑

n=−∞
νnωn =

K′
4∑

i=1

νiωi . (3.52)

In (3.52) two different notations for ν and ω have been used:

νm multiplicity of mode number m, where
m represents the mode number, i.e m = −∞, . . . ,∞

νi ≡ νni multiplicity of mode number ni, where
i = 1, . . . ,K ′

4 is the index in a set {nK′
4
, . . . , n1} of mode numbers

(3.53)

Similarly the notation for ωn is abbreviated:

ωm =
√

1 + λ̃m2 in case m represents a mode, i.e m = −∞, . . . ,∞
ωi ≡ ωni =

√
1 + λ̃n2

i in case i = 1, . . . ,K4 is the index in a set of mode numbers
(3.54)

In uniform light-cone gauge the Hamiltonian eigenvalue −P− is then given by

P− = −
K4∑
i=1

ωi + δP− = −
K′

4∑
i=1

νi ωi + δP− , (3.55)

where −δP− represents the eigenvalues of 1
P+
H4.
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Chapter 3: The Superstring on AdS5 × S5

3.5.1 Eigenvalues of H4

Equation (3.52) shows that two states with the same energy E2 have to carry the same ex-
cited modes. However, at leading order the energy is independent of the 16 possible flavours
{θ4, θ2, . . . , α1} of the excitations. Thus we have to use degenerated pertubation theory to
obtain the energy correction −δP−. Denoting

nK′
4

= {nK′
4
, nK′

4−1, . . . , n1} set of distinct excited modes on the string
νK′

4
= {νK′

4
, νK′

4−1, . . . , ν1} set of multiplicites corresponding to the modes
Ψ = (|Ψ%〉, . . . , |Ψ1〉) vector of all possible states |Ψ〉, carrying exactly the

modes nK′
4

with corresponding multiplicity νK′
4

(3.56)

one has to compute the matrix representation Ψ†H4Ψ, whose eigenvalues yield −δP−. Look-
ing at the structure of (3.40), H4 consists, among other terms, of operator products with a
different number of creation and annihilation operators. For the given purpose one can just
drop these terms, since only matrix elements 〈Ψa|H4|Ψb〉 have to be calculated where |Ψa〉
as well as |Ψb〉 carry both K ′

4 excitations. However, it was shown in [7] that there exists a
unitary transformation in pertubation theory around the plane-wave, such that the resulting
Hamiltonian contains only terms with an equal number of creation and annihilation operators.

Acting with the Hamiltonian does not change the U(1) charges of section 3.3.2, which is
obvious for the bosonic part Hbb (3.41). Therefore mixing states need to carry equal charges
in terms of {S+, S−, J+, J−}. Hence it is sufficient for a given excitation pattern (3.56) to only
generate states with equal changes.

3.6 The su(2) sector

As an example we will compute the energy spectrum of the rank one su(2) sector. For the
simple and structurally identical su(2) and sl(2) sectors it is possible to derive closed form
expressions for the string energy spectrum.
The su(2) sector consists of states which are composed only of α+

1,n creation operators, thus
the Hamiltonian (3.40) simplifies dramatically to the effective form

H(su(2))
4 = λ̃

∑
n+m

+k+l
=0

nk
√
ωnωmωkωl

α+
nα

+
mα

−
−kα

−
−l . (3.57)

The mode number operator takes the form

α+
1,ni

α−1,ni
≡ νi =

K∑
k=1

δni,nk
. (3.58)

In order to calculate 〈Ψ|H(su(2))
4 |Ψ〉 = −δP−, there are obviously only three cases to consinder:

a) n = −k, m = −l with n 6= m b) n = −l, m = −k with n 6= m c) n = m = −k = −l .
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3.6 The su(2) sector

case a) n = −k, m = −l with n 6= m

λ̃

P+

∑
n,m
n6=m

−n2

ωnωm
〈Ψ|α+

nα
−
nα

+
mα

−
m|Ψ〉

(3.58)
=

λ̃

P+

∑
n,m
n6=m

−n2

ωnωm

K∑
i,j=1
i6=j

δn,niδm,nj =
λ̃

P+

∑
n,m

−n2

ωnωm

K∑
i,j=1
i6=j

δn,niδm,nj +
λ̃

P+

∑
n

n2

ω2
n

K∑
i,j=1
i6=j

δn,niδn,nj

=
λ̃

P+

K∑
i,j=1
i6=j

−n2
i

ωniωnj

+
λ̃

P+

K∑
i=1

n2
i

ω2
ni

( K∑
j=1

δni,nj − 1
)

=
λ̃

P+

K∑
i,j=1
i6=j

−n2
i

ωniωnj

+
λ̃

P+

K∑
i=1

n2
i

ω2
ni

(νi − 1)

(3.59)

case b) n = −l, m = −k with n 6= m

λ̃

P+

∑
n,m
n6=m

−nm
ωnωm

〈Ψ|α+
nα

−
nα

+
mα

−
m|Ψ〉

(3.58)
=

λ̃

P+

K∑
i,j=1
i6=j

−ninj

ωniωnj

+
λ̃

P+

K∑
i=1

n2
i

ω2
ni

(νi − 1) (3.60)

case c) n = m = −k = −l

λ̃

P+

∑
n

−n2

ω2
n

〈Ψ|α+
n α+

nα
−
n︸ ︷︷ ︸

α−n α+
n−1

α−n |Ψ〉 =
λ̃

P+

∑
n

−n2

ω2
n

K∑
i=1

δn,ni

( K∑
j=1

δn,nj − 1
)

=
λ̃

P+

K∑
i=1

−n2
i

ω2
ni

(νni − 1) (3.61)

Adding (3.59), (3.60), (3.61) yields −δP−, i.e. we find

E − J =
K∑

k=1

ωnk
− λ̃

2P+

K∑
i,j=1
i6=j

(ni + nj)2

ωniωnj

+
λ̃

P+

K∑
i=1

n2
i

ω2
ni

(νni − 1) . (3.62)

(3.62) generalizes the result of [7] to the case of confluent mode numbers.

3.6.1 Solving for the space-time Energy

Since P± = J ± E, the energy is only determined implicitly. By rewriting (3.62) in terms of
the global energy E and the BMN quantities J with λ′ = λ/J2 = fix and subsequently solving
for E one obtains the su(2) global energy

E = J +
K∑

k=1

ω̄nk
− λ′

4J

K∑
k,j=1

n2
kω̄

2
nj

+ n2
j ω̄

2
nk

ω̄nk
ω̄nj

− λ′

4J

K∑
i,j=1
i6=j

(ni + nj)2

ω̄niω̄nj

+
λ′

2J

K∑
i=1

n2
i

ω̄2
ni

(νni − 1)

with ω̄k :=
√

1 + λ′m2
k .

This result agrees precisely with the one in [15], where a different gauge has been used, and
with the formula derived in [16] from a Bethe ansatz.

22
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4 Computer-algebraic calculation: the ABAKUS-system

In a pioneering work Kurt Gödel proved 1931 that in mathematics there are true statements
which however can not be proved using the system of axioms provided by the theory. This fact
is known as the Incompleteness Theorem (for general reviews see [17, 18]). The only way to
make use of such an unprovable but true statement is to add it as an axiom to the theory.

For instance Goldbach’s conjecture of 1742 states, that every even number 2 < n ∈ N
can be decomposed into a sum of two prime numbers. Even the validity is confirmed up to
1014, till this day no prove of Goldbach’s conjecture is known.
Also of general interest is the conjecture “P 6= NP”. Here P and NP denote a certain com-
plexity class of problems. P contains all problems, whose solution can be found in polynomial
many calculation steps in terms of the input length. In contrast a problem belongs to NP if
any suggested solution can be checked for correctness in polynomial many calculation steps.
Of course by constructing the valid solution of a given problem the check for correctness is
dispensable, so P ⊂ NP . The question is, if there are problems allowing for a fast validation of
a solution, but not for a fast construction of a solution, i.e. problems which are in NP and not
in P . For example it can be fast verified that �97, 89� is a solution to �find the prime factors
of 8633�, so the problem �find the prime factors of number n ∈ N� is in NP . Factorization
of numbers is the key point in modern cryptography, and enormous effort has been taken to
find computer algorithms for fast prime factorization in order to crack cryptography protocols.
Nevertheless constructing such an algorithm has not been successful and it is believed that no
such algorithm exists.
The theorem “P 6= NP” is one of the seven Millennium Prize Problems, the Clay Mathematics
Institute has put a premium of 1 million Dollar on the prove of each problem. In fact many
theoretical computer scientists nowadays believe that there is no prove of “P 6= NP”, even
though nobody seriously doubts “P 6= NP”. Thus this theorem is accepted as an axiom and is
a key ingredient in many proves in the field of theoretical computer science.

The above discussion shows that there are statements of practical interest which are likely to
be unprovable and that could well be so for the conjectured AdS/CFT correspondence. Thus
it is important to develop tools enabling us to systematically test certain conjectures, which
will be computer software in most cases.
A significant part of this Diploma thesis has been to develop a suitable software tool enabling
us to compute systematically the spectrum of the AdS5 × S5 superstring. This software, the
Abakus-System is presented in this chapter. At first a specification for the software is given in
4.2 followed by an analyze of the algorithmic complexity classes of the problem. In 4.4 specific
software layout is described and the key algorithms are presented.

4.1 Physical Fundamentals of the Software

According to the mode decompositions (3.35) the fermionic fields θ, η consist of a matrix and
scalar component. In order to compute traces and products of Γa−matrices it is convenient to
use a slight different decomposition

θ(τ, σ) = Γ5−a θ̃
−
a (f) + iΓb θ̃

+
b (g) , η(τ, σ) = Γ5−a η̃

−
a (f) + iΓb η̃

+
b (g) ,

θ†(τ, σ) = Γa θ̃
+
a (f) + iΓ5−b θ̃

−
b (g) , η†(τ, σ) = Γa η̃

+
a (f) + iΓ5−b η̃

−
b (g) ,

(4.1)

with the advantage, that the remaining functions

θ̃±a (k) :=
∞∑

n=−∞
einσ knθ

±
a,±n , η̃±a (k) :=

∞∑
n=−∞

einσ knη
±
a,±n , (4.2)
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have no matrix structure anymore and consist only of creation or annihilation operators of
one color a. The functions f, g abbreviate the former definitions fn, gn of (3.37) and thus
kn ∈ {fn, gn}. The bosonic fields (3.31) are decomposed similarly:

Za(τ, σ) = −i β̃+
a (−1) + i β̃−5−a(−1) , Ya(τ, σ) = −i α̃+

a (−1) + i α̃−5−a(−1) ,

P z
a (τ, σ) = 1

2 β̃
+
a (+1) + 1

2 β̃
−
5−a(+1) , P y

a (τ, σ) = 1
2 α̃

+
a (+1) + 1

2 α̃
−
5−a(+1) ,

(4.3)

with β̃±a (x) :=
∞∑

n=−∞
einσω

x
2
n β

±
a,±n ,α̃±a (x) :=

∞∑
n=−∞

einσω
x
2
n α

±
a,±n . (4.4)

For software purposes the normal order of the Hamiltonian is defined with respect to the
sequence

θ+
4 θ

−
4 θ

+
3 θ

−
3 . . . θ

+
1 θ

−
1 η

+
4 η

−
4 . . . η

+
1 η

−
1 β

+
4 β

−
4 . . . β

+
1 β

−
1 α

+
4 α

−
4 . . . α

+
1 α

−
1 . (4.5)

For the normal ordering procedure the individual mode numbers associated to the creation
and annihilation operators are not relevant.

4.2 Software Requirements Specification

A well designed software specification is essential for a fast development and accurate working of
computer programs. In the following paragraph a condensed form of a requirement specification
for Abakus is presented.

1. purpose of the software
The purpose of the Abakus-software is to compute eigenvalues of the string Hamil-
tonian (3.40) for an arbitrary string configuration.

2. essential requirements
• Correctness of the software calculations has to be guaranteed.
• Algorithms have to be optimized with respect to run time requirements, so that

complex instances are computable.
• It must be possible to perform the calculations analytically except for the matrix

diagonalization, which is not generally possible for higher dimensional matrices.
3. target audience

Physicists, familiar with string theory.
4. runtime environment

operating system: Linux, kernel version 2.4 (or higher)
required software: gcc version 3.3.5 (or higher)

Wolfram Mathematica 5.2 (or higher)
Form7 version 3.1 (or higher)

recommended hardware: 2GHz CPU, 1000 MB Ram, 300 MB space on hard disk

5. user interface
All the necessary input is given in a file define_states.def together with some
control commands, the output will be given in terms of a Mathematica file.

7 developed by Jos Vermaseren, The National Institute for Nuclear Physics and High Energy Physics, Nether-
lands, http://www.nikhef.nl/∼t68/
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5.1 physical input
The user has to define the excitation pattern on the string. Since the calculation
is performed analytically, the numerical values of the mode numbers are not of
interest. What is needed, is the number of excitations and the multiplicity for
each mode, which is fully encoded in the command

#define ExcitationNumbers {νK′
4
, νK′

4−1, . . . , ν1} . (4.6)

5.1.1 recommended specification for the structure of considered states
Given the values for the charges by the command

#define DefineCharges {S+, S−, J+, J−} , (4.7)

all possibly mixing states can be generated.
5.1.2 alternative specification for the structure of considered states

Instead of defining charges, there is the possibility of defining the set of
operators, which are allowed to carry excitations

#define UseOperators {O1,O2, . . .} with Oi ∈ θ4, . . . , α1. (4.8)

In this case the user has to bear responsibility, that there are no mixing
states excluded by the given pattern.
In addition the user might define the specific number of excitations a for
each operator in (4.8), by

#define HamiltonianSector {a1, a2, . . .} with
∑

i

ai
!=

K′
4∑

i=1

νi . (4.9)

Again the user has to bear responsibility, that there are no mixing states
excluded by the given pattern.

5.1.3 optional commands
For the propose of diagonalization, the final structure of H4 in matrix rep-
resentation is exported to Mathematica. For better readability there is
the possibility to define a name for each mode by the command

#define ModeIndices {�name1�,�name2�, . . .} , (4.10)

where the list of names has to contain K ′
4 elements, so that for every distinct

mode listed in (4.6) there is a synonym given.
5.2 program control commands

The following commands are mandatory:

file name for generated states : #define StatesFile �file�
name for Mathematica output file : #define MathematicaFile �file� .

The optional command #define VERBOSE causes an enhanced output during
runtime.
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4.3 Algorithmic complexity of the problems

4.3 Algorithmic complexity of the problems

The discussion is restricted to the case, where the user specifies the charge {S+, S−, J+, J−},
because in this case the software calculates exactly all mixing states. Also the main input
to the Bethe equations of chapter 7 are the so called Dynkin node excitations, which can be
expressed directly in terms of the charges and K ′

4.
In order to compute the energy corrections −δP−, all necessary input is given by

νK ′
4

= {νK′
4
, νK′

4−1, . . . , ν1} , {S+, S−, J+, J−} , (4.11)

where the notation follows (3.56).

At first, all mixing states Ψ = (|Ψ%〉, . . . , |Ψ1〉) compatible with νK′
4

and {S+, S−, J+, J−}
have to be generated, where the key algorithms are discussed in paragraph 4.4.1. The energy
corrections −δP− are given by the eigenvalues of Ψ†H4Ψ. To reduce computational costs, an
effective Hamiltonian Heff is derived from H4 by dropping terms, which will evaluate to zero
for all generated states. The related algorithm is explained in paragraph 4.4.2. In section 4.4.5
particulars of calculating the matrix representation Ψ†HeffΨ and its eigenvalues are presented.

4.3.1 Complexity of state generation

Given the multiplicities {νK′
4
, νK′

4−1, . . . , ν1} = νK′
4
, the simplest approach to generate states

is to choose a flavor θ+
4 , θ

+
3 , . . . , α

+
1 for all of the νK′

4
+ νK′

4−1 + . . . + ν1 = K4 modes and
afterwards to single out the states with proper charge. Thus, considering one mode with
multiplicity νi, the task is to pick νi flavors where the order does not matter and the flavors
can be chosen more than once, viz there are

(
q+νi−1

νi

)
possibilities for q = 16 flavors. In total

one finds

number of generated states =
K′

4∏
i=1

(
15 + νi

νi

)
. (4.12)

In case of non-confluent modes, viz νi=1,...,K′
4

= 1, such an algorithm would compute 16K′
4

states, but for {S+, S−, J+, J−} = {K ′
4,K

′
4, 0, 0} there is only one state with proper charge,

which is the state composed of α+
1 . This example shows, that the pure approach is extremely

inefficient, since it produces exponential overhead. A good algorithm, avoiding this disadvan-
tage, will generate only states of proper charge right from start.

In order to determine the number of states that have to be computed in the worst case,
consider the setting {S+, S−, J+, J−} = {0, 0, 0, 0}, νi=1,...,K′

4
= 1 with even K ′

4 = 2k, k ∈ N.
For each of the first k modes a flavor α+

1 , β
+
1 , η

+
1 , θ

+
1 is chosen independently. The charge of

this excitations can easily be annihilated by picking the last k modes from α+
4 , β

+
4 , η

+
4 , θ

+
4 ,

which are of complementary charge. Since there are 4k = 2K′
4 possibilities to choose the first

k flavors, for this particular example the

number of contributing states ≥ 2K′
4 .

This observation shows, that there are cases where the number of states grows exponentially
with the number of impurities K ′

4.

The Abakus-software stores the states using the representation (3.50) introduced in chapter
3.4: for every operator flavor O = θ4, θ3, . . . , α1 multiplicities ν(O)

K′
4
, . . . , ν

(O)
1 are stored, which

leads to a linear memory requirement of O(K ′
4) for every state.
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4.3.2 Complexity of computing the effective Hamiltonian Heff

According to the software requirements specification Abakus is designed to compute string
spectrum on AdS5×S5 in next to leading order. Even though the Hamiltonian (3.40) is stored
in a separate file and thus may easily be exchanged,. the software is not designed to deal with
user customized Hamiltonians. Therefore we consider the Hamiltonian as permanently been
given by (3.40).

The computation of the effective Hamiltonian is a problem of constant complexity. Inde-
pendent of the given excitations, the Hamiltonian (3.40) consists of a constant number of terms
(precisely 8192). To process each term takes a fixed amount of steps, thus it exists an upper
bound for the computational steps, i.e. the problem is in O(1). So in principle the efficiency
of solving this problem is not of importance.
Nevertheless one should not be too disregardful with the efficiency, because the number of
terms to handle is quite large and computing Heff could dominate the runtime in case of
solving smaller problem instances.

4.3.3 Complexity of computing the Hamiltonian matrix representation

Given the vector of % mixing states Ψ = (|Ψ%〉, . . . , |Ψ1〉) the matrix representation Ψ†HeffΨ
contains %2 matrix elements, where Hermiticity halves the number of independent elements.
However, there is still the possibility of an exponential growth in the number of states with
respect to the length of the input data, which in this case leads to exponential many matrix
entries.

In order to compute a single matrix element, all terms of the effective Hamiltonian have
to be processed separately. In principle a single creation or annihilation operator of Heff acts
on every of the K ′

4 modes by creating or annihilating a string excitation. As obvious from
(3.40) every term in Heff consists of four operators. Thus one term of Heff results in O(K ′

4
4)

scalar products. Denoting the number of terms in Heff by |Heff|, the computation of the
matrix representation is of order O(% ·K ′

4
4 · |Heff|). Therefore the computation of the matrix

representation of Heff is the problem, which will require most of the runtime.

This section is concluded with some general remarks concerning the fact of exponential scaling
behaviors:

• Given the task to compute exponential many objects with respect to the length of the
input data, consider an algorithm, that needs A steps to compute one of these objects
and a second algorithm using 2A steps. Therefore it takes quadratic many steps to
compute the entire solution containing exponential many objects for the slower algorithm
compared to the faster one.
Therefore it is important to develop highly efficient software, since also inefficiency scales
exponentially.

• Available general purpose software like Mathematica or generic search algorithms are
tools for a wide range of applications and thus they can not know about the specific
structure of the discussed problems. It is very likely, that using these tools, one will only
be able to solve small problem instances. In oder to handle even complex instances, one
needs software adapted to the particular problems.
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4.4 Software layout of the ABAKUS-System

states.c
libraries: generate_states

        recycleInput

computeHamiltonian.frm
libraries: computeHamiltonian.prc

calculateMatrix.frm
libraries: calculateMatrixElement.prc

export.prc

Wolfram Mathematica

define_states.def

effective_Hamiltonian.def

define_Hamiltonian.load

states.load

Hamiltonian.begin

Hamiltonian.def

Hamiltonian.h

Hamiltonian.nb

+

mode numbers  nK'4

eigenvalues -dP-

ANSI C code
FORM code
Mathematica code
Linux shell script

input / output file

software code

INPUT

define_states.load
matrix_calculation.load

RunMatrixCalculation

Figure 1: Software layout of the Abakus-System
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Before the key algorithms for solving the various problems are described, we will sketch the
workflow of Abakus, which is pictured in figure 1. The ovals represent text files serving as
input or output while the boxes stand for software source code.

Programming languages

For the purpose of generating all mixing states, the programming language Ansi C has been
chosen, because, due to the pointer concept and the array data structure, it provides highly
efficient tools for manipulating composite data structures.

H4 includes non-commuting objects like matrices and grassmann valued operators. Fur-
thermore great many terms have to be manipulated in every step of the calculation (the fully
expanded Hamiltonian H4 consists of almost 8200 different terms). Thus, Form has been
chosen as an appropriate tool for computing Heff and its matrix representation.

General remarks on the software layout

Form is a script language which is processed by the Form interpreter at runtime, but also
the Ansi C code is not included in a compiled, machine executable form. In fact the Abakus-
software compiles the Ansi C code everytime the software is started. This approach has two
important advantages:

• The user specifies the input as Ansi C preprocessor variables. When the source code is
compiled afterwards the preprocessor replaces the input by the user specified values. At
the moment when the code is actually been translated to a machine executable form the
compiler knows about all the input and thus may substantially optimize the resulting
executable program.

• Whole software features are skipped by the preprocessor if permitted by the structure of
the input, leading to smaller, more efficient runtime code.

Input

The input consists of three files:
define_states.def This is the only file which has to be added by the user of

Abakus, basically it contains the specification for the multiplicities
{νK′

4
, νK′

4−1, . . . , ν1} and some general commands. For details consult
the software requirements specification in paragraph 4.2. The file is
processed by the Ansi C preprocessor.

Hamiltonian.def This file is not supposed to be added by the user. It contains the
definition of H4 as Form code.

Hamiltonian.h This file is not supposed to be added by the user. It contains the Form
declarations of all objects needed to define H4 in Hamiltonian.def.

The numerical values of the mode numbers are not of interest during most of the computation.
Running Abakus will result in a Mathematica file, which contains the mode numbers as
unspecified analytical objects.
mode numbers nK′

4
If numerical eigenvalues of H4 are to be computed, the user has to plug
in numerical values for the mode numbers n1, n2, . . . at the top of the
created Mathematical file.
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Workflow

states.c Ansi C software, computing all potentially mixing states, creates the files:
define_Hamiltonian.load: contains informations about the generated states,
needed for the computation of the effective Hamiltonian Heff;
define_states.load: this Form file contains data of the generated states, needed
for the computation of the matrix representation of Heff;
matrix_calculation.load: this Form file contains adapted Form code to com-
pute the matrix representation of Heff;
Hamiltonian.begin: is a part of the final Mathematica file;
RunMatrixCalculation: Linux shell script controlling the further computation.

computeHamiltonian.frm This Form script computes the effective Hamiltonian based on
the input provided by Hamiltonian.def, Hamiltonian.h and
define_Hamiltonian.load. The result is stored in the Form
file effective_Hamiltonian.def.

calculateMatrix.frm is a Form script for analytic computation of the matrix represen-
tation of Heff. The output is given in terms of Mathematica
commands, which are combined with Hamiltonian.begin to the
final output file8 Hamiltonian.nb.

Mathematica After loading the output file Hamiltonian.nb into Mathematica
one can compute the eigenvalues of Heff. If the eigenvalues are to
be computed numerically one has to specify the values for the
mode numbers.

Environment used for testing and computations

The computations have been performed on the hardware system specified below.
CPU : AMD Athlontm 64 3200+
Memory : 1GB
Operating system : Linux Debian Sarge, stable release

8 Hamiltonian.nb is the default file name for the output file, but it might be changed by the user.
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4.4.1 State generation

In this section the algorithm is presented which generates all possible states of a given charge
{S+, S−, J+, J−} carrying K ′

4 distinct modes with the multiplicities {νK′
4
, νK′

4−1, . . . , ν1} =
νK′

4
. As discussed in chapter 4.3, the number of states might grow exponentially with K ′

4.
Therefore it is important to generate the states as efficiently as possible.
The charge of an excitation is only depending on its flavor but not on the particular mode
number. As an example consider states with ν2 = {1, 1} and charge {S+, S−, J+, J−} =
{0, 0, 2, 0}. The appropriate input for that example is

#define ExcitationNumbers {1,1}
#define DefineCharges {0,0,2,0}

(4.13)

The two possible excitation patterns of appropriate charge, called sectors, are

θ+
2 θ

+
1 |0〉 , α+

2 α
+
1 |0〉 . (4.14)

In the software context, a sector determines how many excitations every flavor carries, ir-
respective of the singe mode numbers. Consequently a sector specifies for every flavor O ∈
{θ4, θ3, . . . , α1} the number of excitations aO

sector =̂ {aθ4 , aθ3 , . . . , aα1} . (4.15)

Now let us assign explicit mode numbers m, n to the flavors, which leads to the set of all states
with charge {0, 0, 2, 0}:

sector {aθ2 = 1, aθ1 = 1, aα2 = 0, aα1 = 0} {aθ2 = 0, aθ1 = 0, aα2 = 1, aα1 = 1}
states θ+

2,m θ+
1,n|0〉 , θ+

2,n θ
+
1,m|0〉 α+

2,m α+
1,n|0〉 , α+

2,n α
+
1,m|0〉

Since the charge of a single excitation is independent from the mode number, the sector deter-
mines the charge of all states belonging to it. According to this description the state generation
is split into two parts:

Part I: calculation of all contributing sectors with charge {S+, S−, J+, J−}, i.e. the
number of excitations {aθ4 , aθ3 , . . . , aα1} for the 16 operators θ4, . . . , α1.

Part II: generation of all possible states for every sector of part I.

Part I: contributing sectors

The source code of the key function genSectors, calculating the contributing sectors, is given
in table 2. It is a depth-first search algorithm recursively writing the number of excitations
aO for an operator O into an array Konf of 16 integer values. It starts with the total number
of impurities ImpLeft= νK′

4
+ νK′

4−1 + . . . + ν1 which have to be distributed over the Op=16
creation in such a way, that the resulting excitation patterns yield the charge configuration
{S+, S−, J+, J−}. In the beginning the charges {S+, S−, J+, J−} are stored in an array charges
and for every impurity which is assigned to an operator, the corresponding charge is subtracted
from charges. Thus the array charges denotes the amount of charge, which has to be covered
by the remaining unassigned impurities. In every recursion step there are ai ≤ ImpLeft
excitations assigned to one operator, which leaves the problem to distribute (ImpLeft−ai)
impurities over (Op−1) operators. According to table 1, each operator carries at most 1 unit
of a specific charge. The recursive algorithm works as follows:
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1. break condition 1: If a charge differs from the target value S±, J± by more units than
there are impurities left (encoded in the counter ImpLeft) to distribute, it is not possible
to generate a sector of appropriate charge by distributing the remaining impurities.

2. break condition 2: If all excitations are set, it is not allowed to have any impurities left,
which are not assigned to any mode, i.e. ImpLeft != 0.

3. terminating condition: If all impurities are distributed over the operators, i.e. ImpLeft=
0, a valid configuration with charge {S+, S−, J+, J−} is found9. The configuration Konf is
appended to the list of computed sectors by the function append_found_Sector(Konf).

4. recursion (in all other cases): For any value A = 0, . . . ,ImpLeft, A modes are assigned
to the current operator and the uncovered charges charges are calculated. The problem
of distributing (ImpLeft−A) impurities over (Op−1) operators remains, which is easily
computed by applying the algorithm recursively.

1 /* function genSectors(int Op, int ImpLeft)

2 * DESCRIPTION:

3 * the 16 possible creation operators are denoted by the value of Op=15,...,0, where 15~\theta_4, ..., 0~\alpha_1.

4 * This function recursively calculates the sectors with appropriate charge, where it is meant to start with

5 * Op = (NumberOfOperators-1) and decreases the operator-index in each step */

6 void genSectors(int Op, int ImpLeft){

7 int c,A;

8 /* Abbruchbedingungen 1: jeder Operator kann maximal 1 Einheit einer speziellen Ladung tragen, falls fuer eine Ladung gilt:

9 (Abweichung vom Sollwert) > #(noch zu verteilenden Operatoren) = ImpLeft => dann Abbruch */

10 for(c=0; c < NumberOfCharges; c++) if(charges[c]*charges[c] > ImpLeft*ImpLeft) return;

11 if (Op == -1) { /* Multiplizitaet aller Operatoren gesetzt */

12 if (ImpLeft > 0) return; /* Abbruchbedingungen 2: Zustand hat nicht genug impurities */

13 append_found_Sector(Konf); /* ansonsten: gueltigen Sector gefunden */

14 return;

15 }

16 if (ImpLeft == 0) { /* Zustand hat richtige Anzahl von Impurities */

17 for(c=Op; 0<= c; c--) Konf[c] = 0; /* gemaess Abbruchbed. 1 & 2 hat Zustand dann auch geforderte */

18 append_found_Sector(Konf); /* Ladungen => Sector gefunden */

19 return;

20 }

21 for(A=0; A<= ImpLeft; A++) { /* Rekursion */

22 Konf[Op] = A;

23 for(c=0; c < NumberOfCharges; c++) charges[c] -= OpCharge[Op*4 + c]*A; /* berechnen der Ladungen der aktuellen Konf. */

24 genSectors(Op-1,ImpLeft-A); /* rekursiver Abstieg */

25 for(c=0; c < NumberOfCharges; c++) charges[c] += OpCharge[Op*4 + c]*A; /* restore der Werte vor rekursivem Abstieg */

26 }

27 } /* end of function genSectors() */

Table 2: Ansi C source code of function genSectors

If requested by the user, the calculated sectors are stored in a file. Operators which do not
carry excitations in all generated sectors are skipped in the output as well as in the internal
representation of the sectors. The software output describing the two sectors of (4.14) is:

1 // MESSAGE: order of Operators:
2 // | Theta2 | Theta1 | Alpha2 | Alpha1 |
3 // MESSAGE: 2 mixing sectors found:
4 | 1 | 1 | 0 | 0 |
5 | 0 | 0 | 1 | 1 |

Table 3: Sample output for example (4.14)

For further processing all operators, which carry excitations in any of the sectors, are written

9 If the algorithm proceeded to step 3, the break condition 1 did not apply. In case ImpLeft= 0, this ensures
that the charge of the generated sector coincides with the target values {S+, S−, J+, J−}.
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in a set Ω (line 2 in table 3), and for each computed sector the number of excitations are stored
for the relevant operators (line 4, 5 in table 3):

set of operators carrying excitations: Ω := {O%, . . . ,O1} ⊆ {θ4, θ3, . . . , α1} ; % ≤ 16 ,
excitation pattern for a sector: {a%, . . . , a1} ,

where the elements of Ω are ordered with respect to the normal order prescription (4.5).

Part II: generating states for a given sector

In order to explain the algorithm we start with some remarks on the internal representation
of states. Commensurate to the operators given in Ω := {O%, . . . , O1} and the total number of
modes K ′

4 a state is given by10

∣∣ν(O%)

K′
4
, ν

(O%)

K′
4−1

, . . . , ν
(O%)
1

〉
O%
. . .
∣∣ν(O1)

K′
4
, ν

(O1)
K′

4−1
, . . . , ν

(O1)
1

〉
O1
, (4.16)

which is conveniently stored into an array of %K ′
4 integer numbers.

For each of the previously generated sectors all physical states have to be computed. To
generate states of a particular sector {a%, . . . , a1} the νi excitations of every mode need to be
distributed over the operator flavors Oi=%,...,1 in such a way that the

result
∣∣ν̃(O%)

K′
4
, ν̃

(O%)

K′
4−1

, . . . , ν̃
(O%)
1

〉
O%

∣∣ν̃(O%−1)

K′
4

, . . . , ν̃
(O%−1)
1

〉
O%−1

. . .
∣∣ν̃(O1)

K′
4
, . . . , ν̃

(O1)
1

〉
O1

satisfies ν̃
(Oi)
K′

4
+ . . .+ ν̃

(Oi)
1 = ai

with ν̃
(O%)
i + ν̃

(O%−1)

i + . . .+ ν̃
(O1)
i = νi .

The quantities with tilde denote values that are set by the algorithm and are not changed
anymore. This is done by basically performing a recursive depth-first search. The algorithm
starts with filling the given multiplicities νK′

4
, νK′

4−1, . . . , ν1 into the first substate.

initialization:
∣∣ν(O%)

K′
4

= νK′
4

, ν
(O%)

K′
4−1

= νK′
4−1 , . . . , ν

(O%)
1 = ν1

〉
O%

∣∣0, 0, . . . , 0
〉
O%−1

. . .
∣∣0, 0, . . . , 0

〉
O1

Then it runs through multiplicities of all substates (or operator flavors Oi) step by step. During
each cycle a multiplicity ν(Oi)

k is processed: ν̃(Oi)
k ≤ ν(Oi)

k modes are assigned to the operator Oi

and the remaining ν(Oi)
k − ν̃(Oi)

k modes are moved to the next subsector for further distribution.
The variable neededEx counts the number of modes that are missing to achieve the obliged
value of ai assigned modes for the current operator Oi. The first step will clarify the basic
principle:

?

ν̃
(O%)

K′
4

?

ν
(O%)

K′
4

− ν̃
(O%)

K′
4

∣∣ν̃(O%)

K′
4

= 0, νK′
4−1, ..., ν1

〉
O%

∣∣ν(O%−1)

K′
4

= νK′
4
, 0, ..., 0

〉
O%−1

. . .∣∣νK′
4
, νK′

4−1, ..., ν1

〉
O%

∣∣0, 0, ..., 0
〉
O%−1

. . .
∣∣ν̃(O%)

K′
4

= 1, νK′
4−1, ..., ν1

〉
O%

∣∣ν(O%−1)

K′
4

= νK′
4
− 1, 0, ..., 0

〉
O%−1

. . .

..

.

neededEx = a% neededEx = a% − ν̃
(O%)

K′
4

�
�

�3

-
Q

Q
Qs • previously processed elements

• currently active element
• currently active substate/flavor

10 In the present notation GO (O ∈ {θ, η, β, α}) of (3.46),(3.48) is omitted, since the software adds this counter
at the very end of the state generation process.
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A general recursion step works out the multiplicity ν(Oi)
k belonging to the operator Oi:

. . .
∣∣...〉Oi+1

∣∣ν̃(Oi)

K′
4

, ..., ν̃
(Oi)
k+1 , ν

(Oi)
k , ν

(Oi)
k−1 , ..., ν

(Oi)
1

〉
Oi

∣∣ν(Oi−1)

K′
4

, ..., ν
(Oi−1)

k+1 , 0, 0, ..., 0
〉
Oi−1

. . .

? ?
. . .
∣∣...〉Oi+1

∣∣ν̃(Oi)

K′
4

, ..., ν̃
(Oi)
k+1 , ν̃

(Oi)
k , ν

(Oi)
k−1 , ..., ν

(Oi)
1

〉
Oi

∣∣ν(Oi−1)

K′
4

, ..., ν
(Oi−1)

k+1 , ν
(Oi)
k − ν̃

(Oi)
k , 0, ..., 0

〉
Oi−1

. . .

There are several break conditions:

1. break condition 0: backtracking in search tree if remaining operators Oi, . . . ,O1 are
fermionic and i < ν

(Oi)
k , because each of the fermionic operators Oi, . . . ,O1 can carry

at most one of the ν(Oi)
k modes.

2. break condition 1: backtracking in search tree if ν(Oi)
k +ν(Oi)

k−1 +ν(Oi)
1 < neededEx, because

even by assigning all ν(Oi)
k + . . . + ν

(Oi)
1 modes left to Oi, one will not reach the needed

value of ai impurities.

3. break condition 2: i = 1 (last operator) and O1 is bosonic: valid state found;
i = 1 and O1 is fermionic: valid state only if ν(Oi)

k , ..., ν
(Oi)
1 ≤ 1.

The valid states are saved into a list.

4. recursion possibility 1: neededEx = 0: all ν(Oi)
k , ..., ν

(Oi)
1 are moved into the next sector,

because the needed quantity of ai impurities has already been assigned to the subsector:
∣∣ν̃(Oi)

K′
4

, ..., ν̃
(Oi)
k+1︸ ︷︷ ︸

=ai

, ν
(Oi)
k , ν

(Oi)
k−1 , ..., ν

(Oi)
1︸ ︷︷ ︸ 〉Oi

∣∣ν(Oi−1)

K′
4

, ..., ν
(Oi−1)

k+1 , 0, 0, ..., 0
〉
Oi−1

. . .

�

Than the next substate is considered:

−→
∣∣ν̃(Oi)

K′
4

, ..., ν̃
(Oi)
k+1 , 0, ..., 0

〉
Oi

∣∣ν(Oi−1)

K′
4

, ..., ν
(Oi−1)

k = ν
(Oi)
k , ..., ν

(Oi−1)

1 = ν
(Oi)
1

〉
Oi−1

∣∣0, ..., 0
〉
Oi−2

. . .

5. recursion possibility 2: if Oi is bosonic: MaxEx = min{ν(Oi)
k , neededEx};

if Oi is fermionic: MaxEx = min{ν(Oi)
k , neededEx, 1}

for every value ν̃(Oi)
k = MaxEx, MaxEx− 1, . . . all possibe states are computed recursively:∣∣..., ν̃(Oi)

k+1 , ν̃
(Oi)
k , ν

(Oi)
k−1 , ...

〉
Oi

∣∣..., ν(Oi−1)

k+1 , ν
(Oi−1)

k , 0, ...
〉
Oi−1

∣∣..., ν̃(Oi)
k+1 ,ν

(Oi)
k , ν

(Oi)
k−1 , ...

〉
Oi

∣∣..., ν(Oi−1)

k+1 , 0, 0, ...
〉
Oi−1

..

.

.

..

..

.

? �
���

@
@@R

���:ν̃
(O

i
)

k

=
0

= 1

ν̃ (O
i )

k

=
MaxEx

ν
(Oi−1)
k = ν

(Oi)
k − ν̃

(Oi)
k

The source code of the described algorithm generate_Block_States, calculating all states
contributing to a given sectors, is displayed in table 4.

The discussion of the algorithm is concluded with some remarks concerning runtime: It is
important to process the fermionoic substates first, because in this case the algorithm does not
generate any defective substates.
In every recursion step the algorithm fixes one of the %K ′

4 multiplicities, i.e. the generation of
one state takes O(%K ′

4). Also memory requirement for one state is O(%K ′
4). Thus the presented

algorithm is maximally efficient since the time to generate a state is of the same magnitude as
the time to write it into the memory.
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1 /* rekursive Funktion generate_Block_States

2 * - durchlaeuft in jeder Instanz eine der verschiedenen Moden eines der Operatoren

3 * - Anregungszahl der Mode erhaelt Werte 0,...,ExNumber, restliche Anregungen werden zur weiteren Verteilung

4 * in naechsten Operatorsektor verschoben (nextsubstate)

5 * - vor Backtracking wird unspruenglicher Anregungswert im aktuellen Sektor (ExNumber) restored

6 * und Anregungswert des naechsten Operatorsektors wieder auf null gesetzt

7 * Input: Mode - Pointer in Array State auf aktuell zu bearbeitende Mode

8 * neededEx - Anzahl Anregungen, die noch auf aktuellen Operator zu verteilen sind

9 * ExLeft - Anzahl aller Anregungen im aktuellen Subsector, die noch verteilt werden koennen

10 * MNextSec - Anzahl Moden, die in den naechsten Zustandsteil verschoben wurden

11 * ModesLeft - Anzahl noch nicht abgearbeiteter Moden in aktuellem Operatorsektor (ModesLeft = NumMo,...,1)

12 * aktuelle Mode wird in ModesLeft mitgezaehlt

13 * OpLeft - Anzahl noch nicht abgearbeiteter Operatoren (OpLeft = NumOp,...,1)

14 * aktueller Operatorsektor wird in OpLeft mitgezaehlt

15 */

16 void generate_Block_States(int* Mode, int neededEx, int ExLeft, int MNextSec, int ModesLeft, int OpLeft){

17 int *nextsubstate; /* Pointer in Array State auf Teil des als naechsten aktuell zu bearbeitenden Operators */

18 int ExNumber; /* Anzahl der Anregungen der entsprechenden Mode dieser Rekursionsinstanz */

19 int MaxEx = 1; /* Anzahl Anregungen (der aktuellen Mode) die (aktueller) Operator tragen kann - default =1 (fermionisch) */

20 int MinEx; /* minimale Anzahl Anregungen (der aktuellen Mode), die die (aktueller) Operator tragen */

21 int i;

22 nextsubstate = Mode + NumMo;

23 ExNumber = *Mode; /* aktuelle Mode */

24
25 /* Abbruchbedingungen 0: nur fermionische Operatoren */ /* jeder der OpLeft fermion. Op. kann maximal eine Anregung */

26 if ((NumOp == NumFermOp) && (OpLeft < ExNumber)) return; /* der aktuellen Mode tragen - sonst verschwindet Zustand (=0) */

27
28 /* Abbruchbedingungen 1: nicht mehr genuegend Anregungen uebrig im aktuellen Subsector */

29 if(neededEx > ExLeft) return; /* kein zulaessiger Zustand mehr generierbar */

30
31 /* Abbruchbedingungen 2: letztes Operatorsegment erreicht */

32 if(OpLeft == 1) { /* aktueller Operatorsektor wird in OpLeft mitgezaehlt */

33 if (NumOp == NumFermOp) /* ueberpruefen des letzten Sectors auf Mehrfach-Anregung fermionischer Moden */

34 for(i=0; i< NumMo; i++) if (Mode[i]> 1) return; /* falls nur fermionische Operatoren beteiligt sind */

35 AgZ++;

36 writeStateToFile(State,NumOp,NumMo,Output);

37 return;

38 } /* Ende Abbruchbed. 2 */

39
40 /* Rekursiver Abstieg 1: Subsector hat geforderte Anzahl an Anregungen (es gilt nun: nicht letztes Operatorsegment)*/

41 if(neededEx == 0) {

42 if (ModesLeft > 0) { /* und noch Moden unbetrachtet */

43 for(i = 0; i < ModesLeft; i++){ /* verschiebe verbleibende Moden-Anregungen in naechsten Operator-Subsector */

44 nextsubstate[i]=Mode[i];

45 ExLeft -= Mode[i];

46 Mode[i]=0;

47 MNextSec += nextsubstate[i];

48 }

49 }

50 /* rekursiver Abstieg in naechsten Operator-subsector*/

51 generate_Block_States(State + (NumOp-OpLeft+1)*NumMo,Block[NumOp-OpLeft+1],MNextSec,0,NumMo,OpLeft-1);

52 if (ModesLeft > 0) { /* restore urspruenglichen Anregungswert (ExNumber) */

53 for(i = 0; i < ModesLeft; i++){ /* verschiebe verbleibende Moden-Anregungen in naechsten Operator-Subsector */

54 Mode[i]=nextsubstate[i];

55 nextsubstate[i]=0;

56 }

57 }

58 return;

59 } /* Ende Rekursiver Abstieg 1 */

60 /* es gilt nun: (nicht letztes Operatorsegment) && (ExLeft >= neededEx) && (ModesLeft > 0) */

61 /* Rekursiver Abstieg 2 */ /* Index des aktuellen Operators : (NumOp-OpLeft) */

62 MaxEx = (ExNumber < neededEx)? ExNumber : neededEx; /* maximale Anregung = min(ExNumber,neededEx) */

63 MinEx = neededEx + ExNumber - ExLeft; /* minimale Anregung = max(0, neededEx+ExNumber-ExLeft) */

64 MinEx = (MinEx > 0)? MinEx : 0;

65 if ((NumOp-OpLeft)<NumFermOp) /* falls aktueller Operator fermionisch ist */

66 MaxEx = (MaxEx<1)? MaxEx : 1; /* maximal moegliche Anregung, min(MaxEx,1) */

67 /* rekursiver Abstieg: auf naechste Mode des gleichen Operators nur falls (neededEx > 0) und (ModesLeft > 0) */

68 for(i=MaxEx; i>=0; i--) {

69 *Mode = i;

70 *nextsubstate = ExNumber -i;

71 generate_Block_States(Mode+1, neededEx-i, ExLeft-ExNumber, MNextSec+ExNumber-i, ModesLeft-1, OpLeft);

72 *Mode = ExNumber; /* restore urspruenglicher Anregungswert (ExNumber) */

73 *nextsubstate = 0;

74 } /* end of for(i=neededEx; i>=0; i--) */

75 return;

76 } /* end of function generate_Block_States */

Table 4: Ansi C source code of function generate_Block_States
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4.4.2 computing the effective Hamiltonian operator

Given the Hamiltonian H4 in the form of (3.40) and the general structure of the states in terms
of the composing creation operators, the task is to compute an effective Hamiltonian Heff.
Consider two states |Ψ1〉, |Ψ2〉 that do not contain a specific operator flavor O ∈ {θ4, . . . , α1}.
Due to normal ordering, all terms containing the operator O will drop out ofH4, since |Ψ1〉, |Ψ2〉
act as the vacuum of O. Given a set of operators Ω ⊆ {θ4, . . . , α1}, the effective Hamiltonian
Heff is obtained by setting O = 0 for all O /∈ Ω.
Deriving Heff is rather straight forward but since the calculation always starts with the full
Hamiltonian (3.40) it is important to keep the number of terms small during computation.

4.4.3 input form of the Hamiltonian

The Hamiltonian H4 is given in Hamiltonian.def in terms of Form statements. The constant
factor λ̃/(4P+) is not included in the calculation. Einstein’s sum convention is applied using
the Euclidean metric. The trace is implicit and is taken only for terms, that include matrices.

1 Local [Hbb] = Yprime(5-IndexA)*Yprime(IndexA)*Z(5-IndexB)*Z(IndexB)

2 - Y(5-IndexA)*Y(IndexA)*Zprime(5-IndexB)*Zprime(IndexB)

3 + Zprime(5-IndexA)*Zprime(IndexA)*Z(5-IndexB)*Z(IndexB)

4 - Yprime(5-IndexA)*Yprime(IndexA)*Y(5-IndexB)*Y(IndexB);

5
6 Local [Hbf-Part1] = (Z(5-IndexA)*Z(IndexA) - Y(5-IndexA)*Y(IndexA)) * (Etadegprime*Etaprime + Thetadegprime*Thetaprime);

7 Local [Hbf-Part2] = -Zprime(IndexM)*Z(IndexN)*(Gamma(IndexM)*Gamma(IndexN)-Gamma(IndexN)*Gamma(IndexM))

8 *(MatrixPplus*(Eta*Etadegprime - Etaprime*Etadeg) -MatrixPminus*(Thetadeg*Thetaprime - Thetadegprime*Theta));

9 Local [Hbf-Part3] = Yprime(IndexM)*Y(IndexN)*(Gamma(IndexM)*Gamma(IndexN)-Gamma(IndexN)*Gamma(IndexM))

10 *(-MatrixPminus*(Etadeg*Etaprime - Etadegprime*Eta) +MatrixPplus*(Theta*Thetadegprime - Thetaprime*Thetadeg));

11 Local [Hbf-Part4] = -KomplexI*Kappa/Sqrt(Lamdatilde) * (Zprime(IndexN)*PZ(IndexM)+Z(IndexN)*PZprime(IndexM))

12 *(Gamma(IndexN)*Gamma(IndexM)-Gamma(IndexM)*Gamma(IndexN))

13 *(MatrixPplus*(Etadeg*Etadeg + Eta*Eta) +MatrixPminus*(Thetadeg*Thetadeg + Theta*Theta));

14 Local [Hbf-Part5] = KomplexI*Kappa/Sqrt(Lamdatilde) * (Yprime(IndexN)*PY(IndexM)+Y(IndexN)*PYprime(IndexM))

15 *(Gamma(IndexN)*Gamma(IndexM)-Gamma(IndexM)*Gamma(IndexN))

16 *(MatrixPminus*(Etadeg*Etadeg + Eta*Eta) +MatrixPplus*(Thetadeg*Thetadeg + Theta*Theta));

17 Local [Hbf-Part6] = 8*KomplexI* Z(IndexM)*Y(IndexN)* ( - MatrixPminus*Gamma(IndexM)*Etaprime*Gamma(IndexN)*Thetaprime

18 + MatrixPplus*Gamma(IndexM)*Thetadegprime*Gamma(IndexN)*Etadegprime );

19
20 Local [Hff-Part1] = - MatrixSigma * ( Etadegprime*Eta*Etadegprime*Eta + Etadeg*Etaprime*Etadeg*Etaprime

21 + Etadegprime*Etadeg*Etadegprime*Etadeg + Etaprime*Eta*Etaprime*Eta);

22 Local [Hff-Part2] = MatrixSigma * ( Thetadegprime*Theta*Thetadegprime*Theta + Thetadeg*Thetaprime*Thetadeg*Thetaprime

23 + Thetadegprime*Thetadeg*Thetadegprime*Thetadeg + Thetaprime*Theta*Thetaprime*Theta);

Table 5: file Hamiltonian.def − H4 in Form source code

4.4.4 algorithmic calculation of Heff

In the following a formal description of the algorithm computing Heff is given.

1. According to (3.31), {Yc, P
y
c } will expand to the operator class {α±4 , . . . , α

±
1 }. If the set

{α±4 , . . . , α
±
1 } is not included in the set Ω (Ω =̂ operators composing the mixing states)

the algorithm sets Y = 0, P y
c = 0. Appropriate action is done for {Z,P z}, {η}, {θ} in

case the corresponding operator classes are not used.

2. For the products of bosonic fields Za, P
z
a , Ya, P

y
a Einstein’s sum convention is applied, so

for instance insert Z5−cZc = Z4Z1 + . . .+ Z1Z4.

3. The fermionic fields θ, η as well as their derivatives and their adjoint fields are decomposed
into the matrix part Γc and the scalar part θ̃±c , η̃

±
c according to (4.1).

For all colors c = 4, . . . , 1 the fermionic fields θ̃±c , θ̃
′±
c are dropped in in case θc /∈ Ω.

Appropriate action is done for ηc .
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4. Order Γc-matrices without generating new terms, i.e. use {Γ1,Γ2} = {Γ1,Γ3} = 0 and
{Γ2,Γ4} = {Γ3,Γ4} = 0. Whenever possible, apply ΓcΓc = 0 (c fixed).
Substitute the representation of P±, Σ, Γc in terms of Dirac matrices γi according to
(A.7), (A.8).
Compute trace, using the built-in trace function of Form.

5. Rewrite Zc, P
z
c , Yc, P

y
c and its derivatives in terms of β̃±c , α̃

±
c using (4.3).

In order to reduce the later costs of normal ordering, the Hamiltonian is pre-ordered in
this step with respect to the sequence

θ̃+ θ̃− η̃+ η̃− β̃+ β̃− α̃+ α̃− ,

but the ordering does not incorporate the colors c of α̃±c , β̃
±
c , η̃

±
c , θ̃

±
c .

For all colors c = 4, . . . , 1 drop bosonic fields α̃±c , α̃
′±
c in case αc /∈ Ω. Appropriate

action is done for βc .
Substitute explicit mode expansion for α̃±, β̃±, η̃±, θ̃± using (4.2), (4.4).

6. Normal order Hamiltonian with respect to (4.5) and create an individual Form-expression
for every unique operator product:
• Heff contains only products of four operators: O1,a O2,b O3,d O4,l . Here Oi ∈
{θ±c , η±c , β±c , α±c } denotes the operator including the flavour index c = 4, . . . , 1, while
the indices a, b, d, l stand for mode numbers. Due to normal ordering the index struc-
ture may differ between the operator products, so it has to be changed to a uniform
notation, in order that Form realizes equivalent terms. This is done by applying

O1,a O2,b O3,d O4,l = δa,m1δb,m2δd,m3δl,m4 O1,m1
O2,m2

O3,m3
O4,m4

.

• All summands with exactly equal operators are combined into one term by factoring
out the operators; in the simplest case

F1(m1, ...,m4, λ̃) O1,m1
O2,m2

O3,m3
O4,m4

+ F2(m1, ...,m4, λ̃) O1,m1
O2,m2

O3,m3
O4,m4

=
[
F1(m1, ...,m4, λ̃) + F2(m1, ...,m4, λ̃)︸ ︷︷ ︸

HamiltonianFunctionPart

]
· O1,m1

O2,m2
O3,m3

O4,m4︸ ︷︷ ︸
HamiltonianOperatorPart

.

The constituents are written into individual Form-expressions:
the operators into HamiltonianOperatorPartk and the remaining function, depend-
ing only on the mode numbers m1, . . . ,m4 and λ̃, is cast into the Form-expression
HamiltonianFunctionPartk, i.e. the Hamiltonian is decomposed into

Heff =
∑

k

HamiltonianFunctionPartk · HamiltonianOperatorPartk .

The generated expressions HamiltonianFunctionParti and HamiltonianOperatorParti

are stored into the file effective_Hamiltonian.def.

In step 5 and 6 operators are ordered. The most efficient way to order functions in Form
is to define them in the appropriate order. In that case Form orders commuting functions
by default where non-commuting objects can be ordered using the id disorder command.
Therefore the stage-generation algorithm creates the file define_states.load. It contains
Form-commands defining all operators O+,O− for O ∈ Ω.
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Two properties of the presented algorithm are especially important for runtime:

• By using (4.1), the software computes the trace independently from the explicit mode
expansions (4.2) and (4.4). In this way the mode decomposition stays hidden through
a large part of the calculation (up to the very end of step 5) and all terms are solely
products of four fields (besides a factor of κ

√
λ̃). Inserting the full mode decompo-

sition (3.31),(3.35) at step 3 instead would result in two times longer terms and thus
substantially slow down pattern matching and therewith the speed of the program.

• The separation of the operators from the prefactors, performed in step 6, is most impor-
tant for the subsequent calculation of the matrix representation of Heff. Computations
show that in average 10 terms have identical products of creation and annihilation op-
erators. Skipping the Hamiltonian segmentation of step 6, the software would have to
calculate 10 times more expectation values to obtain the matrix representation of Heff.

4.4.5 Hamiltonian matrix representation and its eigenvalues

Based on the fact that the matrix grows quadratically with the number of states, its com-
putation is unequivocally the most time-consuming problem. On the one hand a numerical
calculation of the matrix representation from the outset is therefore expedient. On the other
hand it is an immense benefit to compute energy corrections fully analytically and compare the
results to analytic solutions of the Bethe equation. I have decided to develop a tool computing
the matrix representation analytically and to add a numerical solution later on if required. For
this purpose Form was chosen as programming language to calculate the matrix Heff while
the result is exported into Mathematica where the numerical or analytical eigenvalues can
easily be computed.

The software component computing the matrix representation Heff is the Form program
calculateMatrix.frm. It loads the file effective_Hamiltonian.def containing all terms of
Heff and calculates an individual matrix for each term. The Form commands for computing
the matrices are encoded in the file matrix_calculation.load, which has been generated by
states.c.

To calculate a matrix element one has to compute an object of the form

〈Ψ̂|O±1,m1
O±2,m2

O±3,m3
O±4,m4

|Ψ〉 , O1, . . . ,O4 ∈ Ω ⊆ {θ4, θ3, . . . , α1} ,

with |Ψ〉 =
∣∣GO% ; ν

(O%)

K′
4
, ν

(O%)

K′
4−1

, . . . , ν
(O%)
1

〉
O%
. . .
∣∣GO1

; ν(O1)
K′

4
, ν

(O1)
K′

4−1
, . . . , ν

(O1)
1

〉
O1

〈Ψ̂| =
〉
O1

〈
ĜO1

; ν̂(O1)
K′

4
, ν̂

(O1)
K′

4−1
, . . . , ν̂

(O1)
1

∣∣ . . . 〉
O%

〈
ĜO% ; ν̂

(O%)

K′
4
, ν̂

(O%)

K′
4−1

, . . . , ν̂
(O%)
1

∣∣ .
Since in Ω only the operator flavors of the states are stored, the mode-number is represented
by the second index of O±i,m1

. For example an appropriate operator to α3 ∈ Ω is given by α±3,m ,
where m denotes a mode number.
As defined in paragraph 3.4, GOi

denominates the number of Grassmann-valued modes in the
appropriate substate:

GOi
:=

{
ν

(Oi)
K′

4
+ ν

(Oi)
K′

4−1
+ . . .+ ν

(Oi)
1 if Oi fermionic

0 if Oi bosonic
(4.17)
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In order to compute a matrix element, the creation and annihilation operators of Heff have
to be moved in front of the corresponding substate. Considering the following example, the
importance of the Grassmann counter GOi

becomes obvious:

F (m4, m3, m2, m1, λ̃) θ+
2,m4

θ−2,m3
θ+
1,m2

θ−1,m1︸ ︷︷ ︸∣∣Gθ2 ; ν
(θ2)

K′
4

, . . . , ν
(θ2)
1

〉
θ2

∣∣Gθ1 ; ν
(θ1)

K′
4

, . . . , ν
(θ1)
1

〉
θ1

6

(−1)Gθ2

Instead of permuting the grassmann valued operator θ−1,m1
with every mode of a fermionic

substate, only one operartion is required to exchange both objects, i.e the operation is in O(1)
instead of O(K ′

4).

The algorithm works as follows:
1. It moves the operators towards the substate of corresponding flavor by applying:

O±i,m
∣∣GO% ; ν

(O%)

K′
4

, ν
(O%)

K′
4−1

, . . . , ν
(O%)
1

〉
O%

. . .
∣∣GO1 ; ν

(O1)

K′
4

, ν
(O1)

K′
4−1

, . . . , ν
(O1)
1

〉
Oi

. . .

= (−1)
GO%+GO%−1+...+GOi+1

∣∣GO% ; ν
(O%)

K′
4

, ν
(O%)

K′
4−1

, . . . , ν
(O%)
1

〉
. . . O±i,m

∣∣GOi
; ν

(O1)

K′
4

, ν
(O1)

K′
4−1

, . . . , ν
(O1)
1

〉
Oi

. . .

2. The single substates of 〈Ψ̂| are moved in front of the corresponding operators or ket-
vector with same flavor, so for instance

. . .
〉
O2

〈
GO2 ; . . . , ν

(O2)
1

∣∣︸ ︷︷ ︸
〉
O1

〈
GO1 ; . . . , ν

(O1)
1

∣∣ Oa

∣∣GO1 ; . . . , ν
(O1)
1

〉
O1

Ob Oc

∣∣GO2 ; . . . , ν
(O2)
1

〉
O2

. . .

�

=
〉
O1

〈
GO1 ; . . . , ν

(O1)
1

∣∣ Oa

∣∣GO1 ; . . . , ν
(O1)
1

〉
O1

〉
O2

〈
GO2 ; . . . , ν

(O2)
1

∣∣Ob Oc

∣∣GO2 ; . . . , ν
(O2)
1

〉
O2

. . .

Therewith one is left with a product of independent scalar products, each of an individual
flavor.

3. From (4.2), (4.4) it is obvious that all the mode number indices are summed over. Thus
the scalar products are computed using

∑
m

O±
k,m

∣∣GOk
� ; ν(Ok)

K′
4
, . . . , ν

(Ok)
1

〉
Ok

=
K′

4∑
i=1

δm,ni

∣∣GOk
� ; ν(Ok)

K′
4
, . . . , ν

(Ok)
i ± 1, . . . , ν(Ok)

1

〉
Ok√

ν
(Ok)
i + Θh(±1)

×

{
sign(ν(Ok)

K′
4

+ . . .+ ν
(Ok)
i+1 ) if Oi fermionic

1 if Oi bosonic

Θh denotes the common heavy-side function and according to (3.56) ni denominates the
mode number corresponding to ν(Ok)

i the operator is acting on. In case O±
k,m

is fermionic
the last term represents just the signature which is produced by permuting O±

k,m
with

Grassmann valued operators assembling the state.
The counter GO is crossed out in order to indicate that it is neither used nor changed by
the software anymore.

4. In a final step orthogonality of the substates is applied〉
Oi

〈
GOi
� ; ν(Oi)

K′
4
, . . . , ν

(Oi)
1

∣∣∣∣GOi
� ; ν(Oi)

K′
4
, . . . , ν

(Oi)
1

〉
Oi

= 1 .

Afterwards only vanishing scalar products are left, so the algorithm sets all remaining
substates to zero: ∣∣GOi

� ; ν(Oi)
K′

4
, . . . , ν

(Oi)
1

〉
Oi

= 0.
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Step 1 to 4 computes the contribution of one term of Heff to one matrix element 〈Ψ̂|Heff|Ψ〉.
The result is an analytic function in terms of ωni , fni , gni , which is fully determinded by the
values of the mode numbers nK′

4
, . . . , n1 and the effective string tension λ̃.

In this way for each term of Heff a matrix is generated, whose sum will yield the Hamiltonian
matrix representation of H4. For the sake of simplicity, the Form program does not sum the
matrices but exports them element by element to a Mathematica file.

Eigenvalues of H4

The computation of the eigenvalues is simple. Provided with the analytic matrix structure of
H4, Mathematica allows for numerical and analytical computation of the eigenvalues as well
as analytic simplification of the results in the latter case.
In order to obtain numerical results the user needs to specify values for P+, λ̃ and the mode
numbers, where the latter have to obey the level matching condition (3.51).

4.4.6 Installation

The Abakus software project can be downloaded at

http://people.physik.hu-berlin.de/∼hentsche/ABAKUS.tgz .

The version Abakus1.02.02.00 can be found on the enclosed CD. In order to run Abakus,
Form version 3.1 (or higher) written by Jos Vermaseren and Wolfram Mathematica version
5.2 (or higher) are required. The Form interpreter has to be available to the Linux operating
system as an executable file.
Abakus does not require installation, it is sufficient to extract the gzipped tar archive by

#〉 tar -xzvf ABAKUS.tgz

In order to run Abakus, one needs to execute the shell script RunCalculation. All output is
placed in the subdirectory output.
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5 String computations with ABAKUS

To confront the proposed light-cone Bethe equations with the quantum string result extensive
computer algebra computations have been performed to diagonalize the worldsheed Hamilto-
nian perturbatively. For all closed subsectors, i.e. su(2), sl(2), su(1|1), su(1|2), su(1, 1|2) and
su(2|3), the effective Hamiltonian is stated as well as analytic results for its eigenvalues up
to three impurities, whenever available. For higher impurities systematic computations have
been performed numerically in all sectors. Unfortunately the feasibility of solving the Bethe
equations is quite limited compared to the available string solutions by the Abakus software.
Therefore in chapter 5.7 only these string eigenvalues are presented for which solutions of the
Bethe equations are on-hand, while a full listing of the numerically computed string eigenvalues
is given in the appendix B.

As stated in chapter 3.3.2 we will make use of the U(1) charges {S+, S−, J+, J−} in order to
classify the Hamiltonian eigenvalues. In order to prevent confusion, recall that the eigenvalues
of H4 are determined by

operator
1
P+
H4 ←→ eigenvalues − δP− . (5.1)

5.1 The su(2) sector

The su(2) sector consists of states, which are composed only of α+
1,n creation operators. For

the sake of completeness, the result of section 3.6 is stated again:

H(su(2))
4 = λ̃

∑
m1+m2

+m3+m4
=0

m1m3√
ωm1ωm2ωm3ωm4

α+
m1
α+

m2
α−−m3

α−−m4
(5.2)

δP
(su(2))
− =

λ̃

2P+

K4∑
i,j=1
i6=j

(mi +mj)2

ωmiωmj

− λ̃

P+

K′
4∑

k=1

m2
k

ω2
mk

νk (νk − 1) . (5.3)

5.2 The sl(2) sector

The sl(2) states are generated by β+
1,n operators. Since the structure of the Hamiltonian (3.41)

is identical for α±1,n and β±1,n up to a minus sign one finds

H(sl(2))
4 = −λ̃

∑
m1+m2

+m3+m4
=0

m2m4√
ωm1ωm2ωm3ωm4

β+
1,m1

β+
1,m2

β−1,−m3
β−1,−m4

(5.4)

and the global energy shift follows immediately

δP
(sl(2))
− = −δP (su(2))

− . (5.5)

5.3 The su(1|1) sector

States of the su(1|1) sector are formed of θ+
1,n creation operators. As noted in [7] the restriction

of the string Hamiltonian H4 to the pure su(1|1) sector vanishes

H(su(1|1))
4 ≡ 0 , δP

(su(1|1))
− = 0 . (5.6)
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5.4 The su(1|2) sector

5.4 The su(1|2) sector

We now turn to the first larger rank sector su(1|2) being spanned by the creation operators
θ+
1,n and α+

1,n. The effective Hamiltonian is given by

H(su(1|2))
4 = H(su(2))

4 + λ̃
∑

m1+m2
+m3+m4

=0

X(m1,m2,m3,m4)√
ωm3ωm4

θ+
1,m1

θ−1,−m2
α+

1,m3
α−1,−m4

. (5.7)

where X(m,n, k, l) is defined as

X(m,n, k, l) :=
[(
mn− (m−n)(k−l)

4

)
(fnfm + gngm)− κ

4
√

λ̃
(k + l)(ωk + ωl)(fngm + fmgn)

]
,

(5.8)

with κ = ±1.

5.4.1 Two impurities

For two impurity su(1|2) states, carrying the modes m1 = −m2, the Hamiltonian H4 forms a
4× 4 matrix with eigenvalues −δP− where

δP− =
{
± 2

λ̃

P+

m2
1

ω1
, 0, 0

}
. (5.9)

5.4.2 Three impurities with distinct modes

Considering the three impurity case with distinct mode numbers m1,m2,m3 the Hamiltonian
is represented by an 8× 8 matrix which decomposes into 4 non mixing submatrices, where two
fall into the rank one sectors su(2) and su(1|1). The remaining pieces are two 3× 3 matrices.

Since string states only mix if they carry the same charges, we can classify the submatrices
and their eigenvalues by the charge of the corresponding states. One finds:

{S+, S−, J+, J−} = {0, 2, 3, 1}θ+
1 θ+

1 α+
1 |0〉

:

δP− =
{
± λ̃

P+

3∑
j=1

m2
j

ωj
,

λ̃

P+ω1ω2ω3

3∑
j=1

m2
j ωj

}
(5.10)

{S+, S−, J+, J−} = {0, 1, 3, 2}θ+
1 α+

1 α+
1 |0〉

:

δP− =
{

0,
λ̃

P+

m2
1ωm1 +m2

2ωm2 +m2
3ωm3 ± Ξm1,m2,m3

ωm1ωm2ωm3

}
(5.11)

with Ξa,b,c :=
√

4(ω2
aχ

2
b,c + ω2

bχ
2
a,c + ω2

cχ
2
a,b) + (ξa;b,c − ξb;a,c + ξc;a,b)2 − 4ξa;b,cξc;a,b

ξa;b,c := − a(bωb + cωc − aωa)

χa,b := − abλ̃ab− (1 + ωa)(1 + ωb)√
(1 + ωa)(1 + ωb)

.
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Chapter 5: String computations with ABAKUS

5.4.3 Three impurities with confluent modes

In the case of confluent modes {m1,m2,m3} = {m,m,−2m} the submatrix with charges
{0, 2, 3, 1} collapses to a scalar whereas the submatrix of charge {0, 1, 3, 2} reduces to a 2× 2
matrix. The energy shifts are

{S+, S−, J+, J−} = {0, 2, 3, 1}θ+
1 θ+

1 α+
1 |0〉

: δP− =
λ̃

P+

2m2

ωm

( 1
ωm

+
1
ω2m

)
(5.12)

{S+, S−, J+, J−} = {0, 1, 3, 2}θ+
1 α+

1 α+
1 |0〉

:

δP− = 2
λ̃q2

P+ω2
qω2q

(
ωq + ω2q ± ωq

√
3 + 2ω2

2q + 4ωqω2q

)
(5.13)

5.5 The su(1, 1|2) sector

States of the su(1, 1|2) sector are spaned by the set {θ+
1,n, η

+
1,n, β

+
1,n, α

+
1,n} of creation operators.

In this sector the effective Hamiltonian takes the form

H(su(1,1|2))
4 = λ̃

∑
k+l

+n+m
=0

kl
√
ωmωnωkωl

(α+
1,mα

−
1,−n − β

+
1,mβ

−
1,−n)(α+

1,kα
−
1,−l + β+

1,kβ
−
1,−l)

+λ̃
∑

k+l
+n+m

=0

2 i
fmfn − gmgn√

ωkωl
(θ+

1,mη
+
1,nβ

−
1,−kα

−
1,−l + θ−1,−mη

−
1,−nβ

+
1,kα

+
1,l) (5.14)

+λ̃
∑

k+l
+n+m

=0

X(m,n, k, l)
√
ωkωl

(θ+
1,mθ

−
1,−n + η+

1,mη
−
1,−n)(α+

1,kα
−
1,−l − β

+
1,kβ

−
1,−l) ,

where X(m,n, k, l) is given in (5.8).

5.5.1 Two impurities

The Hamiltonian matrix decomposes into several non mixing submatrices. The su(1, 1|2) sector
contains all previous discussed sectors, whose eigenvalues we do not state again. For the two
impurity case with mode numbers m1 = −m2 one obtains the new eigenvalues:

{1, 1, 1, 1}θ+
1 η+

1 |0〉, β+
1 α+

1 |0〉
: δP− =

{
± 4

λ̃

P+

m2
1

ω1
, 0, 0

}
(5.15)

{1, 2, 1, 0}θ+
1 β+

1 |0〉
, {0, 1, 2, 1}θ+

1 α+
1 |0〉{2, 1, 0, 1}η+

1 β+
1 |0〉

, {1, 0, 1, 2}η+
1 α+

1 |0〉
δP− = ±2

λ̃

P+

m2
1

ω1
(5.16)

5.5.2 Three impurities with confluent modes

For higher impurities the situation becomes much more involved. Already the three impurity
su(1, 1|2) Hamiltonian for non-confluent modes becomes a 64× 64 matrix with submatrices of
rank 9. We will classify the su(1, 1|2) submatrices with respect to their charges and dimension d.
Because su(1, 1|2) contains previously discussed sectors, we can deduce most of the eigenvalues
by using properties of the Hamiltonian H(su(1,1|2))

4 . The findings are collected in the table 6.
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5.6 The su(2|3) sector

dimension d = 1

{S+, S−, J+, J−} State pattern Property δP−
{0, 0, 3, 3} α+

1 α+
1 α+

1 |0〉 su(2) state (5.3)
{3, 3, 0, 0} β+

1 β+
1 β+

1 |0〉 sl(2) state (5.5)

dimension d = 3

{S+, S−, J+, J−} State pattern Property δP−

{0, 2, 3, 1} θ+
1 θ+

1 α+
1 |0〉 su(1|2) state δP

{0,2,3,1}
− see (5.10)

{2, 0, 1, 3} η+
1 η+

1 α+
1 |0〉 property of (5.14) implies δP

{2,1,0,3}
− = +δP

{0,2,3,1}
−

{1, 3, 2, 0} θ+
1 θ+

1 β+
1 |0〉 property of (5.14) implies δP

{1,3,2,0}
− = −δP

{0,2,3,1}
−

{3, 1, 0, 2} η+
1 η+

1 β+
1 |0〉 property of (5.14) implies δP

{3,1,0,2}
− = −δP

{0,2,3,1}
−

{0, 1, 3, 2} θ+
1 α+

1 α+
1 |0〉 su(1|2) state δP

{0,1,3,2}
− see (5.11)

{1, 0, 2, 3} η+
1 α+

1 α+
1 |0〉 property of (5.14) implies δP

{1,0,2,3}
− = +δP

{0,1,3,2}
−

{2, 3, 1, 0} θ+
1 β+

1 β+
1 |0〉 property of (5.14) implies δP

{2,3,1,0}
− = −δP

{0,1,3,2}
−

{3, 2, 0, 1} η+
1 β+

1 β+
1 |0〉 property of (5.14) implies δP

{3,2,0,1}
− = −δP

{0,1,3,2}
−

Table 6: Analytically accessible three impurity, distinct su(1, 1|2) energy shifts.

The structure of the 9 × 9 submatrices is a bit more involved. Under the oscillator exchange
θ1,m ↔ η1,m and α1,m ↔ β1,m the effective Hamiltonian H(su(1,1|2))

4 changes its sign. This
exchange translates a state with charge {1, 1, 2, 2} into one with {2, 2, 1, 1} or a {1, 2, 2, 1}
charged state into one with {2, 1, 1, 2} and vice versa with mutual energy shifts of opposite
signs. See table 7 for results.

5.6 The su(2|3) sector

Finally the su(2|3) sector is spanned by the operators θ+
1,n, θ

+
2,n, α

+
1,n, α

+
2,n. The effective form

of H4 in this closed subsector reads

H(su(2|3))
4 =

λ̃
∑

k+l
+n+m

=0

kl
√
ωmωnωkωl

(α+
1,mα

−
1,−n + α+

2,mα
−
2,−n)(α+

1,kα
−
1,−l + α+

2,kα
−
2,−l)

+λ̃
∑

k+l
+n+m

=0

X(m,n, k, l)
√
ωkωl

(θ+
1,mθ

−
1,−n + θ+

2,mθ
−
2,−n)(α+

1,kα
−
1,−l + α+

2,kα
−
2,−l) (5.17)

− λ̃
2

i
∑

k+l
+n+m

=0

1
√
ωkωl

(θ+
2,mθ

+
1,nα

−
2,−kα

−
1,−l + θ−2,−mθ

−
1,−nα

+
2,kα

+
1,l)

×

[
(m− n)(k − l)(fngm − fngm) +

κ√
λ̃

(k + l)(ωk − ωl)(fnfm − gmgn)

]

+λ̃
∑

k+l
+n+m

=0

 (fmgn + fngm)(fkgl + flgk)(mn+ kl)
+(fngk + fkgn)(fmgl + flgm)(nk +ml)
−(fnfl − gngl)(fmfk + gmgk)(nl +mk)

 θ+
2,mθ

−
2,−nθ

+
1,kθ

−
1,−l .
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Chapter 5: String computations with ABAKUS

dimension d = 9

{S+, S−, J+, J−} State pattern δP−
{1, 1, 2, 2} β+

1 α+
1 α+

1 |0〉, θ+
1 η+

1 α+
1 |0〉 rank 9 matrix, numerical eigenvalues see table 8

{2, 2, 1, 1} β+
1 β+

1 α+
1 |0〉, θ+

1 η+
1 β+

1 |0〉 δP
{2,2,1,1}
− = −δP

{1,1,2,2}
−

{1, 2, 2, 1} θ+
1 θ+

1 η+
1 |0〉, θ+

1 β+
1 α+

1 |0〉 rank 6 matrix, numerical eigenvalues see table 8

{2, 1, 1, 2} θ+
1 η+

1 η+
1 |0〉, η+

1 β+
1 α+

1 |0〉 δP
{2,1,1,2}
− = −δP

{1,2,2,1}
−

Table 7: Remaining three impurity, distinct su(1, 1|2) shifts, which were compared numerically.

5.6.1 Two impurities

For two impurities with mode numbers m2 = −m1 we find the energy shifts

{0, 0, 2, 0}θ+
2 θ+

1 |0〉, α+
2 α+

1 |0〉
: δP− =

{
± 4

λ̃

P+

m2
1

ω1
, 0, 0

}
(5.18)

{0, 1, 2, 1}θ+
1 α+

1 |0〉
, {0, 1, 2,−1}θ+

1 α+
2 |0〉

{0,−1, 2, 1}θ+
2 α+

1 |0〉
, {0,−1, 2,−1}θ+

2 α+
2 |0〉

: δP− = ±2
λ̃

P+

m2
1

ω1
(5.19)

5.7 Numerical results

In order to confront the string results with the predictions of the Bethe equations, we had
to retreat to numerical considerations in certain cases. We have considered three impurity
excitations in the su(1, 1|2) subsector with distinct and confluent mode numbers, as well as
all three impurity excitations (distinct and confluent) for the su(2|3) subsector. In the tables
below numerical results for the values λ̃ = 0.1 and P+ = 100 are stated. For the case of non-
confluent mode numbers (m1,m2,m3) = (2, 1,−3) the string eigenvalues are listed in table 8,
while for the confluent modes (m1,m2,m3) = (3, 3,−6) the eigenvalues are given in table 9.

su(2|3) sector11

{S+, S−, J+, J−} eigenvalues −δP−
{0,0 ,3,±3} −0.0106324
{0,±2,3,±1} ±0.0108634 −0.0106324
{0,±1,3,±2} −0.0214958 0.000230962 0
{0,±1,3,0} 0.0217267 3×−0.0214958 2× 0.000230962 3× 0
{0,0,3,±1} −0.0323591 0.0110943 2×±0.0108634 3×−0.0106324

su(1, 1|2) sector

{S+, S−, J+, J−} eigenvalues −δP−
{1,1,2,2} −0.0323591 0.0110943 2×±0.0108634 2×−0.0106324 0.0106324
{1,2,2,1}, {2,1,1,2} ±0.0217267 ±0.0214958 ±0.000230962 3× 0
{2,2,1,1} 0.0323591 −0.0110943 2×±0.0108634 2× 0.0106324 −0.0106324

Table 8: Numerical results for the first order correction in 1/P+ of the string energy spectrum for
three impurity states with distinct mode numbers m1 = 2,m2 = 1,m3 = −3. The number in front of
some eigenvalues denotes their multiplicity if unequal to one.

11 The ± signs at some charges are just a shortform of writing several charge combinations all with the same
eigenvalues. They are not related to the signatures of the eigenvalues in any sense.
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5.7 Numerical results

su(2|3) sector

{S+, S−, J+, J−} eigenvalues −δP−
{0,±1,3,0} 2×−0.0454059 2× 0.0142814
{0,0,3,±1} −0.0752496 0.044125 3×−0.0155623
{0,±2,3,±1}, {0,0,3,±3} −0.0155623
{0,±1,3,±2} −0.0454059 0.0142814

su(1, 1|2) sector

{S+, S−, J+, J−} eigenvalues −δP−
{1,1,2,2} −0.0752496 0.044125 0.0155623 2×−0.0155623
{1,2,2,1},{2,1,1,2} ±0.0454059 ±0.0142814
{2,2,1,1} 0.0752496 −0.044125 2× 0.0155623 −0.0155623

Table 9: Numerical results for the first order correction in 1/P+ of the string energy spectrum for
three impurity states with confluent mode numbers m1 = m2 = 3,m3 = −6. The number in front of
some eigenvalues denotes their multiplicity if unequal to one.
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Chapter 6: String energy spectrum

6 String energy spectrum

As previously stated the Hamiltonian yields the finite part −P− of the global energy

E − J = −P−( 1
P+
, λ̃) ≡ −P−( 1

E+J ,
λ

E+J ) . (6.1)

Abakus computes −δP− and therefor determines the energy E only implicitly, which is fully
sufficient since the Bethe equations are perturbatively expanded in terms of P+ →∞ as well.
Thus we can directly compare the computational results of the Abakus software with the
solutions of the Bethe equations.
Nevertheless Abakus can be used to compute the next to leading order correction of E in both
the BMN and the plane-wave limit. A formula for the energy E with precision O( 1

J ) will be
derived.

In general one obtains the expression for E by rewriting P− in terms of the the BMN quantities
J and λ′ = λ/J2 using P± = J ± E, and then subsequently solving for E. The plane-wave
quantities are related to the BMN parameters by

1
P+

=
1

2J
(
1− P−

2J

) =
1
2J

+
1

4J2
P− +O( 1

J2 ) and λ̃ =
4λ
P 2

+

= λ′ +
λ′

J
P− +O( 1

J2 ) ,

and according to (3.55)

P− = −
K4∑
i=1

ωi + δP− = −
K4∑
i=1

(
ω̄i +

1
2
λ′

J

n2
k

ω̄nk

P−

)
+ δP− +O( 1

J2 ) , (6.2)

where the BMN quantity ω̄i is defined as

ω̄i :=
√

1 + λ′n2
i .

The eigenvalue H4 of the Hamiltonian H4

δP−(nK′
4
, . . . , n1, λ̃, P+) =

1
P+

H4(nK′
4
, . . . , n1, λ̃) =

1
2J

H4(nK′
4
, . . . , n1, λ

′) +O( 1
J ) , (6.3)

is computed by the Abakus software and fully determined by the mode numbers nK′
4
, . . . , n1

and the parameter λ̃. The iterative solution of (6.2) yields

−P− =
K4∑
i=1

ω̄i −
λ′

4J

K4∑
k,j=1

n2
kω̄

2
nj

+ n2
j ω̄

2
nk

ω̄nk
ω̄nj

+ δP− +O( 1
J2 )

and with E − J = −P−

E = J +
K4∑
i=1

ω̄i −
λ′

4J

K4∑
k,j=1

n2
kω̄

2
nj

+ n2
j ω̄

2
nk

ω̄nk
ω̄nj

+ δP−(nK′
4
, . . . , n1, λ

′, 2J) +O( 1
J2 ) . (6.4)

The term δP− can easely be computed using the Abakus software and setting P+ = 2J , λ̃ = λ′

as input which is sufficient for the given precision.
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7 Spin chains and the Bethe ansatz

The field content of N = 4 super Yang-Mills is given by a gluon field Aµ(x), six real scalar fields
φi(x) (i = 1, . . . , 6) and four Weyl gluinos, all in the adjoint representation of SU(N). Adding
the scalar fields and the two degrees of freedom of the massless gluon together, there are eight
bosonic degrees of freedom in the theory, which can be rearranged into four complex scalars. In
the following Z,X ,Y denote three of these complex scalars and U ,W represent two fermions
from the field content of N = 4 super Yang-Mills. In the planar N → ∞ limit, the relevant
operators are single trace operators composed of elementary fields and their derivatives, such
as

Tr
(
XK4ZJ

)
,

where K4 denotes the number of “impurities” and J denominates an R-charge with respect
to SO(6) in gauge theory, which is exactly corresponding to the angular momentum defined
in (3.29) in string theory. Classically the scaling dimension D of such an operator is simply
the sum of the individual dimensions of the constituent fields. In quantum theory the scaling
dimensions receive anomalous corrections, organized in a double expansion in the number of
loops ` and genus g

D = ∆0 +
∞∑

`=1

λ`
∞∑

g=0

1
N2 g

∆`,g = ∆0 + δD .

Clearly one is facing a huge operator mixing problem as all operators with arbitrary permuta-
tions of Z and X are degenerated at tree level, with a conformal dimension ∆0 = J +K4.
A way to deal with this problem is the dilatation operator D. It acts on the trace operators
at a fixed space time point x and yields the scaling dimension12D as its eigenvalues. Thus the
diagonalization of D solves the mixing problem. Please recall that we are exclusively interested
in the planar contribution to D, as this limit corresponds to the free AdS5× S5 string theory.
The first crucial hint, that planar N = 4 SYM might be integrable was discovered by Minahan
and Zarembo in [10], where it was shown, that the dilatation operator could be interpreted as
a spin chain Hamiltonian and therefore the dimension of conformal operators may be obtained
by diagonalizing an integrable quantum spin chain13.
In the last few years tremendous process has been made upon exploiting the assumed property
of integrability of N = 4 super Yang-Mills theory. The discovery of integrability finally led to
the construction of a set of nested, asymptotic Bethe equations [19]. The equations proposed
by Beisert and Staudacher determine the dilatation operator of planar N = 4 SYM in principle,
asymptotically14 to arbitrary loop orders. Due to the AdS/CFT correspondence the type IIB
superstring spectrum is expected to match the scaling dimensions of local composite operators
in the N = 4 super Yang-Mills theory in the ’t Hooft limit.

Definition of Integrability

The property of quantum integrability can be defined as

1.) A system is integrable if all interactions of particles can be described as a series of two-
body interactions where momenta can be exchanged but not changed in magnitude.

or equivalently
12 In the literature the scaling dimension is often referred to as ∆, but in our particular case we compute the

eigenvalues D of the Dilatation operator D and thus stick to the latter notation.
13 The su(2) sector is described by an Heisenberg XXX1/2 quantum spin chain, which is the prototype of an

integrable spin chain.
14 In the given context asymptotically stands for the limit of an infinite large J-charge.
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sector contributing string fields gauge fields
su(2) α+

1 Z, X
sl(2) β+

1 Z, ∂
su(1|1) θ+

1 Z, U
su(1|2) θ+

1 , α
+
1 Z, X , U

su(2|3) θ+
2 , θ

+
1 , α

+
2 , α

+
1 Z, X , Y, U , W

su(1, 1|2) θ+
1 , η

+
1 , β

+
1 , α

+
1 Z, X , ∂, U , W

Table 10: All closed subsectors of psu(2, 2|4) with contributing field content in string and gauge theory.
Here ∂ denotes the covariant derivative acting on the contributing fields.
Note that the scalar Z → X is a hard-core excitation, there can be only one such excitation per site.
Conversely, the derivative Z → ∂Z is a soft-core excitation, there can be arbitrarily many excitations
(derivatives) per site and they also exist on sites which are already occupied by scalars (in the form of
∂X , ∂Y) or fermions (∂U , ∂W).

2.) A system is integrable if there exists a Bethe ansatz, which allows for reformulating
the quantum spectral problem into the problem of solving a set of non-linear algebraic
equations, the Bethe equations.

In our particular case, the Bethe equations diagonalize the planar dilatation operator in the
sense that their roots are eigenvalues of the dilatation operator.

In this section we will review the Bethe ansatz in detail, in order to motivate the psu(2, 2|4)
Bethe equations stated by Beisert and Staudacher [19]. We will perturbatively reformulate
these equations in terms of the string quantities P+ and λ̃ in the near plane-wave limit. Based
thereon solutions for all closed subsectors of psu(2, 2|4) are derived. The corresponding field
content of these sectors is displayed in table 10.

7.1 Review of the Asymptotic Bethe ansatz

In this section the perturbative asymptotic Bethe ansatz developed in a very instructive paper
of Staudacher [20] will be reviewed. For the sake of simplicity we will restrict the analysis to
the simple su(2) sector, which is sufficient to explain the basic principle.
The su(2) sector consists of operators of the type

Tr
(
XK4ZL−K4

)
+ . . . = Tr

(
XK4ZJ

)
+ . . . , (7.1)

where the dots indicate that we need to include all orderings of the Z and X fields. In the
spin chain interpretation L = J + K4 is the chain length and M the number of excitations
(often also called magnons or impurities). A Z field is considered as a spin down | ↓〉 and X
as | ↑〉, where we define the vacuum of the spin chain as | ↓↓↓ . . . ↓〉. Since the trace links the
matrix indices of the first and the last field, the spin chain has periodic boundary conditions:
site x = L+ 1 is to be identified with x = 1.

Tr (ZZXZXXZ)⇔ ⇔ |↓ ↓ ↑ ↓ ↑ ↑ ↓〉
cyclic

≡ |ZZXZXXZ〉
cyclic
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7.1 Review of the Asymptotic Bethe ansatz

The planar dilatation operator D takes the form

D = D(0) + 2g2D(1) +O(g4) = ∆0 + 2g2Hxxx1/2
+O(g4) (7.2)

with spin chain Hamiltonian Hxxx1/2
=

L∑
x=1

(1− Px,x+1) =
1
2

L∑
x=1

(1− ~σx~σx+1) , (7.3)

The permutation operator Px,x+1 exchanges the partons at the lattice sites x and x + 1. It
may alternatively be expressed in terms of the Pauli matrices ~σx = (σ1

x, σ
2
x, σ

3
x), when using

| ↑〉 =
(

1
0

)
and | ↓〉 =

(
0
1

)
. The coupling constant g is defined as

g :=
gY M

√
N

4π
=

√
λ

4π
(3.16)
=

√
λ̃P+

8π
. (7.4)

A state with two excitations has the form:
x1

↓
x2

↓
|Ψ〉 =

∑
ψ(x1, x2)| . . .ZX Z . . .ZX Z . . .〉 ,

1≤x1<x2≤L

(7.5)

where x1,2 label the position of the two X -excitations in the background of the Z fields. In
position space the Schrödinger equation Hxxx1/2

|Ψ〉 = E|Ψ〉 becomes

for x2 > x1 + 1 : E ψ(x1, x2) = 2ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1 + 1, x2)
+ 2ψ(x1, x2)− ψ(x1, x2 − 1)− ψ(x1, x2 + 1) ,

for x2 = x1 + 1 : E ψ(x1, x2) = 2ψ(x1, x2)− ψ(x1 − 1, x2)− ψ(x1, x2 + 1) .
(7.6)

The above equation can be fulfilled by a the Bethe ansatz [21]:

|Ψ〉 = eip1x1+ip2x2 + S(p2, p1)eip2x1+ip1x2 (7.7)

The Bethe ansatz is based on the intuition that the excitations, or magnons, (7.7) move freely
around the chain until they hit each other at x2 = x1 + 1, i.e. we assume a δ-like interaction.
Then the magnons can either pass through each other, or exchange momenta with an amplitude
given by the S-matrix S(p1, p2). This scattering process is non-diffractive, since the momenta
pk are individually conserved.

Plugging (7.7) into the Schrödinger equation (7.6) one finds the energy15 as the sum of one-
particle energies and the S-matrix

E =
K4∑
k=1

4 sin2
(pk

2

)
, (7.8)

S(su(2))(p1, p2) = −e
ip1+ip2 − 2eip1 + 1
eip1+ip2 − 2eip2 + 1

, (7.9)

with K4 = 2. This ansatz solves the infinitely long chain, but for a finite chain one has to
impose the periodic boundary condition ψ(x1, x2) = ψ(x2, x1 + L), which leads to the Bethe
equations for the two magnon problem:

eip1L = S(su(2))(p1, p2) and eip2L = S(su(2))(p2, p1) . (7.10)

15 In order to prevent confusion, please note the following important difference: while the string energy E is
conjectured to equals the scaling dimension D of the associated conformal operators, the spin chain energy
E correspond to the anomalous dimension δD, i.e.: E ≡ D = ∆0 + δD = ∆0 + 2g2E .
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Chapter 7: Spin chains and the Bethe ansatz

Equation (7.9) immediately shows S(su(2))(p1, p2) = S(su(2))(p2, p1)−1 implying p1 + p2 = 2πm
with an arbitrary integer m. In order to reinstate the cyclicity of the trace, one needs to further
impose the constraint of a total vanishing momentum

K4∑
k=1

pk = 0 . (7.11)

The key point of integrability is, that the knowledge of the two-particle scattering allows for
the immediate solution of the general K4-particle problem! This phenomenon is known as
factorized scattering, viz the multi-body scattering process can be described as a sequence
of two-body interactions under which the incoming particles of momenta pi and pj scatter
elastically and non-diffractively.
The total phase factor acquired by a magnon circling once around the chain should simply
be given as a product of the phase factors due to individual collisions with all other K4 − 1
magnons:

eipkL =
K4∏
i=1
i6=k

S(su(2))(pk, pi) for k = 1, . . . ,K4 (7.12)

The total energy is still given by the sum over all K4 ≥ 2 magnons by (7.8). Introducing the
rapidities uk = 1

2 cot(1
2pk), (7.12) becomes

eipkL =

(
uk + i

2

uk − i
2

)L

=
K4∏
i=1
i6=k

uk − uj + i

uk − uj − i
k = 1, . . . ,K4 . (7.13)

while the momentum constraint (7.11) and the energy, yielding the anomalous dimension δD =
2g2E in first order, turn into

K4∏
i=1
i6=k

uk + i
2

uk − i
2

and E =
K4∑
k=1

(
i

uk + i
2

− i

uk − i
2

)
. (7.14)

Please note that the anomalous dimension (7.14) does only apply on the gauge theory side
with the limit g � 1 while string theory is working in g ∼

√
λ ∼ P+ � 1.

7.1.1 Higher loop asymptotic Bethe equations for gauge theory

To diagonalize the higher loop orders of D, one needs to include interactions between more
distant spins on the chain. For a spin chain of length L the known Bethe ansatz works for
interactions up to a range of ` < L. For ` ≥ L our methods cease to work: the interactions
start to “wrap” around the chain. Inclusion of these wrapping interactions in the model will
probably require essential modifications of the Bethe ansatz and is an open topic of research
at present.
Circumventing this problem by using an asymptotically long spin chain with L→∞ leads to
an infinite charge L−K4 = J →∞, which is anyway required by the near-plane-wave limit we
performed the string theory computations in. To derive higher loop Bethe equations, Suther-
land’s asymptotic Bethe ansatz is a successful approach. It makes the reasonable assumption
that the Bethe ansatz (7.7) is still appropriate as long as the particles are further apart than
the range of interaction, which is in our case the considered order ` of perturbation theory:

ψ(x1, x2) ∼ eip1x1+ip2x2 + S(p2, p1)eip2x1+ip1x2 if x2 − x1 < `
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7.1 Review of the Asymptotic Bethe ansatz

In order to determine the fine structure of the wave function ψ(x1, x2) close to the collision we
make the ansatz accurate up to O(g4):

ψ(x1, x2) =
(
1 + C(2)(p2, p1)g2(x2−x1) + C(4)(p2, p1)g2+2(x2−x1)

)
eip1x1+ip2x2

+
(
1 + C(2)′(p2, p1)g2(x2−x1) + C(4)′(p2, p1)g2+2(x2−x1)

)
S(p2, p1)eip1x1+ip2x2

(7.15)

All coefficient functions including the S-Matrix can be fixed by plugging (7.15) into the
Schrödinger equation and one finally obtains 3-loop Bethe equations. The presented technique
is referred to as pertubative asymptotic Bethe ansatz.

To generalize the Bethe equation (7.12) to all loop orders, we summarize the derivation
of [12], where the following analytic all loop expression for the rapidities has been proposed,
based on a modification of the Inozemtsev spin chain [22, 23] by demanding BMN-scaling to
all loop orders.

uk =
1
2

cot
(

1
2
pk

)√
1 + 16g2 sin2

(
1
2
pk

)
. (7.16)

Based on (7.16) also a generalization of uk ± i
2 → x(uk ± i

2) has to be expected, which in
leading order expansion in small g recovers uk± i

2 . It turns out to be of the remarkably simple
form

eipk =
x(uk + i

2)
x(uk − i

2)
with x(u) :=

1
2
u+

1
2

√
u2 + 4g2 , (7.17)

where x(u) is inverted by u(x) = x+
g2

x
. (7.18)

Using the so called spectral parameters x±k ≡ x
±
k (pk) first introduced in [24]

x±k (pk) := x(uk ± i
2) =

1
4
(cot

pk

2
± i)

(
1 +

√
1 +

λ

π2
sin2

(pk

2

))
(7.19)

and the identity uk − uj ± i = (x±k − x
∓
j )(1 − g2/(x±k x

∓
j )) we end up with the all loop gauge

theory Bethe equations for the su(2) sector(
x+

k

x−k

)L

=
K4∏
i=1
i6=k

x+
k − x

−
j

x−k − x
+
j

1− g2/(x+
k x

−
j )

1− g2/(x−k x
+
j )

for k = 1, . . . ,K4 . (7.20)

In the new notation the additional momentum constraint and the anomalous dimension δD =
2g2E take the form

K4∏
i=1
i6=k

x+
k

x−k
= 1 and δD = 2g2

K4∑
k=1

(
i

x+
k

− i

x−k

)
. (7.21)

Plane-wave limit: In this limit one takes L→∞ while keeping K4 small. This is a dilute
gas approximation, where the excitations, in both gauge and string theory, do not feel each
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Chapter 7: Spin chains and the Bethe ansatz

other. In the strict limit, the plane wave approximation is equal to the BNM limit because
L ' J = 1

2(P+ − P−) ' 1
2P+. As argued in [20, 7] the momenta pk can be expanded as

pk =
p0

k

P+
+
p1

k

P 2
+

+O( 1
P 3

+
) with p0

k = 4πnk , (7.22)

which seems quite natural, since in the free limit the momenta of the individual particles on a
space of length L with periodic boundary conditions is just given by 2πn/L ' 4πn/P+, n ∈ Z.
Expanding δD in terms of P+ by using (7.19), (7.4) yields

δD =
K4∑
k=1

λ̃ n2
k

1 + ωk
= −K4 +

K4∑
k=1

ωk +O( 1
P+

)

and thus D = ∆0 + δD = J +
K4∑
k=1

ωk +O( 1
P+

) ,

which indeed reproduces the su(2) string energy (3.62) in leading order.

7.1.2 Dressing factor and string Bethe equations

Even though the Bethe equations (7.20) reproduces the anomalous dimension in the first orders
it still does not match the string predictions of order O( 1

P+
).

But according to AdS/CFT correspondence quantum strings on AdS5 × S5 should also be
described by an integrable long-range spin chain. String Bethe equations for the su(2) sector
were first proposed in [16]. Structurally they are identical to the gauge theory apart from an
additional scalar factor called dressing factor, often denoted as S0 or σ2. At first the dressing
factor was interpreted as a deformation, which takes us from gauge theory to string theory
but later it turned out, that also gauge theory requires a dressing factor at fourth loop order
[25].

The difference between gauge theory and
E(λ̃)

?

-L →∞E(λ̃, L)
=

D(λ, L)

?

D`(L)pertubative
gauge theory

-
L →∞

E`

D`

expand

in λ̃

expand
in λ

string
theory

exact
theory

Figure 2: order of limits for gauge and string
theory

string theory is based on slightly different scaling
procedures as illustrated in figure 2. The compu-
tations in gauge theory are based on perturbation
theory around λ = 0, where in a second step the
model is translated into the spin chain picture
and the thermodynamic limit L→∞ is applied.
In contrast, thermodynamic limit L ∼ J →∞ is
a basic assumption for quantization of our string
theory. In order to make contact with gauge the-
ory one might expand arround λ̃ ' 0 in a second
step. If the different expansion patterns for gauge and string theory do not commute, the
results for gauge and string theory will disagree.

The important advantage of the all-loop spin chain with its Bethe equations (7.20) is that
the pertubative series in λ is summed up before taking the thermodynamic limit and therefore
the general structure of the Bethe equations agrees with the string results. But note that the
equations have been proposed on three loop computations in gauge theory. Indeed an all loop
dressing factor S0 has been proposed in [26] recently, which does not yield a contribution up to
fourth order in gauge theory but produces the known string dressing factor in the appropriate
limit.
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7.2 The nested Bethe ansatz

The most general su(2) Bethe equations for gauge and string theory acquire the form

(
x+

k

x−k

)L

=
K4∏
i=1
i6=k

x+
k − x

−
j

x−k − x
+
j

1− g2/(x+
k x

−
j )

1− g2/(x−k x
+
j )

S0(xk, xj) for k = 1, . . . ,K4 . (7.23)

7.2 The nested Bethe ansatz

Derivations [20, 19] similar to the one presented in chapter 7.1 yield the S-matrix for sl(2) and
su(1|1):

(
x+

k

x−k

)L

=
K4∏
i=1
i6=k

(
x+

k − x
−
j

x−k − x
+
j

)η
1− g2/(x+

k x
−
j )

1− g2/(x−k x
+
j )

S0(xk, xj) with
η = +1 for su(2)
η = 0 for su(1|1)
η = −1 for sl(2)

(7.24)

Unfortunately these equations do not allow for computations on larger sectors as for instance
the composite su(1|2) sectors since (7.24) describes the scattering of either X and Z or X and
U in case of su(1|1) but dos not incorporate the interaction of all three fields. In an impressive
paper [19] Beisert and Staudacher developed Bethe equations for the full psu(2, 2|4) using the
nested Bethe ansatz. This approach is reviewed in this section using the example of su(1|2).

In the N = 4 gauge theory the planar su(1|2) sector consists of operators of the type

Tr UK1XK2−K1ZL−K2 + . . . , (7.25)

where Z and X are two out of the three complex adjoint scalars of the N = 4 model, and U
is an adjoint gaugino. The dots indicate that we need to consider all possible orderings of the
fields inside the trace, and diagonalize the set of such operators with respect to the dilatation.
As in the previous chapter, this is most easily done when interpreting the dilatation operator
as a Hamiltonian acting on a spin chain of length L.
The planar one-loop Hamiltonian in the closed su(1|2) sector may be written with the help of
the graded permutation operator Πx,x+1 which exchanges the partons at the lattice sites x and
x+ 1, picking up a minus sign if two fermions are involved:

H0 =
L∑

x=1

(1−Πx,x+1) .

The physics of two scattering fields X on the background of Z’s has been considered in the
last section. The interaction of two fermions U works similarly and is worked out in [20] in
detail. What we are left with is to consider the mixed case of one X and U .
Choosing the suitable notation for states

|Ψ〉 =


x1

↓
x2

↓∑
ψUX (x1, x2)| . . .Z U Z . . .ZX Z . . .〉

1≤x1<x2≤L∑
ψXU (x1, x2)| . . .ZX Z . . .Z U Z . . .〉

1≤x1<x2≤L

 ,
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the Schrödinger equation H0|Ψ〉 = E0|Ψ〉 is solved by the following Bethe ansatz.

ψXU (x1, x2) = AXU e
ip1x1+ip2x2 +A′XU e

ip2x1+ip1x2

ψUX (x1, x2) = AUX e
ip1x1+ip2x2 +A′UX e

ip2x1+ip1x2 (7.26)

with

(
A′XU
A′UX

)
=

(
TUXXU (p2, p1) RXUXU (p2, p1)
RUXUX (p2, p1) TXUUX (p2, p1)

)(
AXU

AUX

)

The idea behind (7.26) is, that the partons, coming in an arbitrary mixed state with initial
amplitudes AUX , AXU , propagate freely along the chain until they scatter at x2 = x1 + 1.
When the particles hit each other they may exchange momenta, and in addition, exchange
their flavors. The second terms in (7.26) denominate the outgoing configurations with the
amplitudes A′XU , A′UX and as one easily sees this ansatz assumes the interaction to be non-
diffractive. The transmission amplitude for this process is denoted by T and the amplitude for
back scattering of the two partons is R. By convention of notation the order of the particles
changes if they were transmitted.
The amplitudes may be adjusted by substituting the Bethe ansatz (7.26) into the Schrödinger
equation for x2 = x1 + 1. In the notation of rapidities uk = 1

2 cot
(

1
2pk

)
one finds:

TUXXU (p1, p2) = TXUUX (p1, p2) =
uk − uj

uk − uj − i

RXUXU (p1, p2) = RUXUX (p1, p2) =
i

uk − uj − i

For the sake of completeness the two-body one-loop S-matrix for the X -X scattering of section
7.1.1 is listed again and also the su(1|1) S-matrix, describing U-U scattering16.

SXXXX (p1, p2) =
uk − uj + i

uk − uj − i
, SUUUU (p1, p2) = 1

Using vector notation (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) for the basis of two-body states
|XX〉, |UX 〉, |XU〉, |UU〉 the one-loop su(1|2) S-matrix takes the form

Sk,j ≡ Sk,j(pk, pj) =


SXXXX (pk, pj)

TUXXU (pk, pj) RXUXU (pk, pj)

RUXUX (pk, pj) TXUUX (pk, pj)
SUUUU (pk, pj)

 . (7.27)

This result has a remarkable structure: since the vacuum fields Z dropped out of the picture
of this short spin chain, we can interpret the S-matrix (7.27) as the scattering matrix of a very
short ’auxiliary’ spin two-component spin chain.
The momenta of the excitations living on that short spin chain will be given as functions of
the original momenta. Thus one might in principle just solve the short spin chain and than,
by inverting the relations between the momenta of the different chains, resolve for the original
momenta of the long spin chain.
As one can show (7.27) satisfies the Yang-Baxter equation

S3,2S3,1S2,1 = S2,1S3,1S3,2 ,

16 The one loop su(1|1) S-matrix may be read of from (7.24) by setting g = 0. The dressing factor S0 has not
been considered yet, since it does not contribute on the gauge side in first loop order.
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7.2 The nested Bethe ansatz

with the important consequence that it is allowed to extend the Bethe ansatz (7.26) to an
arbitrary number of particles. Thus let us consider a spin chain with K4 excitations, where
K3 of these excitations are of flavor U and the other K4 − K3 particles are X fields. We
now need to distinguish all possible orderings of the excitations, thus we identify the various
configurations with the states | . . .XXUX . . .〉, where we have left out the vacuum fields Z. As
already mentioned, these configurations correspond to a state of a shorter spin chain of length
K4.
If we push any excitation k ∈ {1, . . . ,K4} once around the chain it collides with all the other
K4 − 1 particles, i.e.

eipkL|Ψ〉 =
(
x+

k

x−k

)L

|Ψ〉 = Sk,k+1 . . . Sk,K4Sk,1 . . . Sk,k−1|Ψ〉 . (7.28)

7.2.1 Generalization to higher loops

As discussed in section 7.1.1, the generalization of (uk − uj ± i) is given by (x±k − x
∓
j )(1 −

g2/(x±k x
∓
j )), but it is still unknown what the appropriate all loop expression for (uk − uj) is,

since (x±k − x
±
j )(1− g2/(x±k x

±
j )) = (uk − uj) +O(g2). This uncertainty can be reduced by an

extensive tree-loop computation outlined in [19].
In principle the asymptotic Bethe ansatz (7.15) of section 7.1.1 is applied to the present case

ψXU (x1, x2) = AXUCXU (x2 − x1)eip1x1+ip2x2 +A′XUC
′
XU (x2 − x1)eip2x1+ip1x2 (7.29)

with CXU (x2 − x1) = 1 + C
(2)
XU (x2 − x1)g2(x2−x1) + C

(4)
XU (x2 − x1)g2+2(x2−x1) +O(g6) ,

(7.30)

and analogous expressions for C ′
XU (x2−x1), ψUX (x1, x2), CUX (x2−x1) and C ′

UX (x2−x1). All
unknowns can be fixed by solving the three-loop Schrödinger equation order by order.
Based on the experience in enlarging simple su(1) and su(1|1) to all loops, the results yield
enough information for an all loop proposal of reflection and transmission amplitudes. For rea-
sons that will become clear shortly, a further index 4 has been added to the spectral parameters
x±.

Sk,j = S0(xk, xj)
x+

4,k − x
−
4,j

x−4,k − x
+
4,j

sk,j (7.31)

with sk,j =



1
x+
4,k−x+

4,j

x+
4,k−x−4,j

x+
4,j−x−4,j

x+
4,k−x−4,j

x+
4,k−x−4,k

x+
4,k−x−4,j

x−4,k−x−4,j

x+
4,k−x−4,j

x−4,k−x+
4,j

x+
4,k−x−4,j


. (7.32)

As in 7.1.2 the dressing factor S0 has been added to the all loop equations (7.31). This is very
natural, as we can think of the su(1|2) sector as a “unification” of the su(2) and su(1|1) sectors.
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7.2.2 Diagonalization of matrix Bethe equations

The Bethe equation (7.28) is still a matrix equation, which

new vacuum

x+
4,1 +

x
4,2

x+
4,K4

x+
3,K3

+
x

3,1

+
x

4,3

+
x

3,2

Figure 3: first nesting of spin
chain

furthermore has to be simultaneously satisfied for all k =
1, . . . ,K4, i.e an eigenvector |Ψ〉 is not allowed to depend on k.
In order to diagonalize the resulting short spin chain of length
K4, we choose the field X as a vacuum. Here it is important
to note, that individual momenta are assigned to the fields X ,
and therefore the spin chain is inhomogeneous and thus not
translationally invariant.
Defining λk as an eigenvalue of the reduced many-body prob-
lem, (7.28) can be written as

λk|Ψ〉 = sk,k+1 . . . sk,K4sk,1 . . . sk,k−1|Ψ〉 (7.33)

with λk =

(
x+

4,k

x−4,k

)L K4∏
j=1
j 6=k

S−1
0 (x4,k, x4,j)

x−4,k − x
+
4,j

x+
4,k − x

−
4,j

.

(7.34)

At first the one magnon problem on the reduced spin chain
is solved, i.e. K3 = 1. By applying reduced two-body operators sk,j recursively to the wave
function

|Ψ〉 =

k
↓∑

ψk|X . . .XUX . . .X〉
1≤k≤K4

. (7.35)

one obtains a recursion relation for the amplitudes ψk, which finally leads to

ψk(x1) =
k−1∏
j=1

x3 − x−4,j

x3 − x+
4,j+1

, λk = λk(x1) =
x−4,k − x3

x+
4,k − x3

. (7.36)

In (7.36) x3 = x3(x±4,1, . . . , x
±
4,K4

) is a function of all spectral parameters, i.e. of all momenta
on the original spin chain. It is found to be independent of the specific choice of k and is
interpreted as a new rapidity, parameterizing the momentum of the magnon U on the nested
short spin chain.
The Bethe ansatz for the nested two magnon problem reasonably takes the form

ψk1,k2(x3,1, x3,2) = Bψk1(x3,1)ψk2(x3,2)−B′ψk1(x3,2)ψk2(x3,1) ,

where by inserting this ansatz into (7.33) one finds B = B′. The general K1 impurity wave
function is thus given as a K1 ×K1 Slater determinant:

ψk1,...,kK3
(x3,1, . . . , x3,K3) = det

µ,ν
ψkµ(x3,ν)

In order to prevent confusion the notation is summarized again:

• µ, ν are labels for the K3 magnons in the auxiliary, short spin chain of length K4

• kµ ∈ {1, . . . ,K4} indicate the position of these magnons in the auxiliary chain
• x3,µ are the rapidities of the K3 magnons describing their motion in the short chain of

length K4

• x4,k describing the motion of the original K4 magnons in the long chain of length L
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7.2 The nested Bethe ansatz

The eigenvalue associated to the wave function (7.37) is clearly given by the product λk =
λk(x3,1) . . . λk(x3,K3) of the single eigenvalues. With (7.36), the nested Bethe equations for the
su(1|2) sector become(

x+
4,k

x−4,k

)L

=
K4∏
j=1
j 6=k

S0(x4,k, x4,j)
K4∏
j=1
j 6=k

x+
4,k − x

−
4,j

x−4,k − x
+
4,j

K3∏
j=1

x−4,k − x3

x+
4,k − x3

(7.37)

Imposing periodic boundary conditions on the small chain leads to a second set of Bethe
equations for the small chain of length K4:

1 =
K4∏
j=1

x3,k − x+
4,j

x3,k − x−4,j

for k = 1, . . . ,K4. (7.38)
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7.3 All loop psu(2, 2|4) Bethe equations

In an inspiring paper [19] the long range gauge and string theory Bethe equations were proposed
for the full psu(2, 2|4) sector. This proposal was based on the nested Bethe ansatz for the
smaller su(1, 1|2) sector by unifying the embedded two component sectors su(2), sl(2), su(1|1)
and including an additional fermion W in the interaction.
Due to further nesting, new spectral parameters x±2 , x

±
1 and x±5 , x

±
6 emerge, that correspond

to the momenta of excitations living on the reduced spin chains.

The full set of psu(2, 2|4) Bethe equations proposed in [19] takes the form

1 =
K4∏
j=1

x+
4,k

x−4,k

(7.39)

1 =
K2∏
j=1
j 6=k

u2,k − u2,j − iη1

u2,k − u2,j + iη1

K3+K1∏
j=1

u2,k − u3,j + i
2η1

u2,k − u3,j − i
2η1

(7.40)

1 =
K2∏
j=1

u3,k − u2,j + i
2η1

u3,k − u2,j − i
2η1

K4∏
j=1

x+η1
4,j − x3,k

x−η1
4,j − x3,k

(7.41)

1 =
(x−4,k

x+
4,k

)L−η1K1−η2K7
K4∏
j=1
j 6=k

(x+η1

4,k − x
−η1
4,j

x−η2

4,k − x
+η2
4,j

1− g2/(x+
4,kx

−
4,j)

1− g2/(x−4,kx
+
4,j)

S0(xk, xj)
)

×
K3+K1∏

j=1

x−η1

4,k − x3,j

x+η1

4,k − x3,j

K5+K7∏
j=1

x−η2

4,k − x5,j

x+η2

4,k − x5,j

(7.42)

1 =
K6∏
j=1

u5,k − u6,j + i
2η2

u5,k − u6,j − i
2η2

K4∏
j=1

x+η2
4,j − x5,k

x−η2
4,j − x5,k

(7.43)

1 =
K6∏
j=1
j 6=k

u6,k − u6,j − iη2

u6,k − u6,j + iη2

K5+K7∏
j=1

u6,k − u5,j + i
2η2

u6,k − u5,j − i
2η2

. (7.44)

According to (7.18) the variables ui,k are defined by

ui,k = xi,k + g2 1
xi,k

. (7.45)

The Bethe roots xn,k come with the multiplicities equal to the number of excitations K2,...,6

living on their corresponding (nested) spin chains

x2,k : k = 1, . . . ,K2 x3,k : k = 1, . . . , (K1 +K3) x±4,k : k = 1, . . .K4

x5,k : k = 1, . . . , (K5 +K7) x6,k : k = 1, . . . ,K6

The coupling constant g2 is given by (7.4) and based on (7.19) the spectral parameters x±4,k

are related to the magnon momenta pk via

x±4,k =
1
4
(cot

pk

2
± i)

(
1 +

√
1 +

λ

π2
sin2 pk

2

)
. (7.46)

The gradings η1, η2 take the values ±1 and correspond to the four different choices of vacuum
fields for the smaller su(1, 1|2) spin chain. As indicated at the beginning of this chapter, the
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{η1, η2} = {+1,+1}: nK1 nK2 nK3 nK4 nK5 nK6 nK7

�@ �@ �@ �@− + −

{η1, η2} = {+1,−1}: n n n n n n n
�@ �@ �@ �@ �@− +

{η1, η2} = {−1,+1}: n n n n n n n
�@ �@ �@ �@ �@+ −

{η1, η2} = {−1,−1}: n n n n n n n
�@ �@ �@ �@+ − +

Figure 4: Four different choices of Dynkin diagrams of su(2, 2|4) specified by the grading η1 and η2.
The signs in the white nodes indicate the sign of the diagonal elements of the Cartan matrix [19].

full psu(2, 2|4) Bethe equations are based on examinations in the su(1, 1|2) sector. In this
sector there are four distinct excitations placed on a vacuum of Z fields. In the nested Bethe
ansatz one picks one out of these four excitations as a second effective vacuum of a shorter spin
chain, after having eliminated all the sites Z from the original chain. Referring to table 10,
the possible candidates for the second effective vacuum with their associated string oscillators
are

X .= α+
1 , ∂Z .= β+

1 , U .= θ+
1 , W .= η+

1 ,

corresponding to four different choices of Dynkin diagrams for psu(2, 2|4), given in figure 4.
The vacuum of Z fields is associated to the string ground state |0〉 with charge J .

Note that we have chosen to write down the Bethe equations in a more compact “dynamically”
transformed language. In order to convert (7.39)–(7.44) to the form of [19], one introduces the
K1 respectively K7 roots x1,k and x7,k by splitting off the ‘upper’ x3,k and x5,k roots via

x1,k := g2/x3,K3+k k = 1, . . .K1 x7,k := g2/x5,K5+k k = 1, . . .K7 . (7.47)

This coordinate renaming unfolds the equations associated to the fermionic roots (7.40) and
(7.43) into two structurally new sets of K1 and K7 equations and removes the K1 and K7

dependent exponent in the central equation (7.42).
Recall that the first equation (7.39) is the cyclicity constraint on the total momentum of the
spin chain. The following K2 + (K1 +K3) +K4 + (K5 +K7) +K6 equations in (7.40)–(7.44)
determine the sets of Bethe roots {x2,k, x3,k, x

±
4,k, x5,k, x6,k}.

7.4 The light-cone Bethe equations for string theory

In [27] an explicit dictionary between the gauge theoretical Bethe equations and perturbative
string theory in AdS5 × S5 has been established. The string oscillator excitations are char-
acterized by the values of four U(1) charges (S+, S−, J+, J−) reviewed in chapter 3.3.2. The
relationship between the string charges and the excitation numbers {Ki} in the Bethe equations
is given by

S+ = η2 (K5 +K7)− (1 + η2)K6 + 1
2(1− η2)K4 ,

S− = η1 (K1 +K3)− (1 + η1)K2 + 1
2(1− η1)K4 ,

J+ = − η2 (K5 +K7)− (1− η2)K6 + 1
2(1 + η2)K4 ,

J− = − η1 (K1 +K3)− (1− η1)K2 + 1
2(1 + η1)K4 .

(7.48)

Combining (7.48) with the (S+, S−, J+, J−) charge values for the string oscillators of table 1
one can construct the excitation pattern for each oscillator, see table 11. The field that is
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K1 + K3 K2 K4 K6 K5 + K7 S+ S− J+ J−
α+

1 0 + 1
2(1− η1) 0 1 0 1

2(1− η2) + 0 0 0 1 1
α+

2
1
2(1 + η1) + 1 1 1 0 1

2(1− η2) + 0 0 0 1 -1
α+

3 0 + 1
2(1− η1) 0 1 1 1 + 1

2(1 + η2) 0 0 -1 1
α+

4
1
2(1 + η1) + 1 1 1 1 1 + 1

2(1 + η2) 0 0 -1 -1
β+

1 0 + 1
2(1 + η1) 0 1 0 1

2(1 + η2) + 0 1 1 0 0
β+

2
1
2(1− η1) + 1 1 1 0 1

2(1 + η2) + 0 1 -1 0 0
β+

3 0 + 1
2(1 + η1) 0 1 1 1 + 1

2(1− η2) -1 1 0 0
β+

4
1
2(1− η1) + 1 1 1 1 1 + 1

2(1− η2) -1 -1 0 0
θ+
1 0 + 1

2(1 + η1) 0 1 0 1
2(1− η2) + 0 0 1 1 0

θ+
2

1
2(1− η1) + 1 1 1 0 1

2(1− η2) + 0 0 -1 1 0
θ+
3 0 + 1

2(1 + η1) 0 1 1 1 + 1
2(1 + η2) 0 1 -1 0

θ+
4

1
2(1− η1) + 1 1 1 1 1 + 1

2(1 + η2) 0 -1 -1 0
η+
1 0 + 1

2(1− η1) 0 1 0 1
2(1 + η2) + 0 1 0 0 1

η+
2

1
2(1 + η1) + 1 1 1 0 1

2(1 + η2) + 0 1 0 0 -1
η+
3 0 + 1

2(1− η1) 0 1 1 1 + 1
2(1− η2) -1 0 0 1

η+
4

1
2(1 + η1) + 1 1 1 1 1 + 1

2(1− η2) -1 0 0 -1

Table 11: The translation scheme of string oscillator excitations to the Dynkin node excitation
numbers of the Bethe equations. We have also listed the space-time U(1) charges J± and S± of the
string oscillators. From this table we easily see which operators represent the middle node for the
different choices of gradings. That are, (η1, η1) = (+,+) : α+

1 , (−,+) : θ+1 , (+,−) : η+
1 and (−,−) : β+

1 .

picked as the second vacuum in the nested Bethe ansatz only excites the middle node of the
Dynkin diagram, so one immediately sees from the table which combinations of the gradings
correspond to which choice of vacuum.

Please note, that in the Bethe equations as well as in (7.48) only the combinations (K1 +
K3) and (K5 +K7) enter. Thus in the dictionary of table 11 a single string oscillator excitation
is not described by a single Dynkin node excitation, but rather by a five component excitation
vector (K1 +K3,K2,K4,K6,K5 +K7), with uniform K4 = 1 entry. In the string theory the
appropriate parametrization is given by the space-time charge vector (S+, S−, J+, J−). These
two labelings are equivalent and the one-to-one map between them is given in (7.48).

There are several things we need to do in order to translate the Bethe equations (7.39)–(7.44)
into their light-cone form in order to make a direct comparison to uniform light-cone gauged,
near plane-wave string theory. First of all, since the light-cone Hamiltonian is expanded in the
large P+ limit we need to express L in (7.42) in terms of the light-cone momenta. This can be
done by using the expression for the eigenvalues of the dilatation operator and the J charge of
S5 [19],

J = L+
1
2
η1(K3 −K1)−

1
4
(2 + η1 + η2)K4 +

1
2
η2(K5 −K7),

D = L+
1
2
η1(K3 −K1) +

1
4
(2− η1 − η2)K4 +

1
2
η2(K5 −K7) + δD,

(7.49)

where, according to (7.21), the anomalous dimension δD takes the form

δD = 2g2
K4∑
j=1

( i

x+
4,j

− i

x−4,j

)
. (7.50)
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Using (7.49) and the conjectured equivalence D ≡ E we can write the light-cone momenta P+

and energy correction P− as

P+ = D + J = 2L+ η1(K3 −K1)−
1
2
(η1 + η2)K4 + η2(K5 −K7) + δD

P− = J −D = −K4 − δD .
(7.51)

Hence it becomes obvious that the large P+ limit corresponds to an infinitely long chain with
a finite number of excitations. Using (7.51), the central K4 Bethe equations (7.42) become

(x+
4,k

x−4,k

) 1
2
P+

=
(x−4,k

x+
4,k

) 1
2
( 1
2
(η1+η2)K4−η1(K1+K3)−η2(K5+K7)−δD)

(7.52)

×
K4∏
j=1
j 6=k

(x+η1

4,k − x
−η1
4,j

x−η2

4,k − x
+η2
4,j

1− g2/(x+
4,kx

−
4,j)

1− g2/(x−4,kx
+
4,j)

S2
0

)K3+K1∏
j=1

x−η1

4,k − x3,j

x+η1

4,k − x3,j

K5+K7∏
j=1

x−η2

4,k − x5,j

x+η2

4,k − x5,j

.

Anticipanting the result of the following paragraph 7.5, one finds

(x−4,k

x+
4,k

)− 1
2
δD

K4∏
j=1
j 6=k

(1− g2/(x+
4,kx

−
4,j)

1− g2/(x−4,kx
+
4,j)

S2
0

)
= 1 +O(

1
P 3

+

) . (7.53)

Curiously enough, not only the 1/P+ contribution, but also the 1/P 2
+ term vanishes in this

expansion, in spite of the extremely complicated structure of the involved terms. The 1/P 3
+

contribution is nonvanishing though. For detailed considerations the reader is referred to the
paragraph 7.5. Therefore, to the order we are interested in, the light-cone Bethe equations
are given by the previous equations of (7.39)-(7.44) with the central node K4 Bethe equations
(7.42) exchanged by the simpler dressing factor free form

(x+
4,k

x−4,k

) 1
2
P+

=
(x−4,k

x+
4,k

) 1
2
( 1
2
(η1+η2)K4−η1(K1+K3)−η2(K5+K7))

(7.54)

×
K4∏
j=1
j 6=k

x+η1

4,k − x
−η1
4,j

x−η2

4,k − x
+η2
4,j

K3+K1∏
j=1

x−η1

4,k − x3,j

x+η1

4,k − x3,j

K5+K7∏
j=1

x−η2

4,k − x5,j

x+η2

4,k − x5,j

+O(
1
P 2

+

) ,

Putting all Kj = 0, for j 6= 4, we indeed reproduce the proposed string Bethe equations for
the rank one subsectors presented in [7].

7.5 Dressing factor S0

7.5.1 general structure

In the limit of large string tension the structure for the dressing factor was introduced on the
basis of an su(2) string computation in [16]

S0(x4,k, x4,j) = σ2(x4,k, x4,j) = e2iθ(x4,k,x4,j)

with θ(x4,k, x4,j) =
∞∑

r=2

∞∑
s=r+1

cr,s(g)
[
qr(x±4,k) qs(x

±
4,j)− qr(x

±
4,j) qs(x

±
4,k)

]
,

(7.55)
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with the local conserved charge densities

qr(x±) =
i

r − 1
gr−1

[(
1
x+

)r−1

−
(

1
x−

)r−1
]
. (7.56)

The all loop expression for cr,s(g) was recently conjectured in [26] which leads to a contribution
of the dressing factor also in gauge theory beginning at four loop order.
We will restrict our considerations to the strong coupling limit where cr,s(g) is given [28] by

cr,s(g) = g
[
δr+1,s −

(1− (−1)r+s)
g π

(r − 1)(s− 1)
(r + s− 2)(s− r)

+O( 1
g2 )
]
. (7.57)

As motivated in (7.22) the momenta are expanded as

pk =
1
P+

p0
k +

1
P 2

+

p1
k +

1
P 3

+

p2
k + . . . . (7.58)

It is convenient to define rescaled spectral parameters y±k

y±k :=
1
g
x±k = y0

k +
1
P+

y1,±
k +

1
P 2

+

y2,±
k +

1
P 3

+

y3,±
k + . . . , (7.59)

y0
k =

1 + ωk√
λ̃mk

, y1,±
4,k =

2π√
λ̃

(1 + ωk)
(
± i−

2p1
k

(p0
k)

2 ωk

)
. (7.60)

The higher order coefficients y`,±
k are too long to be displayed here but can simply be obtained

by expanding (7.19) using (7.58). In the strong coupling limit the first two orders of the
dressing factor can analytically be summed up [28]

θ(x4,k, x4,j) = gθ(0)(yk, yj) + θ(1)(yk, yj) +O(1
g ) (7.61)

θ(0)(yk, yj) = (y+
j − y

+
k )F (y+

k y
+
j ) + (y−j − y

−
k )F (y−k y

−
j )

− (y+
j − y

−
k )F (y−k y

+
j )− (y−j − y

+
k )F (y+

k y
−
j ) , (7.62)

θ(1)(yk, yj) = ϑ(y−j , y
−
k )− ϑ(y−j , y

+
k )− ϑ(y+

j , y
−
k ) + ϑ(y+

j , y
+
k )

− ϑ(y−k , y
−
j ) + ϑ(y−k , y

+
j ) + ϑ(y+

k , y
−
j )− ϑ(y+

k , y
+
j ) , (7.63)

where the auxiliary functions F, ϑ are given by

F (a) := (1− 1
a
) log(1− 1

a
) , (7.64)

ϑ(a, b) :=
1
2π

[
log

b− 1
b+ 1

log
a− b−1

a− b

+ Li

√
b−
√
b−1

√
b−
√
a
− Li

√
b+
√
b−1

√
b−
√
a

+ Li

√
b−
√
b−1

√
b+
√
a
− Li

√
b+
√
b−1

√
b+
√
a

]
(7.65)

With help of the cyclicity constraint (7.11) and defining δdk

δD =
K4∑
j=1

δdj with δdj = g2

(
i

x+
4,j

− i

x−4,j

)
(7.66)

one can write (
x−4,k

x+
4,k

)− 1
2

δD

=
K4∏
j=1
j 6=k

e
i
2
(pkδdj−pjδdk) . (7.67)
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7.5.2 Cancelation of the dressing factor

With the help of (7.67) equation (7.53) becomes

K4∏
j=1
j 6=k

(
e

i
2
(pkδdj−pjδdk)

1− 1/(y+
k y

−
j )

1− 1/(y−k y
+
j )

S0

)
= 1 +O( 1

P 3
+

) . (7.68)

Expanding the involved terms to first order in 1/P+ yields

gθ(0)(yk, yj) =

√
λ̃

8πP+

(y0
k − y0

j )(y
1,+
k − y1,−

k )(y1,+
j − y1,−

j )

(y0
j )2(y

0
k)

2(1− y0
j y

0
k)

+O( 1
P 2

+
)

i

2
(pkδdj − pjδdk) =

√
λ̃

P+

mk(y0
k)

2(y1,+
j − y1,−

j )−mj(y0
j )

2(y1,+
k − y1,−

k )

2(y0
j )2(y

0
k)

2
+O( 1

P 2
+

) (7.69)

1− 1/(y+
k y

−
j )

1− 1/(y−k y
+
j )

= 1 +

√
λ̃

P+

y0
k(y

1,+
j − y1,−

j )− y0
j (y

1,+
k − y1,−

k )

y0
j y

0
k(1− y0

j y
0
k)︸ ︷︷ ︸

T

+O( 1
P 2

+
) = eT +O( 1

P 2
+

) .

For higher ordes it is usefull to convert the last expansion of (7.69) into an e-function because
this slightly simplifies the result. Subsitituting the explicit expressions for y0

k and y1,±
k from

(7.60), the leading order indeed vanishes:

2i gθ(0)(yk, yj) +
i

2
(pkδdj − pjδdk) + T = 0 +O( 1

P 2
+

) . (7.70)

Cancelation of the dressing factor in second order

Computing the leading order of θ(1) requires quite some effort in using computer algebra. It
turns out to be of order

θ(1)(yk, yj) =
1
P 3

+

I′AFS +O( 1
P 4

+
) (7.71)

so θ(1) does not contribute to the next to leading order of (7.68). The second order off the
three terms in (7.69) adds to zero

e
i
2
(pkδdj−pjδdk)

1− 1/(y+
k y

−
j )

1− 1/(y−k y
+
j )

e 2i gθ(0)(yk,yj) = 1 +
1
P 3

+

IAFS +O( 1
P 4

+
) . (7.72)

Now one might ask, if the cancelation of the dressing factor stays valid for higer orders, but
this is not the case. One finds I′AFS 6= 0, IAFS 6= 0 and also the whole dressing phase
IAFS + 2iI′AFS does not vansih.
It is however an interesting matter of fact, that the dependences on higher orders of the
momenta in IAFS and I′AFS drop out, consequently the expressions are completely determined
by the mode numers mk=1,...,K4 and λ̃.

IAFS(y±k , y
±
j , λ̃) ≡ IAFS(nk, nj , λ̃) and I′AFS(y±k , y

±
j , λ̃) ≡ I′AFS(nk, nj , λ̃) (7.73)

Due to the complexity of the involved expressions an analytical summation over a valid con-
figuration of momenta and application of the cyclicity constraint (7.39) is extremely difficult.
However using an abritrary confluent string configuration such as m1 = −m2 = 2 and com-
puting IAFS + 2iI′AFS numerically, it is proven, that (7.68) does not in general vanish at
O( 1

P 4
+

).
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Confluent mode numbers

In order to obtain full consistency, also the expansion

pk =
1
P+

p0
k +

1√
P 3

+

p1
k +

1
P 2

+

p2
k +

1√
P 5

+

p3
k + . . . .

for confluent mode numbers has to be tested. The computations require even more effort since
additional terms of order O( 1

P
3/2
+

) and O( 1

P
5/2
+

) arise, but as expected all terms vanish up to

O( 1
P 3

+
).

7.6 solutions of the string Bethe equations

We will now explicitly expand the Bethe equations in the large P+ limit. The mode numbers
of the string oscillators will enter in the equations as the zero mode of the magnon momenta
pk.

7.7 Non-confluent mode numbers

For distinct mode numbers one assumes an expansion of pk as given in (7.22) determining the
analogous expansion of x±4,k:

x±4,k = P+ x
0
4,k + x1,±

4,k + . . . ,

with x0
4,k =

1 + ωk

2p0
k

, x1,±
4,k =

1
4
(1 + ωk)

(
± i−

2p1
k

(p0
k)

2 ωk

)
,

(7.74)

and ωk =
√

1 + λ̃
(p0

k)2

16π2 . Consistency then implies that the spectral parameters x3,k and x5,k

have the expansion

x3,k = P+ x
0
3,k + x1

3,k + . . . , x5,k = P+ x
0
5,k + x1

5,k + . . . . (7.75)

The first order expansion of (7.54) fixes the momentum at leading order p0
k to

p0
k = 4πmk, mk ∈ Z, (7.76)

in agreement with (7.22). The integer here is what will correspond to the mode numbers of
the string oscillators. Expanding (7.54) to the next order we find that the p1

k satisfies

p1
k =

1
2
(η1 + η2)

K4∑
j=1
j 6=k

2 + ωk + ωj

x0
4,k − x0

4,j

− η1

K1+K3∑
j=1

1 + ωk

x0
4,k − x0

3,j

−η2

K5+K7∑
j=1

1 + ωk

x0
4,k − x0

5,j

− (
1
2
(η1 + η2)K4 − η1(K1 +K3)− η2(K5 +K7))p0

k .

(7.77)

Expanding the light-cone energy (7.51), using (7.50) and (7.74) we find

P− = −
K4∑
k=1

ωk + δP−, (7.78)

where the energy shift, δP−, is given by

δP− = − λ̃

P+

1
16π2

K4∑
k=1

p0
kp

1
k

ωk
+O( 1

P 2
+

) . (7.79)
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7.8 Confluent mode numbers

For the case of confluent mode numbers we run into trouble because of the zero denominator
in (7.77), which is caused by the term

K4∏
j=1
j 6=k

x+η1

4,k − x
−η1
4,j

x−η2

4,k − x
+η2
4,j

(7.80)

of (7.54). In [27] an alternative expansion, first introduced in [16], has successfully been applied

pk,lk =
p0

k

P+
+
p1

k,lk

P
3/2

+

+
p2

k,lk

P 2
+

lk ∈ {1, 2, ..., νk} , pk
0 = 4πmk . (7.81)

Where we, following section 3.4, denote the multiplicity as νk so

K′
4∑

k=1

νk = K4 and
K′

4∑
k=1

νkmk = 0 ,

where K ′
4 is the number of distinct mode numbers. The first order term in (7.81) is degenerate

for confluent mode numbers while for the higher order terms the degeneracy might be lifted.
The resulting expansion for the spectral parameters x±4,k takes the form

x±4,k = P+x
0
4,k +

√
P+x

1
4,k + x2,±

4,k + . . .

with x0
4,k =

1 + ωk

2p0
k

, x1
4,k = −(1 + ωk)

p1
k,lk

2(p0
k)

2ωk

x2,±
4,k =

1
4
(1 + ωk)

(
± i−

2p1
k

(p0
k)

2 ωk

)
+

(p1
k,lk

)2

4(p0
k)

3ω3
(2ωk + 3ω2

k − 1) ,

while the expansion (7.75) of x3,k and x5,k is retained unchanged. For consistency reasons it
is important notice, that in case of non-coinciding mode numbers (7.54) requires p1

k = 0.
In the regime of confluent mode numbers the energy shift decomposes as

δP− =
K′

4∑
k=1

νk∑
lk=1

δP−,k,lk . (7.82)

The contribution from mode numbers mj with νj = 1 look the same as in (7.79) while modes
mk with νk > 1 will have contribution from p1

k,lk
. Using (7.81) and expanding (7.80) we find

that p1
k,lk

satisfy a Stieltjes equation [29] of the form

p1
k,lk

= −2(η1 + η2)(p0
k)

2ωk

νk∑
µk=1
µk 6=lk

1
p1

k,lk
− p1

k,µk

. (7.83)

It is useful to note that
∑νk

lk=1 p
1
k,lk

= 0. The momenta p1
k,lk

can be written as

(p1
k,lk

)2 = −2 (η1 + η2) (p0
k)

2 ωk h
2
νk,lk

with lk = 1, ..., νk (7.84)
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where hνk,lk are the νk roots of Hermite polynomials of degree νk. However, the explicit
solutions hνk,lk are not needed since when summing over k the following property applies

νk∑
lk=1

(hνk,lk)2 =
νk(νk − 1)

2
. (7.85)

The expansion for the second order contribution p2
k,lk

in (7.81) is considerably more compli-
cated, we therefore refer only to its general structure

p2
k,lk

= p̃k +
νk∑

µk=1
µk 6=lk

fk(µk, lk) . (7.86)

We split p2
k,lk

into a part not depending on lk, which is equivalent to p1
k given in (7.77): p̃k ≡ p1

k.
The function fk has the property fk(µk, lk) = −fk(lk, µk) and thus the second term drops out
when summed over lk. The final expression for the energy shift becomes then

δP− = − 1
P+

λ̃

32π2

K′
4∑

k=1

νkp
0
k

(2 p̃k ωk − (η1 + η2)p0
k(νk − 1)

ω2
k

)
. (7.87)

7.9 Bethe equations for the smaller spin chains

To be able to solve for p1
k it is clear from the form of (7.77) that we need the values of the

Bethe roots x3,k and x5,k at leading order in P+. Based on (7.45) the variables uk scale as
uk = P+u

0
k + u1

k + . . .. Expanding (7.40), (7.41), (7.43) and (7.44) yields

0 =
K2∑
j=1
j 6=k

2
u0

2,j − u0
2,k

+
K1+K3∑

j=1

1

u0
2,k − (x0

3,j + λ̃
64π2

1
x0
3,j

)
,

0 = η1

K2∑
j=1

1

x0
3,k + λ̃

64π2
1

x0
3,k
− u0

2,j

+
1
2

K4∑
j=1

1 + ωj

x0
4,j − x0

3,k

,

0 = η2

K6∑
j=1

1

x0
5,k + λ̃

64π2
1

x0
5,k
− u0

6,j

+
1
2

K4∑
j=1

1 + ωj

x0
4,j − x0

5,k

,

0 =
K6∑
j=1
j 6=k

2
u0

6,j − u0
6,k

+
K5+K7∑

j=1

1

u0
6,k − (x0

5,j + λ̃
64π2

1
x0
5,j

)
,

(7.88)

which determine the x0
2,k, x

0
3,k, x

0
5,k and x0

6,k in terms of x0
4,k. Note that the two sets of the

first two and the last two equations are decoupled and identical in structure.
Let us briefly discuss how one goes about solving these equations for a given excitation

sector. First one needs to commit oneself to a specific grading by specifying the numbers
η1,2 = ±1. For most of the sectors all choices of gradings will give the same result, however,
the calculation will be more or less complicated depending on the choice. Then one reads off
the values for {Ki} in table 11 corresponding to the string excitation pattern in question. The
four different choices of gradings can be grouped into two classes, one with fermionic middle
node, η1 = −η2, and one with bosonic middle node, η1 = η2 in the associated Dynkin diagram.
The difference between the two is important in the case of confluent mode numbers. The K3
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and K5 (and for η1 = −η2, also K4) are fermionic nodes which means that the solutions for
x0

3,k and similarly for x0
5,k for different values of k are not allowed to be degenerate by the Pauli

principle.

Consider for example the su(1, 1|2) sector containing only nonvanishing values for {K3,K4,K5}.
Then, due to K2 = 0 = K6, the equations (7.88) condense to two identical, degree K4 poly-
nomial equations for x0

3,k and x0
5,k yielding K4 solutions, including the degenerate solution

{x0
3/5,k → ∞}. These K4 solutions are then used once on each node K3 and K5, each gener-

ating K4 (K4−1)×...×(K4−Kj)
Kj !

(with j = 3, 5) number of solutions. For a bosonic node, however,
we may pick the same solution repeatedly.

Having distributed the solutions for x0
3,k and x0

5,k one then determines p1
k from (7.77)

and finally solves for the energy shift using (7.79) or (7.87). The obtained value is what we
then compare with a direct diagonalization of the string Hamiltonian.
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8 Comparing the Bethe equations with string theory

After we have transformed the general all loop Bethe equations to suitable variables, we will
confront its solutions to the string results of chapter 3. We will present analytical results for
all closed subsectors of psu(2, 2|4) listed in table 10.

8.1 The rank one sectors su(2), su(2) and su(1|1)

The su(2) sector is spanned by α+
1 operators. Choosing the grading η1 = η2 = 1 one finds

K4 as the only excited node. Because there is no contribution of x0
3,j , x

0
3,j equation (7.77)

simplifies drastically and we can directly read of the energy shift for abritrary mode numbers
from (7.87).
One easily finds

(η1 + η2)
1
P+

λ̃

32π2

K′
4∑

k=1

(p0
k)

2

ω2
k

νk(νk − 1) =
λ̃

P+

K4∑
i=1

n2
i

ω2
ni

(νni − 1)

and with a bit more algebra

− 1
P+

λ̃

16π2

K′
4∑

k=1

νk
p0

k p̃k

ωk
= − λ̃

2P+

K4∑
i,j=1
i6=j

(ni + nj)2

ωniωnj

.

Inserting this results in (7.87) reproduces the su(2) string formula (3.62) of section 3.6.

The sl(2) sector consists of only β+
1 , thus we choose the grading η1 = η2 = −1. One now

immediately sees by comparing (7.87) and (7.77) to the su(2) sector, that only the signature
of δP− changes.

The su(1|1) sector is assembled of the operator θ+
1 . Using the grading η1 = −η2 = −1 the

vanishing of δP− is obvious, which is in full agreement with the string result.

8.2 The su(1|2) sector

As stated, this sector is spanned by the oscillators α+
1 and θ+

1 . The contributing parts from
the string Hamiltonian are Hbb and Hbf . The explicit expression for the effective su(1|2)
Hamiltonian can be found in (5.7). Let us count the number of solutions for the grading
η1 = η2 = 1. Then the only excited nodes of the Dynkin diagram in this sector are K4 and
K3, so the polynomials in (7.88) give K4 − ν solutions17. Two of these solutions are always 0
and ∞ while the other K4 − 2− ν are non-trivial. Before we perform the actual computation
let us count the number of solutions. Say we have a total of K3 θ

+
1 oscillators and K4 −K3

α+
1 oscillators, then this state will yield (K4−ν)×(K4−ν−1)×...×(K4−ν−K3+1)

K3! number of solutions.
So, for all possible combinations of a general K4 impurity state the number of solutions are

K4−ν∑
K3=0

(
K4 − ν
K3

)
= 2K4−ν . (8.1)

Since the worldsheet Hamiltonian is a 2K4−ν×2K4−ν matrix, the number of solutions matches.
16 Mind that p̃ has defined to equal p1

k given in (7.77).
17 The number of confluent mode numbers must satisfy, ν ≤ K4 − K3 + 1 since we cannot have fermionic

excitations of the same flavor with confluent mode numbers.

69



8.2 The su(1|2) sector

8.2.1 Two impurities

For the two impurity sector the perturbative string Hamiltonian is a 4× 4 matrix, but we are
only interested in a 2 × 2 submatrix since the other part falls into the rank one sectors su(2)
and su(1|1). The relevant matrix elements, with mode numbers {q,−q}, are α+

1,qθ
+
1,−q|0〉 α+

1,−qθ
+
1,q|0〉

〈0|α−1,qθ
−
1,−q Hbf Hbf

〈0|α−1,−qθ
−
1,q Hbf Hbf


The energy shifts are the non-zero values in (5.9). Now, the interesting question is of course if
we can reproduce this result from the Bethe equations. For the two impurity state α+θ+|0〉 it
is easiest to work with the gradings η1 = −1 and η2 = 1 where we have K4 = 2 and K3 = 1.
From (7.88) wee see that the only solutions for x3,k are 0 and∞. Since we have two roots, and
one K3 excitation we get two solutions for p1

k. Solving (7.77) gives p1
k = ±p0

k. Plugging these
into (7.79) gives

δP− = ± λ̃

P+

2∑
j=1

q2j
ωqj

= ±2
λ̃

P+

q2

ωq
=: κ2, (8.2)

which equals the non-zero values in (5.9).

8.2.2 Three impurities, distinct mode numbers

The full perturbative string Hamiltonian is a 8 × 8 matrix but the relevant su(1|2) part
splits up into two independent submatrices coming from the Fermi-Fermi matrix elements
〈0|α−1 α

−
1 θ

−
1 (Hbb + Hbf )θ+

1 α
+
1 α

+
1 |0〉 and the Bose-Bose elements 〈0|α−1 θ

−
1 θ

−
1 (Hbf )θ+

1 θ
+
1 α

+
1 |0〉.

Schematically written we have, α+
1 α

+
1 θ

+
1 |0〉 α+

1 θ
+
1 θ

+
1 |0〉

〈0|θ−1 α
−
1 α

−
1 (Hbb +Hbf )3×3 03×3

〈0|θ−1 θ
−
1 α

−
1 03×3 H3×3

bf

 (8.3)

The eigenvalues of the Bose-Bose submatrix, the bottom right, is given in (5.10). To reproduce
these shifts from the Bethe equations we once again choose η1 = −1 and η2 = 1 so K4 = 3 and
K3 = 1. Solving (7.88) give, as before, x0

3,k = {0,∞} together with a novel third solution

y =
(2 + ωq1 + ωq2)x

0
4,3 + (2 + ωq2 + ωq3)x

0
4,1 + (2 + ωq1 + ωq3)x

0
4,2

3 + ωq1 + ωq2 + ωq3

. (8.4)

The first two solutions, 0 and ∞, give as before p1
k = ±p0

k. For generic values of K4, and with
K3 = 1, these two solutions will always appear. Using the third solution in (7.77) yields

p1
k =

1 + ωk

x0
4,k − y

− p0
k. (8.5)

Plugging this into (7.79), together with some algebra, gives the three solutions

δP− =
{
± λ̃

P+

3∑
j=1

q2j
ωqj

,
λ̃

P+ωq1ωq2ωq3

3∑
j=1

q2jωqj

}
=: Λ3 , (8.6)
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which agrees with the string result obtained in (5.10).

Let us now focus on the Fermi-Fermi matrix elements, the upper left 3×3 block of (8.3). First,
(7.88) give the same three solutions as before, namely {0,∞, y} with the same y as in (8.4).
Since K3 = 2 we now, for each p1

k, use two of the solutions for x0
3,k

p1
k = (1 + ωp0

k
)
( 1
x0

4,k − x0
3,1

+
1

x0
4,k − x0

3,2

)
− 2p0

k. (8.7)

The three possible distributions of the roots, {0,∞}, {0, y} and {y,∞}, give the three solutions

δP− =
{

0, − λ̃

P+

1
16π2

K4∑
j=1

p0
k

ωk

(
(

1 + ωk

x0
4,k − y

− p0
k)± p0

k

)}
=: Ω3 (8.8)

With a little bit of work one can show that these match the eigenvalues from the string
Hamiltonian in (5.11).

8.2.3 Three impurities, confluent mode numbers

For three impurities, with mode numbers {q, q,−2q}, the only states that do not fall into the
previously checked rank one sectors are α+

1 α
+
1 θ

+
1 |0〉 and α+

1 θ
+
1 θ

+
1 |0〉. For the former, we get

from (7.77) (with grading η1 = η2 = 1)

p̃q = −2p0
q +

2ωq + ω2q

x0
4,q − x0

4,2q

− 1 + ωq

x0
4,q − x0

3

, p̃2q = −2p0
2q + 2

2ωq + ω2q

x0
4,2q − x0

4,q

− 1 + ω2q

x0
4,2q − x0

3

.

The polynomials in (7.88) give two solutions {0,∞} for x0
3,k. Using these in (7.87), together

with some algebra, yields two energy shifts

δP− =
2q2λ̃

P+ω2
qω2q

{ 3ω2q + (2ωq + ω2q)(4ωq(1 + ωq) + ω2q)
3 + 2ωq + ω2q

, (8.9)

−
4ω2

q − (3− 4ω2
q )ω2q − (1− 2ωq)ω2

2q

3 + 2ωq + ω2q

}
.

It is not immediately apparent that this equals the string Hamiltonian result (5.13) but after
some work one can show that these two solutions are equal.

For the second state, α+
1 θ

+
1 θ

+
1 |0〉, we have K3 = 2 and the two roots {0,∞} for x0

3,k can only
be distributed in one way. By doing analogously as above and using (7.77) in (7.87), we find

δP− =
2q2λ̃
P+

(ωq + ω2q)
ωqω2q

, (8.10)

which reproduces the string Hamiltonian result of (5.12).

8.3 The su(1, 1|2) sector

Now we turn to the larger su(1, 1|2) sector. The procedure is the same as above but now
both sides of the Dynkin diagram gets excited and a general state has the three middle nodes
K3,K4 and K5 excited. We are allowed to pick the same solution, on the K3 and K5 node, but
as before we must put distinct solutions on the fermionic nodes. In this sector a new feature
appears: The states α+

1 β
+
1 and θ+

1 η
+
1 are allowed to mix. Also, in the case of confluent mode
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numbers, it turns out that we have to make use of different gradings on some states to generate
all the solutions from the string Hamiltonian.

Let us first investigate if the number of solutions from the string Hamiltonian and the
Bethe equations match. A general su(1, 1|2) state with K4 excitations and distinct mode
numbers will yield a 22K4 × 22K4 matrix and thus 22K4 energy shifts. The total number of
solutions from the Bethe equations are just the square of (8.1), with ν = 0, which equals the
number of eigenvalues from the perturbative string Hamiltonian (5.14).

8.3.1 Two impurities

The Hamiltonian is a 16×16 matrix but it is only a 13×13 part which lies outside the already
calculated su(1|2) sector. There are seven different independent submatrices where the largest
is a 4×4 matrix and is generated by the base kets α+

1 β
+
1 |0〉 and θ+

1 η
+
1 |0〉. There are three 2×2

submatrices, α+
1 η

+
1 |0〉, β

+
1 θ

+
1 |0〉, β

+
1 η

+
1 |0〉 and three are scalar contributions β+

1 β
+
1 |0〉, η

+
1 η

+
1 |0〉,

θ+
1 θ

+
1 |0〉. The latter will give the same results as presented in 8.1 so these we will ignore. The

only part with mixing is the subpart generated by α+
1 β

+
1 |0〉 and θ+

1 η
+
1 |0〉. To calculate the

energy shifts we start by solving (7.88) and, as before, the two solutions are {0,∞}. With
η1 = −1 and η2 = 1, so K4 = 3 and K5 = K3 = 1, we have

p1
k = (1 + ωk)

( 1
x0

4,k − x0
3,k

− 1
x0

4,k − x0
5,k

)
. (8.11)

Whenever we pick the same solution for x0
3,k and x0

5,k we get zero and since we can do this in
two ways we get two zero solutions.
The other two solutions are obtained by setting {x0

3,k, x
0
5,k} = {0,∞} and {∞, 0} which gives

p1
k = ±2p0

k. Using this in (7.79) gives

δP− = (0, 0,± 2λ̃
P+

2∑
j=1

q2j
ωqj

), (8.12)

which is in agreement with the string Hamiltonian result in (5.15).

For the three parts α+η+|0〉, β+θ+|0〉 and β+η+|0〉, we see that solving for the first state is
analogous to the discussion after (8.2) but with η1 = 1 and η2 = −1. For the two other, the
procedure will again be identical if we choose the opposite gradings. That is, for β+θ+|0〉 we
pick η1 = 1 and η2 = −1, while for β+η+|0〉 we choose η1 = −1 and η2 = 1 which give the
same set of solution for all three states

δP− = ± 2λ̃
P+

q2

ωq
, (8.13)

which is in agreement with (5.16).

8.3.2 Three impurities, distinct mode numbers

The full perturbative string Hamiltonian will now be a 64×64 matrix with non trivial 3×3 and
9× 9 subsectors. Since the logic of solving the Bethe equation should be clear by now, we only
present the obtained results in tabular form. Also, to make the comparison with the string
Hamiltonian more transparent, we now also label the states by their charges {S+, S−, J+, J−}.
The energy shifts for the 3× 3 parts are given in table 12 and for the larger 9× 9 subparts in
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{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{−,+} {2, 3, 0} {0, 1, 3, 2}α+

1 α+
1 θ+

1
Ω3

{+,−} {0, 3, 2} {1, 0, 2, 3}α+
1 α+

1 η+
1
−Ω3

{−,+} {0, 3, 2} {2, 3, 1, 0}β+
1 β+

1 θ+
1

Ω3

{+,−} {2, 3, 0} {3, 2, 0, 1}β+
1 β+

1 η+
1
−Ω3

{−,+} {1, 3, 0} {0, 2, 3, 1}θ+
1 θ+

1 α+
1

Λ3

{−,+} {0, 3, 1} {1, 3, 2, 0}θ+
1 θ+

1 β+
1
−Λ3

{+,−} {0, 3, 1} {2, 0, 1, 3}η+
1 η+

1 α+
1

Λ3

{+,−} {1, 3, 0} {3, 1, 0, 2}η+
1 η+

1 β+
1
−Λ3

Table 12: The states reproducing the 3× 3 submatrices of the string Hamiltonian. Ω3 and Λ3, where
the subscript indicate the number of solutions as given in (8.8) for Ω3 and (8.6) for Λ3.

{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{+,+} {1, 3, 1} {1, 1, 2, 2}(α+

1 α+
1 β+

1 ),(α+
1 θ+

1 η+
1 ) Ω9

{−,−} {1, 3, 1} {2, 2, 1, 1}(α+
1 β+

1 β+
1 ),(β+

1 θ+
1 η+

1 ) −Ω9

{−,+} {1, 3, 1} {1, 2, 2, 1}(α+
1 β+

1 θ+
1 ),(θ+

1 θ+
1 η+

1 ) Λ9

{+,−} {1, 3, 1} {2, 1, 1, 2}(α+
1 β+

1 η+
1 ,(θ+

1 η+
1 η+

1 ) −Λ9

Table 13: The states reproducing the 9× 9 submatrices of the string Hamiltonian. Ω9 and Λ9, where
the subscript indicate the number of solutions, is given by (8.14) and (8.15).

table 13. For the larger sectors we have a mixing between states of different boson and fermion
number.
The functions Ω9 and Λ9 in table 13 depend on the mode numbers {q1, q2, q3} and are given
by

Ω9 =
λ̃

P+

1
16π2

3∑
k=1

p0
qk

ωqk

( 3∑
j=1
j 6=k

2 + ωqk
+ ωqj

x0
4,qk
− x0

4,qj

− 1 + ωqk

x0
4,qk
− x0

3

− 1 + ωqk

x0
4,qk
− x0

5

)− p0
qk

)
(8.14)

Λ9 = − λ̃

P+

1
16π2

3∑
k=1

p0
qk

ωqk

( 1 + ωqk

x0
4,qk
− x0

3

− 1 + ωqk

x0
4,qk
− x0

5

)
. (8.15)

To obtain the nine solutions for Ω9 and Λ9 one has to insert one of the three roots {0,∞, y}
for each x0

3 and x0
5. We have not managed to match these results with the perturbative string

Hamiltonian (5.14) analytically, but tested the agreement extensively numerically and found a
precise agreement with the numerical string results of section 5.7.

8.3.3 Three impurities, confluent mode numbers

We will now look at three impurities with confluent mode numbers, {q, q,−2q}. With two
distinct mode numbers we see from (7.88) that we have the two standard solutions {0,∞} for
x0

3,k and x0
5,k. The sectors exhibiting mixing, i.e. the states that span the 9 × 9 subparts of

the previous section, now exhibit a new feature. The gradings are no longer equivalent and
we will be forced to use both to generate all the desired solutions. The simpler states, that do
not exhibit this feature, are presented in table 14 and the states where different gradings had
to be used are presented in table 15.
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8.3 The su(1, 1|2) sector

{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{+,+} {1, 3, 0} {0, 1, 3, 2}α+

1 α+
1 θ+

1
Ω̃2

{+,+} {0, 3, 1} {1, 0, 2, 3}α+
1 α+

1 η+
1

Ω̃2

{−,−} {0, 3, 1} {2, 3, 1, 0}β+
1 β+

1 θ+
1
−Ω̃2

{−,−} {1, 3, 0} {3, 2, 0, 1}β+
1 β+

1 η+
1
−Ω̃2

{+,+} {2, 3, 0} {0, 2, 3, 1}θ+
1 θ+

1 α+
1

λ̃1

{−,−} {0, 3, 2} {1, 3, 2, 0}θ+
1 θ+

1 β+
1
−λ̃1

{+,+} {0, 3, 2} {2, 0, 1, 3}η+
1 η+

1 α+
1

λ̃1

{−,−} {2, 3, 0} {3, 1, 0, 2}η+
1 η+

1 β+
1
−λ̃1

Table 14: The states reproducing the 2 × 2 submatrices for confluent mode numbers of the string
Hamiltonian. Ω̃2 and λ̃2, where the subscript indicate the number of solutions, is given by (8.9) and
(8.10).

{η1, η2} {K1 +K3,K4,K5 +K7} {S+, S−, J+, J−} δP−
{+,+} {1, 3, 1} {1, 1, 2, 2}(α+

1 α+
1 β+

1 ),(α+
1 θ+

1 η+
1
) Γ4

{−,−} {2, 3, 2} {1, 1, 2, 2}(α+
1 α+

1 β+
1 ),(α+

1 θ+
1 η+

1
) Γ̃1

{−,−} {1, 3, 1} {2, 2, 1, 1}(α+
1 β+

1 β+
1 ),(β+

1 θ+
1 η+

1 ) −Γ4

{+,+} {2, 3, 2} {2, 2, 1, 1}(α+
1 β+

1 β+
1 ),(β+

1 θ+
1 η+

1 ) −Γ̃1

{+,+} {2, 3, 1} {1, 2, 2, 1}(α+
1 β+

1 θ+
1 ),(θ+

1 θ+
1 η+

1 ) Ω̃2

{−,−} {1, 3, 2} {1, 2, 2, 1}(α+
1 β+

1 θ+
1 ),(θ+

1 θ+
1 η+

1 ) −Ω̃2

{−,−} {2, 3, 1} {2, 1, 1, 2}(α+
1 β+

1 η+
1 ,(θ+

1 η+
1 η+

1 ) −Ω̃2

{+,+} {1, 3, 2} {2, 1, 1, 2}(α+
1 β+

1 η+
1 ,(θ+

1 η+
1 η+

1 ) Ω̃2

Table 15: The states reproducing the larger submatrices, with confluent mode numbers, of the string
Hamiltonian. The functions Γ4 and Γ̃1 are given in (8.16) and Ω̃2 is given in (8.9).

The energy shifts Γ4 and Γ̃1 appearing in table 15 are given by

Γ̃1 =
2q2λ̃

P+ω2
qω2q

( 1
ωq

+
1
ω2q

)
,

Γ4 = − 2q2λ̃
P+ω2

qω2q

{
(

1
ωq

+
1
ω2q

), (
1
ωq

+
1
ω2q

),
3ω2q + (2ωq + ω2q)(ω2q + ωq(7 + 6ωq + ω2q))

3 + 2ωq + ω2q
,

3ω2q − (2ωq + ω2q)(ωq(5 + 2ωq + 3ω2q)− ω2q)
3 + 2ωq + ω2q

}
. (8.16)

For the comparison to the eigenvalues of the string Hamiltonian we had to resort to numerical
verifications, which have shown a precise agreement with the numerical string results of section
5.7.

8.3.4 Higher impurities

In going beyond three impurities numerical calculations on both sides, the Bethe equations and
the string Hamiltonian, have been performed for a number of four and five impurity states.
All numerical energy shifts match precisely, the tested configurations are listed in table 16.
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Chapter 8: Comparing the Bethe equations with string theory

{S+, S−, J+, J−} State pattern Number of solutions

{2, 2, 2, 2} θ+
1 θ+

1 η+
1 η+

1 |0〉, θ+
1 η+

1 β+
1 α+

1 |0〉, β+
1 β+

1 α+
1 α+

1 |0〉 36 energy shifts
{2, 2, 3, 3} θ+

1 θ+
1 η+

1 η+
1 α+

1 |0〉, θ+
1 η+

1 β+
1 α+

1 α+
1 |0〉, β+

1 β+
1 α+

1 α+
1 α+

1 |0〉 100 energy shifts

Table 16: Checked 4 and 5 impurity states of su(1, 1|2).

8.4 The su(2|3) sector

Now things become more complex. The polynomials (7.88) for a general state are highly non-
linear, coupled and involve several variables. For this reason we will not be as thorough in our
testing for the higher impurity cases as in the previous sections. The oscillators in this sector
are α+

1 , α
+
2 , θ

+
1 and θ+

2 where there is a mixing between α+
1 α

+
2 |0〉 and θ+

1 θ
+
2 |0〉. The string

Hamiltonian is given in (5.17).

8.4.1 Two impurities

The su(2|3) two impurity sector of the perturbative string Hamiltonian (5.17) will be a 12×12
matrix. Let us begin with the largest subpart, the one with mixing between α+

1 α
+
2 |0〉 and

θ+
1 θ

+
2 |0〉. The excitation numbers, with grading η1 = η2 = 1, for α+

1 α
+
2 |0〉 are K1 = K2 = K3 =

1 and K4 = 2 while for θ+
1 θ

+
2 |0〉 we have K2 = 1 and K3 = K4 = 2. Here the dynamically

transformed version of the Bethe equations is advantageous, as it makes explicit that the
relevant combination K1 + K3 = 2 is the same for these two states. This is how the Bethe
equations take care of the mixing. Solving for u0

2 in (7.88), and using u0
3,k = x0

3,k + λ̃
64π2

1
x0
3,k

,

gives

u0
2 =

1
2
(x0

3,1 + x0
3,2 +

λ̃

64π2
(

1
x0

3,1

+
1
x0

3,2

)).

Plugging this into the second line of (7.88) gives

1

x0
3,1 − x0

3,2 + λ̃
64π2 ( 1

x0
3,1
− 1

x0
3,2

)
+

2∑
j=1

1 + ωj

x0
4,j − x0

3,1

= 0, (8.17)

1

x0
3,2 − x0

3,1 + λ̃
64π2 ( 1

x0
3,2
− 1

x0
3,1

)
+

2∑
j=1

1 + ωj

x0
4,j − x0

3,2

= 0.

We can add these two equations above and see that four solutions are

(x0
3,1, x

0
3,2) = (0, 0), (0,∞), (∞, 0), (∞,∞) .

This may at first glance seem strange since the seemingly equivalent state θ+
1 θ

+
2 |0〉 only has the

K2 and K3 node excited, implying that we can not pick the same solution twice for x0
3,k since

K3 is fermionic. However, the correct state to use is the α+
1 α

+
2 |0〉 state. Here two different

fermionic nodes K1 and K3 are excited and because of this we can use the same solutions on
both nodes simultaneously.

Let us now turn to the calculation of the energy shifts for the these four states. We use
the solutions from (8.17) in (7.77) and plug this into (7.79) which gives

δP− = {0, 0,± λ̃

P+

4q2

ωq
} =: χ4, (8.18)
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8.4 The su(2|3) sector

{η1, η2} {K1 +K3,K2,K4} {S+, S−, J+, J−} δP−
{+,+} {2, 1, 2} {0, 0, 2, 0}(α+

1 α+
2 ),(θ+

1 θ+
2 ) χ4

{−,+} {1, 0, 2} {0, 1, 2, 1}α+
1 θ+

1
κ2

{−,+} {1, 0, 2} {0,−1, 2,−1}α+
2 θ+

2
κ2

{+,+} {1, 1, 2} {0,−1, 2, 1}α+
1 θ+

2
κ2

{+,+} {1, 1, 2} {0, 1, 2,−1}α+
2 θ+

1
κ2

Table 17: The two impurity states that fall into to the rank ≥ 1 sectors for su(2|3). Here χ4 is given
by (8.18) and κ2 is given by (8.2). For two of the states we have permutated the space-time indices.

which is in perfect agreement with (5.18). The energy shifts for the other states follows imme-
diately and we present the results in table 17. From this table we see that all the energy shifts
from (5.17), presented in (5.19) and (5.18), are reproduced.

8.4.2 Higher impurities

Due to the non linearity of the polynomials relating the Bethe roots we will only present results
for excitations with K2 = K3 = 1, corresponding to states of the form α+

1 . . . α+
1 θ

+
2 |0〉 with

space-time charge vector {S+, S−, J+, J−} = {0,−1,K4,K4 − 1}. From the first line in (7.88)
we see that

1

u0
2 − (x0

3 + λ̃
64π2

1
x0
3
)

= 0,

and using this in the second line implies that the equation for x0
3 reduces to the familiar form

K4∑
j=1

1 + ωj

x0
4,j − x0

3

= 0. (8.19)

Thus, the energy shift for this state is the same as for the α+
1 ... α

+
1 θ

+
1 |0〉 states. For K4 = 3, the

energy shift is presented in (8.6). For K4−1 number of α+
1 excitations and one θ+

2 excitation,
the energy shift, with gradings {+,+}, is given by

ΛK4 =
1

16π2

K4∑
k=1

p0
k

ωk

( K4∑
j=1
j 6=k

2 + ωj + ωk

x0
4,k − x0

4,j

− 1 + ωk

x0
4,k − x0

3

− p0
k(K4 − 1)

)
. (8.20)

This prediction we have verified numerically for K4 ≤ 6 with the energy shifts obtained by
diagonalization of the string Hamiltonian (5.17).

{η1, η2} {K1 + K3, K2, K4} {S+, S−, J+, J−} δP−
{+, +} {1, 1, K4} {0,−1, K4, K4 − 1}

(α+
1 ... α+

1 θ+
2 )

ΛK4

Table 18: Higher impurity states from the su(2|3) sector for states of the form α+
1 ... α

+
1 θ

+
2 |0〉. The

function ΛK4 , where K4 indicates the number of solutions, is given in (8.20).
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Chapter 9: Conclusions and outlook

9 Conclusions and outlook

9.1 Comparison of Hamiltonian method and Bethe Ansatz

With the Abakus software at hand the calculation of arbitrary AdS5×S5 superstring spectra in
the near plane-wave limit has become an easy task. Nevertheless the computation can only yield
numerical eigenvalues of the Hamiltonian apart from very simple cases. The general solvability
of the Bethe equations is highly restricted, due to its non linearity and coupled structure. On
the one hand numerical solutions of the Bethe equations are hardly computable, on the other
hand one can obtain analytic solutions in more cases than for the string Hamiltonian.

For example it is much easier to calculate the energy shifts analytically using the Bethe
equations for generic su(1, 1|2) states. The characteristic polynomial from the perturbative
string Hamiltonian is of degree 22K4 whereas the polynomials needed to be solved in the Bethe
equations (7.88) are of degree K4 − 2. Still, one generically deals with polynomials of a high
degree, making it hard to explicitly find analytical results for states with large total excitation
number K4.

When it comes to the dynamical sector su(2|2), a direct comparison is much more difficult
due to the non-linearity and coupled structure of the Bethe equations. Here analytical results
were established only for the case of two impurities. For three or more impurity states it turned
out to be impossible to solve the Bethe equations, even numerically, except for one particular
excitation pattern.

Table 19 provides an overview of the computed spectra by perturbative diagonalization of the
string Hamiltonian and it shows where solutions of the Bethe equations are available.

su(2) sl(2) su(1|1) su(1|2) su(1, 1|2) su(2|3) psu(2, 2|4)
α+

1 β+
1 θ+

1 θ+
1 , α+

1 θ+
2 , θ+

1 , α+
2 , α+

1 θ+
1 , η+

1 , β+
1 , α+

1 θ4, ..., η4, ...β4, ..., α1

2
√√ √√ √√ √√ √√ √√

3
√√ √√ √√ √√ √√ √√

4
√√ √√ √√ √

100,136
√

5
√√ √√ √√ √

6
√√ √√ √√ √

im
pu

ri
ti
es

>6
√√ √√ √√

√√
– solutions matched analytically

√√
– solutions matched numerically

computed energy eigenvalues using Abakus software

Table 19: Schematic overview of the computed string eigenvalues and the available solutions of the
Bethe equations.

√√
indicates that we have calculated all possible charge configurations belonging

to the sector and matched the Hamiltonian eigenvalues with the Bethe roots.
√

x indicates we have
computed a matrix with x eigenvalues on the string side and matched them to solutions of the Bethe
equations. If a

√
is given, only few Bethe roots are available, which can be matched with string

eigenvalues.
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9.2 Summary

9.2 Summary

In this work we have explored the quantum integrability of the AdS5 × S5 superstring by
confronting the explicit diagonalization of the light-cone gauged string Hamiltonian with the
solutions of a conjectured set of Bethe equations. All computations have been performed in
the near plane-wave limit.

In the first part of the present diploma thesis the derivation of the quantized AdS5×S5 su-
perstring Hamiltonian has been reviewed. It was argued that computing generic string spectra
requires an especially designed computer algebra system. In particular it was shown, that in
most cases the computational costs, for calculating the energy corrections, scale exponentially
with respect to the number of different string modes. For this purpose the Abakus software,
which computes the next to leading order correction of the energy, was designed as part of the
present diploma thesis.

In the second part of this work, an introduction to the Bethe Ansatz has been given in
order to motivate the presented Bethe equations. These equations were perturbatively con-
verted into a set of light-cone Bethe equations which are expected to yield the spectrum of the
AdS5×S5 superstring in the near plane-wave limit. Moreover, it was demonstrated how excited
string states may be translated to distributions of spectral parameters in the Bethe equations.
We have explicitly compared the predictions from the light-cone Bethe equations with direct
diagonalization of the string Hamiltonian using the Abakus software. Perfect agreement has
been found in all analyzed cases giving us a strong confidence in the validity of the light-cone
Bethe equations for these classes of operators.

The presented results yield strong evidence that the energy spectrum of the AdS5 × S5 super-
string is described by a set of Bethe equations, which implies that the AdS5 × S5 superstring
is indeed an integrable quantum system, at least up to order 1/P+. The scaling dimension
of composite gauge invariant operators of N = 4 super Yang-Mills theory is encoded in the
set of Bethe equations used. Thus this work represents a further highly non-trivial test of the
conjectured AdS/CFT correspondence.

9.3 Outlook

In the light of this analysis it would be interesting to extend the perturbative studies of the
string Hamiltonian to next order O(P−2

+ ). This is a very complicated problem due to normal
ordering ambiguities. However, it might be tackled by making use of the symmetry algebra as
discussed in [7] and [14].

Further on there are no Bethe equations at hand for finite size spin chains. In order to
construct all loop equations for a finite size system, one has to incorporate interactions with
a range that exceed the length of the chain, i.e. one is confronted with interactions wrapping
around the spin chain. Bethe equations for such systems are currently not known.

Moreover it is still an open question how to quantize the AdS5×S5 superstring when all
quantum numbers are finite. In the light of the presented results, it would be interesting to
research if the energy spectrum of the superstring still matches the scaling dimension of the
N = 4 super Yang-Mills theory, which would yield even stronger evidence for the validity of
the AdS/CFT correspondence.
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Appendix A: Further details on the AdS5 × S5 string Hamiltonian

A Further details on the AdS5 × S5 string Hamiltonian

This section provides further details on the derivation of the light-cone Hamiltonian as well as
properties of the involved quantities such as the matrices Γc and the auxiliary functions fn, gn.

A.1 Solving the Virasoro constraint for the Hamiltonian

To resolve the second Virasoro constraint in (3.15) for p− we rewrite it in the form

0 = (p2
+ + p2

−)G++ + 2p+p−G
+− + pMpNG

MN + λG−−x
′−x′− + λGMNx

′Mx′N . (A.1)

The quantity x′− is given by (3.13) as x′− = (pMx
′M )/P+. In order to expand in the number

of fields we rescale

xM →
√

2
P+

xM , pM →
√

P+

2 pM . (A.2)

In the limit P+ →∞ and in terms of the rescaled fields xM = {za, ys} the metric components
take the form

G++ = G−− = −y
2 + z2

2P+
+
y4 − z4

2P 2
+

, G+− =
1
2

+
−y2 + z2

2P+
+
y4 + z4

2P 2
+

,

G++ = G−− = 2
y2 + z2

P+
+ 2

y4 − z4

P 2
+

, G+− = 2 + 2
y2 − z2

P+
+ 2

y4 + z4

P 2
+

,

Gab = δab

(
1 +

z2

P+
+

3
4
z4

P 2
+

)
, Gsu = δsu

(
1− y2

P+
+

3
4
y4

P 2
+

)
.

Since also the metric is expanded with respect to P+, here after indices are contracted using
Kronecker delta and for the sake of simplicity all indices are written as lower indices. In terms
of the rescaled fields one finds the bosonic Hamitonian as solution of (A.1):

H = −p− =
1
2

(
p(z)

a p(z)
a + p(y)

s p(y)
s + za za + ys ys + λ̃(z′a z

′
a + y′s y

′
s)
)

+
1
P+

(
p(y)

s p(y)
s za za + p(z)

a p(z)
a ys ys

+ λ̃(y′s y
′
s za za − z′a z′a ys ys) + 2λ̃(z′a z

′
a zb zb − y′s y′s yu yu)

)
.

(A.3)

The Hamiltonian (A.3) can be further simplified using a canonical transformation [7] generated
by

V (x, p) =
1

2P+

(
p(y)

s ys za za − p(z)
a za ys ys

)
(x = {za, ys}).

The transformed coordinates x̃ and momenta p̃ are given by the standard expressions

x̃M = e{V , · }xM , p̃M = e{V , · }pM ,

where the poisson bracked is defined as

{V (p, x), B(p, x)} =
∂V

∂pM

∂B

∂xM
− ∂V

∂xM

∂B

∂pM
. (A.4)

79



A.2 Γ−matrices

In our case one finds

z̃a = za
(
1 + 1

2P+
ysys

)
, ỹs = ys

(
1− 1

2P+
zaza

)
p̃(z)

a = p(z)
a +

1
2P+

(
p(z)

a ys ys − 2 za p(y)
s ys

)
, p̃(y)

s = p(y)
s −

1
2P+

(
p(y)

s za za − 2 ys p
(z)
a za

)
.

Using the general property H(p(z), p(y), z, y) = H̃(p̃(z), p̃(y), z̃, ỹ) the transformed Hamiltonian
H̃ acquires the form (3.19), where the tilde has been omitted.

A.2 Γ−matrices

Starting with the bosonic coordinates t, za and φ, ys with a, s = 1, . . . , 4 which parametrize
AdS5 and S5 respectively, one has to do the field redefinition (3.20) in order to obtain fields
Za, Ya carrying definite charges. In the matrix valued psu(2, 2|4) charge Q = Q(ziγi, yiγi, θ, η)
the bosonic coordinates zi, yi occur only multiplied with the 4×4 Dirac matrices γi, satisfying
the SO(5) Clifford algebra

{γa, γb} = γaγb + γbγa = 2δa,b . (A.5)

To preserve the general structure of Q in terms of the new fields, the authors of [7] defined the
Γ-matrices by the identity

ziγi
!= ZaΓa = Z1Γ1 + Z2Γ2 + Z3Γ3 + Z4Γ4 , (A.6)

which leads to

Γ1 = 1
2(γ2 − iγ1) , Γ2 = 1

2(γ4 − iγ3) ,

Γ3 = 1
2(γ4 + iγ3) = Γ†2 , Γ4 = 1

2(γ2 + iγ1) = Γ†1 .
(A.7)

In addition one defines

Γ5 ≡ Σ = [Γ1,Γ4][Γ2,Γ3] = −γ1γ2γ3γ4 , P± =
1
2
(1± Γ5) . (A.8)

One findes the anti-commutator relations

ΓnΓm + ΓmΓn ≡ {Γn,Γm} = δn,5−m for n,m = 1, .., 4 (A.9)
{Γ5,Γn} = 0 .

Of course the form of the Γa is not unique, in fact one may choose every set of 4× 4 matrices
satisfying (A.9), because the trace of a product of Γ-matrices is fully determined by the anti-
commutator relations and thus the Hamiltonian (3.40) is independent from the specific choise
of Γ-matrices.
However, we will work with the explicit representation introduced in [7]:

Γ1 =


0 0 0 i
0 0 0 0
0 −i 0 0
0 0 0 0

, Γ2 =


0 0 −i 0
0 0 0 0
0 0 0 0
0 −i 0 0

, Γ3 =


0 0 0 0
0 0 0 i
i 0 0 0
0 0 0 0

,

Γ4 =


0 0 0 0
0 0 i 0
0 0 0 0
−i 0 0 0

, Σ ≡ Γ5 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

(A.10)
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Appendix A: Further details on the AdS5 × S5 string Hamiltonian

A.3 properties of fn and gn

In the mode decomposition (3.35) of the fermionic fields the two auxiliary functions

fm =
√

1
2

(
1 +

1
ωm

)
, gm =

κ
√
λ̃m

1 + ωm
fm , κ = ±1 .

appear. Here some usefull identeties are collected.

f2
a + g2

a = 1 , f2
a − g2

a =
1
ωa

, fa ga =
κ
√
λ̃

2
a

ωa

fa fb − ga gb =

√
(1 + ωa)(1 + ωb)

2
√
ωaωb

(
1− λ̃ ab

(1 + ωa)(1 + ωb)

)
fa gb − fb ga =

κ
√
λ̃

2
√
ωaωb

b(1 + ωa)− a(1 + ωb)
2
√
ωaωb
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B Systematic listing of numerical eigenvalues

In this section we systematically list numerical eigenvalues computed by the Abakus software.
The tables contain values for all possible charge configurations {S+, S−, J+, J−} of all closed
subsectors of psu(2, 2|4) up to three impurities. In the case of four impurities only a certain
selection is given. In order to convert the listed eigenvalues −δP− into the global energy consult
chapter 6.

For all computations λ̃ = 0.1 and P+ = 100 was used. (B.1)

B.1 Two impurities

Using the analytic expressions of chapter 5 explicit values for the Hamiltonian eigenvalues−δP−
are given. We also consider the charge configuration {0, 0, 0, 0}, where the full Hamiltonian
contributes. The mode numbers n1 = −n2 = 3 were used.

sector charge eigenvalues −δP−
su(2) {0,0,2,2} 0
sl(2) {2,2,0,0} 0
su(1|1) {0,2,2,0} 0
su(1|2) {0,1,2,1} ±0.0130586
su(2|3) {0,0,2,0} ±0.0261171 2× 0

{0,±1, 2,±1} ±0.0130586
su(1, 1|2) {1,1,1,1} ±0.0261171 2× 0

{1, 2, 1, 0}, {0, 1, 2, 1}, {2, 1, 0, 1}, {1, 0, 1, 2} ±0.0130586
full {0,0,0,0} 4×±0.0261171 ±0.0522343 6× 0

Table 20: Numerical results for the first order correction in 1/P+ of the string energy spectrum for
two impurity states. The charges are given in the convention {S+, S−, J+, J−}. The number in front of
some eigenvalues denotes their multiplicity if unequal one.

The ± signs in front of some charges are just a shortform of writing several charge combinations
all with the same eigenvalues. They are not related to the signatures of the eigenvalues in any
sense.

B.2 Three impurities

For computing 3-impurity states a set of non-confluent mode numbers was used as well as a
second set with confluent modes. For the non-confluent n1 = 2, n2 = 1, n3 = −3 case the
corresponding eigenvalues are listed in table 21, while the eigenvalues for the confluent modes
n1 = n2 = 3, n3 = −6 are given in table 22.
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Appendix B: Systematic listing of numerical eigenvalues

sector charge eigenvalues −δP−
su(2) {0,0,3,3} −0.01063240
sl(2) {3,3,0,0} 0.01063240
su(1|1) {0,3,3,0} 0

su(1|2) charge eigenvalues −δP−
{0,1,3,2} −0.0214958 0.000230962 0
{0,2,3,1} −0.0108634 0.0108634 −0.0106324

su(2|3) charge eigenvalues −δP−
{0,0 ,3,±3} −0.0106324
{0,±2,3,±1} ±0.0108634 −0.0106324
{0,±1,3,±2} −0.0214958 0.000230962 0
{0,±1,3,0} 0.0217267 3×−0.0214958 2× 0.000230962 3× 0
{0,0,3,±1} −0.0323591 0.0110943 2×±0.0108634 3×−0.0106324

su(1, 1|2) charge eigenvalues −δP−
{1,0,2,3} −0.0214958 0.000230962 0
{1,1,2,2} −0.0323591 0.0110943 2×±0.0108634 2×−0.0106324 0.0106324
{1,2,2,1}, {2,1,1,2} ±0.0217267 ±0.0214958 ±0.000230962 3× 0
{1,3,2,0}, {3,1,0,2} ±0.0108634 0.0106324
{2,0,1,3}, {0,2,3,1} ±0.0108634 −0.0106324
{2,2,1,1} 0.0323591 −0.0110943 2×±0.0108634 2× 0.0106324 −0.0106324
{2,3,1,0}, {3,2,0,1} 0.0214958 −0.000230962 0

Table 21: Numerical results for the first order correction in 1/P+ of the string energy spectrum for
three impurity states with non confluent mode numbers. The charges are given in the convention
{S+, S−, J+, J−}. The number in front of some eigenvalues denotes their multiplicity if unequal one.

sector charge eigenvalues −δP−
su(2) {0,0,3,3} −0.0155623
sl(2) {3,3,0,0} 0.0155623
su(1|1) {0,3,3,0} 0

su(1|2) charge eigenvalues −δP−
{0,1,3,2} −0.0454059 0.0142814
{0,2,3,1} −0.0155623

su(2|3) charge eigenvalues −δP−
{0,±1,3,0} 2×−0.0454059 2× 0.0142814
{0,0,3,±1} −0.0752496 0.044125 3×−0.0155623
{0,±2,3,±1}, {0,0,3,±3} −0.0155623
{0,±1,3,±2} −0.0454059 0.0142814

su(1, 1|2) charge eigenvalues −δP−
{1,2,2,1},{2,1,1,2} ±0.0454059 ±0.0142814
{1,3,2,0},{3,2,0,1} 0.0155623
{2,0,1,3} −0.0155623
{2,2,1,1} 0.0752496 −0.044125 2× 0.0155623 −0.0155623
{1,1,2,2} −0.0752496 0.044125 0.0155623 2×−0.0155623
{2,3,1,0},{3,2,0,1} 0.0454059 −0.0142814
{1,0,2,3} −0.0454059 0.0142814

Table 22: Numerical results for the first order correction in 1/P+ of the string energy spectrum for three
impurity states with confluent mode numbers. The charges are given in the convention {S+, S−, J+, J−}.
The number in front of some eigenvalues denotes their multiplicity if unequal one.
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B.3 Four impurities

B.3 Four impurities

Since the number of eigenvalues grows exponentially with the number of impurities, we have
itemized only a certain selection of charges. Also the simple su(2) and sl(2) sectors are not
listed anymore because closed analytical formulas are derived in section 5.1 and 5.2. Only
non-confluent mode numbers n1 = 5, n2 = 2, n3 = −3, n4 = −4 were used. The eigenvalues are
listed in table 23.

su(2|3) charge eigenvalues −δP−
{0,±1,4,±3} −0.0819702 −0.0254012 −0.0233732 −0.0155787
{0,±2,4,±2} −0.0585969 −0.056569 −0.0487744 0.00982251 0.00779455 0

su(1, 1|2) charge eigenvalues −δP−
{1,0,3,4} −0.0819702 −0.0254012 −0.0233732 −0.0155787
{3,1,1,3} ±0.0663915 ±0.0585969 ±0.056569

±0.00982251 ±0.00779455 ±0.00202796 4× 0
{2,2,2,2} ±0.0684194 2×±0.0663915 ±0.0643635 2×±0.0585969 2×±0.056569

±0.0487744 2×±0.00982251 2×±0.00779455 2×±0.00202796 6× 0

Table 23: Numerical results for the first order correction in 1/P+ of the string energy spectrum
for 4 impurity states with non confluent mode numbers. The charges are given in the convention
{S+, S−, J+, J−}. The number in front of some eigenvalues denotes their multiplicity if unequal one.

B.4 Comments on higher impurities

To explore the possibility of computing even higher impurities with Abakus, we have picked
a su(1|2) charge which results in quite few eigenvalues compared to other 6 impurity charges
as for example the su(1, 1|2) charge {4, 3, 2, 3} with 107 different eigenvalues. The results are
shown in table 24, where the mode numbers n1 = 5, n2 = 4, n3 = 3, n4 = 2, n5 = 1, n5 = −15
have been used. Computations in the su(1|2) sector have been performed up to 12 impurities
generating about 1000 eigenvalues.

su(1|2) charge eigenvalues −δP−
{0,3,6,3} −0.242402 −0.235202 −0.233235 −0.230555 −0.228141

−0.226174 −0.223493 −0.218973 −0.216293 −0.214326
−0.0832433 −0.081276 −0.0785959 −0.0740759 −0.0713958
−0.0694285 −0.0670145 −0.0643343 −0.0623671 −0.0551669

Table 24: Numerical results for the first order correction in 1/P+ of the string energy spectrum
for 6 impurity states with non confluent mode numbers. The charges are given in the convention
{S+, S−, J+, J−}. The number in front of some eigenvalues denotes their multiplicity if unequal one.
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Appendix C: CD containing the ABAKUS Software

C CD containing the ABAKUS Software
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